Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1

Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict...

Full description

Saved in:
Bibliographic Details
Published inToxicology and applied pharmacology Vol. 254; no. 2; pp. 181 - 191
Main Authors Davis, J. Allen, Gift, Jeffrey S., Zhao, Q. Jay
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier Inc 15.07.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose–response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose–response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.
AbstractList Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.
Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addresses many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.
Author Gift, Jeffrey S.
Davis, J. Allen
Zhao, Q. Jay
Author_xml – sequence: 1
  givenname: J. Allen
  surname: Davis
  fullname: Davis, J. Allen
  email: davis.allen@epa.gov
  organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC 27711, USA
– sequence: 2
  givenname: Jeffrey S.
  surname: Gift
  fullname: Gift, Jeffrey S.
  organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC 27711, USA
– sequence: 3
  givenname: Q. Jay
  surname: Zhao
  fullname: Zhao, Q. Jay
  organization: U.S. Environmental Protection Agency, National Center for Environmental Assessment, Cincinnati, OH 45268, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24383123$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21034758$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/21587793$$D View this record in Osti.gov
BookMark eNqFklFrFDEUhYO02G31D_ggAyJtH2bMnSQzGfCl1qqFikIt-BayyR121tlkTbIV_70Zd4vQh_XpwuE7B-6955gcOO-QkBdAK6DQvFlWSet1VdO_QpWlJ2QGtGtKyhg7IDNKOZSUyu9H5DjGJaW04xyekqMaKOOtkDMyv3YpeLsxafCuSL6YozOLlQ4_CusjFitMC29joZ0t7qrbqrj6enEaH1PR9-mXDlicvfv8_va8uMcQp7y6ggqekcNejxGf7-YJuftw9e3yU3nz5eP15cVNaQTnqbTdHBoEq1thEGujtaadNj0yKvq26RvNAE1do-25MLzjEjsLopUgGhAC2Al5tc31MQ0qmiGhWRjvHJqkahCybTuWqdMttQ7-5wZjUqshGhxH7dBvopKSUUa7lv-fbBuQOZVm8mwvCS1jQnBoZEZf7tDNfIVWrcOQz_hbPXwkA693gI5Gj33QzgzxH8eZZFBPe8gtZ4KPMWCv8sJ6-mIKehgVUDWVRC3VVBI1lWTSspSt9SPrQ_pe09utCfML7wcM04VzC9AOYTqw9cM--x_AmdEr
CODEN TXAPA9
CitedBy_id crossref_primary_10_1016_j_fct_2017_07_041
crossref_primary_10_5937_arhfarm2003130B
crossref_primary_10_1039_C4TX00047A
crossref_primary_10_1038_s41597_023_02021_5
crossref_primary_10_1016_j_taap_2019_114634
crossref_primary_10_1016_j_tox_2012_10_014
crossref_primary_10_1002_env_2630
crossref_primary_10_1016_j_etap_2012_05_002
crossref_primary_10_1115_1_4055157
crossref_primary_10_1016_j_scitotenv_2022_156857
crossref_primary_10_1007_s11356_018_3077_9
crossref_primary_10_1111_risa_13366
crossref_primary_10_1016_j_ijheh_2018_08_011
crossref_primary_10_1289_ehp_1307539
crossref_primary_10_3389_fphar_2024_1484111
crossref_primary_10_3390_foods12091764
crossref_primary_10_1186_s12989_016_0125_9
crossref_primary_10_1093_toxsci_kfac012
crossref_primary_10_1002_env_2180
crossref_primary_10_1016_j_taap_2013_10_019
crossref_primary_10_1371_journal_pone_0152985
crossref_primary_10_1371_journal_pone_0126680
crossref_primary_10_1080_09603123_2014_980782
crossref_primary_10_3109_10408444_2014_973934
crossref_primary_10_1111_risa_13218
crossref_primary_10_1016_j_mrgentox_2019_05_006
crossref_primary_10_1021_acs_chemrestox_3c00088
crossref_primary_10_1016_j_envint_2022_107700
crossref_primary_10_1016_j_envpol_2024_125129
crossref_primary_10_1021_acs_est_3c03952
crossref_primary_10_1007_s00204_016_1891_8
crossref_primary_10_1016_j_chemosphere_2019_125692
crossref_primary_10_1016_j_tiv_2011_06_007
crossref_primary_10_1080_17435390_2021_1918278
crossref_primary_10_3389_ftox_2021_670496
crossref_primary_10_1093_nar_gkac019
crossref_primary_10_3389_fgene_2024_1374791
crossref_primary_10_3390_toxics12110811
crossref_primary_10_1016_j_envint_2022_107135
crossref_primary_10_1016_j_tiv_2022_105348
crossref_primary_10_1016_j_reprotox_2014_12_015
crossref_primary_10_3390_toxics9120349
crossref_primary_10_1002_ps_6759
crossref_primary_10_1080_17435390_2022_2038298
crossref_primary_10_1177_0192623314544379
crossref_primary_10_1016_j_toxrep_2020_10_020
crossref_primary_10_1016_j_envpol_2021_116443
crossref_primary_10_1016_j_ecoenv_2024_116796
crossref_primary_10_1002_bimj_201300037
crossref_primary_10_1093_mutage_geac025
crossref_primary_10_2903_sp_efsa_2021_EN_6924
crossref_primary_10_1002_wnan_1507
crossref_primary_10_1080_26895293_2023_2167872
crossref_primary_10_1080_10807039_2020_1859352
crossref_primary_10_1016_j_toxicon_2017_01_020
crossref_primary_10_1016_j_comtox_2020_100126
crossref_primary_10_1039_C7EN00251C
crossref_primary_10_1016_j_fct_2016_09_012
crossref_primary_10_1097_JOM_0000000000000639
crossref_primary_10_1080_09553002_2022_2110303
crossref_primary_10_1111_risa_13324
crossref_primary_10_1002_jat_3661
crossref_primary_10_1177_1091581813480408
crossref_primary_10_1007_s11356_016_7214_z
crossref_primary_10_1016_j_comtox_2018_11_001
crossref_primary_10_1111_biom_12340
crossref_primary_10_3390_toxins13120854
crossref_primary_10_1016_j_tox_2014_01_009
crossref_primary_10_1016_j_tiv_2015_04_007
crossref_primary_10_1080_10408444_2021_1931027
crossref_primary_10_3109_17435390_2016_1148793
crossref_primary_10_1016_j_toxrep_2021_07_013
crossref_primary_10_1002_etc_5858
crossref_primary_10_1016_j_profoo_2016_05_002
crossref_primary_10_1039_D0MO00007H
crossref_primary_10_1093_mutage_gev039
crossref_primary_10_1093_toxsci_kfab036
crossref_primary_10_2903_sp_efsa_2022_EN_7740
crossref_primary_10_1021_acs_est_9b03820
crossref_primary_10_1002_etc_4082
crossref_primary_10_1016_j_tifs_2020_11_003
crossref_primary_10_1177_1091581814567177
crossref_primary_10_2174_1389200221999200820164650
crossref_primary_10_1016_j_scitotenv_2013_03_099
crossref_primary_10_1007_s00204_015_1561_2
crossref_primary_10_1093_toxsci_kfac009
crossref_primary_10_1039_D0AN02212H
crossref_primary_10_1016_j_ecoenv_2019_109453
crossref_primary_10_1002_jat_2799
crossref_primary_10_1289_EHP7600
crossref_primary_10_1016_j_yrtph_2019_04_003
crossref_primary_10_1021_acs_est_0c03794
crossref_primary_10_1093_toxsci_kfaa062
crossref_primary_10_1016_j_tox_2021_152679
crossref_primary_10_1007_s12403_023_00596_3
crossref_primary_10_1289_EHP12677
crossref_primary_10_1007_s00204_015_1595_5
crossref_primary_10_1016_j_reprotox_2019_07_013
crossref_primary_10_1016_j_etap_2020_103504
crossref_primary_10_1002_jat_3071
crossref_primary_10_1177_1559325820926734
crossref_primary_10_1016_j_atmosenv_2015_11_031
crossref_primary_10_1016_j_yrtph_2020_104753
crossref_primary_10_1002_env_70002
crossref_primary_10_1016_j_reprotox_2019_07_012
crossref_primary_10_1016_j_impact_2018_12_001
crossref_primary_10_1021_acs_est_9b05468
crossref_primary_10_1016_j_jhazmat_2023_131714
crossref_primary_10_2903_j_efsa_2022_7584
crossref_primary_10_1371_journal_pone_0136764
crossref_primary_10_1002_env_2339
crossref_primary_10_1111_risa_13404
crossref_primary_10_3109_10408444_2014_902423
crossref_primary_10_1016_j_cotox_2019_04_001
crossref_primary_10_3390_nano13091454
crossref_primary_10_1016_j_yrtph_2023_105336
crossref_primary_10_1002_jat_4156
crossref_primary_10_1016_j_yrtph_2019_104504
crossref_primary_10_1002_em_70003
crossref_primary_10_1093_mutage_geab021
crossref_primary_10_1289_EHP408
crossref_primary_10_1021_acs_est_9b02523
crossref_primary_10_5487_TR_2018_34_4_303
crossref_primary_10_1007_s00204_017_2037_3
crossref_primary_10_1007_s00204_022_03327_w
crossref_primary_10_1093_toxsci_kfs320
crossref_primary_10_1093_toxsci_kfw128
crossref_primary_10_1016_j_yrtph_2023_105541
crossref_primary_10_1016_j_jpha_2023_03_010
crossref_primary_10_1016_j_chemosphere_2015_08_070
crossref_primary_10_1016_j_yrtph_2020_104655
crossref_primary_10_1080_10807039_2021_1956298
crossref_primary_10_1016_j_fct_2013_10_030
crossref_primary_10_3390_nano10040708
crossref_primary_10_1016_j_chemosphere_2022_137382
crossref_primary_10_1016_j_impact_2021_100376
crossref_primary_10_1016_j_ssci_2016_11_016
crossref_primary_10_1002_bdr2_2046
crossref_primary_10_1080_10408444_2023_2218887
crossref_primary_10_1093_mutage_geac012
crossref_primary_10_3389_fpubh_2022_780538
crossref_primary_10_1021_acs_chemrestox_4c00002
crossref_primary_10_1016_j_fct_2018_12_032
crossref_primary_10_1021_acs_est_6b06024
crossref_primary_10_1002_bimj_201300250
crossref_primary_10_1016_j_toxlet_2012_07_005
crossref_primary_10_1016_j_fct_2020_111869
crossref_primary_10_1111_risa_12667
crossref_primary_10_1021_acs_est_2c04665
crossref_primary_10_1016_j_yrtph_2012_11_015
crossref_primary_10_1021_acs_est_2c05872
crossref_primary_10_1111_risa_12066
crossref_primary_10_1080_09553002_2023_2181998
crossref_primary_10_1016_j_taap_2022_116109
crossref_primary_10_1093_bioinformatics_btaa030
crossref_primary_10_1093_jac_dkx113
crossref_primary_10_1016_j_envres_2024_120639
crossref_primary_10_1016_j_fct_2020_111632
crossref_primary_10_3390_psychoactives2010005
crossref_primary_10_3390_molecules29194733
crossref_primary_10_1016_j_envpol_2021_116434
crossref_primary_10_1186_s12889_017_4315_7
crossref_primary_10_1016_j_jhazmat_2020_122881
crossref_primary_10_1093_toxsci_kft182
crossref_primary_10_31083_j_fbl2708228
crossref_primary_10_1016_j_cotox_2019_05_004
crossref_primary_10_1016_j_envint_2016_03_035
crossref_primary_10_1016_j_foodcont_2020_107205
crossref_primary_10_3390_foods11020152
crossref_primary_10_1007_s00204_016_1886_5
crossref_primary_10_1080_23311932_2024_2345436
crossref_primary_10_1016_j_fct_2017_05_013
crossref_primary_10_1080_01480545_2023_2239524
crossref_primary_10_1080_17435390_2017_1329952
crossref_primary_10_1093_toxsci_kfaa102
crossref_primary_10_1093_toxsci_kfae034
crossref_primary_10_1016_j_toxlet_2020_06_012
crossref_primary_10_1080_09553002_2020_1798543
crossref_primary_10_1016_j_atmosenv_2020_117881
crossref_primary_10_4103_wjtcm_wjtcm_33_19
crossref_primary_10_1016_j_mrgentox_2014_09_011
crossref_primary_10_1016_j_yrtph_2013_05_010
crossref_primary_10_1021_acs_jafc_4c03094
crossref_primary_10_1016_j_yrtph_2013_05_003
crossref_primary_10_1093_toxsci_kfu014
crossref_primary_10_1111_risa_12078
crossref_primary_10_1016_j_mrgentox_2020_503169
crossref_primary_10_1016_j_heha_2023_100066
crossref_primary_10_1016_j_yrtph_2024_105653
crossref_primary_10_1002_etc_4931
crossref_primary_10_3390_toxins13070478
crossref_primary_10_1002_env_2201
crossref_primary_10_1080_19440049_2017_1311420
crossref_primary_10_1111_risa_12741
Cites_doi 10.1016/0304-3894(85)85013-5
10.1111/j.1539-6924.1996.tb01474.x
10.1093/toxsci/kfj057
10.1093/toxsci/66.2.298
10.1289/ehp.8458385
10.1016/0304-3894(89)85077-0
10.1111/j.1539-6924.2007.00920.x
10.2307/2530666
10.1006/faat.1994.1133
10.1016/S0278-6915(01)00015-1
10.1002/env.725
10.1111/j.1539-6924.1995.tb00095.x
10.1016/0304-3894(86)85003-8
10.1016/0272-0590(84)90107-6
ContentType Journal Article
Conference Proceeding
Copyright 2010
2015 INIST-CNRS
Copyright © 2010. Published by Elsevier Inc.
Copyright_xml – notice: 2010
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010. Published by Elsevier Inc.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7ST
7U7
C1K
SOI
OTOTI
DOI 10.1016/j.taap.2010.10.016
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Toxicology Abstracts
MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1096-0333
EndPage 191
ExternalDocumentID 21587793
21034758
24383123
10_1016_j_taap_2010_10_016
S0041008X10004096
Genre Journal Article
Review
GeographicLocations United States
USA
GeographicLocations_xml – name: United States
– name: USA
GroupedDBID ---
--K
--M
.55
.GJ
.HR
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LG5
M33
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSJ
SSP
SSZ
T5K
TEORI
TWZ
UHS
WH7
WUQ
X7M
XJT
XPP
Y6R
YCJ
ZGI
ZKB
ZMT
ZU3
ZXP
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7ST
7U7
C1K
SOI
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c544t-d9b16e1da75cee2caaa09acfe305f76f6a31ec22edf45c4948e9d157815615513
IEDL.DBID .~1
ISSN 0041-008X
1096-0333
IngestDate Thu May 18 22:32:02 EDT 2023
Fri Jul 11 01:51:09 EDT 2025
Fri Jul 11 12:32:32 EDT 2025
Fri Jul 11 03:48:00 EDT 2025
Thu Apr 03 07:08:52 EDT 2025
Wed Apr 02 07:23:59 EDT 2025
Tue Jul 01 04:20:27 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Fri Feb 23 02:28:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Dichotomous data
Dose–response
Risk assessment
NOAEL
Point of departure
Nested data
Benchmark dose software
Continuous data
Benchmark dose
Evaluation
Continuous
Method
Dose activity relation
Risk factor
Dose-response
Software
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-d9b16e1da75cee2caaa09acfe305f76f6a31ec22edf45c4948e9d157815615513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ObjectType-Article-2
ObjectType-Feature-1
PMID 21034758
PQID 1733554168
PQPubID 24069
PageCount 11
ParticipantIDs osti_scitechconnect_21587793
proquest_miscellaneous_883030974
proquest_miscellaneous_876185870
proquest_miscellaneous_1733554168
pubmed_primary_21034758
pascalfrancis_primary_24383123
crossref_citationtrail_10_1016_j_taap_2010_10_016
crossref_primary_10_1016_j_taap_2010_10_016
elsevier_sciencedirect_doi_10_1016_j_taap_2010_10_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-15
PublicationDateYYYYMMDD 2011-07-15
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Toxicology and applied pharmacology
PublicationTitleAlternate Toxicol Appl Pharmacol
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References EFSA (European Food Safety Authority) (bb0040) 2009; 1150
NRC (National Research Council) (bb0055) 1983
Sand, von Rosen, Victorin, Falk Filipsson (bb0070) 2006; 90
Tukey, Ciminera, Heyse (bb0080) 1985; 41
Slob (bb0075) 2002; 66
U.S. EPA (Environmental Protection Agency) (bb0120) 2005; 70
U.S. EPA (Environmental Protection Agency), 1995a. Use of benchmark dose approach in health risk assessments. Risk Assessment Forum, Washington, DC; EPA/630/R-94/007. Available from the National Technical Information Service, Springfield, VA, PB95-213765.
ten Berge, Zwart, Appelman (bb0020) 1986; 13
Crump (bb0035) 1995; 15
Allen, Kavlock, Kimmel, Faustman (bb0010) 1994; 23
U.S. EPA (Environmental Protection Agency), 2000. Benchmark dose technical guidance document (External Peer Review draft). Risk Assessment Forum, Washington, DC; EPA/630/R-00/001.
U.S. EPA (Environmental Protection Agency) (bb0125) 2008
U.S. EPA (Environmental Protection Agency) (bb0105) 1995
ten Berge (bb0015) 1985; 12
Crump (bb0030) 1984; 4
U.S. EPA (Environmental Protection Agency) (bb0085) 1986; 51
U.S. EPA (Environmental Protection Agency) (bb0090) 1986; 51
Woutersen, Jonker, Stevenson, te Biesebeek, Slob (bb0135) 2001; 39
ten Berge, Zwart (bb0025) 1989; 21
Kavlock, Schmid, Setzer (bb0050) 1996; 16
Akaike (bb0005) 1973
R-project (The R Project for Statistical Computing), 2009.
.
U.S. EPA (Environmental Protection Agency) (bb0095) 1991; 56
Wheeler, Bailer (bb0130) 2007; 27
Zhu (bb0140) 2005; 16
U.S. EPA (Environmental Protection Agency) (bb0110) 1998; 63
RIVM (National Institute for Public Health and the Environment) (bb0065) 2009
Haseman (bb0045) 1984; 58
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0120) 2005; 70
ten Berge (10.1016/j.taap.2010.10.016_bb0015) 1985; 12
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0110) 1998; 63
Crump (10.1016/j.taap.2010.10.016_bb0030) 1984; 4
Woutersen (10.1016/j.taap.2010.10.016_bb0135) 2001; 39
RIVM (National Institute for Public Health and the Environment) (10.1016/j.taap.2010.10.016_bb0065)
Tukey (10.1016/j.taap.2010.10.016_bb0080) 1985; 41
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0105) 1995
NRC (National Research Council) (10.1016/j.taap.2010.10.016_bb0055) 1983
Slob (10.1016/j.taap.2010.10.016_bb0075) 2002; 66
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0085) 1986; 51
Kavlock (10.1016/j.taap.2010.10.016_bb0050) 1996; 16
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0125)
10.1016/j.taap.2010.10.016_bb0115
EFSA (European Food Safety Authority) (10.1016/j.taap.2010.10.016_bb0040) 2009; 1150
Sand (10.1016/j.taap.2010.10.016_bb0070) 2006; 90
Allen (10.1016/j.taap.2010.10.016_bb0010) 1994; 23
Zhu (10.1016/j.taap.2010.10.016_bb0140) 2005; 16
Akaike (10.1016/j.taap.2010.10.016_bb0005) 1973
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0090) 1986; 51
10.1016/j.taap.2010.10.016_bb0060
10.1016/j.taap.2010.10.016_bb0100
ten Berge (10.1016/j.taap.2010.10.016_bb0020) 1986; 13
Crump (10.1016/j.taap.2010.10.016_bb0035) 1995; 15
ten Berge (10.1016/j.taap.2010.10.016_bb0025) 1989; 21
Wheeler (10.1016/j.taap.2010.10.016_bb0130) 2007; 27
U.S. EPA (Environmental Protection Agency) (10.1016/j.taap.2010.10.016_bb0095) 1991; 56
Haseman (10.1016/j.taap.2010.10.016_bb0045) 1984; 58
References_xml – volume: 27
  start-page: 659
  year: 2007
  end-page: 670
  ident: bb0130
  article-title: Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation
  publication-title: Risk Anal.
– volume: 51
  start-page: 34006
  year: 1986
  end-page: 34012
  ident: bb0090
  article-title: Guidelines for mutagenicity risk assessment
  publication-title: Fed. Regist.
– volume: 1150
  start-page: 1
  year: 2009
  end-page: 72
  ident: bb0040
  article-title: Use of benchmark dose approach in risk assessment
  publication-title: EFSA J.
– reference: R-project (The R Project for Statistical Computing), 2009.
– volume: 70
  start-page: 17765
  year: 2005
  end-page: 17817
  ident: bb0120
  article-title: Guidelines for carcinogen risk assessment
  publication-title: Fed. Regist.
– volume: 13
  start-page: 301
  year: 1986
  end-page: 309
  ident: bb0020
  article-title: Concentration-time mortality response relationship of irritant and systemically acting vapors and gases
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 385
  year: 1984
  end-page: 392
  ident: bb0045
  article-title: Statistical issues in the design, analysis, and interpretation of animal carcinogenicity studies
  publication-title: Environ. Health Perspect.
– start-page: 267
  year: 1973
  end-page: 281
  ident: bb0005
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Proceedings of the Second International Symposium on Information Theory
– volume: 23
  start-page: 487
  year: 1994
  end-page: 495
  ident: bb0010
  article-title: Dose–response assessment for developmental toxicity: II. Comparison of generic benchmark dose estimates with NOAELs
  publication-title: Fundam. Appl. Toxicol.
– volume: 41
  start-page: 295
  year: 1985
  end-page: 301
  ident: bb0080
  article-title: Testing the statistical certainty of a response to increasing doses of a drug
  publication-title: Biometrics
– volume: 51
  start-page: 33992
  year: 1986
  end-page: 34003
  ident: bb0085
  article-title: Guidelines for carcinogen risk assessment
  publication-title: Fed. Regist.
– volume: 56
  start-page: 63798
  year: 1991
  end-page: 63826
  ident: bb0095
  article-title: Guidelines for developmental toxicity risk assessment
  publication-title: Fed. Regist.
– volume: 66
  start-page: 298
  year: 2002
  end-page: 312
  ident: bb0075
  article-title: Dose–response modeling of continuous endpoints
  publication-title: Toxicol. Sci.
– year: 1983
  ident: bb0055
  article-title: Risk assessment in the federal government: managing the process
– volume: 21
  start-page: 65
  year: 1989
  end-page: 71
  ident: bb0025
  article-title: More efficient use of animals in acute inhalation toxicity testing
  publication-title: J. Hazard. Mater.
– volume: 90
  start-page: 241
  year: 2006
  end-page: 251
  ident: bb0070
  article-title: Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints
  publication-title: Toxicol. Sci.
– volume: 15
  start-page: 79
  year: 1995
  end-page: 89
  ident: bb0035
  article-title: Calculation of benchmark doses from continuous data
  publication-title: Risk Anal.
– volume: 4
  start-page: 854
  year: 1984
  end-page: 871
  ident: bb0030
  article-title: A new method for determining allowable daily intakes
  publication-title: Fundam. Appl. Toxicol.
– year: 2008
  ident: bb0125
  article-title: Benchmark Dose Software (BMDS)
– reference: U.S. EPA (Environmental Protection Agency), 2000. Benchmark dose technical guidance document (External Peer Review draft). Risk Assessment Forum, Washington, DC; EPA/630/R-00/001.
– volume: 39
  start-page: 697
  year: 2001
  end-page: 707
  ident: bb0135
  article-title: The BMD approach applied to a 28-day toxicity study with rhodorsil silane in rats: the impact of increasing the number of dose groups
  publication-title: Food Chem. Toxicol.
– volume: 12
  start-page: 309
  year: 1985
  end-page: 311
  ident: bb0015
  article-title: The toxicity of methylisocyanate for rats
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 603
  year: 2005
  end-page: 617
  ident: bb0140
  article-title: Dose-time-response modeling of longitudinal measurements for neurotoxicity risk assessment
  publication-title: Environmetrics
– year: 1995
  ident: bb0105
  article-title: Integrated risk information system (IRIS): online substance file for methylmercury
– reference: U.S. EPA (Environmental Protection Agency), 1995a. Use of benchmark dose approach in health risk assessments. Risk Assessment Forum, Washington, DC; EPA/630/R-94/007. Available from the National Technical Information Service, Springfield, VA, PB95-213765.
– volume: 63
  start-page: 26926
  year: 1998
  end-page: 26954
  ident: bb0110
  article-title: Guidelines for neurotoxicity risk assessment
  publication-title: Fed. Regist.
– volume: 16
  start-page: 391
  year: 1996
  end-page: 403
  ident: bb0050
  article-title: A simulation study of the influence of study design on the estimation of benchmark doses for developmental toxicity
  publication-title: Risk Anal.
– year: 2009
  ident: bb0065
  article-title: PROAST: Software for dose–response modeling and benchmark dose analysis
– reference: .
– ident: 10.1016/j.taap.2010.10.016_bb0115
– volume: 12
  start-page: 309
  year: 1985
  ident: 10.1016/j.taap.2010.10.016_bb0015
  article-title: The toxicity of methylisocyanate for rats
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(85)85013-5
– volume: 63
  start-page: 26926
  issue: 93
  year: 1998
  ident: 10.1016/j.taap.2010.10.016_bb0110
  article-title: Guidelines for neurotoxicity risk assessment
  publication-title: Fed. Regist.
– volume: 56
  start-page: 63798
  issue: 234
  year: 1991
  ident: 10.1016/j.taap.2010.10.016_bb0095
  article-title: Guidelines for developmental toxicity risk assessment
  publication-title: Fed. Regist.
– ident: 10.1016/j.taap.2010.10.016_bb0060
– volume: 51
  start-page: 33992
  issue: 185
  year: 1986
  ident: 10.1016/j.taap.2010.10.016_bb0085
  article-title: Guidelines for carcinogen risk assessment
  publication-title: Fed. Regist.
– ident: 10.1016/j.taap.2010.10.016_bb0125
– volume: 16
  start-page: 391
  year: 1996
  ident: 10.1016/j.taap.2010.10.016_bb0050
  article-title: A simulation study of the influence of study design on the estimation of benchmark doses for developmental toxicity
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1996.tb01474.x
– ident: 10.1016/j.taap.2010.10.016_bb0065
– volume: 90
  start-page: 241
  year: 2006
  ident: 10.1016/j.taap.2010.10.016_bb0070
  article-title: Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfj057
– volume: 66
  start-page: 298
  year: 2002
  ident: 10.1016/j.taap.2010.10.016_bb0075
  article-title: Dose–response modeling of continuous endpoints
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/66.2.298
– volume: 58
  start-page: 385
  year: 1984
  ident: 10.1016/j.taap.2010.10.016_bb0045
  article-title: Statistical issues in the design, analysis, and interpretation of animal carcinogenicity studies
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8458385
– year: 1995
  ident: 10.1016/j.taap.2010.10.016_bb0105
– volume: 21
  start-page: 65
  year: 1989
  ident: 10.1016/j.taap.2010.10.016_bb0025
  article-title: More efficient use of animals in acute inhalation toxicity testing
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(89)85077-0
– volume: 27
  start-page: 659
  year: 2007
  ident: 10.1016/j.taap.2010.10.016_bb0130
  article-title: Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.2007.00920.x
– volume: 41
  start-page: 295
  year: 1985
  ident: 10.1016/j.taap.2010.10.016_bb0080
  article-title: Testing the statistical certainty of a response to increasing doses of a drug
  publication-title: Biometrics
  doi: 10.2307/2530666
– volume: 23
  start-page: 487
  year: 1994
  ident: 10.1016/j.taap.2010.10.016_bb0010
  article-title: Dose–response assessment for developmental toxicity: II. Comparison of generic benchmark dose estimates with NOAELs
  publication-title: Fundam. Appl. Toxicol.
  doi: 10.1006/faat.1994.1133
– volume: 39
  start-page: 697
  year: 2001
  ident: 10.1016/j.taap.2010.10.016_bb0135
  article-title: The BMD approach applied to a 28-day toxicity study with rhodorsil silane in rats: the impact of increasing the number of dose groups
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/S0278-6915(01)00015-1
– volume: 1150
  start-page: 1
  year: 2009
  ident: 10.1016/j.taap.2010.10.016_bb0040
  article-title: Use of benchmark dose approach in risk assessment
  publication-title: EFSA J.
– year: 1983
  ident: 10.1016/j.taap.2010.10.016_bb0055
– volume: 16
  start-page: 603
  year: 2005
  ident: 10.1016/j.taap.2010.10.016_bb0140
  article-title: Dose-time-response modeling of longitudinal measurements for neurotoxicity risk assessment
  publication-title: Environmetrics
  doi: 10.1002/env.725
– volume: 15
  start-page: 79
  year: 1995
  ident: 10.1016/j.taap.2010.10.016_bb0035
  article-title: Calculation of benchmark doses from continuous data
  publication-title: Risk Anal.
  doi: 10.1111/j.1539-6924.1995.tb00095.x
– start-page: 267
  year: 1973
  ident: 10.1016/j.taap.2010.10.016_bb0005
  article-title: Information theory and an extension of the maximum likelihood principle
– volume: 51
  start-page: 34006
  issue: 185
  year: 1986
  ident: 10.1016/j.taap.2010.10.016_bb0090
  article-title: Guidelines for mutagenicity risk assessment
  publication-title: Fed. Regist.
– volume: 13
  start-page: 301
  year: 1986
  ident: 10.1016/j.taap.2010.10.016_bb0020
  article-title: Concentration-time mortality response relationship of irritant and systemically acting vapors and gases
  publication-title: J. Hazard. Mater.
  doi: 10.1016/0304-3894(86)85003-8
– volume: 70
  start-page: 17765
  issue: 66
  year: 2005
  ident: 10.1016/j.taap.2010.10.016_bb0120
  article-title: Guidelines for carcinogen risk assessment
  publication-title: Fed. Regist.
– ident: 10.1016/j.taap.2010.10.016_bb0100
– volume: 4
  start-page: 854
  year: 1984
  ident: 10.1016/j.taap.2010.10.016_bb0030
  article-title: A new method for determining allowable daily intakes
  publication-title: Fundam. Appl. Toxicol.
  doi: 10.1016/0272-0590(84)90107-6
SSID ssj0009441
Score 2.454975
SecondaryResourceType review_article
Snippet Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms 60 APPLIED LIFE SCIENCES
ANIMALS
Benchmark dose
Benchmark dose software
Benchmarking - methods
Benchmarking - trends
BENCHMARKS
Biological and medical sciences
Carcinogens, Environmental - administration & dosage
Carcinogens, Environmental - pharmacokinetics
Carcinogens, Environmental - toxicity
COMPARATIVE EVALUATIONS
COMPUTER CODES
computer software
Continuous data
Dichotomous data
Dose-Response Relationship, Drug
DOSES
Dose–response
EVALUATION
food safety
human health
Humans
Medical sciences
NATIONAL ORGANIZATIONS
Nested data
No-Observed-Adverse-Effect Level
NOAEL
peroxidase
Point of departure
POLLUTION CONTROL AGENCIES
PUBLIC HEALTH
RISK ASSESSMENT
SAFETY
Sample Size
Software - trends
spatial distribution
Toxicology
United States
United States Environmental Protection Agency
United States Environmental Protection Agency - trends
US EPA
US ORGANIZATIONS
Title Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1
URI https://dx.doi.org/10.1016/j.taap.2010.10.016
https://www.ncbi.nlm.nih.gov/pubmed/21034758
https://www.proquest.com/docview/1733554168
https://www.proquest.com/docview/876185870
https://www.proquest.com/docview/883030974
https://www.osti.gov/biblio/21587793
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7gUJITa-MkZlJDRALFkcO3HzWMamDrSp0lapb5Gd2GIMkqrJQHvhb-cuTlYNsT7w0gfrTnLt833l7neEvJFRwXVkhS-5tr4Q8JPaWELME-qRRoe2zUOeniWTmfg8j-cb5LDvhcGyyk73O53eautu5aA7zYPF5SX2-ApEppljhhqiFITdFkKilAe_V2UeqRBuap6AsBmou8YZV-PVKLVw5V1Y4YUzz_9tnAYVvDcsm1Q1nJx1Iy_u90lb23T8mDzqnEo6dvveIhum3CZ7U4dKfbNPL1ZNVvU-3aPTFV71zTZ56FJ31HUkPSH6BKvXCwcrS5uKajiVrz_U8ooWVW2oGzpdU1UWdBacB_RoOn5b_01Vg37_pZaGvvt4-un8Pf3pEnM0CljAnpLZ8dHF4cTvRjH4eSxE4xepZolhhZIxWNUoV0qFqcqtAXVhZWITxZnJo8gUVsQ5Qs6YtGCgDSA8bGfIPCODsirNC0J5wnnKgDXlVsDr1yws8jQyoVRaCys8wvo7yPIOpxzHZXzP-oK0bxneW4b3hmuw5JEPtzwLh9Kxljrurza7I2sZmJG1fLsoB8iDALs5ViIBEzhNIwlqziPDO_Jxu5MI4WDBQ_DI615gMnjE-GVGlaa6rjMmOfp9LBl5hN5DA2YLfCtQr2tIRhy_mEk4w-dOHld7YCEXEBvu_Od_f0keuGy69Fm8SwbN8tq8Anes0cP2vQ3J5vjky-TsD9Q3MNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gEkhGB8FcYwEhogli5OnK_HMja1bK0qrZX6FtmJLcZHUjUZaP89d3Wyaoj1gZc-WD7Jtc-_O1_ufgfwNvJyX3lGOJGvjCME_iQmiPDN46pYkUO7ikOOxuFgJr7Mg_kWHLW1MJRW2WC_xfQVWjcjh81uHi4uLqjGVxAzzZwi1PhKCe_ANrFTBR3Y7g9PB-M1964QtnGewJczCjS1MzbNq5ZyYTO8KMmL2p7_2z51SrxylDkpK9w8Y7te3O6WrszTyUN40PiVrG-X_gi2dLED-xNLTH11wKbrOqvqgO2zyZqy-moH7tvoHbNFSY9BDSmBPbfMsqwumcKN-fpTLr-zvKw0s32nKyaLnM165z12POm_q_6eVSHE_5ZLzd5_Gn0-_8B-2dgc83q8x5_A7OR4ejRwmm4MThYIUTt5onioeS6jAA2rl0kp3URmRiNimCg0ofS5zjxP50YEGbHO6CTnCAj4Qly1kXkKnaIs9HNgfuj7CUfRxDcCAUBxN88ST7uRVEoY0QXenkGaNVTl1DHjR9rmpH1L6dxSOjcaw6EufLyWWViijo2zg_Zo0xvqlqIl2Si3S3pAMsSxm1EyEgqh3xRHiHRd2LuhH9cr8YgRFp2ELrxpFSbFe0wfZ2Shy8sq5ZFPrh8P4y6wW-ag5UL3ChF2w5TYp49mEe7hM6uP6zVw18frEb_4z__-Gu4OpqOz9Gw4Pn0J92xwPXJ4sAudenmpX6F3Vqu95vb9ATGdM4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Toxicology+and+applied+pharmacology&rft.atitle=Introduction+to+benchmark+dose+methods+and+U.S.+EPA%27s+benchmark+dose+software+%28BMDS%29+version+2.1.1&rft.au=DAVIS%2C+J.+Allen&rft.au=GIFT%2C+Jeffrey+S&rft.au=ZHAO%2C+Q.+Jay&rft.date=2011-07-15&rft.pub=Elsevier&rft.issn=0041-008X&rft.volume=254&rft.issue=2&rft.spage=181&rft.epage=191&rft_id=info:doi/10.1016%2Fj.taap.2010.10.016&rft.externalDBID=n%2Fa&rft.externalDocID=24383123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-008X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-008X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-008X&client=summon