Harmonic analysis of 2d CFT partition functions

A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 9; pp. 1 - 51
Main Authors Benjamin, Nathan, Collier, Scott, Fitzpatrick, A. Liam, Maloney, Alexander, Perlmutter, Eric
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 27.09.2021
Springer Nature B.V
Springer
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2 , ℤ), and of target space moduli space O ( c, c ; ℤ)\ O ( c, c ; ℝ)/ O ( c ) × O ( c ). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS 3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
AbstractList We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS$_{3}$ gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2 , ℤ), and of target space moduli space O ( c, c ; ℤ)\ O ( c, c ; ℝ)/ O ( c ) × O ( c ). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS 3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
Abstract We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)× O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2 , ℤ), and of target space moduli space O ( c, c ; ℤ)\ O ( c, c ; ℝ)/ O ( c ) × O ( c ). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS 3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
We apply the theory of harmonic analysis on the fundamental domain of SL(2, Z) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space H/SL(2, Z), and of target space moduli space O(c, c; Z)\O(c, c; R)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies.
ArticleNumber 174
Author Benjamin, Nathan
Collier, Scott
Maloney, Alexander
Perlmutter, Eric
Fitzpatrick, A. Liam
Author_xml – sequence: 1
  givenname: Nathan
  orcidid: 0000-0003-3661-6563
  surname: Benjamin
  fullname: Benjamin, Nathan
  email: nathanb@princeton.edu
  organization: Princeton Center for Theoretical Science, Princeton University
– sequence: 2
  givenname: Scott
  surname: Collier
  fullname: Collier, Scott
  organization: Princeton Center for Theoretical Science, Princeton University
– sequence: 3
  givenname: A. Liam
  surname: Fitzpatrick
  fullname: Fitzpatrick, A. Liam
  organization: Department of Physics, Boston University
– sequence: 4
  givenname: Alexander
  surname: Maloney
  fullname: Maloney, Alexander
  organization: Department of Physics, McGill University
– sequence: 5
  givenname: Eric
  surname: Perlmutter
  fullname: Perlmutter, Eric
  organization: Institut de Physique Théorique, CEA Saclay, CNRS, Walter Burke Institute for Theoretical Physics, Caltech
BackLink https://hal.science/hal-03315948$$DView record in HAL
https://www.osti.gov/servlets/purl/1851504$$D View this record in Osti.gov
BookMark eNp9kc1v1DAQxS1UJNqFM9cILvSw7Exix86xWrXdopXgUM6Wd-y0XqX2Ymcr9b_HIRVfEpxmNPq9N6N5Z-wkxOAYe4vwEQHk6tPm8gt0H2qo8Rwlf8FOEepuqbjsTn7rX7GznPcAKLCDU7bamPQQg6fKBDM8ZZ-r2Fe1rdZXt9XBpNGPPoaqPwaamvyavezNkN2b57pgX68ub9eb5fbz9c36Yrskwfm4pBph1wiLVvbKupZbBbYXFnaiBeKmN4TKkiNeC-HAqF3TELZSNdA0AmWzYDezr41mrw_JP5j0pKPx-scgpjs9HUeD00JIJzhZJaDnFhvliIxzhjrb7mTxW7B3s1fMo9eZ_OjonmIIjkaNSqAAXqDzGbo3wx_7NhdbPc2KEYqOq0cs7PuZPaT47ejyqPfxmMr_sq6FlC1wVKpQq5miFHNOrv9pi6CnyPQcmZ4i0yWyohB_KcqtZvr7mIwf_qODWZfLhnDn0q97_iX5DuIup_I
CitedBy_id crossref_primary_10_1007_JHEP03_2022_093
crossref_primary_10_1007_s00023_024_01441_2
crossref_primary_10_1103_PhysRevD_107_125025
crossref_primary_10_1007_JHEP02_2024_209
crossref_primary_10_1007_JHEP12_2023_179
crossref_primary_10_1007_JHEP05_2023_140
crossref_primary_10_1103_PhysRevLett_132_041602
crossref_primary_10_1103_PhysRevB_107_205137
crossref_primary_10_1007_JHEP05_2024_343
crossref_primary_10_1007_JHEP07_2023_028
crossref_primary_10_1007_JHEP11_2024_145
crossref_primary_10_1007_JHEP12_2022_069
crossref_primary_10_1103_PhysRevD_105_086018
crossref_primary_10_1007_JHEP07_2023_196
crossref_primary_10_1007_JHEP10_2024_068
crossref_primary_10_1007_JHEP12_2024_111
crossref_primary_10_1007_JHEP02_2022_019
crossref_primary_10_1007_JHEP02_2023_158
crossref_primary_10_1103_PhysRevD_107_126011
crossref_primary_10_1007_JHEP02_2023_079
crossref_primary_10_1007_JHEP01_2023_149
crossref_primary_10_1007_JHEP11_2023_035
crossref_primary_10_1007_JHEP12_2023_161
crossref_primary_10_1088_1572_9494_acde6b
crossref_primary_10_1007_JHEP07_2024_202
crossref_primary_10_1007_JHEP04_2024_142
crossref_primary_10_1103_PhysRevD_106_066014
crossref_primary_10_21468_SciPostPhysCore_6_2_035
crossref_primary_10_1016_j_physrep_2022_09_004
crossref_primary_10_1007_JHEP01_2024_104
crossref_primary_10_1007_JHEP08_2023_078
crossref_primary_10_1140_epjc_s10052_023_12164_9
crossref_primary_10_1007_JHEP11_2022_143
crossref_primary_10_1007_JHEP08_2022_195
crossref_primary_10_1007_JHEP05_2024_240
crossref_primary_10_1007_JHEP01_2025_003
crossref_primary_10_1007_JHEP11_2023_102
crossref_primary_10_1103_PhysRevD_108_L101902
Cites_doi 10.1007/JHEP12(2012)091
10.1017/S0027763000015932
10.1007/JHEP11(2020)134
10.1088/1126-6708/1998/12/005
10.1007/JHEP07(2018)085
10.1007/JHEP01(2021)118
10.1090/S0025-5718-04-01658-8
10.1007/JHEP12(2020)001
10.1103/PhysRevD.100.066029
10.1007/JHEP02(2010)029
10.1090/pspum/088/01457
10.1007/JHEP11(2017)193
10.1103/PhysRevD.85.024032
10.1007/978-1-4612-4816-3_19
10.1007/JHEP11(2018)102
10.1007/JHEP12(2020)066
10.1016/0550-3213(87)90349-X
10.4310/CNTP.2012.v6.n1.a4
10.1103/PhysRevLett.126.211602
10.1142/S0217979293003759
10.1007/JHEP05(2017)027
10.1007/JHEP10(2019)217
10.4310/CNTP.2017.v11.n2.a4
10.1007/JHEP06(2017)117
10.1007/JHEP04(2021)033
10.1103/PhysRevLett.118.081601
10.1103/PhysRevLett.69.2188
10.1007/JHEP08(2011)130
10.1007/JHEP10(2013)180
10.1088/1742-6596/462/1/012011
10.1080/10652461003643412
10.1215/00127094-2008-052
10.1007/978-3-662-02380-8
10.1007/JHEP06(2012)070
10.1007/JHEP05(2019)212
10.1007/JHEP02(2021)064
10.1007/s00208-018-1677-9
10.1016/j.nuclphysb.2007.01.007
10.1007/JHEP08(2017)146
10.1007/JHEP10(2020)187
10.1007/s002200050022
10.1007/JHEP09(2017)078
10.1007/JHEP05(2018)092
10.1007/JHEP03(2019)052
10.1007/BF02571525
10.1007/978-1-4614-7972-7
10.1103/PhysRevD.94.106002
10.1007/JHEP12(2018)040
10.1017/S0305004100021101
10.4310/CNTP.2015.v9.n2.a3
10.1007/JHEP05(2019)087
10.1007/JHEP04(2021)267
10.1007/s00220-013-1797-8
10.1007/JHEP09(2020)034
10.1007/JHEP02(2015)080
10.1007/JHEP09(2018)061
10.1007/JHEP01(2019)025
10.1007/JHEP12(2019)048
10.1007/JHEP01(2021)130
10.1007/JHEP06(2019)082
10.1007/JHEP11(2020)015
10.1007/JHEP06(2019)092
10.1007/978-1-4613-0729-7_27
10.1007/JHEP04(2020)084
10.1007/JHEP04(2019)136
10.2307/1968973
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
Boston Univ., MA (United States)
CorporateAuthor_xml – name: Boston Univ., MA (United States)
– name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP09(2021)174
DatabaseName Springer Nature Link
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 51
ExternalDocumentID oai_doaj_org_article_557e54cd850f4d138eccaeeac9d6b703
1851504
oai_HAL_hal_03315948v1
10_1007_JHEP09_2021_174
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
1XC
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABTEG
ACAFW
ACARI
ACBXY
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c544t-c210b35d1d7f8de64d80df5d0b560c4afac18dcec4255e0a8b33c167830335173
IEDL.DBID C24
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:20:27 EDT 2025
Thu May 18 22:34:51 EDT 2023
Fri May 09 12:22:37 EDT 2025
Fri Jul 25 07:37:36 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Tue Jul 01 00:59:33 EDT 2025
Fri Feb 21 02:46:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Field Theories in Lower Dimensions
Conformal Field Theory
Conformal and W Symmetry
spectral
operator: local
moduli space
dimension: 2
analysis: harmonic
operator: spectrum
field theory: conformal
anti-de Sitter
gravitation
partition function
SL
Z
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-c210b35d1d7f8de64d80df5d0b560c4afac18dcec4255e0a8b33c167830335173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Simons Foundation
SC0011632; SC0015845; 488653; 385602; 853507
USDOE Office of Science (SC), High Energy Physics (HEP)
European Research Council (ERC)
ORCID 0000-0003-3661-6563
0000000336616563
OpenAccessLink https://link.springer.com/10.1007/JHEP09(2021)174
PQID 2577604188
PQPubID 2034718
PageCount 51
ParticipantIDs doaj_primary_oai_doaj_org_article_557e54cd850f4d138eccaeeac9d6b703
osti_scitechconnect_1851504
hal_primary_oai_HAL_hal_03315948v1
proquest_journals_2577604188
crossref_primary_10_1007_JHEP09_2021_174
crossref_citationtrail_10_1007_JHEP09_2021_174
springer_journals_10_1007_JHEP09_2021_174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-27
PublicationDateYYYYMMDD 2021-09-27
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-27
  day: 27
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: Springer Nature
– name: SpringerOpen
References KarateevDKravchukPSimmons-DuffinDHarmonic Analysis and Mean Field TheoryJHEP2019102172019JHEP...10..217K40510631427.81137[arXiv:1809.05111] [INSPIRE]
AldayLFBaeJ-BBenjaminNJorge-DiazCOn the Spectrum of Pure Higher Spin GravityJHEP2020120012020JHEP...12..001A42394551457.83043[arXiv:2009.01830] [INSPIRE]
Afkhami-JeddiNHartmanTTajdiniAFast Conformal Bootstrap and Constraints on 3d GravityJHEP2019050872019JHEP...05..087A39768001416.83070[arXiv:1903.06272] [INSPIRE]
HogervorstMvan ReesBCCrossing symmetry in alpha spaceJHEP2017111932017JHEP...11..193H37412461383.81231[arXiv:1702.08471] [INSPIRE]
LMFDB collaboration, The L-functions and modular forms database, http://www.lmfdb.org (2021).
GopakumarRSinhaAZahedACrossing Symmetric Dispersion Relations for Mellin AmplitudesPhys. Rev. Lett.20211262116022021PhRvL.126u1602G4278623[arXiv:2101.09017] [INSPIRE]
KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K39330761409.81125[arXiv:1810.01335] [INSPIRE]
S. Collier and A. Maloney, Wormholes and Spectral Statistics in the Narain Ensemble, arXiv:2106.12760 [INSPIRE].
CotlerJJensenKAdS3gravity and random CFTJHEP2021040332021JHEP...04..033C1462.83014[arXiv:2006.08648] [INSPIRE]
P. Sarnak, Arithmetic Quantum Chaos, http://web.math.princeton.edu/sarnak/Arithmetic%20Quantum%20Chaos.pdf.
N. Callebaut, J. Kruthoff and H. Verlinde, TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{T} $$\end{document}deformed CFT as a non-critical string, JHEP04 (2020) 084 [arXiv:1910.13578] [INSPIRE].
P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE].
M. Ashwinkumar, M. Dodelson, A. Kidambi, J.M. Leedom and M. Yamazaki, Chern-Simons Invariants from Ensemble Averages, arXiv:2104.14710 [INSPIRE].
A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, arXiv:2012.15830 [INSPIRE].
CostaMSGoncalvesVPenedonesJConformal Regge theoryJHEP2012120912012JHEP...12..091C30452671397.81297[arXiv:1209.4355] [INSPIRE]
S. Shenker, Wormholes and Microstructure, Seminar at Black Hole Microstructure Conference, IPhT, Saclay France (2021), https://youtu.be/yQ0Q58FvsHM.
D’HokerEIntegral of two-loop modular graph functionsJHEP2019060922019JHEP...06..092D39798691416.83115[arXiv:1905.06217] [INSPIRE]
CollierSLinY-HYinXModular Bootstrap RevisitedJHEP2018090612018JHEP...09..061C38712381398.83044[arXiv:1608.06241] [INSPIRE]
R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On Moduli Spaces of Conformal Field Theories with c≥ 1, in Perspectives in String Theory: Proceedings of the Niels Bohr Institute/Nordita Meeting, Copenhagen Denmark (1987), World Scientific, Singapore (1987).
GopakumarRSinhaAOn the Polyakov-Mellin bootstrapJHEP2018120402018JHEP...12..040G3900692[arXiv:1809.10975] [INSPIRE]
HumphriesPEquidistribution in shrinking sets and L4-norm bounds for automorphic formsMath. Ann.2018371149738312791448.11084[arXiv:1705.05488]
AngelantonjCFlorakisIPiolineBA new look at one-loop integrals in string theoryCommun. Num. Theor. Phys.2012615929559341270.81147[arXiv:1110.5318] [INSPIRE]
H. Then, Maass cusp forms for large eigenvalues, Math. Comput.74 (2004) 363 [math-ph/0305047].
AngelantonjCFlorakisIPiolineBOne-Loop BPS amplitudes as BPS-state sumsJHEP2012060702012JHEP...06..070A30068691397.81211[arXiv:1203.0566] [INSPIRE]
A. Terras, Harmonic Analysis on Symmetric Spaces — Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York U.S.A. (2013).
E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and Poincaré series, JHEP04 (2019) 136 [arXiv:1902.04180] [INSPIRE].
R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
MaldacenaJStanfordDRemarks on the Sachdev-Ye-Kitaev modelPhys. Rev. D2016941060022016PhRvD..94j6002M3751002[arXiv:1604.07818] [INSPIRE]
Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S38619681395.81246[arXiv:1711.03816] [INSPIRE]
GopakumarRKavirajASenKSinhaAConformal Bootstrap in Mellin SpacePhys. Rev. Lett.20171180816012017PhRvL.118h1601G36785811380.81320[arXiv:1609.00572] [INSPIRE]
Di FrancescoPSaleurHZuberJBModular Invariance in Nonminimal Two-dimensional Conformal TheoriesNucl. Phys. B19872854541987NuPhB.285..454D897029[INSPIRE]
A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv for Mathematik og Naturvidenskab, Cammermeyer, Oslo Norway (1940).
MaassHLalSLectures on modular functions of one complex variable1983Heidelberg GermanySpringer
Afkhami-JeddiNCohnHHartmanTTajdiniAFree partition functions and an averaged holographic dualityJHEP2021011302021JHEP...01..130A42577111459.83030[arXiv:2006.04839] [INSPIRE]
DouglasMRSpaces of Quantum Field TheoriesJ. Phys. Conf. Ser.2013462012011[arXiv:1005.2779] [INSPIRE]
D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo, Sect. I A28 (1981) 415.
N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, arXiv:2103.15826 [INSPIRE].
S. Datta, S. Duary, P. Kraus, P. Maity and A. Maloney, Adding Flavor to the Narain Ensemble, arXiv:2102.12509 [INSPIRE].
ObersNAPiolineBEisenstein series and string thresholdsCommun. Math. Phys.20002092752000CMaPh.209..275O17379861043.81059[hep-th/9903113] [INSPIRE]
CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C39734371416.81143[arXiv:1811.05710] [INSPIRE]
RademacherHOn the expansion of the partition function in a seriesAnn. Math.19434441686180060.10005
Afkhami-JeddiNCohnHHartmanTde LaatDTajdiniAHigh-dimensional sphere packing and the modular bootstrapJHEP2020120662020JHEP...12..066A42393861457.81095[arXiv:2006.02560] [INSPIRE]
A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE].
HellermanSA Universal Inequality for CFT and Quantum GravityJHEP2011081302011JHEP...08..130H28760261298.83051[arXiv:0902.2790] [INSPIRE]
M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE].
MaxfieldHTuriaciGJThe path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integralJHEP2021011182021JHEP...01..118M42577231459.83036[arXiv:2006.11317] [INSPIRE]
KellerCAMaloneyAPoincaré Series, 3D Gravity and CFT SpectroscopyJHEP2015020802015JHEP...02..080K1388.83124[arXiv:1407.6008] [INSPIRE]
J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Int. J. Mod. Phys. B7 (1993) 4451 [chao-dyn/9305005] [INSPIRE].
MaloneyAWittenEQuantum Gravity Partition Functions in Three DimensionsJHEP2010020292010JHEP...02..029M26727541270.83022[arXiv:0712.0155] [INSPIRE]
L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
BenjaminNOoguriHShaoS-HWangYLight-cone modular bootstrap and pure gravityPhys. Rev. D20191000660292019PhRvD.100f6029B4028847[arXiv:1906.04184] [INSPIRE]
BookerARStrömbergssonAVenkateshAEffective computation of Maass cusp formsInt. Math. Res. Not.200620067128122499951154.11018
HartmanTMazáčDRastelliLSphere Packing and Quantum GravityJHEP2019120482019JHEP...12..048H40756971431.83053[arXiv:1905.01319] [INSPIRE]
J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].
PérezATroncosoRGravitational dual of averaged free CFT’s over the Narain latticeJHEP2020110152020JHEP...11..015P42042701456.83030[arXiv:2006.08216] [INSPIRE]
MeruliyaVMukhiSSinghPPoincaré Series, 3d Gravity and Averages of Rational CFTJHEP2021042672021JHEP...04..267M1462.83044[arXiv:2102.03136] [INSPIRE]
IchinoATrilinear forms and the central values of triple product L-functionsDuke Math. J.200814528124499481222.11065
MaloneyAWittenEAveraging over Narain moduli spaceJHEP2020101872020JHEP...10..187M42039181456.83067[arXiv:2006.04855] [INSPIRE]
CornalbaLCostaMSPenedonesJSchiappaREikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point FunctionsNucl. Phys. B20077673272007NuPhB.767..327C23035441326.81147[hep-th/0611123] [INSPIRE]
R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms, Math. Proc. Camb. Philos. Soc.35 (1939) 357.
GopakumarRKavirajASenKSinhaAA Mellin space approach to the conformal bootstrapJHEP2017050272017JHEP...05..027G36640831380.81320[arXiv:1611.08407] [INSPIRE]
KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K39084741404.81234[arXiv:1805.00098] [INSPIRE]
BolteJSteilGSteinerFArithmetical chaos and violation of universality in energy level statisticsPhys. Rev. Lett.19926921881992PhRvL..69.2188B11848270968.81515
MuruganJStanfordDWittenEMore on Supersymmetric and 2d Analogs of the SYK ModelJHEP2017081462017JHEP...08..146M36973361381.81121[arXiv:1706.05362] [INSPIRE]
Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C37105361382.81173[arXiv:1703.00278] [INSPIRE]
KellerCAOoguriHModular Constraints on Calabi-Yau CompactificationsCommun. Math. Phys.20133241072013CMaPh.324..107K31163181276.81095[arXiv:1209.4649] [INSPIRE]
Afkhami-JeddiNColvilleKHartmanTMaloneyAPerlmutterEConstraints on higher spin CFT2JHEP2018050922018JHEP...05..092A1391.83083[arXiv:1707.07717] [INSPIRE]
PiolineBRankin-Selberg methods for closed string amplitudesProc. Symp. Pure Math.20148811933302851321.81052[arXiv:1401.4265] [INSPIRE]
FriedanDKellerCAConstraints on 2d CFT partition functionsJHEP2013101802013JHEP...10..180F31207931342.81361[arXiv:1307.6562] [INSPIRE]
M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D
16757_CR46
LF Alday (16757_CR61) 2020; 11
D Karateev (16757_CR12) 2019; 10
A Deitmar (16757_CR47) 1991; 208
D Mazáč (16757_CR42) 2019; 06
16757_CR86
16757_CR89
16757_CR44
16757_CR5
R Gopakumar (16757_CR16) 2017; 05
16757_CR83
AR Booker (16757_CR45) 2006; 2006
16757_CR82
16757_CR41
16757_CR2
16757_CR7
A Maloney (16757_CR59) 2010; 02
J Kaidi (16757_CR32) 2021; 02
MR Douglas (16757_CR31) 2013; 462
LF Alday (16757_CR65) 2020; 12
T Hartman (16757_CR54) 2019; 12
P Di Francesco (16757_CR84) 1987; 285
16757_CR39
N Afkhami-Jeddi (16757_CR21) 2021; 01
N Benjamin (16757_CR57) 2020; 09
H Maxfield (16757_CR64) 2021; 01
16757_CR35
CA Keller (16757_CR56) 2015; 02
16757_CR37
N Afkhami-Jeddi (16757_CR53) 2019; 05
16757_CR76
S Hellerman (16757_CR1) 2011; 08
16757_CR34
16757_CR78
16757_CR33
16757_CR77
J Murugan (16757_CR40) 2017; 08
16757_CR72
N Benjamin (16757_CR52) 2019; 100
16757_CR71
16757_CR30
P Kravchuk (16757_CR11) 2018; 11
E D’Hoker (16757_CR38) 2019; 06
16757_CR70
R Gopakumar (16757_CR17) 2018; 12
C Angelantonj (16757_CR91) 2012; 06
A Pérez (16757_CR63) 2020; 11
B Pioline (16757_CR36) 2014; 88
16757_CR69
NA Obers (16757_CR29) 2000; 209
16757_CR68
R Szmytkowski (16757_CR80) 2010; 21
16757_CR27
S Collier (16757_CR75) 2019; 05
D Niebur (16757_CR90) 1973; 52
16757_CR26
V Meruliya (16757_CR67) 2021; 04
16757_CR23
16757_CR22
16757_CR66
I Florakis (16757_CR79) 2017; 11
N Afkhami-Jeddi (16757_CR51) 2018; 05
Y Kusuki (16757_CR74) 2019; 01
M Hogervorst (16757_CR8) 2017; 11
JM Maldacena (16757_CR73) 1998; 12
H Maass (16757_CR85) 1983
J Bolte (16757_CR24) 1992; 69
A Ichino (16757_CR88) 2008; 145
S Collier (16757_CR50) 2018; 09
L Cornalba (16757_CR3) 2007; 767
A Castro (16757_CR60) 2012; 85
S Caron-Huot (16757_CR9) 2017; 09
R Gopakumar (16757_CR15) 2017; 118
R Gopakumar (16757_CR18) 2021; 126
16757_CR19
C Angelantonj (16757_CR28) 2012; 6
DA Hejhal (16757_CR25) 1993; 61
16757_CR58
16757_CR13
AM Polyakov (16757_CR14) 1974; 66
D Friedan (16757_CR49) 2013; 10
A Maloney (16757_CR43) 2017; 06
J Maldacena (16757_CR6) 2016; 94
H Rademacher (16757_CR81) 1943; 44
MS Costa (16757_CR4) 2012; 12
CA Keller (16757_CR48) 2013; 324
N Afkhami-Jeddi (16757_CR55) 2020; 12
P Humphries (16757_CR87) 2018; 371
J Cotler (16757_CR62) 2021; 04
A Maloney (16757_CR20) 2020; 10
D Simmons-Duffin (16757_CR10) 2018; 07
References_xml – reference: V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, On the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory. Vol. 63: Harmonic Analysis, Springer, Heidelberg Germany (1977).
– reference: Afkhami-JeddiNHartmanTTajdiniAFast Conformal Bootstrap and Constraints on 3d GravityJHEP2019050872019JHEP...05..087A39768001416.83070[arXiv:1903.06272] [INSPIRE]
– reference: ObersNAPiolineBEisenstein series and string thresholdsCommun. Math. Phys.20002092752000CMaPh.209..275O17379861043.81059[hep-th/9903113] [INSPIRE]
– reference: E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and Poincaré series, JHEP04 (2019) 136 [arXiv:1902.04180] [INSPIRE].
– reference: MaassHLalSLectures on modular functions of one complex variable1983Heidelberg GermanySpringer
– reference: Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C37105361382.81173[arXiv:1703.00278] [INSPIRE]
– reference: CotlerJJensenKAdS3gravity and random CFTJHEP2021040332021JHEP...04..033C1462.83014[arXiv:2006.08648] [INSPIRE]
– reference: GopakumarRSinhaAZahedACrossing Symmetric Dispersion Relations for Mellin AmplitudesPhys. Rev. Lett.20211262116022021PhRvL.126u1602G4278623[arXiv:2101.09017] [INSPIRE]
– reference: KaidiJPerlmutterEDiscreteness and integrality in Conformal Field TheoryJHEP2021020642021JHEP...02..064K42603541460.81083[arXiv:2008.02190] [INSPIRE]
– reference: P. Sarnak, Statistical Properties of Eigenvalues of the Hecke Operators, in Analytic Number Theory and Diophantine Problems, Birkhäuser, Boston U.S.A. (1987), pg. 321.
– reference: HejhalDAArnoSOn Fourier coefficients of Maass waveforms for PSL(2, Z)Math. Comput.1993612451993MaCom..61..245H11999910781.11020
– reference: Afkhami-JeddiNCohnHHartmanTTajdiniAFree partition functions and an averaged holographic dualityJHEP2021011302021JHEP...01..130A42577111459.83030[arXiv:2006.04839] [INSPIRE]
– reference: R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On Moduli Spaces of Conformal Field Theories with c≥ 1, in Perspectives in String Theory: Proceedings of the Niels Bohr Institute/Nordita Meeting, Copenhagen Denmark (1987), World Scientific, Singapore (1987).
– reference: B. Mukhametzhanov, Half-wormhole in SYK with one time point, arXiv:2105.08207 [INSPIRE].
– reference: CostaMSGoncalvesVPenedonesJConformal Regge theoryJHEP2012120912012JHEP...12..091C30452671397.81297[arXiv:1209.4355] [INSPIRE]
– reference: L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
– reference: BolteJSteilGSteinerFArithmetical chaos and violation of universality in energy level statisticsPhys. Rev. Lett.19926921881992PhRvL..69.2188B11848270968.81515
– reference: MeruliyaVMukhiSSinghPPoincaré Series, 3d Gravity and Averages of Rational CFTJHEP2021042672021JHEP...04..267M1462.83044[arXiv:2102.03136] [INSPIRE]
– reference: A. Terras, Harmonic Analysis on Symmetric Spaces — Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York U.S.A. (2013).
– reference: A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv for Mathematik og Naturvidenskab, Cammermeyer, Oslo Norway (1940).
– reference: Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S38619681395.81246[arXiv:1711.03816] [INSPIRE]
– reference: MaloneyAWittenEQuantum Gravity Partition Functions in Three DimensionsJHEP2010020292010JHEP...02..029M26727541270.83022[arXiv:0712.0155] [INSPIRE]
– reference: HellermanSA Universal Inequality for CFT and Quantum GravityJHEP2011081302011JHEP...08..130H28760261298.83051[arXiv:0902.2790] [INSPIRE]
– reference: KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K39084741404.81234[arXiv:1805.00098] [INSPIRE]
– reference: GopakumarRSinhaAOn the Polyakov-Mellin bootstrapJHEP2018120402018JHEP...12..040G3900692[arXiv:1809.10975] [INSPIRE]
– reference: P. Sarnak, Arithmetic Quantum Chaos, http://web.math.princeton.edu/sarnak/Arithmetic%20Quantum%20Chaos.pdf.
– reference: DeitmarAKriegATheta correspondence for Eisenstein seriesMath. Z.199120827311287100773.11028
– reference: AldayLFBaeJ-BBenjaminNJorge-DiazCOn the Spectrum of Pure Higher Spin GravityJHEP2020120012020JHEP...12..001A42394551457.83043[arXiv:2009.01830] [INSPIRE]
– reference: GopakumarRKavirajASenKSinhaAConformal Bootstrap in Mellin SpacePhys. Rev. Lett.20171180816012017PhRvL.118h1601G36785811380.81320[arXiv:1609.00572] [INSPIRE]
– reference: V. Meruliya and S. Mukhi, AdS3Gravity and RCFT Ensembles with Multiple Invariants, arXiv:2104.10178 [INSPIRE].
– reference: Afkhami-JeddiNCohnHHartmanTde LaatDTajdiniAHigh-dimensional sphere packing and the modular bootstrapJHEP2020120662020JHEP...12..066A42393861457.81095[arXiv:2006.02560] [INSPIRE]
– reference: SzmytkowskiRBielskiSAn orthogonality relation for the Whittaker functions of the second kind of imaginary orderIntegral Transforms Spec. Funct.20102173927435411205.33010[arXiv:0910.1492]
– reference: BenjaminNOoguriHShaoS-HWangYLight-cone modular bootstrap and pure gravityPhys. Rev. D20191000660292019PhRvD.100f6029B4028847[arXiv:1906.04184] [INSPIRE]
– reference: J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Int. J. Mod. Phys. B7 (1993) 4451 [chao-dyn/9305005] [INSPIRE].
– reference: NieburDA class of nonanalytic automorphic functionsNagoya Math. J.1973521333377880288.10010
– reference: PiolineBRankin-Selberg methods for closed string amplitudesProc. Symp. Pure Math.20148811933302851321.81052[arXiv:1401.4265] [INSPIRE]
– reference: AngelantonjCFlorakisIPiolineBA new look at one-loop integrals in string theoryCommun. Num. Theor. Phys.2012615929559341270.81147[arXiv:1110.5318] [INSPIRE]
– reference: D’HokerEIntegral of two-loop modular graph functionsJHEP2019060922019JHEP...06..092D39798691416.83115[arXiv:1905.06217] [INSPIRE]
– reference: H. Then, Maass cusp forms for large eigenvalues, Math. Comput.74 (2004) 363 [math-ph/0305047].
– reference: P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE].
– reference: FriedanDKellerCAConstraints on 2d CFT partition functionsJHEP2013101802013JHEP...10..180F31207931342.81361[arXiv:1307.6562] [INSPIRE]
– reference: MaxfieldHTuriaciGJThe path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integralJHEP2021011182021JHEP...01..118M42577231459.83036[arXiv:2006.11317] [INSPIRE]
– reference: HogervorstMvan ReesBCCrossing symmetry in alpha spaceJHEP2017111932017JHEP...11..193H37412461383.81231[arXiv:1702.08471] [INSPIRE]
– reference: A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, arXiv:2012.15830 [INSPIRE].
– reference: MaldacenaJStanfordDRemarks on the Sachdev-Ye-Kitaev modelPhys. Rev. D2016941060022016PhRvD..94j6002M3751002[arXiv:1604.07818] [INSPIRE]
– reference: S. Caron-Huot, Y. Gobeil and Z. Zahraee, The leading trajectory in the 2 + 1D Ising CFT, arXiv:2007.11647 [INSPIRE].
– reference: G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for PSL(2, Z), Report Number: DESY-94-028 (1994).
– reference: S. Shenker, Wormholes and Microstructure, Seminar at Black Hole Microstructure Conference, IPhT, Saclay France (2021), https://youtu.be/yQ0Q58FvsHM.
– reference: HartmanTMazáčDRastelliLSphere Packing and Quantum GravityJHEP2019120482019JHEP...12..048H40756971431.83053[arXiv:1905.01319] [INSPIRE]
– reference: MazáčDA Crossing-Symmetric OPE Inversion FormulaJHEP2019060822019JHEP...06..082M39798591416.81162[arXiv:1812.02254] [INSPIRE]
– reference: BookerARStrömbergssonAVenkateshAEffective computation of Maass cusp formsInt. Math. Res. Not.200620067128122499951154.11018
– reference: AldayLFBaeJ-BRademacher Expansions and the Spectrum of 2d CFTJHEP2020111342020JHEP...11..134A42041441456.81347[arXiv:2001.00022] [INSPIRE]
– reference: PolyakovAMNonhamiltonian approach to conformal quantum field theoryZh. Eksp. Teor. Fiz.19746623[INSPIRE]
– reference: GopakumarRKavirajASenKSinhaAA Mellin space approach to the conformal bootstrapJHEP2017050272017JHEP...05..027G36640831380.81320[arXiv:1611.08407] [INSPIRE]
– reference: N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, arXiv:2103.15826 [INSPIRE].
– reference: DouglasMRSpaces of Quantum Field TheoriesJ. Phys. Conf. Ser.2013462012011[arXiv:1005.2779] [INSPIRE]
– reference: A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE].
– reference: R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
– reference: HumphriesPEquidistribution in shrinking sets and L4-norm bounds for automorphic formsMath. Ann.2018371149738312791448.11084[arXiv:1705.05488]
– reference: M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D-instanton contributions to the D6R4interaction, Commun. Num. Theor. Phys.09 (2015) 307 [arXiv:1404.2192] [INSPIRE].
– reference: KellerCAOoguriHModular Constraints on Calabi-Yau CompactificationsCommun. Math. Phys.20133241072013CMaPh.324..107K31163181276.81095[arXiv:1209.4649] [INSPIRE]
– reference: KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K39330761409.81125[arXiv:1810.01335] [INSPIRE]
– reference: S. Collier and A. Maloney, Wormholes and Spectral Statistics in the Narain Ensemble, arXiv:2106.12760 [INSPIRE].
– reference: KellerCAMaloneyAPoincaré Series, 3D Gravity and CFT SpectroscopyJHEP2015020802015JHEP...02..080K1388.83124[arXiv:1407.6008] [INSPIRE]
– reference: MaloneyAWittenEAveraging over Narain moduli spaceJHEP2020101872020JHEP...10..187M42039181456.83067[arXiv:2006.04855] [INSPIRE]
– reference: CornalbaLCostaMSPenedonesJSchiappaREikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point FunctionsNucl. Phys. B20077673272007NuPhB.767..327C23035441326.81147[hep-th/0611123] [INSPIRE]
– reference: M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE].
– reference: FlorakisIPiolineBOn the Rankin–Selberg method for higher genus string amplitudesCommun. Num. Theor. Phys.20171133736902531426.11050[arXiv:1602.00308] [INSPIRE]
– reference: AngelantonjCFlorakisIPiolineBOne-Loop BPS amplitudes as BPS-state sumsJHEP2012060702012JHEP...06..070A30068691397.81211[arXiv:1203.0566] [INSPIRE]
– reference: MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M36818421380.81345[arXiv:1609.02165] [INSPIRE]
– reference: Afkhami-JeddiNColvilleKHartmanTMaloneyAPerlmutterEConstraints on higher spin CFT2JHEP2018050922018JHEP...05..092A1391.83083[arXiv:1707.07717] [INSPIRE]
– reference: RademacherHOn the expansion of the partition function in a seriesAnn. Math.19434441686180060.10005
– reference: MuruganJStanfordDWittenEMore on Supersymmetric and 2d Analogs of the SYK ModelJHEP2017081462017JHEP...08..146M36973361381.81121[arXiv:1706.05362] [INSPIRE]
– reference: CastroAGaberdielMRHartmanTMaloneyAVolpatoRThe Gravity Dual of the Ising ModelPhys. Rev. D2012850240322012PhRvD..85b4032C[arXiv:1111.1987] [INSPIRE]
– reference: PérezATroncosoRGravitational dual of averaged free CFT’s over the Narain latticeJHEP2020110152020JHEP...11..015P42042701456.83030[arXiv:2006.08216] [INSPIRE]
– reference: MaldacenaJMStromingerAAdS3black holes and a stringy exclusion principleJHEP1998120051998JHEP...12..005M16719470951.83019[hep-th/9804085] [INSPIRE]
– reference: CollierSLinY-HYinXModular Bootstrap RevisitedJHEP2018090612018JHEP...09..061C38712381398.83044[arXiv:1608.06241] [INSPIRE]
– reference: KarateevDKravchukPSimmons-DuffinDHarmonic Analysis and Mean Field TheoryJHEP2019102172019JHEP...10..217K40510631427.81137[arXiv:1809.05111] [INSPIRE]
– reference: Di FrancescoPSaleurHZuberJBModular Invariance in Nonminimal Two-dimensional Conformal TheoriesNucl. Phys. B19872854541987NuPhB.285..454D897029[INSPIRE]
– reference: T.C. Watson, Rankin Triple Products and Quantum Chaos, Ph.D. Thesis, Princeton University, Princeton U.S.A. (2002) [arXiv:0810.0425].
– reference: LMFDB collaboration, The L-functions and modular forms database, http://www.lmfdb.org (2021).
– reference: S. Datta, S. Duary, P. Kraus, P. Maity and A. Maloney, Adding Flavor to the Narain Ensemble, arXiv:2102.12509 [INSPIRE].
– reference: N. Callebaut, J. Kruthoff and H. Verlinde, TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{T} $$\end{document}deformed CFT as a non-critical string, JHEP04 (2020) 084 [arXiv:1910.13578] [INSPIRE].
– reference: J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].
– reference: D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo, Sect. I A28 (1981) 415.
– reference: R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms, Math. Proc. Camb. Philos. Soc.35 (1939) 357.
– reference: M. Ashwinkumar, M. Dodelson, A. Kidambi, J.M. Leedom and M. Yamazaki, Chern-Simons Invariants from Ensemble Averages, arXiv:2104.14710 [INSPIRE].
– reference: IchinoATrilinear forms and the central values of triple product L-functionsDuke Math. J.200814528124499481222.11065
– reference: CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C39734371416.81143[arXiv:1811.05710] [INSPIRE]
– reference: BenjaminNCollierSMaloneyAPure Gravity and Conical DefectsJHEP2020090342020JHEP...09..034B42032251454.81178[arXiv:2004.14428] [INSPIRE]
– reference: J. Dong, T. Hartman and Y. Jiang, Averaging over moduli in deformed WZW models, arXiv:2105.12594 [INSPIRE].
– volume: 12
  start-page: 091
  year: 2012
  ident: 16757_CR4
  publication-title: JHEP
  doi: 10.1007/JHEP12(2012)091
– volume: 52
  start-page: 133
  year: 1973
  ident: 16757_CR90
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000015932
– volume: 61
  start-page: 245
  year: 1993
  ident: 16757_CR25
  publication-title: Math. Comput.
– volume: 11
  start-page: 134
  year: 2020
  ident: 16757_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)134
– volume: 12
  start-page: 005
  year: 1998
  ident: 16757_CR73
  publication-title: JHEP
  doi: 10.1088/1126-6708/1998/12/005
– volume: 07
  start-page: 085
  year: 2018
  ident: 16757_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)085
– volume: 01
  start-page: 118
  year: 2021
  ident: 16757_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)118
– ident: 16757_CR71
– ident: 16757_CR33
– ident: 16757_CR46
  doi: 10.1090/S0025-5718-04-01658-8
– volume: 12
  start-page: 001
  year: 2020
  ident: 16757_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)001
– volume: 100
  start-page: 066029
  year: 2019
  ident: 16757_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.066029
– volume: 02
  start-page: 029
  year: 2010
  ident: 16757_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP02(2010)029
– volume: 88
  start-page: 119
  year: 2014
  ident: 16757_CR36
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/088/01457
– volume: 11
  start-page: 193
  year: 2017
  ident: 16757_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)193
– volume: 85
  start-page: 024032
  year: 2012
  ident: 16757_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.024032
– ident: 16757_CR69
– ident: 16757_CR27
  doi: 10.1007/978-1-4612-4816-3_19
– volume: 11
  start-page: 102
  year: 2018
  ident: 16757_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)102
– volume: 12
  start-page: 066
  year: 2020
  ident: 16757_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)066
– volume: 285
  start-page: 454
  year: 1987
  ident: 16757_CR84
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(87)90349-X
– ident: 16757_CR23
– volume: 6
  start-page: 159
  year: 2012
  ident: 16757_CR28
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2012.v6.n1.a4
– volume: 66
  start-page: 23
  year: 1974
  ident: 16757_CR14
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: 16757_CR26
– volume: 126
  start-page: 211602
  year: 2021
  ident: 16757_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.211602
– ident: 16757_CR83
  doi: 10.1142/S0217979293003759
– ident: 16757_CR78
– volume: 05
  start-page: 027
  year: 2017
  ident: 16757_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)027
– ident: 16757_CR70
– volume: 10
  start-page: 217
  year: 2019
  ident: 16757_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)217
– ident: 16757_CR5
– volume: 11
  start-page: 337
  year: 2017
  ident: 16757_CR79
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2017.v11.n2.a4
– ident: 16757_CR89
– volume: 06
  start-page: 117
  year: 2017
  ident: 16757_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP06(2017)117
– volume: 04
  start-page: 033
  year: 2021
  ident: 16757_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)033
– ident: 16757_CR68
– ident: 16757_CR22
– volume: 118
  start-page: 081601
  year: 2017
  ident: 16757_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.081601
– volume: 69
  start-page: 2188
  year: 1992
  ident: 16757_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2188
– volume: 08
  start-page: 130
  year: 2011
  ident: 16757_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP08(2011)130
– volume: 10
  start-page: 180
  year: 2013
  ident: 16757_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)180
– volume: 462
  start-page: 012011
  year: 2013
  ident: 16757_CR31
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/462/1/012011
– volume: 21
  start-page: 739
  year: 2010
  ident: 16757_CR80
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652461003643412
– volume: 145
  start-page: 281
  year: 2008
  ident: 16757_CR88
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2008-052
– volume-title: Lectures on modular functions of one complex variable
  year: 1983
  ident: 16757_CR85
  doi: 10.1007/978-3-662-02380-8
– volume: 06
  start-page: 070
  year: 2012
  ident: 16757_CR91
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)070
– ident: 16757_CR77
– ident: 16757_CR2
– ident: 16757_CR58
– ident: 16757_CR35
– volume: 05
  start-page: 212
  year: 2019
  ident: 16757_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)212
– volume: 02
  start-page: 064
  year: 2021
  ident: 16757_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)064
– volume: 371
  start-page: 1497
  year: 2018
  ident: 16757_CR87
  publication-title: Math. Ann.
  doi: 10.1007/s00208-018-1677-9
– volume: 767
  start-page: 327
  year: 2007
  ident: 16757_CR3
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2007.01.007
– volume: 08
  start-page: 146
  year: 2017
  ident: 16757_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)146
– volume: 10
  start-page: 187
  year: 2020
  ident: 16757_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)187
– volume: 209
  start-page: 275
  year: 2000
  ident: 16757_CR29
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050022
– volume: 09
  start-page: 078
  year: 2017
  ident: 16757_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)078
– volume: 05
  start-page: 092
  year: 2018
  ident: 16757_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)092
– ident: 16757_CR82
– ident: 16757_CR44
– ident: 16757_CR13
  doi: 10.1007/JHEP03(2019)052
– volume: 208
  start-page: 273
  year: 1991
  ident: 16757_CR47
  publication-title: Math. Z.
  doi: 10.1007/BF02571525
– ident: 16757_CR19
  doi: 10.1007/978-1-4614-7972-7
– ident: 16757_CR7
– ident: 16757_CR76
– volume: 94
  start-page: 106002
  year: 2016
  ident: 16757_CR6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.106002
– volume: 12
  start-page: 040
  year: 2018
  ident: 16757_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP12(2018)040
– ident: 16757_CR34
  doi: 10.1017/S0305004100021101
– ident: 16757_CR37
  doi: 10.4310/CNTP.2015.v9.n2.a3
– volume: 05
  start-page: 087
  year: 2019
  ident: 16757_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)087
– volume: 04
  start-page: 267
  year: 2021
  ident: 16757_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)267
– ident: 16757_CR72
– volume: 324
  start-page: 107
  year: 2013
  ident: 16757_CR48
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1797-8
– volume: 09
  start-page: 034
  year: 2020
  ident: 16757_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)034
– volume: 02
  start-page: 080
  year: 2015
  ident: 16757_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)080
– ident: 16757_CR41
– volume: 2006
  start-page: 71281
  year: 2006
  ident: 16757_CR45
  publication-title: Int. Math. Res. Not.
– volume: 09
  start-page: 061
  year: 2018
  ident: 16757_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)061
– ident: 16757_CR66
– volume: 01
  start-page: 025
  year: 2019
  ident: 16757_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)025
– volume: 12
  start-page: 048
  year: 2019
  ident: 16757_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)048
– volume: 01
  start-page: 130
  year: 2021
  ident: 16757_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)130
– volume: 06
  start-page: 082
  year: 2019
  ident: 16757_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)082
– volume: 11
  start-page: 015
  year: 2020
  ident: 16757_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)015
– volume: 06
  start-page: 092
  year: 2019
  ident: 16757_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)092
– ident: 16757_CR30
  doi: 10.1007/978-1-4613-0729-7_27
– ident: 16757_CR86
  doi: 10.1007/JHEP04(2020)084
– ident: 16757_CR39
  doi: 10.1007/JHEP04(2019)136
– volume: 44
  start-page: 416
  year: 1943
  ident: 16757_CR81
  publication-title: Ann. Math.
  doi: 10.2307/1968973
SSID ssj0015190
Score 2.5823922
Snippet A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories....
We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We...
We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose...
We apply the theory of harmonic analysis on the fundamental domain of SL(2, Z) to partition functions of two-dimensional conformal field theories. We decompose...
Abstract We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We...
SourceID doaj
osti
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bosons
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Conformal and W Symmetry
Conformal Field Theory
Decomposition
Eigenvectors
Elementary Particles
Field Theories in Lower Dimensions
Fourier analysis
Harmonic analysis
High energy physics
High Energy Physics - Theory
Operators (mathematics)
Partitions (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Spectral theory
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT1xfBPFgD2s3brLJHrVYFlHx0EJvIZsHHrSVtvr7ndmHWqF48bqbzWa-SfLNkOELIed5yj0SSwxbn4i5hZVequDiEnNnmUlrKzGdh8esGPG7sRj_uOoLa8JqeeAauJ4Q0gtunRJJ4I6lCv_pYbvIXVbKWucTOK9NpprzA4hLklbIJ5G9u-L2KckvINFnXSb5EgdVUv3ALM9YCNmZwsJaCjZ_nY9WtDPYIptNvEiv63FukzU_2SHrVd2mne-SXmFmr6huS02jLkKngV452h8M6Rtah8BTZK9qgu2R0eB22C_i5g6E2ArOF7GFlKxMhWNOBuV8xp1KXBAuKSFUsdwEY5ly1ltYe8InRgHIlgEDATWlgsl0n3Qm04k_IDTNg_e8Spokz4M1Is-NUSLIkongTEQuW1S0bQTC8Z6KF91KG9cwaoRRA4wRufj64K3Wxljd9AZh_mqGotbVA3C1blyt_3J1RM7ASUt9FNf3Gp-BsQyFZz5YRI7QhxoCCFTBtVguZBcawhIIfWEcx61rdbNY5xp2LZklnCkVkW7r7u_XK0w6_A-TjsgG9ocFKFfymHQWs3d_AlHOojytJvQnGRv03A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLZY0aRdELBNCzAUoR3gkDUmduycJkCtIsQQmkDiZjnP9nbYmq4t_P28lzpFRYJr4ljx-_W9Zz99ZuxbVQhPwJJh6JOZAPT0RgeXNVQ7q1IBdGQ6P6_L-k5c3sv7uOE2j22VfUzsArVrgfbIh2haqswF1_rH9H9Gt0bR6Wq8QuMd28QQrLH42jwfXd_8Wp0jYH6S94Q-uRpe1qObvDrGgp-fcCXWsKij7EeE-UMNkYMWHWwt6XxxTtrBz3ibbcW8MT1bKnqHbfjJLnvf9W_C_CMb1nb2j1huUxtZRtI2pKcuvRjfplMyD1JASijWGdondjce3V7UWbwLIQMpxCIDLM2aQjruVNDOl8Lp3AXp8gZTFhA2WODagQf0Qelzq1HYwBGJEKIKyVXxmQ0m7cR_YWlRBe9FVzwpUQWwsqqs1TKohsvgbMK-91IxEInC6b6Kv6anOF6K0ZAYDYoxYcerD6ZLjozXh56TmFfDiNy6e9DOfpvoK0ZK5aUAp2UehOOFJjPziBCVKxuMUAk7QiWtzVGfXRl6hovlREDzyBO2Tzo0mEgQGy5Q2xAsDKYnmALjfxz0qjXRaefm2cQSdtKr-_n1K0vae3uqffaBRlKLyak6YIPF7MF_xTxm0RxGY30CdsfsjQ
  priority: 102
  providerName: ProQuest
Title Harmonic analysis of 2d CFT partition functions
URI https://link.springer.com/article/10.1007/JHEP09(2021)174
https://www.proquest.com/docview/2577604188
https://hal.science/hal-03315948
https://www.osti.gov/servlets/purl/1851504
https://doaj.org/article/557e54cd850f4d138eccaeeac9d6b703
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CoklcprENkQFVNHGAQyBu7Ng5lqpdhAZCE5W4WY4_4LC1qBT-_r3nJqBu4sDFihw7St6H38_x888AR1XBPQWWDIc-kXGLnt6o4LKG5s6ylNZGMp3Lq7Ke8otbcbsBrNsLE7PduyXJOFJ3m90u6vF1Xh3jZJ2dIIzehC2B12TUI9rg0C4cICDJOwaf_zutBZ_I0Y8h5Z4yIHtz9Kg1lPnPwmiMN5NP8LEFiulwpdkd2PCzz_AhJmzaxy9wVpvFH6K1TU1LK5LOQzpw6Whykz6QPZDEUwpb0bK-wnQyvhnVWXv4QWYF58vM4lysKYRjTgblfMmdyl0QLm8Qo1hugrFMOestOp3wuVEoXcsw9GBMKgSTxS70ZvOZ34O0qIL3PM6WJK-CNaKqjFEiyIaJ4EwCp51UtG2ZwemAit-64zReiVGTGDWKMYHjlw4PK1KMt5uek5hfmhGbdayYL-506xxaCOkFt06JPHDHCkV25TEkVK5scEhK4Dsqae0Z9fCnpjr8WEaMM88sgX3SoUbkQPS3lvKE7FIjHkHMi-9x0KlWt176qHG4kmXOmVIJnHTqfr39xid9e0fbfdimS0owGcgD6C0XT_4QUcyy6cOmmvzow9b5-Or6Vz9aMZXlqB__C2A5HQz_AvYP68k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAQXxFO4LWAhkNqDidfe9a4PCJXS4LZpxSGVetva-4BDG6dJaMWf4jcy49ipglRuvfqx2p355rHe8TcA7_OUOwosEbo-EXGDll4pb6OK9s4yk8Y0ZDpHx1lxwg9Oxeka_On-haGyys4nNo7a1oa-kfcRWjKLOVPq8-Qyoq5RdLratdBYwOLQ_b7GLdvs0_5X1O-HJBnsjXaLqO0qEBnB-TwyuMmpUmGZlV5Zl3GrYuuFjSsM_oaXvjRMWeMMolm4uFQ4bcPQp6OzTwWTKY57D-7zNM3JotTg2_LUArOhuKMPimX_oNj7HudbCYbRbSb5SuRrGgRgPPtJ5Ze9Gs15JcX951S2CXaDJ_C4zVLDnQWsnsKaGz-DB021qJk9h35RTi-IUzcsW06TsPZhYsPdwSicEBhJ3SHFzAbWL-DkTmT0EnrjeuxeQZjm3jnebNUkz70pRZ6XpRJeVkx4WwbwsZOKNi0tOXXHONcdofJCjJrEqFGMAWwtX5gsGDluf_QLiXn5GFFpNxfq6Q_dWqYWQjrBjVUi9tyyVBGoHcaj3GYV-sMA3qGSVsYodoaaruFiGdHdXLEANkiHGtMW4t41VKRk5hqTIUy4cR6bnWp16yJm-gbQAWx36r65fcuS1v8_1Ft4WIyOhnq4f3y4AY_oLSpuSeQm9ObTX-41ZlDz6k0D2xDO7tpO_gKUXSgS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiKcwLbBCILUHE6-967UPCPWRyH0QRaiVelvsfdBDiUMSQPw1fh0zjp0qSOXWqx8r78w3r-zkG4C3eSIcBZYQXZ8MhUFLrzJvw4pqZ5UqYxoynU-jtDgXxxfyYgP-dP-FobbKzic2jtrWhn4j7yO0VBoJjgWbb9sixofDj9PvIU2QopPWbpzGEiIn7vcvLN_mH44OUdfv4ng4ODsownbCQGikEIvQYMFTJdJyq3xmXSpsFlkvbVRhImBE6UvDM2ucQWRLF5UZbsFw9O_o-BPJVYLr3oFNhVVR1IPN_cFo_Hl1hoG5UdSRCUWqf1wMxlG-E2NQ3eVKrMXBZlwARrdLasbs1WjcawnvP2e0TegbPoQHbc7K9pYgewQbbvIY7ja9o2b-BPpFOftGDLusbBlOWO1ZbNnB8IxNCZqkfEYRtAH5Uzi_FSk9g96knrjnwJLcOyeawk2J3JtS5nlZZtKriktvywDed1LRpiUpp1kZV7qjV16KUZMYNYoxgJ3VC9MlP8fNj-6TmFePEbF2c6GefdWtnWoplZPC2ExGXlieZARxh9Ept2mF3jGAN6iktTWKvVNN13CznMhvfvIAtkiHGpMYYuI11LJkFhpTI0y_8Tu2O9Xq1mHM9TW8A9jt1H19-4Ytvfj_Uq_hHtqIPj0anWzBfXqJOl1itQ29xeyHe4np1KJ61eKWwZfbNpW_h08tpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+analysis+of+2d+CFT+partition+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Benjamin%2C+Nathan&rft.au=Collier%2C+Scott&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Maloney%2C+Alexander&rft.date=2021-09-27&rft.pub=Springer&rft.issn=1126-6708&rft.eissn=1029-8479&rft.volume=9&rft_id=info:doi/10.1007%2FJHEP09%282021%29174&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03315948v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon