Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1
Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict...
Saved in:
Published in | Toxicology and applied pharmacology Vol. 254; no. 2; pp. 181 - 191 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose–response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose–response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance. |
---|---|
AbstractList | Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance. Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance. |
Author | Gift, Jeffrey S. Davis, J. Allen Zhao, Q. Jay |
Author_xml | – sequence: 1 givenname: J. Allen surname: Davis fullname: Davis, J. Allen email: davis.allen@epa.gov organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC 27711, USA – sequence: 2 givenname: Jeffrey S. surname: Gift fullname: Gift, Jeffrey S. organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC 27711, USA – sequence: 3 givenname: Q. Jay surname: Zhao fullname: Zhao, Q. Jay organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Cincinnati, OH 45268, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24383123$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21034758$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/21587793$$D View this record in Osti.gov |
BookMark | eNqFklFrFDEUhYO02G31D_ggAyJtH2bMnSQzGfCl1qqFikIt-BayyR121tlkTbIV_70Zd4vQh_XpwuE7B-6955gcOO-QkBdAK6DQvFlWSet1VdO_QpWlJ2QGtGtKyhg7IDNKOZSUyu9H5DjGJaW04xyekqMaKOOtkDMyv3YpeLsxafCuSL6YozOLlQ4_CusjFitMC29joZ0t7qrbqrj6enEaH1PR9-mXDlicvfv8_va8uMcQp7y6ggqekcNejxGf7-YJuftw9e3yU3nz5eP15cVNaQTnqbTdHBoEq1thEGujtaadNj0yKvq26RvNAE1do-25MLzjEjsLopUgGhAC2Al5tc31MQ0qmiGhWRjvHJqkahCybTuWqdMttQ7-5wZjUqshGhxH7dBvopKSUUa7lv-fbBuQOZVm8mwvCS1jQnBoZEZf7tDNfIVWrcOQz_hbPXwkA693gI5Gj33QzgzxH8eZZFBPe8gtZ4KPMWCv8sJ6-mIKehgVUDWVRC3VVBI1lWTSspSt9SPrQ_pe09utCfML7wcM04VzC9AOYTqw9cM--x_AmdEr |
CODEN | TXAPA9 |
CitedBy_id | crossref_primary_10_1016_j_fct_2017_07_041 crossref_primary_10_5937_arhfarm2003130B crossref_primary_10_1039_C4TX00047A crossref_primary_10_1038_s41597_023_02021_5 crossref_primary_10_1016_j_taap_2019_114634 crossref_primary_10_1016_j_tox_2012_10_014 crossref_primary_10_1002_env_2630 crossref_primary_10_1016_j_etap_2012_05_002 crossref_primary_10_1115_1_4055157 crossref_primary_10_1016_j_scitotenv_2022_156857 crossref_primary_10_1007_s11356_018_3077_9 crossref_primary_10_1111_risa_13366 crossref_primary_10_1016_j_ijheh_2018_08_011 crossref_primary_10_1289_ehp_1307539 crossref_primary_10_3389_fphar_2024_1484111 crossref_primary_10_3390_foods12091764 crossref_primary_10_1186_s12989_016_0125_9 crossref_primary_10_1093_toxsci_kfac012 crossref_primary_10_1002_env_2180 crossref_primary_10_1016_j_taap_2013_10_019 crossref_primary_10_1371_journal_pone_0152985 crossref_primary_10_1371_journal_pone_0126680 crossref_primary_10_1080_09603123_2014_980782 crossref_primary_10_3109_10408444_2014_973934 crossref_primary_10_1111_risa_13218 crossref_primary_10_1016_j_mrgentox_2019_05_006 crossref_primary_10_1021_acs_chemrestox_3c00088 crossref_primary_10_1016_j_envint_2022_107700 crossref_primary_10_1016_j_envpol_2024_125129 crossref_primary_10_1021_acs_est_3c03952 crossref_primary_10_1007_s00204_016_1891_8 crossref_primary_10_1016_j_chemosphere_2019_125692 crossref_primary_10_1016_j_tiv_2011_06_007 crossref_primary_10_1080_17435390_2021_1918278 crossref_primary_10_3389_ftox_2021_670496 crossref_primary_10_1093_nar_gkac019 crossref_primary_10_3389_fgene_2024_1374791 crossref_primary_10_3390_toxics12110811 crossref_primary_10_1016_j_envint_2022_107135 crossref_primary_10_1016_j_tiv_2022_105348 crossref_primary_10_1016_j_reprotox_2014_12_015 crossref_primary_10_3390_toxics9120349 crossref_primary_10_1002_ps_6759 crossref_primary_10_1080_17435390_2022_2038298 crossref_primary_10_1177_0192623314544379 crossref_primary_10_1016_j_toxrep_2020_10_020 crossref_primary_10_1016_j_envpol_2021_116443 crossref_primary_10_1016_j_ecoenv_2024_116796 crossref_primary_10_1002_bimj_201300037 crossref_primary_10_1093_mutage_geac025 crossref_primary_10_2903_sp_efsa_2021_EN_6924 crossref_primary_10_1002_wnan_1507 crossref_primary_10_1080_26895293_2023_2167872 crossref_primary_10_1080_10807039_2020_1859352 crossref_primary_10_1016_j_toxicon_2017_01_020 crossref_primary_10_1016_j_comtox_2020_100126 crossref_primary_10_1039_C7EN00251C crossref_primary_10_1016_j_fct_2016_09_012 crossref_primary_10_1097_JOM_0000000000000639 crossref_primary_10_1080_09553002_2022_2110303 crossref_primary_10_1111_risa_13324 crossref_primary_10_1002_jat_3661 crossref_primary_10_1177_1091581813480408 crossref_primary_10_1007_s11356_016_7214_z crossref_primary_10_1016_j_comtox_2018_11_001 crossref_primary_10_1111_biom_12340 crossref_primary_10_3390_toxins13120854 crossref_primary_10_1016_j_tox_2014_01_009 crossref_primary_10_1016_j_tiv_2015_04_007 crossref_primary_10_1080_10408444_2021_1931027 crossref_primary_10_3109_17435390_2016_1148793 crossref_primary_10_1016_j_toxrep_2021_07_013 crossref_primary_10_1002_etc_5858 crossref_primary_10_1016_j_profoo_2016_05_002 crossref_primary_10_1039_D0MO00007H crossref_primary_10_1093_mutage_gev039 crossref_primary_10_1093_toxsci_kfab036 crossref_primary_10_2903_sp_efsa_2022_EN_7740 crossref_primary_10_1021_acs_est_9b03820 crossref_primary_10_1002_etc_4082 crossref_primary_10_1016_j_tifs_2020_11_003 crossref_primary_10_1177_1091581814567177 crossref_primary_10_2174_1389200221999200820164650 crossref_primary_10_1016_j_scitotenv_2013_03_099 crossref_primary_10_1007_s00204_015_1561_2 crossref_primary_10_1093_toxsci_kfac009 crossref_primary_10_1039_D0AN02212H crossref_primary_10_1016_j_ecoenv_2019_109453 crossref_primary_10_1002_jat_2799 crossref_primary_10_1289_EHP7600 crossref_primary_10_1016_j_yrtph_2019_04_003 crossref_primary_10_1021_acs_est_0c03794 crossref_primary_10_1093_toxsci_kfaa062 crossref_primary_10_1016_j_tox_2021_152679 crossref_primary_10_1007_s12403_023_00596_3 crossref_primary_10_1289_EHP12677 crossref_primary_10_1007_s00204_015_1595_5 crossref_primary_10_1016_j_reprotox_2019_07_013 crossref_primary_10_1016_j_etap_2020_103504 crossref_primary_10_1002_jat_3071 crossref_primary_10_1177_1559325820926734 crossref_primary_10_1016_j_atmosenv_2015_11_031 crossref_primary_10_1016_j_yrtph_2020_104753 crossref_primary_10_1002_env_70002 crossref_primary_10_1016_j_reprotox_2019_07_012 crossref_primary_10_1016_j_impact_2018_12_001 crossref_primary_10_1021_acs_est_9b05468 crossref_primary_10_1016_j_jhazmat_2023_131714 crossref_primary_10_2903_j_efsa_2022_7584 crossref_primary_10_1371_journal_pone_0136764 crossref_primary_10_1002_env_2339 crossref_primary_10_1111_risa_13404 crossref_primary_10_3109_10408444_2014_902423 crossref_primary_10_1016_j_cotox_2019_04_001 crossref_primary_10_3390_nano13091454 crossref_primary_10_1016_j_yrtph_2023_105336 crossref_primary_10_1002_jat_4156 crossref_primary_10_1016_j_yrtph_2019_104504 crossref_primary_10_1002_em_70003 crossref_primary_10_1093_mutage_geab021 crossref_primary_10_1289_EHP408 crossref_primary_10_1021_acs_est_9b02523 crossref_primary_10_5487_TR_2018_34_4_303 crossref_primary_10_1007_s00204_017_2037_3 crossref_primary_10_1007_s00204_022_03327_w crossref_primary_10_1093_toxsci_kfs320 crossref_primary_10_1093_toxsci_kfw128 crossref_primary_10_1016_j_yrtph_2023_105541 crossref_primary_10_1016_j_jpha_2023_03_010 crossref_primary_10_1016_j_chemosphere_2015_08_070 crossref_primary_10_1016_j_yrtph_2020_104655 crossref_primary_10_1080_10807039_2021_1956298 crossref_primary_10_1016_j_fct_2013_10_030 crossref_primary_10_3390_nano10040708 crossref_primary_10_1016_j_chemosphere_2022_137382 crossref_primary_10_1016_j_impact_2021_100376 crossref_primary_10_1016_j_ssci_2016_11_016 crossref_primary_10_1002_bdr2_2046 crossref_primary_10_1080_10408444_2023_2218887 crossref_primary_10_1093_mutage_geac012 crossref_primary_10_3389_fpubh_2022_780538 crossref_primary_10_1021_acs_chemrestox_4c00002 crossref_primary_10_1016_j_fct_2018_12_032 crossref_primary_10_1021_acs_est_6b06024 crossref_primary_10_1002_bimj_201300250 crossref_primary_10_1016_j_toxlet_2012_07_005 crossref_primary_10_1016_j_fct_2020_111869 crossref_primary_10_1111_risa_12667 crossref_primary_10_1021_acs_est_2c04665 crossref_primary_10_1016_j_yrtph_2012_11_015 crossref_primary_10_1021_acs_est_2c05872 crossref_primary_10_1111_risa_12066 crossref_primary_10_1080_09553002_2023_2181998 crossref_primary_10_1016_j_taap_2022_116109 crossref_primary_10_1093_bioinformatics_btaa030 crossref_primary_10_1093_jac_dkx113 crossref_primary_10_1016_j_envres_2024_120639 crossref_primary_10_1016_j_fct_2020_111632 crossref_primary_10_3390_psychoactives2010005 crossref_primary_10_3390_molecules29194733 crossref_primary_10_1016_j_envpol_2021_116434 crossref_primary_10_1186_s12889_017_4315_7 crossref_primary_10_1016_j_jhazmat_2020_122881 crossref_primary_10_1093_toxsci_kft182 crossref_primary_10_31083_j_fbl2708228 crossref_primary_10_1016_j_cotox_2019_05_004 crossref_primary_10_1016_j_envint_2016_03_035 crossref_primary_10_1016_j_foodcont_2020_107205 crossref_primary_10_3390_foods11020152 crossref_primary_10_1007_s00204_016_1886_5 crossref_primary_10_1080_23311932_2024_2345436 crossref_primary_10_1016_j_fct_2017_05_013 crossref_primary_10_1080_01480545_2023_2239524 crossref_primary_10_1080_17435390_2017_1329952 crossref_primary_10_1093_toxsci_kfaa102 crossref_primary_10_1093_toxsci_kfae034 crossref_primary_10_1016_j_toxlet_2020_06_012 crossref_primary_10_1080_09553002_2020_1798543 crossref_primary_10_1016_j_atmosenv_2020_117881 crossref_primary_10_4103_wjtcm_wjtcm_33_19 crossref_primary_10_1016_j_mrgentox_2014_09_011 crossref_primary_10_1016_j_yrtph_2013_05_010 crossref_primary_10_1021_acs_jafc_4c03094 crossref_primary_10_1016_j_yrtph_2013_05_003 crossref_primary_10_1093_toxsci_kfu014 crossref_primary_10_1111_risa_12078 crossref_primary_10_1016_j_mrgentox_2020_503169 crossref_primary_10_1016_j_heha_2023_100066 crossref_primary_10_1016_j_yrtph_2024_105653 crossref_primary_10_1002_etc_4931 crossref_primary_10_3390_toxins13070478 crossref_primary_10_1002_env_2201 crossref_primary_10_1080_19440049_2017_1311420 crossref_primary_10_1111_risa_12741 |
Cites_doi | 10.1016/0304-3894(85)85013-5 10.1111/j.1539-6924.1996.tb01474.x 10.1093/toxsci/kfj057 10.1093/toxsci/66.2.298 10.1289/ehp.8458385 10.1016/0304-3894(89)85077-0 10.1111/j.1539-6924.2007.00920.x 10.2307/2530666 10.1006/faat.1994.1133 10.1016/S0278-6915(01)00015-1 10.1002/env.725 10.1111/j.1539-6924.1995.tb00095.x 10.1016/0304-3894(86)85003-8 10.1016/0272-0590(84)90107-6 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2010 2015 INIST-CNRS Copyright © 2010. Published by Elsevier Inc. |
Copyright_xml | – notice: 2010 – notice: 2015 INIST-CNRS – notice: Copyright © 2010. Published by Elsevier Inc. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7ST 7U7 C1K SOI OTOTI |
DOI | 10.1016/j.taap.2010.10.016 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Toxicology Abstracts MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0333 |
EndPage | 191 |
ExternalDocumentID | 21587793 21034758 24383123 10_1016_j_taap_2010_10_016 S0041008X10004096 |
Genre | Journal Article Review |
GeographicLocations | United States USA |
GeographicLocations_xml | – name: United States – name: USA |
GroupedDBID | --- --K --M .55 .GJ .HR .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATCM AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KCYFY KOM LG5 M33 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SPT SSJ SSP SSZ T5K TEORI TWZ UHS WH7 WUQ X7M XJT XPP Y6R YCJ ZGI ZKB ZMT ZU3 ZXP ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7ST 7U7 C1K SOI AALMO AAPBV ABPIF ABPTK ABQIS EFJIC OTOTI |
ID | FETCH-LOGICAL-c544t-d9b16e1da75cee2caaa09acfe305f76f6a31ec22edf45c4948e9d157815615513 |
IEDL.DBID | .~1 |
ISSN | 0041-008X 1096-0333 |
IngestDate | Thu May 18 22:32:02 EDT 2023 Fri Jul 11 01:51:09 EDT 2025 Fri Jul 11 12:32:32 EDT 2025 Fri Jul 11 03:48:00 EDT 2025 Thu Apr 03 07:08:52 EDT 2025 Wed Apr 02 07:23:59 EDT 2025 Tue Jul 01 04:20:27 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Fri Feb 23 02:28:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Dichotomous data Dose–response Risk assessment NOAEL Point of departure Nested data Benchmark dose software Continuous data Benchmark dose Evaluation Continuous Method Dose activity relation Risk factor Dose-response Software |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-d9b16e1da75cee2caaa09acfe305f76f6a31ec22edf45c4948e9d157815615513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21034758 |
PQID | 1733554168 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_21587793 proquest_miscellaneous_883030974 proquest_miscellaneous_876185870 proquest_miscellaneous_1733554168 pubmed_primary_21034758 pascalfrancis_primary_24383123 crossref_citationtrail_10_1016_j_taap_2010_10_016 crossref_primary_10_1016_j_taap_2010_10_016 elsevier_sciencedirect_doi_10_1016_j_taap_2010_10_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-15 |
PublicationDateYYYYMMDD | 2011-07-15 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Toxicology and applied pharmacology |
PublicationTitleAlternate | Toxicol Appl Pharmacol |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | EFSA (European Food Safety Authority) (bb0040) 2009; 1150 NRC (National Research Council) (bb0055) 1983 Sand, von Rosen, Victorin, Falk Filipsson (bb0070) 2006; 90 Tukey, Ciminera, Heyse (bb0080) 1985; 41 Slob (bb0075) 2002; 66 U.S. EPA (Environmental Protection Agency) (bb0120) 2005; 70 U.S. EPA (Environmental Protection Agency), 1995a. Use of benchmark dose approach in health risk assessments. Risk Assessment Forum, Washington, DC; EPA/630/R-94/007. Available from the National Technical Information Service, Springfield, VA, PB95-213765. ten Berge, Zwart, Appelman (bb0020) 1986; 13 Crump (bb0035) 1995; 15 Allen, Kavlock, Kimmel, Faustman (bb0010) 1994; 23 U.S. EPA (Environmental Protection Agency), 2000. Benchmark dose technical guidance document (External Peer Review draft). Risk Assessment Forum, Washington, DC; EPA/630/R-00/001. U.S. EPA (Environmental Protection Agency) (bb0125) 2008 U.S. EPA (Environmental Protection Agency) (bb0105) 1995 ten Berge (bb0015) 1985; 12 Crump (bb0030) 1984; 4 U.S. EPA (Environmental Protection Agency) (bb0085) 1986; 51 U.S. EPA (Environmental Protection Agency) (bb0090) 1986; 51 Woutersen, Jonker, Stevenson, te Biesebeek, Slob (bb0135) 2001; 39 ten Berge, Zwart (bb0025) 1989; 21 Kavlock, Schmid, Setzer (bb0050) 1996; 16 Akaike (bb0005) 1973 R-project (The R Project for Statistical Computing), 2009. . U.S. EPA (Environmental Protection Agency) (bb0095) 1991; 56 Wheeler, Bailer (bb0130) 2007; 27 Zhu (bb0140) 2005; 16 U.S. EPA (Environmental Protection Agency) (bb0110) 1998; 63 RIVM (National Institute for Public Health and the Environment) (bb0065) 2009 Haseman (bb0045) 1984; 58 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0120) 2005; 70 ten Berge (10.1016/j.taap.2010.10.016_bb0015) 1985; 12 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0110) 1998; 63 Crump (10.1016/j.taap.2010.10.016_bb0030) 1984; 4 Woutersen (10.1016/j.taap.2010.10.016_bb0135) 2001; 39 RIVM (National Institute for Public Health and the Environment) (10.1016/j.taap.2010.10.016_bb0065) Tukey (10.1016/j.taap.2010.10.016_bb0080) 1985; 41 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0105) 1995 NRC (National Research Council) (10.1016/j.taap.2010.10.016_bb0055) 1983 Slob (10.1016/j.taap.2010.10.016_bb0075) 2002; 66 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0085) 1986; 51 Kavlock (10.1016/j.taap.2010.10.016_bb0050) 1996; 16 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0125) 10.1016/j.taap.2010.10.016_bb0115 EFSA (European Food Safety Authority) (10.1016/j.taap.2010.10.016_bb0040) 2009; 1150 Sand (10.1016/j.taap.2010.10.016_bb0070) 2006; 90 Allen (10.1016/j.taap.2010.10.016_bb0010) 1994; 23 Zhu (10.1016/j.taap.2010.10.016_bb0140) 2005; 16 Akaike (10.1016/j.taap.2010.10.016_bb0005) 1973 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0090) 1986; 51 10.1016/j.taap.2010.10.016_bb0060 10.1016/j.taap.2010.10.016_bb0100 ten Berge (10.1016/j.taap.2010.10.016_bb0020) 1986; 13 Crump (10.1016/j.taap.2010.10.016_bb0035) 1995; 15 ten Berge (10.1016/j.taap.2010.10.016_bb0025) 1989; 21 Wheeler (10.1016/j.taap.2010.10.016_bb0130) 2007; 27 U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0095) 1991; 56 Haseman (10.1016/j.taap.2010.10.016_bb0045) 1984; 58 |
References_xml | – volume: 27 start-page: 659 year: 2007 end-page: 670 ident: bb0130 article-title: Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation publication-title: Risk Anal. – volume: 51 start-page: 34006 year: 1986 end-page: 34012 ident: bb0090 article-title: Guidelines for mutagenicity risk assessment publication-title: Fed. Regist. – volume: 1150 start-page: 1 year: 2009 end-page: 72 ident: bb0040 article-title: Use of benchmark dose approach in risk assessment publication-title: EFSA J. – reference: R-project (The R Project for Statistical Computing), 2009. – volume: 70 start-page: 17765 year: 2005 end-page: 17817 ident: bb0120 article-title: Guidelines for carcinogen risk assessment publication-title: Fed. Regist. – volume: 13 start-page: 301 year: 1986 end-page: 309 ident: bb0020 article-title: Concentration-time mortality response relationship of irritant and systemically acting vapors and gases publication-title: J. Hazard. Mater. – volume: 58 start-page: 385 year: 1984 end-page: 392 ident: bb0045 article-title: Statistical issues in the design, analysis, and interpretation of animal carcinogenicity studies publication-title: Environ. Health Perspect. – start-page: 267 year: 1973 end-page: 281 ident: bb0005 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Proceedings of the Second International Symposium on Information Theory – volume: 23 start-page: 487 year: 1994 end-page: 495 ident: bb0010 article-title: Dose–response assessment for developmental toxicity: II. Comparison of generic benchmark dose estimates with NOAELs publication-title: Fundam. Appl. Toxicol. – volume: 41 start-page: 295 year: 1985 end-page: 301 ident: bb0080 article-title: Testing the statistical certainty of a response to increasing doses of a drug publication-title: Biometrics – volume: 51 start-page: 33992 year: 1986 end-page: 34003 ident: bb0085 article-title: Guidelines for carcinogen risk assessment publication-title: Fed. Regist. – volume: 56 start-page: 63798 year: 1991 end-page: 63826 ident: bb0095 article-title: Guidelines for developmental toxicity risk assessment publication-title: Fed. Regist. – volume: 66 start-page: 298 year: 2002 end-page: 312 ident: bb0075 article-title: Dose–response modeling of continuous endpoints publication-title: Toxicol. Sci. – year: 1983 ident: bb0055 article-title: Risk assessment in the federal government: managing the process – volume: 21 start-page: 65 year: 1989 end-page: 71 ident: bb0025 article-title: More efficient use of animals in acute inhalation toxicity testing publication-title: J. Hazard. Mater. – volume: 90 start-page: 241 year: 2006 end-page: 251 ident: bb0070 article-title: Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints publication-title: Toxicol. Sci. – volume: 15 start-page: 79 year: 1995 end-page: 89 ident: bb0035 article-title: Calculation of benchmark doses from continuous data publication-title: Risk Anal. – volume: 4 start-page: 854 year: 1984 end-page: 871 ident: bb0030 article-title: A new method for determining allowable daily intakes publication-title: Fundam. Appl. Toxicol. – year: 2008 ident: bb0125 article-title: Benchmark Dose Software (BMDS) – reference: U.S. EPA (Environmental Protection Agency), 2000. Benchmark dose technical guidance document (External Peer Review draft). Risk Assessment Forum, Washington, DC; EPA/630/R-00/001. – volume: 39 start-page: 697 year: 2001 end-page: 707 ident: bb0135 article-title: The BMD approach applied to a 28-day toxicity study with rhodorsil silane in rats: the impact of increasing the number of dose groups publication-title: Food Chem. Toxicol. – volume: 12 start-page: 309 year: 1985 end-page: 311 ident: bb0015 article-title: The toxicity of methylisocyanate for rats publication-title: J. Hazard. Mater. – volume: 16 start-page: 603 year: 2005 end-page: 617 ident: bb0140 article-title: Dose-time-response modeling of longitudinal measurements for neurotoxicity risk assessment publication-title: Environmetrics – year: 1995 ident: bb0105 article-title: Integrated risk information system (IRIS): online substance file for methylmercury – reference: U.S. EPA (Environmental Protection Agency), 1995a. Use of benchmark dose approach in health risk assessments. Risk Assessment Forum, Washington, DC; EPA/630/R-94/007. Available from the National Technical Information Service, Springfield, VA, PB95-213765. – volume: 63 start-page: 26926 year: 1998 end-page: 26954 ident: bb0110 article-title: Guidelines for neurotoxicity risk assessment publication-title: Fed. Regist. – volume: 16 start-page: 391 year: 1996 end-page: 403 ident: bb0050 article-title: A simulation study of the influence of study design on the estimation of benchmark doses for developmental toxicity publication-title: Risk Anal. – year: 2009 ident: bb0065 article-title: PROAST: Software for dose–response modeling and benchmark dose analysis – reference: . – ident: 10.1016/j.taap.2010.10.016_bb0115 – volume: 12 start-page: 309 year: 1985 ident: 10.1016/j.taap.2010.10.016_bb0015 article-title: The toxicity of methylisocyanate for rats publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(85)85013-5 – volume: 63 start-page: 26926 issue: 93 year: 1998 ident: 10.1016/j.taap.2010.10.016_bb0110 article-title: Guidelines for neurotoxicity risk assessment publication-title: Fed. Regist. – volume: 56 start-page: 63798 issue: 234 year: 1991 ident: 10.1016/j.taap.2010.10.016_bb0095 article-title: Guidelines for developmental toxicity risk assessment publication-title: Fed. Regist. – ident: 10.1016/j.taap.2010.10.016_bb0060 – volume: 51 start-page: 33992 issue: 185 year: 1986 ident: 10.1016/j.taap.2010.10.016_bb0085 article-title: Guidelines for carcinogen risk assessment publication-title: Fed. Regist. – ident: 10.1016/j.taap.2010.10.016_bb0125 – volume: 16 start-page: 391 year: 1996 ident: 10.1016/j.taap.2010.10.016_bb0050 article-title: A simulation study of the influence of study design on the estimation of benchmark doses for developmental toxicity publication-title: Risk Anal. doi: 10.1111/j.1539-6924.1996.tb01474.x – ident: 10.1016/j.taap.2010.10.016_bb0065 – volume: 90 start-page: 241 year: 2006 ident: 10.1016/j.taap.2010.10.016_bb0070 article-title: Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfj057 – volume: 66 start-page: 298 year: 2002 ident: 10.1016/j.taap.2010.10.016_bb0075 article-title: Dose–response modeling of continuous endpoints publication-title: Toxicol. Sci. doi: 10.1093/toxsci/66.2.298 – volume: 58 start-page: 385 year: 1984 ident: 10.1016/j.taap.2010.10.016_bb0045 article-title: Statistical issues in the design, analysis, and interpretation of animal carcinogenicity studies publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8458385 – year: 1995 ident: 10.1016/j.taap.2010.10.016_bb0105 – volume: 21 start-page: 65 year: 1989 ident: 10.1016/j.taap.2010.10.016_bb0025 article-title: More efficient use of animals in acute inhalation toxicity testing publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(89)85077-0 – volume: 27 start-page: 659 year: 2007 ident: 10.1016/j.taap.2010.10.016_bb0130 article-title: Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation publication-title: Risk Anal. doi: 10.1111/j.1539-6924.2007.00920.x – volume: 41 start-page: 295 year: 1985 ident: 10.1016/j.taap.2010.10.016_bb0080 article-title: Testing the statistical certainty of a response to increasing doses of a drug publication-title: Biometrics doi: 10.2307/2530666 – volume: 23 start-page: 487 year: 1994 ident: 10.1016/j.taap.2010.10.016_bb0010 article-title: Dose–response assessment for developmental toxicity: II. Comparison of generic benchmark dose estimates with NOAELs publication-title: Fundam. Appl. Toxicol. doi: 10.1006/faat.1994.1133 – volume: 39 start-page: 697 year: 2001 ident: 10.1016/j.taap.2010.10.016_bb0135 article-title: The BMD approach applied to a 28-day toxicity study with rhodorsil silane in rats: the impact of increasing the number of dose groups publication-title: Food Chem. Toxicol. doi: 10.1016/S0278-6915(01)00015-1 – volume: 1150 start-page: 1 year: 2009 ident: 10.1016/j.taap.2010.10.016_bb0040 article-title: Use of benchmark dose approach in risk assessment publication-title: EFSA J. – year: 1983 ident: 10.1016/j.taap.2010.10.016_bb0055 – volume: 16 start-page: 603 year: 2005 ident: 10.1016/j.taap.2010.10.016_bb0140 article-title: Dose-time-response modeling of longitudinal measurements for neurotoxicity risk assessment publication-title: Environmetrics doi: 10.1002/env.725 – volume: 15 start-page: 79 year: 1995 ident: 10.1016/j.taap.2010.10.016_bb0035 article-title: Calculation of benchmark doses from continuous data publication-title: Risk Anal. doi: 10.1111/j.1539-6924.1995.tb00095.x – start-page: 267 year: 1973 ident: 10.1016/j.taap.2010.10.016_bb0005 article-title: Information theory and an extension of the maximum likelihood principle – volume: 51 start-page: 34006 issue: 185 year: 1986 ident: 10.1016/j.taap.2010.10.016_bb0090 article-title: Guidelines for mutagenicity risk assessment publication-title: Fed. Regist. – volume: 13 start-page: 301 year: 1986 ident: 10.1016/j.taap.2010.10.016_bb0020 article-title: Concentration-time mortality response relationship of irritant and systemically acting vapors and gases publication-title: J. Hazard. Mater. doi: 10.1016/0304-3894(86)85003-8 – volume: 70 start-page: 17765 issue: 66 year: 2005 ident: 10.1016/j.taap.2010.10.016_bb0120 article-title: Guidelines for carcinogen risk assessment publication-title: Fed. Regist. – ident: 10.1016/j.taap.2010.10.016_bb0100 – volume: 4 start-page: 854 year: 1984 ident: 10.1016/j.taap.2010.10.016_bb0030 article-title: A new method for determining allowable daily intakes publication-title: Fundam. Appl. Toxicol. doi: 10.1016/0272-0590(84)90107-6 |
SSID | ssj0009441 |
Score | 2.454975 |
SecondaryResourceType | review_article |
Snippet | Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for... |
SourceID | osti proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 181 |
SubjectTerms | 60 APPLIED LIFE SCIENCES ANIMALS Benchmark dose Benchmark dose software Benchmarking - methods Benchmarking - trends BENCHMARKS Biological and medical sciences Carcinogens, Environmental - administration & dosage Carcinogens, Environmental - pharmacokinetics Carcinogens, Environmental - toxicity COMPARATIVE EVALUATIONS COMPUTER CODES computer software Continuous data Dichotomous data Dose-Response Relationship, Drug DOSES Dose–response EVALUATION food safety human health Humans Medical sciences NATIONAL ORGANIZATIONS Nested data No-Observed-Adverse-Effect Level NOAEL peroxidase Point of departure POLLUTION CONTROL AGENCIES PUBLIC HEALTH RISK ASSESSMENT SAFETY Sample Size Software - trends spatial distribution Toxicology United States United States Environmental Protection Agency United States Environmental Protection Agency - trends US EPA US ORGANIZATIONS |
Title | Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1 |
URI | https://dx.doi.org/10.1016/j.taap.2010.10.016 https://www.ncbi.nlm.nih.gov/pubmed/21034758 https://www.proquest.com/docview/1733554168 https://www.proquest.com/docview/876185870 https://www.proquest.com/docview/883030974 https://www.osti.gov/biblio/21587793 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7gUJITa-MkZlJDRALFkcO3HzWMamDrSp0lapb5Gd2GIMkqrJQHvhb-cuTlYNsT7w0gfrTnLt833l7neEvJFRwXVkhS-5tr4Q8JPaWELME-qRRoe2zUOeniWTmfg8j-cb5LDvhcGyyk73O53eautu5aA7zYPF5SX2-ApEppljhhqiFITdFkKilAe_V2UeqRBuap6AsBmou8YZV-PVKLVw5V1Y4YUzz_9tnAYVvDcsm1Q1nJx1Iy_u90lb23T8mDzqnEo6dvveIhum3CZ7U4dKfbNPL1ZNVvU-3aPTFV71zTZ56FJ31HUkPSH6BKvXCwcrS5uKajiVrz_U8ooWVW2oGzpdU1UWdBacB_RoOn5b_01Vg37_pZaGvvt4-un8Pf3pEnM0CljAnpLZ8dHF4cTvRjH4eSxE4xepZolhhZIxWNUoV0qFqcqtAXVhZWITxZnJo8gUVsQ5Qs6YtGCgDSA8bGfIPCODsirNC0J5wnnKgDXlVsDr1yws8jQyoVRaCys8wvo7yPIOpxzHZXzP-oK0bxneW4b3hmuw5JEPtzwLh9Kxljrurza7I2sZmJG1fLsoB8iDALs5ViIBEzhNIwlqziPDO_Jxu5MI4WDBQ_DI615gMnjE-GVGlaa6rjMmOfp9LBl5hN5DA2YLfCtQr2tIRhy_mEk4w-dOHld7YCEXEBvu_Od_f0keuGy69Fm8SwbN8tq8Anes0cP2vQ3J5vjky-TsD9Q3MNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gEkhGB8FcYwEhogli5OnK_HMja1bK0qrZX6FtmJLcZHUjUZaP89d3Wyaoj1gZc-WD7Jtc-_O1_ufgfwNvJyX3lGOJGvjCME_iQmiPDN46pYkUO7ikOOxuFgJr7Mg_kWHLW1MJRW2WC_xfQVWjcjh81uHi4uLqjGVxAzzZwi1PhKCe_ANrFTBR3Y7g9PB-M1964QtnGewJczCjS1MzbNq5ZyYTO8KMmL2p7_2z51SrxylDkpK9w8Y7te3O6WrszTyUN40PiVrG-X_gi2dLED-xNLTH11wKbrOqvqgO2zyZqy-moH7tvoHbNFSY9BDSmBPbfMsqwumcKN-fpTLr-zvKw0s32nKyaLnM165z12POm_q_6eVSHE_5ZLzd5_Gn0-_8B-2dgc83q8x5_A7OR4ejRwmm4MThYIUTt5onioeS6jAA2rl0kp3URmRiNimCg0ofS5zjxP50YEGbHO6CTnCAj4Qly1kXkKnaIs9HNgfuj7CUfRxDcCAUBxN88ST7uRVEoY0QXenkGaNVTl1DHjR9rmpH1L6dxSOjcaw6EufLyWWViijo2zg_Zo0xvqlqIl2Si3S3pAMsSxm1EyEgqh3xRHiHRd2LuhH9cr8YgRFp2ELrxpFSbFe0wfZ2Shy8sq5ZFPrh8P4y6wW-ag5UL3ChF2w5TYp49mEe7hM6uP6zVw18frEb_4z__-Gu4OpqOz9Gw4Pn0J92xwPXJ4sAudenmpX6F3Vqu95vb9ATGdM4E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Toxicology+and+applied+pharmacology&rft.atitle=Introduction+to+benchmark+dose+methods+and+U.S.+EPA%27s+benchmark+dose+software+%28BMDS%29+version+2.1.1&rft.au=DAVIS%2C+J.+Allen&rft.au=GIFT%2C+Jeffrey+S&rft.au=ZHAO%2C+Q.+Jay&rft.date=2011-07-15&rft.pub=Elsevier&rft.issn=0041-008X&rft.volume=254&rft.issue=2&rft.spage=181&rft.epage=191&rft_id=info:doi/10.1016%2Fj.taap.2010.10.016&rft.externalDBID=n%2Fa&rft.externalDocID=24383123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-008X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-008X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-008X&client=summon |