A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting

Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz r...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 11; no. 12; p. 3431
Main Authors Yuan, Haichao, Yu, Hongyong, Liu, Xiangyu, Zhao, Hongfa, Zhang, Yiping, Xi, Ziyue, Zhang, Qiqi, Liu, Ling, Lin, Yejin, Pan, Xinxiang, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.12.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.
AbstractList Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.
Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.
Author Xi, Ziyue
Zhang, Yiping
Liu, Ling
Liu, Xiangyu
Pan, Xinxiang
Yu, Hongyong
Xu, Minyi
Zhang, Qiqi
Lin, Yejin
Yuan, Haichao
Zhao, Hongfa
AuthorAffiliation 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; zhaohf21@mails.tsinghua.edu.cn
1 Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Marine Engineering College Dalian Maritime University, Dalian 116026, China; yuanhc@dlmu.edu.cn (H.Y.); yuhongyong2020@dlmu.edu.cn (H.Y.); simonlxy@dlmu.edu.cn (X.L.); zyp672216686@dlmu.edu.cn (Y.Z.); yyds@dlmu.edu.cn (Z.X.); qiqizhang@dlmu.edu.cn (Q.Z.); pinky@dlmu.edu.com (L.L.)
3 School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
AuthorAffiliation_xml – name: 1 Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Marine Engineering College Dalian Maritime University, Dalian 116026, China; yuanhc@dlmu.edu.cn (H.Y.); yuhongyong2020@dlmu.edu.cn (H.Y.); simonlxy@dlmu.edu.cn (X.L.); zyp672216686@dlmu.edu.cn (Y.Z.); yyds@dlmu.edu.cn (Z.X.); qiqizhang@dlmu.edu.cn (Q.Z.); pinky@dlmu.edu.com (L.L.)
– name: 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; zhaohf21@mails.tsinghua.edu.cn
– name: 3 School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
Author_xml – sequence: 1
  givenname: Haichao
  orcidid: 0000-0002-7299-779X
  surname: Yuan
  fullname: Yuan, Haichao
– sequence: 2
  givenname: Hongyong
  surname: Yu
  fullname: Yu, Hongyong
– sequence: 3
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
– sequence: 4
  givenname: Hongfa
  surname: Zhao
  fullname: Zhao, Hongfa
– sequence: 5
  givenname: Yiping
  surname: Zhang
  fullname: Zhang, Yiping
– sequence: 6
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
– sequence: 7
  givenname: Qiqi
  surname: Zhang
  fullname: Zhang, Qiqi
– sequence: 8
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
– sequence: 9
  givenname: Yejin
  surname: Lin
  fullname: Lin, Yejin
– sequence: 10
  givenname: Xinxiang
  surname: Pan
  fullname: Pan, Xinxiang
– sequence: 11
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34947780$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_ojTOKxIUDAX_G9gVpu2rZShUgVM6W40yyXiX24mQrlV-Pw5ZqW-GL7ZlnXs-M5xQdhRgAoTcEf2RM40_BhkgIoYwz8gKdUCx1ybUmRwfnY3Q-jhuclyZMCfYKHTOuuZQKn6Dtolj5bl1-h9TGNNjgoFjG4OdLsYJ-WMd--l38gDEGO8VUXtgRmuI2-TpCD25K3hVfcxYdBEgzUeTQYuHibpyy6zJbu_tiZdMdZEPoXqOXre1HOH_Yz9DPq8vb5aq8-fblerm4KZ3gfCrBido5yim1dcuUakWrcQ1CSicay3XtdCU4rrBgDdGOU2VbIQTlItemLGZn6Hqv20S7MdvkB5vuTbTe_DXE1BmbcoY9GOsaJV0tRVPntxW2DWc1b6itWkyqZtb6vNfa7uoBGgdhSrZ_IvrUE_zadPHOKIlFRWQWeP8gkOKvXW6EGfzooO9tgNwoQyuSK9VMkYy-e4Zu4i6F3KqZoooxIXWm3h5m9JjKv4_NwIc94FIcxwTtI0KwmUfHHI5Oxukz3PnJTj7O9fj-_0F_AB3wyBw
CitedBy_id crossref_primary_10_1016_j_asej_2023_102461
crossref_primary_10_1002_adsu_202300561
crossref_primary_10_2139_ssrn_4193787
crossref_primary_10_1021_acsnano_1c10755
crossref_primary_10_1016_j_seta_2024_104148
crossref_primary_10_1080_15567036_2023_2173341
crossref_primary_10_1002_smll_202300401
crossref_primary_10_14243_jsaem_31_350
crossref_primary_10_3389_fmats_2022_896953
crossref_primary_10_1002_sstr_202200034
crossref_primary_10_1016_j_nanoen_2023_108237
crossref_primary_10_1016_j_nanoen_2023_109109
crossref_primary_10_1063_5_0101092
crossref_primary_10_3390_nano13101676
crossref_primary_10_1002_smll_202308428
crossref_primary_10_1002_admt_202300802
crossref_primary_10_1016_j_apacoust_2024_109945
crossref_primary_10_1016_j_nanoen_2024_110640
crossref_primary_10_1016_j_nanoen_2025_110765
crossref_primary_10_3390_electronics11244189
crossref_primary_10_2139_ssrn_4048853
crossref_primary_10_1002_smll_202402452
crossref_primary_10_3390_nano12203606
crossref_primary_10_1002_adem_202402442
crossref_primary_10_1016_j_apenergy_2023_121142
crossref_primary_10_1016_j_nanoen_2022_107879
crossref_primary_10_1016_j_nanoen_2024_109913
crossref_primary_10_1016_j_nanoen_2025_110738
crossref_primary_10_1155_2023_5568046
crossref_primary_10_1016_j_ijmecsci_2023_108267
crossref_primary_10_1039_D2TA03232E
crossref_primary_10_1016_j_nanoen_2022_107234
crossref_primary_10_1016_j_nanoen_2023_108444
Cites_doi 10.1039/C5NR09087C
10.1002/adfm.202103081
10.1021/acsnano.5b00618
10.1002/advs.201802230
10.1109/JSEN.2011.2167965
10.1002/adma.201001169
10.1016/j.nanoen.2018.04.025
10.1021/acsnano.8b08274
10.1002/aenm.201301322
10.1016/j.sna.2020.112459
10.1063/1.4962027
10.3390/mi10010048
10.3390/mi12020218
10.1063/1.4954987
10.1088/0964-1726/22/5/055013
10.1002/aenm.201702432
10.1016/j.nanoen.2021.106503
10.1088/1361-665X/aa724e
10.1016/j.jsv.2009.11.008
10.1002/aenm.201902824
10.1021/acsnano.1c05127
10.1016/j.nanoen.2018.11.036
10.1016/j.nanoen.2020.104476
10.3390/nano5010036
10.1007/s12541-014-0422-x
10.1016/j.eml.2017.07.005
10.1016/j.nanoen.2021.106199
10.1016/j.nanoen.2021.105962
10.1002/aenm.202000137
10.1002/aenm.201902460
10.1016/j.joule.2017.09.004
10.1002/inf2.12122
10.1002/aenm.202003066
10.3390/nano9050773
10.1021/nn4063616
10.7567/APEX.6.127101
10.1016/j.nanoen.2018.11.041
10.1016/j.nanoen.2021.105887
10.1016/j.nanoen.2020.105279
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2015.04.008
10.1016/j.nanoen.2020.104736
10.3390/s18124113
10.1007/s12274-015-0827-6
10.1016/j.nanoen.2019.01.049
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano11123431
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Materials Science Database (NC LIVE)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_acd87cb75db54480ad43b4d2a6f016d0
PMC8705617
34947780
10_3390_nano11123431
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51879022, 51979045, 52101400, 52101382, 52101345
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c544t-ec5bcc2422abf388f5f90be577c5da49bc965406053d19c428af5552453498a03
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:17:09 EDT 2025
Thu Aug 21 13:45:57 EDT 2025
Fri Jul 11 02:10:29 EDT 2025
Fri Jul 25 12:00:42 EDT 2025
Wed Feb 19 02:27:33 EST 2025
Thu Apr 24 22:57:39 EDT 2025
Tue Jul 01 01:17:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords triboelectric nanogenerator
acoustic energy harvesting
coniform Helmholtz resonator
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-ec5bcc2422abf388f5f90be577c5da49bc965406053d19c428af5552453498a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3772-8340
0000-0002-7299-779X
OpenAccessLink https://www.proquest.com/docview/2612833579?pq-origsite=%requestingapplication%
PMID 34947780
PQID 2612833579
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_acd87cb75db54480ad43b4d2a6f016d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8705617
proquest_miscellaneous_2614229381
proquest_journals_2612833579
pubmed_primary_34947780
crossref_primary_10_3390_nano11123431
crossref_citationtrail_10_3390_nano11123431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211217
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 20211217
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khan (ref_16) 2016; 8
Chen (ref_37) 2017; 1
Wang (ref_30) 2021; 90
Mann (ref_14) 2010; 329
Wang (ref_23) 2020; 78
Shi (ref_2) 2020; 2
Sun (ref_11) 2017; 26
Hassan (ref_10) 2014; 5
ref_12
Zhao (ref_33) 2019; 9
Li (ref_17) 2020; 70
Yang (ref_13) 2013; 6
ref_19
Wang (ref_25) 2020; 73
Xue (ref_4) 2014; 5
Cui (ref_40) 2015; 15
Zhou (ref_36) 2021; 84
Cha (ref_44) 2010; 22
Chen (ref_26) 2021; 11
Wu (ref_42) 2018; 48
Choi (ref_8) 2019; 56
Xu (ref_24) 2017; 15
Xiao (ref_21) 2019; 9
Pillai (ref_43) 2014; 15
Wang (ref_29) 2021; 15
Chao (ref_5) 2011; 11
Yuan (ref_31) 2021; 85
Liu (ref_48) 2016; 8
Fan (ref_34) 2015; 9
Fan (ref_18) 2012; 1
ref_3
Qi (ref_9) 2016; 108
Yang (ref_39) 2014; 8
Yang (ref_45) 2014; 4
ref_27
Khan (ref_15) 2019; 58
Quan (ref_22) 2015; 8
Wang (ref_41) 2021; 31
Khan (ref_46) 2013; 1
Lehtola (ref_7) 2019; 35
Xu (ref_20) 2018; 8
Zhao (ref_28) 2021; 88
Chen (ref_32) 2019; 56
Wang (ref_38) 2021; 317
Ahmed (ref_1) 2019; 6
Li (ref_47) 2013; 22
ref_6
Wang (ref_35) 2020; 10
References_xml – volume: 35
  start-page: 25
  year: 2019
  ident: ref_7
  article-title: Solar Energy and Wind Power Supply Supported by Storage Technology: A Review
  publication-title: Sustain. Energy Technol. Assess.
– volume: 8
  start-page: 4938
  year: 2016
  ident: ref_48
  article-title: A Three-Dimensional Integrated Nanogenerator for Effectively Harvesting Sound Energy from the Environment
  publication-title: Nanoscale
  doi: 10.1039/C5NR09087C
– volume: 31
  start-page: 2103081
  year: 2021
  ident: ref_41
  article-title: A Universal Power Management Strategy Based on Novel Sound-Driven Triboelectric Nanogenerator and Its Fully Self-Powered Wireless System Applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103081
– volume: 9
  start-page: 4236
  year: 2015
  ident: ref_34
  article-title: Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00618
– volume: 6
  start-page: 1802230
  year: 2019
  ident: ref_1
  article-title: Integrated Triboelectric Nanogenerators in the Era of the Internet of Things
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802230
– volume: 11
  start-page: 3106
  year: 2011
  ident: ref_5
  article-title: Energy Harvesting Electronics for Vibratory Devices in Self-Powered Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2167965
– volume: 22
  start-page: 4726
  year: 2010
  ident: ref_44
  article-title: Sound-Driven Piezoelectric Nanowire-Based Nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001169
– volume: 48
  start-page: 607
  year: 2018
  ident: ref_42
  article-title: Insights into the Mechanism of Metal-Polymer Contact Electrification for Triboelectric Nanogenerator via First-Principles Investigations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.025
– ident: ref_27
  doi: 10.1021/acsnano.8b08274
– volume: 4
  start-page: 1301322
  year: 2014
  ident: ref_45
  article-title: Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301322
– volume: 317
  start-page: 112459
  year: 2021
  ident: ref_38
  article-title: A Robust and Self-Powered Tilt Sensor Based on Annular Liquid-Solid Interfacing Triboelectric Nanogenerator for Ship Attitude Sensing
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2020.112459
– volume: 8
  start-page: 054701
  year: 2016
  ident: ref_16
  article-title: Izhar Piezoelectric Type Acoustic Energy Harvester with a Tapered Helmholtz Cavity for Improved Performance
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4962027
– ident: ref_12
  doi: 10.3390/mi10010048
– ident: ref_19
  doi: 10.3390/mi12020218
– volume: 108
  start-page: 263501
  year: 2016
  ident: ref_9
  article-title: Acoustic Energy Harvesting Based on a Planar Acoustic Metamaterial
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954987
– volume: 22
  start-page: 055013
  year: 2013
  ident: ref_47
  article-title: Low Frequency Acoustic Energy Harvesting Using PZT Piezoelectric Plates in a Straight Tube Resonator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/5/055013
– volume: 8
  start-page: 1702432
  year: 2018
  ident: ref_20
  article-title: A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702432
– volume: 90
  start-page: 106503
  year: 2021
  ident: ref_30
  article-title: An Underwater Flag-like Triboelectric Nanogenerator for Harvesting Ocean Current Energy under Extremely Low Velocity Condition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106503
– volume: 26
  start-page: 075011
  year: 2017
  ident: ref_11
  article-title: Sound Energy Harvesting Using a Doubly Coiled-up Acoustic Metamaterial Cavity
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa724e
– volume: 329
  start-page: 1348
  year: 2010
  ident: ref_14
  article-title: On the Performance and Resonant Frequency of Electromagnetic Induction Energy Harvesters
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.11.008
– volume: 9
  start-page: 1902824
  year: 2019
  ident: ref_33
  article-title: Dual-Tube Helmholtz Resonator-Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902824
– volume: 15
  start-page: 15700
  year: 2021
  ident: ref_29
  article-title: Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 56
  start-page: 169
  year: 2019
  ident: ref_8
  article-title: A Brief Review of Sound Energy Harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.036
– volume: 70
  start-page: 104476
  year: 2020
  ident: ref_17
  article-title: The Electron Transfer Mechanism between Metal and Amorphous Polymers in Humidity Environment for Triboelectric Nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104476
– volume: 5
  start-page: 36
  year: 2014
  ident: ref_4
  article-title: A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting
  publication-title: Nanomaterials
  doi: 10.3390/nano5010036
– volume: 15
  start-page: 949
  year: 2014
  ident: ref_43
  article-title: A Review of Acoustic Energy Harvesting
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-014-0422-x
– volume: 5
  start-page: 4702
  year: 2014
  ident: ref_10
  article-title: Acoustic Energy Harvesting Using Piezoelectric Generator for Low Frequency Sound Waves Energy Conversion
  publication-title: Int. J. Eng. Technol. (IJET)
– volume: 15
  start-page: 122
  year: 2017
  ident: ref_24
  article-title: An Aeroelastic Flutter Based Triboelectric Nanogenerator as a Self-Powered Active Wind Speed Sensor in Harsh Environment
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2017.07.005
– volume: 88
  start-page: 106199
  year: 2021
  ident: ref_28
  article-title: Recent Progress in Blue Energy Harvesting for Powering Distributed Sensors in Ocean
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106199
– volume: 85
  start-page: 105962
  year: 2021
  ident: ref_31
  article-title: A 3D-Printed Acoustic Triboelectric Nanogenerator for Quarter-Wavelength Acoustic Energy Harvesting and Self-Powered Edge Sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105962
– volume: 10
  start-page: 2000137
  year: 2020
  ident: ref_35
  article-title: Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000137
– volume: 9
  start-page: 1902460
  year: 2019
  ident: ref_21
  article-title: Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Self-Powered Engine Condition Monitoring
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902460
– volume: 1
  start-page: 480
  year: 2017
  ident: ref_37
  article-title: Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.004
– volume: 2
  start-page: 1131
  year: 2020
  ident: ref_2
  article-title: Progress in Wearable Electronics/Photonics—Moving toward the Era of Artificial Intelligence and Internet of Things
  publication-title: InfoMat
  doi: 10.1002/inf2.12122
– volume: 11
  start-page: 2003066
  year: 2021
  ident: ref_26
  article-title: Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003066
– ident: ref_3
  doi: 10.3390/nano9050773
– volume: 8
  start-page: 2649
  year: 2014
  ident: ref_39
  article-title: Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing
  publication-title: ACS Nano
  doi: 10.1021/nn4063616
– volume: 6
  start-page: 127101
  year: 2013
  ident: ref_13
  article-title: Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.127101
– volume: 56
  start-page: 241
  year: 2019
  ident: ref_32
  article-title: A Novel Triboelectric Nanogenerator Based on Electrospun Polyvinylidene Fluoride Nanofibers for Effective Acoustic Energy Harvesting and Self-Powered Multifunctional Sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.041
– volume: 84
  start-page: 105887
  year: 2021
  ident: ref_36
  article-title: Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105887
– volume: 78
  start-page: 105279
  year: 2020
  ident: ref_23
  article-title: A Novel Humidity Resisting and Wind Direction Adapting Flag-Type Triboelectric Nanogenerator for Wind Energy Harvesting and Speed Sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105279
– volume: 1
  start-page: 328
  year: 2012
  ident: ref_18
  article-title: Flexible Triboelectric Generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 15
  start-page: 321
  year: 2015
  ident: ref_40
  article-title: High Performance Sound Driven Triboelectric Nanogenerator for Harvesting Noise Energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.008
– volume: 73
  start-page: 104736
  year: 2020
  ident: ref_25
  article-title: Multi-Functional Wind Barrier Based on Triboelectric Nanogenerator for Power Generation, Self-Powered Wind Speed Sensing and Highly Efficient Windshield
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104736
– ident: ref_6
  doi: 10.3390/s18124113
– volume: 8
  start-page: 3272
  year: 2015
  ident: ref_22
  article-title: Hybrid Electromagnetic–Triboelectric Nanogenerator for Harvesting Vibration Energy
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0827-6
– volume: 58
  start-page: 211
  year: 2019
  ident: ref_15
  article-title: Performance Improvement of Flexible Piezoelectric Energy Harvester for Irregular Human Motion with Energy Extraction Enhancement Circuit
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.049
– volume: 1
  start-page: 72
  year: 2013
  ident: ref_46
  article-title: Acoustic-Based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application
  publication-title: Int. J. Mater. Sci. Eng.
SSID ssj0000913853
Score 2.344489
Snippet Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3431
SubjectTerms acoustic energy harvesting
Acoustics
Aluminum
coniform Helmholtz resonator
Design
Electricity generation
Energy
Energy harvesting
Experiments
Frequency dependence
Frequency response
Helmholtz resonators
Internet of Things
Nanogenerators
Sensors
Sound pressure
triboelectric nanogenerator
Wave power
Wind power
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS95AEF-KJ3soVfuIL1ZoT2Ux2Uc2e_wURQSlhwrewr5ihXYj-nnxr3dmEz_zFYsXj0kmYTPvSWZ_Q8g3yGhLw7llEMw9kzoK1gRdMwteMnY42ifvcj07r08u5OmlupyM-sKesAEeeGDcvvWh0d5pFZyCUqK0QQonA7d1B9lKyNU6xLxJMZV9sKkEBKKh011AXb-fbOrBrrmQolqKQRmq_6X88t82yUncOf5IPowJI50NC10j72JaJ-8nMIIb5GZGsV2D_XzeBEAPwVbxgEJc-Qsebv5A8Ut9whqbHUDoChRBQ_phDM61p-Bm-6uMQQ0UFG6lM9_nUV_0KO8PpDhGCDE50tUncnF89OvwhI2TFJgHps1Z9Mp5D9GYW9eJpulUZ0oXldZeBSuN86aG1A1KGxEq40GAtlNKcamENI0txWeykvoUvxLqQs21tsp4iO4yukZBhlJbXupah8r6gvx44m3rR5hxnHbxp4VyAyXRTiVRkO8L6psBXuM_dAcopgUNgmLnE6Aq7agq7WuqUpDtJyG3o6XetQihhhvPtCnI3uIy2Bj-OLEpAqeRBlhnILkpyJdBJxYrQXgfrRt4uF7SlqWlLl9J178zjje4Sshe9eZbvNsWWeXYbVNxVultsjK_vY87kC7N3W62jEeo2hT_
  priority: 102
  providerName: Directory of Open Access Journals
Title A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting
URI https://www.ncbi.nlm.nih.gov/pubmed/34947780
https://www.proquest.com/docview/2612833579
https://www.proquest.com/docview/2614229381
https://pubmed.ncbi.nlm.nih.gov/PMC8705617
https://doaj.org/article/acd87cb75db54480ad43b4d2a6f016d0
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7gUeEN8ERmUkeELWEseO7SfUTi0TEtOEmLS3yB9JmQRJ2coLfz13SZq1CHhscqkcn-_u58v5dwBvENGmVgjHMZgHLnWVcxN1wR16yaqm1j7dKddPZ8Xphfx4qS6HhNvNUFa59Ymdo45toBz5MVFd0QEhbd-vf3DqGkVfV4cWGgdwiC7YmAkczhdn55_HLAuxXmJA6ivec9zfHzeuadG-RS7zbC8WdZT9f8OZf5ZL7sSf5QO4PwBHNus1_RDuVM0juLdDJ_gY1jNGZRv8_PYwADtBm6UfDOPLd_R0m1-MMvYN7bX5HENYZEQe0vbtcK4CQ3fbrjouapRg-CibhbZr-cUW3TlBRu2EiJujWT2Bi-Xiy8kpHzoq8KCk3PAqKB8CRmXhfJ0bU6vapr5SWgcVnbQ-2AIhHG5x8pjZgIp0tVJKSJVLa1yaP4VJ0zbVc2A-FkJrp2zAKC8rbxQilcKJVBc6Zi4k8G47t2UY6Map68W3ErcdpIlyVxMJvB2l1z3Nxj_k5qSmUYbIsbsL7fWqHGytdCEaHbxW0eNbm9RFmXsZhStqBLgxTeBoq-RysNib8nZ9JfB6vI22Rh9QXFPhTJMMTp1FkJPAs35NjCMhmh-tDf653lste0Pdv9Ncfe34vNFlIorVL_4_rJdwV1A9TSZ4po9gsrn-Wb1CQLTxUzgwyw_TYe1Pu7TCbzPRDw4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDASPSGriWPHyQGhbemypQ9xaKXegh_JUokm23YRgh_Fb2Qmr-4i4NZj4knkeMYzn2PPNwCvEdGGmRCGYzB3XOoi5qnXCTfoJYuSSvs0Wa4Hh8nkWH48UScr8KvPhaFjlb1PbBy1rx39I98kqitKENLZu9k5p6pRtLval9BozWKv-PEdl2yXb3ffo343hBjvHG1PeFdVgDsl5ZwXTlnnMDIJY8s4TUtVZqEtlNZOeSMz67IEYQzC_NhHmcOPMaVSSkgVyyw1YYzvvQE3ZYyRnDLTxx-GfzrEsYnhrz1fj-3hZmWqGr2JiGUcLUW-pkDA31Dtn4czF6Ld-B7c7WAqG7V2dR9WiuoB3FkgL3wIsxGjQyL801XqAdtGD0EXDKPZGfrV-U9G-wMVrez5FgZMz4iqpG6L75w6hs69njbM1yjB8FE2cnVTYIztNFmJjIoXERNINX0Ex9cy0o9htaqr4gkw6xOhtVGZQ0whC5sqxEWJEaFOtI-MC-BNP7a568jNqcbG1xwXOaSJfFETAWwM0rOW1OMfclukpkGGqLibG_XFNO9mdm6cT7WzWnmLX52GxsvYSi9MUiKc9mEA672S884_XOZX1hzAq6EZZzZt15iqwJEmGRy6DCFVAGutTQw9IVIhrVN8uV6ylqWuLrdUp18a9nB00IiZ9dP_d-sl3JocHezn-7uHe8_gtqCTPJHgkV6H1fnFt-I5QrG5fdHYP4PP1z3hfgPcAkfL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgcgQFGYk_IauLYcfKAULu12hhUFWLS3oJjJ2USJGUrQvCn8ddxl6-1CHjbY5tL5PjOdz_Hd78DeIGI1k-EMByDueVS5yGPnY64QS-ZF9Tap65yfTeLDk_km1N1ugW_uloYSqvsfGLtqF1l6Rv5kKiuqEBIJ8OiTYuYH0xfL79y6iBFJ61dO43GRI7zH99x-3bx6ugAdb0nxHTyYf-Qtx0GuFVSrnhuVWYtRilhsiKM40IViZ_lSmurnJFJZpMIIQ1C_tAFicUXM4VSSkgVyiQ2fojPvQbbmnZFA9geT2bz9_0XHmLcxGDYZNuHYeIPS1NW6FtEKMNgIw7W7QL-hnH_TNVci33T23CrBa1s1FjZHdjKy7twc43K8B4sR4xSRvj8shCB7aO_oB8MY9sX9LKrn4xOC0ra5_Mxhk_HiLikalrxnFmGrr5a1DzYKMHwVjayVd1ujE3qGkVGrYyIF6Rc3IeTK5nrBzAoqzJ_CCxzkdDaqMQiwpB5FitESZERvo60C4z14GU3t6ltqc6p48bnFLc8pIl0XRMe7PXSy4bi4x9yY1JTL0PE3PUf1fkibdd5aqyLtc20chm-dewbJ8NMOmGiAsG18z3Y7ZSctt7iIr20bQ-e95dxndPhjSlznGmSwalLEGB5sNPYRD8SohjSOsaH6w1r2Rjq5pXy7FPNJY7uGhG0fvT_YT2D67jY0rdHs-PHcENQWk8geKB3YbA6_5Y_QVy2yp62C4DBx6tec78BaO1NXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Performance+Coniform+Helmholtz+Resonator-Based+Triboelectric+Nanogenerator+for+Acoustic+Energy+Harvesting&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Yuan%2C+Haichao&rft.au=Yu%2C+Hongyong&rft.au=Liu%2C+Xiangyu&rft.au=Zhao%2C+Hongfa&rft.date=2021-12-17&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=11&rft.issue=12&rft.spage=3431&rft_id=info:doi/10.3390%2Fnano11123431&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano11123431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon