A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting
Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz r...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 11; no. 12; p. 3431 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things. |
---|---|
AbstractList | Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things. Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things. |
Author | Xi, Ziyue Zhang, Yiping Liu, Ling Liu, Xiangyu Pan, Xinxiang Yu, Hongyong Xu, Minyi Zhang, Qiqi Lin, Yejin Yuan, Haichao Zhao, Hongfa |
AuthorAffiliation | 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; zhaohf21@mails.tsinghua.edu.cn 1 Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Marine Engineering College Dalian Maritime University, Dalian 116026, China; yuanhc@dlmu.edu.cn (H.Y.); yuhongyong2020@dlmu.edu.cn (H.Y.); simonlxy@dlmu.edu.cn (X.L.); zyp672216686@dlmu.edu.cn (Y.Z.); yyds@dlmu.edu.cn (Z.X.); qiqizhang@dlmu.edu.cn (Q.Z.); pinky@dlmu.edu.com (L.L.) 3 School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China |
AuthorAffiliation_xml | – name: 1 Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Marine Engineering College Dalian Maritime University, Dalian 116026, China; yuanhc@dlmu.edu.cn (H.Y.); yuhongyong2020@dlmu.edu.cn (H.Y.); simonlxy@dlmu.edu.cn (X.L.); zyp672216686@dlmu.edu.cn (Y.Z.); yyds@dlmu.edu.cn (Z.X.); qiqizhang@dlmu.edu.cn (Q.Z.); pinky@dlmu.edu.com (L.L.) – name: 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; zhaohf21@mails.tsinghua.edu.cn – name: 3 School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China |
Author_xml | – sequence: 1 givenname: Haichao orcidid: 0000-0002-7299-779X surname: Yuan fullname: Yuan, Haichao – sequence: 2 givenname: Hongyong surname: Yu fullname: Yu, Hongyong – sequence: 3 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu – sequence: 4 givenname: Hongfa surname: Zhao fullname: Zhao, Hongfa – sequence: 5 givenname: Yiping surname: Zhang fullname: Zhang, Yiping – sequence: 6 givenname: Ziyue surname: Xi fullname: Xi, Ziyue – sequence: 7 givenname: Qiqi surname: Zhang fullname: Zhang, Qiqi – sequence: 8 givenname: Ling surname: Liu fullname: Liu, Ling – sequence: 9 givenname: Yejin surname: Lin fullname: Lin, Yejin – sequence: 10 givenname: Xinxiang surname: Pan fullname: Pan, Xinxiang – sequence: 11 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34947780$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URD_ojTOKxIUDAX_G9gVpu2rZShUgVM6W40yyXiX24mQrlV-Pw5ZqW-GL7ZlnXs-M5xQdhRgAoTcEf2RM40_BhkgIoYwz8gKdUCx1ybUmRwfnY3Q-jhuclyZMCfYKHTOuuZQKn6Dtolj5bl1-h9TGNNjgoFjG4OdLsYJ-WMd--l38gDEGO8VUXtgRmuI2-TpCD25K3hVfcxYdBEgzUeTQYuHibpyy6zJbu_tiZdMdZEPoXqOXre1HOH_Yz9DPq8vb5aq8-fblerm4KZ3gfCrBido5yim1dcuUakWrcQ1CSicay3XtdCU4rrBgDdGOU2VbIQTlItemLGZn6Hqv20S7MdvkB5vuTbTe_DXE1BmbcoY9GOsaJV0tRVPntxW2DWc1b6itWkyqZtb6vNfa7uoBGgdhSrZ_IvrUE_zadPHOKIlFRWQWeP8gkOKvXW6EGfzooO9tgNwoQyuSK9VMkYy-e4Zu4i6F3KqZoooxIXWm3h5m9JjKv4_NwIc94FIcxwTtI0KwmUfHHI5Oxukz3PnJTj7O9fj-_0F_AB3wyBw |
CitedBy_id | crossref_primary_10_1016_j_asej_2023_102461 crossref_primary_10_1002_adsu_202300561 crossref_primary_10_2139_ssrn_4193787 crossref_primary_10_1021_acsnano_1c10755 crossref_primary_10_1016_j_seta_2024_104148 crossref_primary_10_1080_15567036_2023_2173341 crossref_primary_10_1002_smll_202300401 crossref_primary_10_14243_jsaem_31_350 crossref_primary_10_3389_fmats_2022_896953 crossref_primary_10_1002_sstr_202200034 crossref_primary_10_1016_j_nanoen_2023_108237 crossref_primary_10_1016_j_nanoen_2023_109109 crossref_primary_10_1063_5_0101092 crossref_primary_10_3390_nano13101676 crossref_primary_10_1002_smll_202308428 crossref_primary_10_1002_admt_202300802 crossref_primary_10_1016_j_apacoust_2024_109945 crossref_primary_10_1016_j_nanoen_2024_110640 crossref_primary_10_1016_j_nanoen_2025_110765 crossref_primary_10_3390_electronics11244189 crossref_primary_10_2139_ssrn_4048853 crossref_primary_10_1002_smll_202402452 crossref_primary_10_3390_nano12203606 crossref_primary_10_1002_adem_202402442 crossref_primary_10_1016_j_apenergy_2023_121142 crossref_primary_10_1016_j_nanoen_2022_107879 crossref_primary_10_1016_j_nanoen_2024_109913 crossref_primary_10_1016_j_nanoen_2025_110738 crossref_primary_10_1155_2023_5568046 crossref_primary_10_1016_j_ijmecsci_2023_108267 crossref_primary_10_1039_D2TA03232E crossref_primary_10_1016_j_nanoen_2022_107234 crossref_primary_10_1016_j_nanoen_2023_108444 |
Cites_doi | 10.1039/C5NR09087C 10.1002/adfm.202103081 10.1021/acsnano.5b00618 10.1002/advs.201802230 10.1109/JSEN.2011.2167965 10.1002/adma.201001169 10.1016/j.nanoen.2018.04.025 10.1021/acsnano.8b08274 10.1002/aenm.201301322 10.1016/j.sna.2020.112459 10.1063/1.4962027 10.3390/mi10010048 10.3390/mi12020218 10.1063/1.4954987 10.1088/0964-1726/22/5/055013 10.1002/aenm.201702432 10.1016/j.nanoen.2021.106503 10.1088/1361-665X/aa724e 10.1016/j.jsv.2009.11.008 10.1002/aenm.201902824 10.1021/acsnano.1c05127 10.1016/j.nanoen.2018.11.036 10.1016/j.nanoen.2020.104476 10.3390/nano5010036 10.1007/s12541-014-0422-x 10.1016/j.eml.2017.07.005 10.1016/j.nanoen.2021.106199 10.1016/j.nanoen.2021.105962 10.1002/aenm.202000137 10.1002/aenm.201902460 10.1016/j.joule.2017.09.004 10.1002/inf2.12122 10.1002/aenm.202003066 10.3390/nano9050773 10.1021/nn4063616 10.7567/APEX.6.127101 10.1016/j.nanoen.2018.11.041 10.1016/j.nanoen.2021.105887 10.1016/j.nanoen.2020.105279 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2015.04.008 10.1016/j.nanoen.2020.104736 10.3390/s18124113 10.1007/s12274-015-0827-6 10.1016/j.nanoen.2019.01.049 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano11123431 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Materials Science Database (NC LIVE) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_acd87cb75db54480ad43b4d2a6f016d0 PMC8705617 34947780 10_3390_nano11123431 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51879022, 51979045, 52101400, 52101382, 52101345 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c544t-ec5bcc2422abf388f5f90be577c5da49bc965406053d19c428af5552453498a03 |
IEDL.DBID | BENPR |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:17:09 EDT 2025 Thu Aug 21 13:45:57 EDT 2025 Fri Jul 11 02:10:29 EDT 2025 Fri Jul 25 12:00:42 EDT 2025 Wed Feb 19 02:27:33 EST 2025 Thu Apr 24 22:57:39 EDT 2025 Tue Jul 01 01:17:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | triboelectric nanogenerator acoustic energy harvesting coniform Helmholtz resonator |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-ec5bcc2422abf388f5f90be577c5da49bc965406053d19c428af5552453498a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-3772-8340 0000-0002-7299-779X |
OpenAccessLink | https://www.proquest.com/docview/2612833579?pq-origsite=%requestingapplication% |
PMID | 34947780 |
PQID | 2612833579 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acd87cb75db54480ad43b4d2a6f016d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8705617 proquest_miscellaneous_2614229381 proquest_journals_2612833579 pubmed_primary_34947780 crossref_primary_10_3390_nano11123431 crossref_citationtrail_10_3390_nano11123431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211217 |
PublicationDateYYYYMMDD | 2021-12-17 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Khan (ref_16) 2016; 8 Chen (ref_37) 2017; 1 Wang (ref_30) 2021; 90 Mann (ref_14) 2010; 329 Wang (ref_23) 2020; 78 Shi (ref_2) 2020; 2 Sun (ref_11) 2017; 26 Hassan (ref_10) 2014; 5 ref_12 Zhao (ref_33) 2019; 9 Li (ref_17) 2020; 70 Yang (ref_13) 2013; 6 ref_19 Wang (ref_25) 2020; 73 Xue (ref_4) 2014; 5 Cui (ref_40) 2015; 15 Zhou (ref_36) 2021; 84 Cha (ref_44) 2010; 22 Chen (ref_26) 2021; 11 Wu (ref_42) 2018; 48 Choi (ref_8) 2019; 56 Xu (ref_24) 2017; 15 Xiao (ref_21) 2019; 9 Pillai (ref_43) 2014; 15 Wang (ref_29) 2021; 15 Chao (ref_5) 2011; 11 Yuan (ref_31) 2021; 85 Liu (ref_48) 2016; 8 Fan (ref_34) 2015; 9 Fan (ref_18) 2012; 1 ref_3 Qi (ref_9) 2016; 108 Yang (ref_39) 2014; 8 Yang (ref_45) 2014; 4 ref_27 Khan (ref_15) 2019; 58 Quan (ref_22) 2015; 8 Wang (ref_41) 2021; 31 Khan (ref_46) 2013; 1 Lehtola (ref_7) 2019; 35 Xu (ref_20) 2018; 8 Zhao (ref_28) 2021; 88 Chen (ref_32) 2019; 56 Wang (ref_38) 2021; 317 Ahmed (ref_1) 2019; 6 Li (ref_47) 2013; 22 ref_6 Wang (ref_35) 2020; 10 |
References_xml | – volume: 35 start-page: 25 year: 2019 ident: ref_7 article-title: Solar Energy and Wind Power Supply Supported by Storage Technology: A Review publication-title: Sustain. Energy Technol. Assess. – volume: 8 start-page: 4938 year: 2016 ident: ref_48 article-title: A Three-Dimensional Integrated Nanogenerator for Effectively Harvesting Sound Energy from the Environment publication-title: Nanoscale doi: 10.1039/C5NR09087C – volume: 31 start-page: 2103081 year: 2021 ident: ref_41 article-title: A Universal Power Management Strategy Based on Novel Sound-Driven Triboelectric Nanogenerator and Its Fully Self-Powered Wireless System Applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103081 – volume: 9 start-page: 4236 year: 2015 ident: ref_34 article-title: Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording publication-title: ACS Nano doi: 10.1021/acsnano.5b00618 – volume: 6 start-page: 1802230 year: 2019 ident: ref_1 article-title: Integrated Triboelectric Nanogenerators in the Era of the Internet of Things publication-title: Adv. Sci. doi: 10.1002/advs.201802230 – volume: 11 start-page: 3106 year: 2011 ident: ref_5 article-title: Energy Harvesting Electronics for Vibratory Devices in Self-Powered Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2167965 – volume: 22 start-page: 4726 year: 2010 ident: ref_44 article-title: Sound-Driven Piezoelectric Nanowire-Based Nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201001169 – volume: 48 start-page: 607 year: 2018 ident: ref_42 article-title: Insights into the Mechanism of Metal-Polymer Contact Electrification for Triboelectric Nanogenerator via First-Principles Investigations publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.025 – ident: ref_27 doi: 10.1021/acsnano.8b08274 – volume: 4 start-page: 1301322 year: 2014 ident: ref_45 article-title: Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301322 – volume: 317 start-page: 112459 year: 2021 ident: ref_38 article-title: A Robust and Self-Powered Tilt Sensor Based on Annular Liquid-Solid Interfacing Triboelectric Nanogenerator for Ship Attitude Sensing publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2020.112459 – volume: 8 start-page: 054701 year: 2016 ident: ref_16 article-title: Izhar Piezoelectric Type Acoustic Energy Harvester with a Tapered Helmholtz Cavity for Improved Performance publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4962027 – ident: ref_12 doi: 10.3390/mi10010048 – ident: ref_19 doi: 10.3390/mi12020218 – volume: 108 start-page: 263501 year: 2016 ident: ref_9 article-title: Acoustic Energy Harvesting Based on a Planar Acoustic Metamaterial publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954987 – volume: 22 start-page: 055013 year: 2013 ident: ref_47 article-title: Low Frequency Acoustic Energy Harvesting Using PZT Piezoelectric Plates in a Straight Tube Resonator publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/5/055013 – volume: 8 start-page: 1702432 year: 2018 ident: ref_20 article-title: A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702432 – volume: 90 start-page: 106503 year: 2021 ident: ref_30 article-title: An Underwater Flag-like Triboelectric Nanogenerator for Harvesting Ocean Current Energy under Extremely Low Velocity Condition publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106503 – volume: 26 start-page: 075011 year: 2017 ident: ref_11 article-title: Sound Energy Harvesting Using a Doubly Coiled-up Acoustic Metamaterial Cavity publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa724e – volume: 329 start-page: 1348 year: 2010 ident: ref_14 article-title: On the Performance and Resonant Frequency of Electromagnetic Induction Energy Harvesters publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.11.008 – volume: 9 start-page: 1902824 year: 2019 ident: ref_33 article-title: Dual-Tube Helmholtz Resonator-Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902824 – volume: 15 start-page: 15700 year: 2021 ident: ref_29 article-title: Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 56 start-page: 169 year: 2019 ident: ref_8 article-title: A Brief Review of Sound Energy Harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.036 – volume: 70 start-page: 104476 year: 2020 ident: ref_17 article-title: The Electron Transfer Mechanism between Metal and Amorphous Polymers in Humidity Environment for Triboelectric Nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104476 – volume: 5 start-page: 36 year: 2014 ident: ref_4 article-title: A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting publication-title: Nanomaterials doi: 10.3390/nano5010036 – volume: 15 start-page: 949 year: 2014 ident: ref_43 article-title: A Review of Acoustic Energy Harvesting publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0422-x – volume: 5 start-page: 4702 year: 2014 ident: ref_10 article-title: Acoustic Energy Harvesting Using Piezoelectric Generator for Low Frequency Sound Waves Energy Conversion publication-title: Int. J. Eng. Technol. (IJET) – volume: 15 start-page: 122 year: 2017 ident: ref_24 article-title: An Aeroelastic Flutter Based Triboelectric Nanogenerator as a Self-Powered Active Wind Speed Sensor in Harsh Environment publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2017.07.005 – volume: 88 start-page: 106199 year: 2021 ident: ref_28 article-title: Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106199 – volume: 85 start-page: 105962 year: 2021 ident: ref_31 article-title: A 3D-Printed Acoustic Triboelectric Nanogenerator for Quarter-Wavelength Acoustic Energy Harvesting and Self-Powered Edge Sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105962 – volume: 10 start-page: 2000137 year: 2020 ident: ref_35 article-title: Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000137 – volume: 9 start-page: 1902460 year: 2019 ident: ref_21 article-title: Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Self-Powered Engine Condition Monitoring publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902460 – volume: 1 start-page: 480 year: 2017 ident: ref_37 article-title: Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator publication-title: Joule doi: 10.1016/j.joule.2017.09.004 – volume: 2 start-page: 1131 year: 2020 ident: ref_2 article-title: Progress in Wearable Electronics/Photonics—Moving toward the Era of Artificial Intelligence and Internet of Things publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 11 start-page: 2003066 year: 2021 ident: ref_26 article-title: Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003066 – ident: ref_3 doi: 10.3390/nano9050773 – volume: 8 start-page: 2649 year: 2014 ident: ref_39 article-title: Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing publication-title: ACS Nano doi: 10.1021/nn4063616 – volume: 6 start-page: 127101 year: 2013 ident: ref_13 article-title: Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.127101 – volume: 56 start-page: 241 year: 2019 ident: ref_32 article-title: A Novel Triboelectric Nanogenerator Based on Electrospun Polyvinylidene Fluoride Nanofibers for Effective Acoustic Energy Harvesting and Self-Powered Multifunctional Sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.041 – volume: 84 start-page: 105887 year: 2021 ident: ref_36 article-title: Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105887 – volume: 78 start-page: 105279 year: 2020 ident: ref_23 article-title: A Novel Humidity Resisting and Wind Direction Adapting Flag-Type Triboelectric Nanogenerator for Wind Energy Harvesting and Speed Sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105279 – volume: 1 start-page: 328 year: 2012 ident: ref_18 article-title: Flexible Triboelectric Generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 15 start-page: 321 year: 2015 ident: ref_40 article-title: High Performance Sound Driven Triboelectric Nanogenerator for Harvesting Noise Energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.008 – volume: 73 start-page: 104736 year: 2020 ident: ref_25 article-title: Multi-Functional Wind Barrier Based on Triboelectric Nanogenerator for Power Generation, Self-Powered Wind Speed Sensing and Highly Efficient Windshield publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104736 – ident: ref_6 doi: 10.3390/s18124113 – volume: 8 start-page: 3272 year: 2015 ident: ref_22 article-title: Hybrid Electromagnetic–Triboelectric Nanogenerator for Harvesting Vibration Energy publication-title: Nano Res. doi: 10.1007/s12274-015-0827-6 – volume: 58 start-page: 211 year: 2019 ident: ref_15 article-title: Performance Improvement of Flexible Piezoelectric Energy Harvester for Irregular Human Motion with Energy Extraction Enhancement Circuit publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.049 – volume: 1 start-page: 72 year: 2013 ident: ref_46 article-title: Acoustic-Based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application publication-title: Int. J. Mater. Sci. Eng. |
SSID | ssj0000913853 |
Score | 2.344489 |
Snippet | Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3431 |
SubjectTerms | acoustic energy harvesting Acoustics Aluminum coniform Helmholtz resonator Design Electricity generation Energy Energy harvesting Experiments Frequency dependence Frequency response Helmholtz resonators Internet of Things Nanogenerators Sensors Sound pressure triboelectric nanogenerator Wave power Wind power |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS95AEF-KJ3soVfuIL1ZoT2Ux2Uc2e_wURQSlhwrewr5ihXYj-nnxr3dmEz_zFYsXj0kmYTPvSWZ_Q8g3yGhLw7llEMw9kzoK1gRdMwteMnY42ifvcj07r08u5OmlupyM-sKesAEeeGDcvvWh0d5pFZyCUqK0QQonA7d1B9lKyNU6xLxJMZV9sKkEBKKh011AXb-fbOrBrrmQolqKQRmq_6X88t82yUncOf5IPowJI50NC10j72JaJ-8nMIIb5GZGsV2D_XzeBEAPwVbxgEJc-Qsebv5A8Ut9whqbHUDoChRBQ_phDM61p-Bm-6uMQQ0UFG6lM9_nUV_0KO8PpDhGCDE50tUncnF89OvwhI2TFJgHps1Z9Mp5D9GYW9eJpulUZ0oXldZeBSuN86aG1A1KGxEq40GAtlNKcamENI0txWeykvoUvxLqQs21tsp4iO4yukZBhlJbXupah8r6gvx44m3rR5hxnHbxp4VyAyXRTiVRkO8L6psBXuM_dAcopgUNgmLnE6Aq7agq7WuqUpDtJyG3o6XetQihhhvPtCnI3uIy2Bj-OLEpAqeRBlhnILkpyJdBJxYrQXgfrRt4uF7SlqWlLl9J178zjje4Sshe9eZbvNsWWeXYbVNxVultsjK_vY87kC7N3W62jEeo2hT_ priority: 102 providerName: Directory of Open Access Journals |
Title | A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34947780 https://www.proquest.com/docview/2612833579 https://www.proquest.com/docview/2614229381 https://pubmed.ncbi.nlm.nih.gov/PMC8705617 https://doaj.org/article/acd87cb75db54480ad43b4d2a6f016d0 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7gUeEN8ERmUkeELWEseO7SfUTi0TEtOEmLS3yB9JmQRJ2coLfz13SZq1CHhscqkcn-_u58v5dwBvENGmVgjHMZgHLnWVcxN1wR16yaqm1j7dKddPZ8Xphfx4qS6HhNvNUFa59Ymdo45toBz5MVFd0QEhbd-vf3DqGkVfV4cWGgdwiC7YmAkczhdn55_HLAuxXmJA6ivec9zfHzeuadG-RS7zbC8WdZT9f8OZf5ZL7sSf5QO4PwBHNus1_RDuVM0juLdDJ_gY1jNGZRv8_PYwADtBm6UfDOPLd_R0m1-MMvYN7bX5HENYZEQe0vbtcK4CQ3fbrjouapRg-CibhbZr-cUW3TlBRu2EiJujWT2Bi-Xiy8kpHzoq8KCk3PAqKB8CRmXhfJ0bU6vapr5SWgcVnbQ-2AIhHG5x8pjZgIp0tVJKSJVLa1yaP4VJ0zbVc2A-FkJrp2zAKC8rbxQilcKJVBc6Zi4k8G47t2UY6Map68W3ErcdpIlyVxMJvB2l1z3Nxj_k5qSmUYbIsbsL7fWqHGytdCEaHbxW0eNbm9RFmXsZhStqBLgxTeBoq-RysNib8nZ9JfB6vI22Rh9QXFPhTJMMTp1FkJPAs35NjCMhmh-tDf653lste0Pdv9Ncfe34vNFlIorVL_4_rJdwV1A9TSZ4po9gsrn-Wb1CQLTxUzgwyw_TYe1Pu7TCbzPRDw4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDASPSGriWPHyQGhbemypQ9xaKXegh_JUokm23YRgh_Fb2Qmr-4i4NZj4knkeMYzn2PPNwCvEdGGmRCGYzB3XOoi5qnXCTfoJYuSSvs0Wa4Hh8nkWH48UScr8KvPhaFjlb1PbBy1rx39I98kqitKENLZu9k5p6pRtLval9BozWKv-PEdl2yXb3ffo343hBjvHG1PeFdVgDsl5ZwXTlnnMDIJY8s4TUtVZqEtlNZOeSMz67IEYQzC_NhHmcOPMaVSSkgVyyw1YYzvvQE3ZYyRnDLTxx-GfzrEsYnhrz1fj-3hZmWqGr2JiGUcLUW-pkDA31Dtn4czF6Ld-B7c7WAqG7V2dR9WiuoB3FkgL3wIsxGjQyL801XqAdtGD0EXDKPZGfrV-U9G-wMVrez5FgZMz4iqpG6L75w6hs69njbM1yjB8FE2cnVTYIztNFmJjIoXERNINX0Ex9cy0o9htaqr4gkw6xOhtVGZQ0whC5sqxEWJEaFOtI-MC-BNP7a568jNqcbG1xwXOaSJfFETAWwM0rOW1OMfclukpkGGqLibG_XFNO9mdm6cT7WzWnmLX52GxsvYSi9MUiKc9mEA672S884_XOZX1hzAq6EZZzZt15iqwJEmGRy6DCFVAGutTQw9IVIhrVN8uV6ylqWuLrdUp18a9nB00IiZ9dP_d-sl3JocHezn-7uHe8_gtqCTPJHgkV6H1fnFt-I5QrG5fdHYP4PP1z3hfgPcAkfL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgcgQFGYk_IauLYcfKAULu12hhUFWLS3oJjJ2USJGUrQvCn8ddxl6-1CHjbY5tL5PjOdz_Hd78DeIGI1k-EMByDueVS5yGPnY64QS-ZF9Tap65yfTeLDk_km1N1ugW_uloYSqvsfGLtqF1l6Rv5kKiuqEBIJ8OiTYuYH0xfL79y6iBFJ61dO43GRI7zH99x-3bx6ugAdb0nxHTyYf-Qtx0GuFVSrnhuVWYtRilhsiKM40IViZ_lSmurnJFJZpMIIQ1C_tAFicUXM4VSSkgVyiQ2fojPvQbbmnZFA9geT2bz9_0XHmLcxGDYZNuHYeIPS1NW6FtEKMNgIw7W7QL-hnH_TNVci33T23CrBa1s1FjZHdjKy7twc43K8B4sR4xSRvj8shCB7aO_oB8MY9sX9LKrn4xOC0ra5_Mxhk_HiLikalrxnFmGrr5a1DzYKMHwVjayVd1ujE3qGkVGrYyIF6Rc3IeTK5nrBzAoqzJ_CCxzkdDaqMQiwpB5FitESZERvo60C4z14GU3t6ltqc6p48bnFLc8pIl0XRMe7PXSy4bi4x9yY1JTL0PE3PUf1fkibdd5aqyLtc20chm-dewbJ8NMOmGiAsG18z3Y7ZSctt7iIr20bQ-e95dxndPhjSlznGmSwalLEGB5sNPYRD8SohjSOsaH6w1r2Rjq5pXy7FPNJY7uGhG0fvT_YT2D67jY0rdHs-PHcENQWk8geKB3YbA6_5Y_QVy2yp62C4DBx6tec78BaO1NXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Performance+Coniform+Helmholtz+Resonator-Based+Triboelectric+Nanogenerator+for+Acoustic+Energy+Harvesting&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Yuan%2C+Haichao&rft.au=Yu%2C+Hongyong&rft.au=Liu%2C+Xiangyu&rft.au=Zhao%2C+Hongfa&rft.date=2021-12-17&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=11&rft.issue=12&rft.spage=3431&rft_id=info:doi/10.3390%2Fnano11123431&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano11123431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |