Harmonic analysis of 2d CFT partition functions
A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 9; pp. 1 - 51 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
27.09.2021
Springer Nature B.V Springer Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We apply the theory of harmonic analysis on the fundamental domain of SL(2
,
ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of
c
free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2
,
ℤ), and of target space moduli space
O
(
c, c
; ℤ)\
O
(
c, c
; ℝ)/
O
(
c
)
×
O
(
c
). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS
3
gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. |
---|---|
AbstractList | We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS$_{3}$ gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2 , ℤ), and of target space moduli space O ( c, c ; ℤ)\ O ( c, c ; ℝ)/ O ( c ) × O ( c ). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS 3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. Abstract We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)× O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. A bstract We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2 , ℤ), and of target space moduli space O ( c, c ; ℤ)\ O ( c, c ; ℝ)/ O ( c ) × O ( c ). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS 3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space ℍ/SL(2, ℤ), and of target space moduli space O(c, c; ℤ)\O(c, c; ℝ)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. We apply the theory of harmonic analysis on the fundamental domain of SL(2, Z) to partition functions of two-dimensional conformal field theories. We decompose the partition function of c free bosons on a Narain lattice into eigenfunctions of the Laplacian of worldsheet moduli space H/SL(2, Z), and of target space moduli space O(c, c; Z)\O(c, c; R)/O(c)×O(c). This decomposition manifests certain properties of Narain theories and ensemble averages thereof. We extend the application of spectral theory to partition functions of general two-dimensional conformal field theories, and explore its meaning in connection to AdS3 gravity. An implication of harmonic analysis is that the local operator spectrum is fully determined by a certain subset of degeneracies. |
ArticleNumber | 174 |
Author | Benjamin, Nathan Collier, Scott Maloney, Alexander Perlmutter, Eric Fitzpatrick, A. Liam |
Author_xml | – sequence: 1 givenname: Nathan orcidid: 0000-0003-3661-6563 surname: Benjamin fullname: Benjamin, Nathan email: nathanb@princeton.edu organization: Princeton Center for Theoretical Science, Princeton University – sequence: 2 givenname: Scott surname: Collier fullname: Collier, Scott organization: Princeton Center for Theoretical Science, Princeton University – sequence: 3 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam organization: Department of Physics, Boston University – sequence: 4 givenname: Alexander surname: Maloney fullname: Maloney, Alexander organization: Department of Physics, McGill University – sequence: 5 givenname: Eric surname: Perlmutter fullname: Perlmutter, Eric organization: Institut de Physique Théorique, CEA Saclay, CNRS, Walter Burke Institute for Theoretical Physics, Caltech |
BackLink | https://hal.science/hal-03315948$$DView record in HAL https://www.osti.gov/servlets/purl/1851504$$D View this record in Osti.gov |
BookMark | eNp9kc1v1DAQxS1UJNqFM9cILvSw7Exix86xWrXdopXgUM6Wd-y0XqX2Ymcr9b_HIRVfEpxmNPq9N6N5Z-wkxOAYe4vwEQHk6tPm8gt0H2qo8Rwlf8FOEepuqbjsTn7rX7GznPcAKLCDU7bamPQQg6fKBDM8ZZ-r2Fe1rdZXt9XBpNGPPoaqPwaamvyavezNkN2b57pgX68ub9eb5fbz9c36Yrskwfm4pBph1wiLVvbKupZbBbYXFnaiBeKmN4TKkiNeC-HAqF3TELZSNdA0AmWzYDezr41mrw_JP5j0pKPx-scgpjs9HUeD00JIJzhZJaDnFhvliIxzhjrb7mTxW7B3s1fMo9eZ_OjonmIIjkaNSqAAXqDzGbo3wx_7NhdbPc2KEYqOq0cs7PuZPaT47ejyqPfxmMr_sq6FlC1wVKpQq5miFHNOrv9pi6CnyPQcmZ4i0yWyohB_KcqtZvr7mIwf_qODWZfLhnDn0q97_iX5DuIup_I |
CitedBy_id | crossref_primary_10_1007_JHEP03_2022_093 crossref_primary_10_1007_s00023_024_01441_2 crossref_primary_10_1103_PhysRevD_107_125025 crossref_primary_10_1007_JHEP02_2024_209 crossref_primary_10_1007_JHEP12_2023_179 crossref_primary_10_1007_JHEP05_2023_140 crossref_primary_10_1103_PhysRevLett_132_041602 crossref_primary_10_1103_PhysRevB_107_205137 crossref_primary_10_1007_JHEP05_2024_343 crossref_primary_10_1007_JHEP07_2023_028 crossref_primary_10_1007_JHEP11_2024_145 crossref_primary_10_1007_JHEP12_2022_069 crossref_primary_10_1103_PhysRevD_105_086018 crossref_primary_10_1007_JHEP07_2023_196 crossref_primary_10_1007_JHEP10_2024_068 crossref_primary_10_1007_JHEP12_2024_111 crossref_primary_10_1007_JHEP02_2022_019 crossref_primary_10_1007_JHEP02_2023_158 crossref_primary_10_1103_PhysRevD_107_126011 crossref_primary_10_1007_JHEP02_2023_079 crossref_primary_10_1007_JHEP01_2023_149 crossref_primary_10_1007_JHEP11_2023_035 crossref_primary_10_1007_JHEP12_2023_161 crossref_primary_10_1088_1572_9494_acde6b crossref_primary_10_1007_JHEP07_2024_202 crossref_primary_10_1007_JHEP04_2024_142 crossref_primary_10_1103_PhysRevD_106_066014 crossref_primary_10_21468_SciPostPhysCore_6_2_035 crossref_primary_10_1016_j_physrep_2022_09_004 crossref_primary_10_1007_JHEP01_2024_104 crossref_primary_10_1007_JHEP08_2023_078 crossref_primary_10_1140_epjc_s10052_023_12164_9 crossref_primary_10_1007_JHEP11_2022_143 crossref_primary_10_1007_JHEP08_2022_195 crossref_primary_10_1007_JHEP05_2024_240 crossref_primary_10_1007_JHEP01_2025_003 crossref_primary_10_1007_JHEP11_2023_102 crossref_primary_10_1103_PhysRevD_108_L101902 |
Cites_doi | 10.1007/JHEP12(2012)091 10.1017/S0027763000015932 10.1007/JHEP11(2020)134 10.1088/1126-6708/1998/12/005 10.1007/JHEP07(2018)085 10.1007/JHEP01(2021)118 10.1090/S0025-5718-04-01658-8 10.1007/JHEP12(2020)001 10.1103/PhysRevD.100.066029 10.1007/JHEP02(2010)029 10.1090/pspum/088/01457 10.1007/JHEP11(2017)193 10.1103/PhysRevD.85.024032 10.1007/978-1-4612-4816-3_19 10.1007/JHEP11(2018)102 10.1007/JHEP12(2020)066 10.1016/0550-3213(87)90349-X 10.4310/CNTP.2012.v6.n1.a4 10.1103/PhysRevLett.126.211602 10.1142/S0217979293003759 10.1007/JHEP05(2017)027 10.1007/JHEP10(2019)217 10.4310/CNTP.2017.v11.n2.a4 10.1007/JHEP06(2017)117 10.1007/JHEP04(2021)033 10.1103/PhysRevLett.118.081601 10.1103/PhysRevLett.69.2188 10.1007/JHEP08(2011)130 10.1007/JHEP10(2013)180 10.1088/1742-6596/462/1/012011 10.1080/10652461003643412 10.1215/00127094-2008-052 10.1007/978-3-662-02380-8 10.1007/JHEP06(2012)070 10.1007/JHEP05(2019)212 10.1007/JHEP02(2021)064 10.1007/s00208-018-1677-9 10.1016/j.nuclphysb.2007.01.007 10.1007/JHEP08(2017)146 10.1007/JHEP10(2020)187 10.1007/s002200050022 10.1007/JHEP09(2017)078 10.1007/JHEP05(2018)092 10.1007/JHEP03(2019)052 10.1007/BF02571525 10.1007/978-1-4614-7972-7 10.1103/PhysRevD.94.106002 10.1007/JHEP12(2018)040 10.1017/S0305004100021101 10.4310/CNTP.2015.v9.n2.a3 10.1007/JHEP05(2019)087 10.1007/JHEP04(2021)267 10.1007/s00220-013-1797-8 10.1007/JHEP09(2020)034 10.1007/JHEP02(2015)080 10.1007/JHEP09(2018)061 10.1007/JHEP01(2019)025 10.1007/JHEP12(2019)048 10.1007/JHEP01(2021)130 10.1007/JHEP06(2019)082 10.1007/JHEP11(2020)015 10.1007/JHEP06(2019)092 10.1007/978-1-4613-0729-7_27 10.1007/JHEP04(2020)084 10.1007/JHEP04(2019)136 10.2307/1968973 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | California Institute of Technology (CalTech), Pasadena, CA (United States) Boston Univ., MA (United States) |
CorporateAuthor_xml | – name: Boston Univ., MA (United States) – name: California Institute of Technology (CalTech), Pasadena, CA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC OIOZB OTOTI DOA |
DOI | 10.1007/JHEP09(2021)174 |
DatabaseName | Springer Nature Link CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 51 |
ExternalDocumentID | oai_doaj_org_article_557e54cd850f4d138eccaeeac9d6b703 1851504 oai_HAL_hal_03315948v1 10_1007_JHEP09_2021_174 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 02O 1JI 1WK 1XC 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABTEG ACAFW ACARI ACBXY ADKPE ADRFC AEFHF AEJGL AERVB AFLOW AGJBK AGQPQ AHSBF AHSEE AIYBF AKPSB ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c544t-c210b35d1d7f8de64d80df5d0b560c4afac18dcec4255e0a8b33c167830335173 |
IEDL.DBID | C24 |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:20:27 EDT 2025 Thu May 18 22:34:51 EDT 2023 Fri May 09 12:22:37 EDT 2025 Fri Jul 25 07:37:36 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Tue Jul 01 00:59:33 EDT 2025 Fri Feb 21 02:46:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Field Theories in Lower Dimensions Conformal Field Theory Conformal and W Symmetry spectral operator: local moduli space dimension: 2 analysis: harmonic operator: spectrum field theory: conformal anti-de Sitter gravitation partition function SL Z |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-c210b35d1d7f8de64d80df5d0b560c4afac18dcec4255e0a8b33c167830335173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Simons Foundation SC0011632; SC0015845; 488653; 385602; 853507 USDOE Office of Science (SC), High Energy Physics (HEP) European Research Council (ERC) |
ORCID | 0000-0003-3661-6563 0000000336616563 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP09(2021)174 |
PQID | 2577604188 |
PQPubID | 2034718 |
PageCount | 51 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_557e54cd850f4d138eccaeeac9d6b703 osti_scitechconnect_1851504 hal_primary_oai_HAL_hal_03315948v1 proquest_journals_2577604188 crossref_primary_10_1007_JHEP09_2021_174 crossref_citationtrail_10_1007_JHEP09_2021_174 springer_journals_10_1007_JHEP09_2021_174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-27 |
PublicationDateYYYYMMDD | 2021-09-27 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer – name: Springer Nature – name: SpringerOpen |
References | KarateevDKravchukPSimmons-DuffinDHarmonic Analysis and Mean Field TheoryJHEP2019102172019JHEP...10..217K40510631427.81137[arXiv:1809.05111] [INSPIRE] AldayLFBaeJ-BBenjaminNJorge-DiazCOn the Spectrum of Pure Higher Spin GravityJHEP2020120012020JHEP...12..001A42394551457.83043[arXiv:2009.01830] [INSPIRE] Afkhami-JeddiNHartmanTTajdiniAFast Conformal Bootstrap and Constraints on 3d GravityJHEP2019050872019JHEP...05..087A39768001416.83070[arXiv:1903.06272] [INSPIRE] HogervorstMvan ReesBCCrossing symmetry in alpha spaceJHEP2017111932017JHEP...11..193H37412461383.81231[arXiv:1702.08471] [INSPIRE] LMFDB collaboration, The L-functions and modular forms database, http://www.lmfdb.org (2021). GopakumarRSinhaAZahedACrossing Symmetric Dispersion Relations for Mellin AmplitudesPhys. Rev. Lett.20211262116022021PhRvL.126u1602G4278623[arXiv:2101.09017] [INSPIRE] KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K39330761409.81125[arXiv:1810.01335] [INSPIRE] S. Collier and A. Maloney, Wormholes and Spectral Statistics in the Narain Ensemble, arXiv:2106.12760 [INSPIRE]. CotlerJJensenKAdS3gravity and random CFTJHEP2021040332021JHEP...04..033C1462.83014[arXiv:2006.08648] [INSPIRE] P. Sarnak, Arithmetic Quantum Chaos, http://web.math.princeton.edu/sarnak/Arithmetic%20Quantum%20Chaos.pdf. N. Callebaut, J. Kruthoff and H. Verlinde, TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{T} $$\end{document}deformed CFT as a non-critical string, JHEP04 (2020) 084 [arXiv:1910.13578] [INSPIRE]. P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE]. M. Ashwinkumar, M. Dodelson, A. Kidambi, J.M. Leedom and M. Yamazaki, Chern-Simons Invariants from Ensemble Averages, arXiv:2104.14710 [INSPIRE]. A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, arXiv:2012.15830 [INSPIRE]. CostaMSGoncalvesVPenedonesJConformal Regge theoryJHEP2012120912012JHEP...12..091C30452671397.81297[arXiv:1209.4355] [INSPIRE] S. Shenker, Wormholes and Microstructure, Seminar at Black Hole Microstructure Conference, IPhT, Saclay France (2021), https://youtu.be/yQ0Q58FvsHM. D’HokerEIntegral of two-loop modular graph functionsJHEP2019060922019JHEP...06..092D39798691416.83115[arXiv:1905.06217] [INSPIRE] CollierSLinY-HYinXModular Bootstrap RevisitedJHEP2018090612018JHEP...09..061C38712381398.83044[arXiv:1608.06241] [INSPIRE] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On Moduli Spaces of Conformal Field Theories with c≥ 1, in Perspectives in String Theory: Proceedings of the Niels Bohr Institute/Nordita Meeting, Copenhagen Denmark (1987), World Scientific, Singapore (1987). GopakumarRSinhaAOn the Polyakov-Mellin bootstrapJHEP2018120402018JHEP...12..040G3900692[arXiv:1809.10975] [INSPIRE] HumphriesPEquidistribution in shrinking sets and L4-norm bounds for automorphic formsMath. Ann.2018371149738312791448.11084[arXiv:1705.05488] AngelantonjCFlorakisIPiolineBA new look at one-loop integrals in string theoryCommun. Num. Theor. Phys.2012615929559341270.81147[arXiv:1110.5318] [INSPIRE] H. Then, Maass cusp forms for large eigenvalues, Math. Comput.74 (2004) 363 [math-ph/0305047]. AngelantonjCFlorakisIPiolineBOne-Loop BPS amplitudes as BPS-state sumsJHEP2012060702012JHEP...06..070A30068691397.81211[arXiv:1203.0566] [INSPIRE] A. Terras, Harmonic Analysis on Symmetric Spaces — Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York U.S.A. (2013). E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and Poincaré series, JHEP04 (2019) 136 [arXiv:1902.04180] [INSPIRE]. R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE]. MaldacenaJStanfordDRemarks on the Sachdev-Ye-Kitaev modelPhys. Rev. D2016941060022016PhRvD..94j6002M3751002[arXiv:1604.07818] [INSPIRE] Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S38619681395.81246[arXiv:1711.03816] [INSPIRE] GopakumarRKavirajASenKSinhaAConformal Bootstrap in Mellin SpacePhys. Rev. Lett.20171180816012017PhRvL.118h1601G36785811380.81320[arXiv:1609.00572] [INSPIRE] Di FrancescoPSaleurHZuberJBModular Invariance in Nonminimal Two-dimensional Conformal TheoriesNucl. Phys. B19872854541987NuPhB.285..454D897029[INSPIRE] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv for Mathematik og Naturvidenskab, Cammermeyer, Oslo Norway (1940). MaassHLalSLectures on modular functions of one complex variable1983Heidelberg GermanySpringer Afkhami-JeddiNCohnHHartmanTTajdiniAFree partition functions and an averaged holographic dualityJHEP2021011302021JHEP...01..130A42577111459.83030[arXiv:2006.04839] [INSPIRE] DouglasMRSpaces of Quantum Field TheoriesJ. Phys. Conf. Ser.2013462012011[arXiv:1005.2779] [INSPIRE] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo, Sect. I A28 (1981) 415. N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, arXiv:2103.15826 [INSPIRE]. S. Datta, S. Duary, P. Kraus, P. Maity and A. Maloney, Adding Flavor to the Narain Ensemble, arXiv:2102.12509 [INSPIRE]. ObersNAPiolineBEisenstein series and string thresholdsCommun. Math. Phys.20002092752000CMaPh.209..275O17379861043.81059[hep-th/9903113] [INSPIRE] CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C39734371416.81143[arXiv:1811.05710] [INSPIRE] RademacherHOn the expansion of the partition function in a seriesAnn. Math.19434441686180060.10005 Afkhami-JeddiNCohnHHartmanTde LaatDTajdiniAHigh-dimensional sphere packing and the modular bootstrapJHEP2020120662020JHEP...12..066A42393861457.81095[arXiv:2006.02560] [INSPIRE] A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE]. HellermanSA Universal Inequality for CFT and Quantum GravityJHEP2011081302011JHEP...08..130H28760261298.83051[arXiv:0902.2790] [INSPIRE] M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE]. MaxfieldHTuriaciGJThe path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integralJHEP2021011182021JHEP...01..118M42577231459.83036[arXiv:2006.11317] [INSPIRE] KellerCAMaloneyAPoincaré Series, 3D Gravity and CFT SpectroscopyJHEP2015020802015JHEP...02..080K1388.83124[arXiv:1407.6008] [INSPIRE] J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Int. J. Mod. Phys. B7 (1993) 4451 [chao-dyn/9305005] [INSPIRE]. MaloneyAWittenEQuantum Gravity Partition Functions in Three DimensionsJHEP2010020292010JHEP...02..029M26727541270.83022[arXiv:0712.0155] [INSPIRE] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE]. BenjaminNOoguriHShaoS-HWangYLight-cone modular bootstrap and pure gravityPhys. Rev. D20191000660292019PhRvD.100f6029B4028847[arXiv:1906.04184] [INSPIRE] BookerARStrömbergssonAVenkateshAEffective computation of Maass cusp formsInt. Math. Res. Not.200620067128122499951154.11018 HartmanTMazáčDRastelliLSphere Packing and Quantum GravityJHEP2019120482019JHEP...12..048H40756971431.83053[arXiv:1905.01319] [INSPIRE] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE]. PérezATroncosoRGravitational dual of averaged free CFT’s over the Narain latticeJHEP2020110152020JHEP...11..015P42042701456.83030[arXiv:2006.08216] [INSPIRE] MeruliyaVMukhiSSinghPPoincaré Series, 3d Gravity and Averages of Rational CFTJHEP2021042672021JHEP...04..267M1462.83044[arXiv:2102.03136] [INSPIRE] IchinoATrilinear forms and the central values of triple product L-functionsDuke Math. J.200814528124499481222.11065 MaloneyAWittenEAveraging over Narain moduli spaceJHEP2020101872020JHEP...10..187M42039181456.83067[arXiv:2006.04855] [INSPIRE] CornalbaLCostaMSPenedonesJSchiappaREikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point FunctionsNucl. Phys. B20077673272007NuPhB.767..327C23035441326.81147[hep-th/0611123] [INSPIRE] R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms, Math. Proc. Camb. Philos. Soc.35 (1939) 357. GopakumarRKavirajASenKSinhaAA Mellin space approach to the conformal bootstrapJHEP2017050272017JHEP...05..027G36640831380.81320[arXiv:1611.08407] [INSPIRE] KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K39084741404.81234[arXiv:1805.00098] [INSPIRE] BolteJSteilGSteinerFArithmetical chaos and violation of universality in energy level statisticsPhys. Rev. Lett.19926921881992PhRvL..69.2188B11848270968.81515 MuruganJStanfordDWittenEMore on Supersymmetric and 2d Analogs of the SYK ModelJHEP2017081462017JHEP...08..146M36973361381.81121[arXiv:1706.05362] [INSPIRE] Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C37105361382.81173[arXiv:1703.00278] [INSPIRE] KellerCAOoguriHModular Constraints on Calabi-Yau CompactificationsCommun. Math. Phys.20133241072013CMaPh.324..107K31163181276.81095[arXiv:1209.4649] [INSPIRE] Afkhami-JeddiNColvilleKHartmanTMaloneyAPerlmutterEConstraints on higher spin CFT2JHEP2018050922018JHEP...05..092A1391.83083[arXiv:1707.07717] [INSPIRE] PiolineBRankin-Selberg methods for closed string amplitudesProc. Symp. Pure Math.20148811933302851321.81052[arXiv:1401.4265] [INSPIRE] FriedanDKellerCAConstraints on 2d CFT partition functionsJHEP2013101802013JHEP...10..180F31207931342.81361[arXiv:1307.6562] [INSPIRE] M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D 16757_CR46 LF Alday (16757_CR61) 2020; 11 D Karateev (16757_CR12) 2019; 10 A Deitmar (16757_CR47) 1991; 208 D Mazáč (16757_CR42) 2019; 06 16757_CR86 16757_CR89 16757_CR44 16757_CR5 R Gopakumar (16757_CR16) 2017; 05 16757_CR83 AR Booker (16757_CR45) 2006; 2006 16757_CR82 16757_CR41 16757_CR2 16757_CR7 A Maloney (16757_CR59) 2010; 02 J Kaidi (16757_CR32) 2021; 02 MR Douglas (16757_CR31) 2013; 462 LF Alday (16757_CR65) 2020; 12 T Hartman (16757_CR54) 2019; 12 P Di Francesco (16757_CR84) 1987; 285 16757_CR39 N Afkhami-Jeddi (16757_CR21) 2021; 01 N Benjamin (16757_CR57) 2020; 09 H Maxfield (16757_CR64) 2021; 01 16757_CR35 CA Keller (16757_CR56) 2015; 02 16757_CR37 N Afkhami-Jeddi (16757_CR53) 2019; 05 16757_CR76 S Hellerman (16757_CR1) 2011; 08 16757_CR34 16757_CR78 16757_CR33 16757_CR77 J Murugan (16757_CR40) 2017; 08 16757_CR72 N Benjamin (16757_CR52) 2019; 100 16757_CR71 16757_CR30 P Kravchuk (16757_CR11) 2018; 11 E D’Hoker (16757_CR38) 2019; 06 16757_CR70 R Gopakumar (16757_CR17) 2018; 12 C Angelantonj (16757_CR91) 2012; 06 A Pérez (16757_CR63) 2020; 11 B Pioline (16757_CR36) 2014; 88 16757_CR69 NA Obers (16757_CR29) 2000; 209 16757_CR68 R Szmytkowski (16757_CR80) 2010; 21 16757_CR27 S Collier (16757_CR75) 2019; 05 D Niebur (16757_CR90) 1973; 52 16757_CR26 V Meruliya (16757_CR67) 2021; 04 16757_CR23 16757_CR22 16757_CR66 I Florakis (16757_CR79) 2017; 11 N Afkhami-Jeddi (16757_CR51) 2018; 05 Y Kusuki (16757_CR74) 2019; 01 M Hogervorst (16757_CR8) 2017; 11 JM Maldacena (16757_CR73) 1998; 12 H Maass (16757_CR85) 1983 J Bolte (16757_CR24) 1992; 69 A Ichino (16757_CR88) 2008; 145 S Collier (16757_CR50) 2018; 09 L Cornalba (16757_CR3) 2007; 767 A Castro (16757_CR60) 2012; 85 S Caron-Huot (16757_CR9) 2017; 09 R Gopakumar (16757_CR15) 2017; 118 R Gopakumar (16757_CR18) 2021; 126 16757_CR19 C Angelantonj (16757_CR28) 2012; 6 DA Hejhal (16757_CR25) 1993; 61 16757_CR58 16757_CR13 AM Polyakov (16757_CR14) 1974; 66 D Friedan (16757_CR49) 2013; 10 A Maloney (16757_CR43) 2017; 06 J Maldacena (16757_CR6) 2016; 94 H Rademacher (16757_CR81) 1943; 44 MS Costa (16757_CR4) 2012; 12 CA Keller (16757_CR48) 2013; 324 N Afkhami-Jeddi (16757_CR55) 2020; 12 P Humphries (16757_CR87) 2018; 371 J Cotler (16757_CR62) 2021; 04 A Maloney (16757_CR20) 2020; 10 D Simmons-Duffin (16757_CR10) 2018; 07 |
References_xml | – reference: V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, On the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory. Vol. 63: Harmonic Analysis, Springer, Heidelberg Germany (1977). – reference: Afkhami-JeddiNHartmanTTajdiniAFast Conformal Bootstrap and Constraints on 3d GravityJHEP2019050872019JHEP...05..087A39768001416.83070[arXiv:1903.06272] [INSPIRE] – reference: ObersNAPiolineBEisenstein series and string thresholdsCommun. Math. Phys.20002092752000CMaPh.209..275O17379861043.81059[hep-th/9903113] [INSPIRE] – reference: E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and Poincaré series, JHEP04 (2019) 136 [arXiv:1902.04180] [INSPIRE]. – reference: MaassHLalSLectures on modular functions of one complex variable1983Heidelberg GermanySpringer – reference: Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C37105361382.81173[arXiv:1703.00278] [INSPIRE] – reference: CotlerJJensenKAdS3gravity and random CFTJHEP2021040332021JHEP...04..033C1462.83014[arXiv:2006.08648] [INSPIRE] – reference: GopakumarRSinhaAZahedACrossing Symmetric Dispersion Relations for Mellin AmplitudesPhys. Rev. Lett.20211262116022021PhRvL.126u1602G4278623[arXiv:2101.09017] [INSPIRE] – reference: KaidiJPerlmutterEDiscreteness and integrality in Conformal Field TheoryJHEP2021020642021JHEP...02..064K42603541460.81083[arXiv:2008.02190] [INSPIRE] – reference: P. Sarnak, Statistical Properties of Eigenvalues of the Hecke Operators, in Analytic Number Theory and Diophantine Problems, Birkhäuser, Boston U.S.A. (1987), pg. 321. – reference: HejhalDAArnoSOn Fourier coefficients of Maass waveforms for PSL(2, Z)Math. Comput.1993612451993MaCom..61..245H11999910781.11020 – reference: Afkhami-JeddiNCohnHHartmanTTajdiniAFree partition functions and an averaged holographic dualityJHEP2021011302021JHEP...01..130A42577111459.83030[arXiv:2006.04839] [INSPIRE] – reference: R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On Moduli Spaces of Conformal Field Theories with c≥ 1, in Perspectives in String Theory: Proceedings of the Niels Bohr Institute/Nordita Meeting, Copenhagen Denmark (1987), World Scientific, Singapore (1987). – reference: B. Mukhametzhanov, Half-wormhole in SYK with one time point, arXiv:2105.08207 [INSPIRE]. – reference: CostaMSGoncalvesVPenedonesJConformal Regge theoryJHEP2012120912012JHEP...12..091C30452671397.81297[arXiv:1209.4355] [INSPIRE] – reference: L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE]. – reference: BolteJSteilGSteinerFArithmetical chaos and violation of universality in energy level statisticsPhys. Rev. Lett.19926921881992PhRvL..69.2188B11848270968.81515 – reference: MeruliyaVMukhiSSinghPPoincaré Series, 3d Gravity and Averages of Rational CFTJHEP2021042672021JHEP...04..267M1462.83044[arXiv:2102.03136] [INSPIRE] – reference: A. Terras, Harmonic Analysis on Symmetric Spaces — Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane, Springer, New York U.S.A. (2013). – reference: A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv for Mathematik og Naturvidenskab, Cammermeyer, Oslo Norway (1940). – reference: Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S38619681395.81246[arXiv:1711.03816] [INSPIRE] – reference: MaloneyAWittenEQuantum Gravity Partition Functions in Three DimensionsJHEP2010020292010JHEP...02..029M26727541270.83022[arXiv:0712.0155] [INSPIRE] – reference: HellermanSA Universal Inequality for CFT and Quantum GravityJHEP2011081302011JHEP...08..130H28760261298.83051[arXiv:0902.2790] [INSPIRE] – reference: KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K39084741404.81234[arXiv:1805.00098] [INSPIRE] – reference: GopakumarRSinhaAOn the Polyakov-Mellin bootstrapJHEP2018120402018JHEP...12..040G3900692[arXiv:1809.10975] [INSPIRE] – reference: P. Sarnak, Arithmetic Quantum Chaos, http://web.math.princeton.edu/sarnak/Arithmetic%20Quantum%20Chaos.pdf. – reference: DeitmarAKriegATheta correspondence for Eisenstein seriesMath. Z.199120827311287100773.11028 – reference: AldayLFBaeJ-BBenjaminNJorge-DiazCOn the Spectrum of Pure Higher Spin GravityJHEP2020120012020JHEP...12..001A42394551457.83043[arXiv:2009.01830] [INSPIRE] – reference: GopakumarRKavirajASenKSinhaAConformal Bootstrap in Mellin SpacePhys. Rev. Lett.20171180816012017PhRvL.118h1601G36785811380.81320[arXiv:1609.00572] [INSPIRE] – reference: V. Meruliya and S. Mukhi, AdS3Gravity and RCFT Ensembles with Multiple Invariants, arXiv:2104.10178 [INSPIRE]. – reference: Afkhami-JeddiNCohnHHartmanTde LaatDTajdiniAHigh-dimensional sphere packing and the modular bootstrapJHEP2020120662020JHEP...12..066A42393861457.81095[arXiv:2006.02560] [INSPIRE] – reference: SzmytkowskiRBielskiSAn orthogonality relation for the Whittaker functions of the second kind of imaginary orderIntegral Transforms Spec. Funct.20102173927435411205.33010[arXiv:0910.1492] – reference: BenjaminNOoguriHShaoS-HWangYLight-cone modular bootstrap and pure gravityPhys. Rev. D20191000660292019PhRvD.100f6029B4028847[arXiv:1906.04184] [INSPIRE] – reference: J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Int. J. Mod. Phys. B7 (1993) 4451 [chao-dyn/9305005] [INSPIRE]. – reference: NieburDA class of nonanalytic automorphic functionsNagoya Math. J.1973521333377880288.10010 – reference: PiolineBRankin-Selberg methods for closed string amplitudesProc. Symp. Pure Math.20148811933302851321.81052[arXiv:1401.4265] [INSPIRE] – reference: AngelantonjCFlorakisIPiolineBA new look at one-loop integrals in string theoryCommun. Num. Theor. Phys.2012615929559341270.81147[arXiv:1110.5318] [INSPIRE] – reference: D’HokerEIntegral of two-loop modular graph functionsJHEP2019060922019JHEP...06..092D39798691416.83115[arXiv:1905.06217] [INSPIRE] – reference: H. Then, Maass cusp forms for large eigenvalues, Math. Comput.74 (2004) 363 [math-ph/0305047]. – reference: P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE]. – reference: FriedanDKellerCAConstraints on 2d CFT partition functionsJHEP2013101802013JHEP...10..180F31207931342.81361[arXiv:1307.6562] [INSPIRE] – reference: MaxfieldHTuriaciGJThe path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integralJHEP2021011182021JHEP...01..118M42577231459.83036[arXiv:2006.11317] [INSPIRE] – reference: HogervorstMvan ReesBCCrossing symmetry in alpha spaceJHEP2017111932017JHEP...11..193H37412461383.81231[arXiv:1702.08471] [INSPIRE] – reference: A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, arXiv:2012.15830 [INSPIRE]. – reference: MaldacenaJStanfordDRemarks on the Sachdev-Ye-Kitaev modelPhys. Rev. D2016941060022016PhRvD..94j6002M3751002[arXiv:1604.07818] [INSPIRE] – reference: S. Caron-Huot, Y. Gobeil and Z. Zahraee, The leading trajectory in the 2 + 1D Ising CFT, arXiv:2007.11647 [INSPIRE]. – reference: G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for PSL(2, Z), Report Number: DESY-94-028 (1994). – reference: S. Shenker, Wormholes and Microstructure, Seminar at Black Hole Microstructure Conference, IPhT, Saclay France (2021), https://youtu.be/yQ0Q58FvsHM. – reference: HartmanTMazáčDRastelliLSphere Packing and Quantum GravityJHEP2019120482019JHEP...12..048H40756971431.83053[arXiv:1905.01319] [INSPIRE] – reference: MazáčDA Crossing-Symmetric OPE Inversion FormulaJHEP2019060822019JHEP...06..082M39798591416.81162[arXiv:1812.02254] [INSPIRE] – reference: BookerARStrömbergssonAVenkateshAEffective computation of Maass cusp formsInt. Math. Res. Not.200620067128122499951154.11018 – reference: AldayLFBaeJ-BRademacher Expansions and the Spectrum of 2d CFTJHEP2020111342020JHEP...11..134A42041441456.81347[arXiv:2001.00022] [INSPIRE] – reference: PolyakovAMNonhamiltonian approach to conformal quantum field theoryZh. Eksp. Teor. Fiz.19746623[INSPIRE] – reference: GopakumarRKavirajASenKSinhaAA Mellin space approach to the conformal bootstrapJHEP2017050272017JHEP...05..027G36640831380.81320[arXiv:1611.08407] [INSPIRE] – reference: N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, arXiv:2103.15826 [INSPIRE]. – reference: DouglasMRSpaces of Quantum Field TheoriesJ. Phys. Conf. Ser.2013462012011[arXiv:1005.2779] [INSPIRE] – reference: A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE]. – reference: R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE]. – reference: HumphriesPEquidistribution in shrinking sets and L4-norm bounds for automorphic formsMath. Ann.2018371149738312791448.11084[arXiv:1705.05488] – reference: M.B. Green, S.D. Miller and P. Vanhove, SL(2, ℤ)-invariance and D-instanton contributions to the D6R4interaction, Commun. Num. Theor. Phys.09 (2015) 307 [arXiv:1404.2192] [INSPIRE]. – reference: KellerCAOoguriHModular Constraints on Calabi-Yau CompactificationsCommun. Math. Phys.20133241072013CMaPh.324..107K31163181276.81095[arXiv:1209.4649] [INSPIRE] – reference: KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K39330761409.81125[arXiv:1810.01335] [INSPIRE] – reference: S. Collier and A. Maloney, Wormholes and Spectral Statistics in the Narain Ensemble, arXiv:2106.12760 [INSPIRE]. – reference: KellerCAMaloneyAPoincaré Series, 3D Gravity and CFT SpectroscopyJHEP2015020802015JHEP...02..080K1388.83124[arXiv:1407.6008] [INSPIRE] – reference: MaloneyAWittenEAveraging over Narain moduli spaceJHEP2020101872020JHEP...10..187M42039181456.83067[arXiv:2006.04855] [INSPIRE] – reference: CornalbaLCostaMSPenedonesJSchiappaREikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point FunctionsNucl. Phys. B20077673272007NuPhB.767..327C23035441326.81147[hep-th/0611123] [INSPIRE] – reference: M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159 [INSPIRE]. – reference: FlorakisIPiolineBOn the Rankin–Selberg method for higher genus string amplitudesCommun. Num. Theor. Phys.20171133736902531426.11050[arXiv:1602.00308] [INSPIRE] – reference: AngelantonjCFlorakisIPiolineBOne-Loop BPS amplitudes as BPS-state sumsJHEP2012060702012JHEP...06..070A30068691397.81211[arXiv:1203.0566] [INSPIRE] – reference: MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M36818421380.81345[arXiv:1609.02165] [INSPIRE] – reference: Afkhami-JeddiNColvilleKHartmanTMaloneyAPerlmutterEConstraints on higher spin CFT2JHEP2018050922018JHEP...05..092A1391.83083[arXiv:1707.07717] [INSPIRE] – reference: RademacherHOn the expansion of the partition function in a seriesAnn. Math.19434441686180060.10005 – reference: MuruganJStanfordDWittenEMore on Supersymmetric and 2d Analogs of the SYK ModelJHEP2017081462017JHEP...08..146M36973361381.81121[arXiv:1706.05362] [INSPIRE] – reference: CastroAGaberdielMRHartmanTMaloneyAVolpatoRThe Gravity Dual of the Ising ModelPhys. Rev. D2012850240322012PhRvD..85b4032C[arXiv:1111.1987] [INSPIRE] – reference: PérezATroncosoRGravitational dual of averaged free CFT’s over the Narain latticeJHEP2020110152020JHEP...11..015P42042701456.83030[arXiv:2006.08216] [INSPIRE] – reference: MaldacenaJMStromingerAAdS3black holes and a stringy exclusion principleJHEP1998120051998JHEP...12..005M16719470951.83019[hep-th/9804085] [INSPIRE] – reference: CollierSLinY-HYinXModular Bootstrap RevisitedJHEP2018090612018JHEP...09..061C38712381398.83044[arXiv:1608.06241] [INSPIRE] – reference: KarateevDKravchukPSimmons-DuffinDHarmonic Analysis and Mean Field TheoryJHEP2019102172019JHEP...10..217K40510631427.81137[arXiv:1809.05111] [INSPIRE] – reference: Di FrancescoPSaleurHZuberJBModular Invariance in Nonminimal Two-dimensional Conformal TheoriesNucl. Phys. B19872854541987NuPhB.285..454D897029[INSPIRE] – reference: T.C. Watson, Rankin Triple Products and Quantum Chaos, Ph.D. Thesis, Princeton University, Princeton U.S.A. (2002) [arXiv:0810.0425]. – reference: LMFDB collaboration, The L-functions and modular forms database, http://www.lmfdb.org (2021). – reference: S. Datta, S. Duary, P. Kraus, P. Maity and A. Maloney, Adding Flavor to the Narain Ensemble, arXiv:2102.12509 [INSPIRE]. – reference: N. Callebaut, J. Kruthoff and H. Verlinde, TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{T} $$\end{document}deformed CFT as a non-critical string, JHEP04 (2020) 084 [arXiv:1910.13578] [INSPIRE]. – reference: J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops, and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE]. – reference: D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo, Sect. I A28 (1981) 415. – reference: R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions: II. The order of the Fourier coefficients of integral modular forms, Math. Proc. Camb. Philos. Soc.35 (1939) 357. – reference: M. Ashwinkumar, M. Dodelson, A. Kidambi, J.M. Leedom and M. Yamazaki, Chern-Simons Invariants from Ensemble Averages, arXiv:2104.14710 [INSPIRE]. – reference: IchinoATrilinear forms and the central values of triple product L-functionsDuke Math. J.200814528124499481222.11065 – reference: CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C39734371416.81143[arXiv:1811.05710] [INSPIRE] – reference: BenjaminNCollierSMaloneyAPure Gravity and Conical DefectsJHEP2020090342020JHEP...09..034B42032251454.81178[arXiv:2004.14428] [INSPIRE] – reference: J. Dong, T. Hartman and Y. Jiang, Averaging over moduli in deformed WZW models, arXiv:2105.12594 [INSPIRE]. – volume: 12 start-page: 091 year: 2012 ident: 16757_CR4 publication-title: JHEP doi: 10.1007/JHEP12(2012)091 – volume: 52 start-page: 133 year: 1973 ident: 16757_CR90 publication-title: Nagoya Math. J. doi: 10.1017/S0027763000015932 – volume: 61 start-page: 245 year: 1993 ident: 16757_CR25 publication-title: Math. Comput. – volume: 11 start-page: 134 year: 2020 ident: 16757_CR61 publication-title: JHEP doi: 10.1007/JHEP11(2020)134 – volume: 12 start-page: 005 year: 1998 ident: 16757_CR73 publication-title: JHEP doi: 10.1088/1126-6708/1998/12/005 – volume: 07 start-page: 085 year: 2018 ident: 16757_CR10 publication-title: JHEP doi: 10.1007/JHEP07(2018)085 – volume: 01 start-page: 118 year: 2021 ident: 16757_CR64 publication-title: JHEP doi: 10.1007/JHEP01(2021)118 – ident: 16757_CR71 – ident: 16757_CR33 – ident: 16757_CR46 doi: 10.1090/S0025-5718-04-01658-8 – volume: 12 start-page: 001 year: 2020 ident: 16757_CR65 publication-title: JHEP doi: 10.1007/JHEP12(2020)001 – volume: 100 start-page: 066029 year: 2019 ident: 16757_CR52 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.066029 – volume: 02 start-page: 029 year: 2010 ident: 16757_CR59 publication-title: JHEP doi: 10.1007/JHEP02(2010)029 – volume: 88 start-page: 119 year: 2014 ident: 16757_CR36 publication-title: Proc. Symp. Pure Math. doi: 10.1090/pspum/088/01457 – volume: 11 start-page: 193 year: 2017 ident: 16757_CR8 publication-title: JHEP doi: 10.1007/JHEP11(2017)193 – volume: 85 start-page: 024032 year: 2012 ident: 16757_CR60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.024032 – ident: 16757_CR69 – ident: 16757_CR27 doi: 10.1007/978-1-4612-4816-3_19 – volume: 11 start-page: 102 year: 2018 ident: 16757_CR11 publication-title: JHEP doi: 10.1007/JHEP11(2018)102 – volume: 12 start-page: 066 year: 2020 ident: 16757_CR55 publication-title: JHEP doi: 10.1007/JHEP12(2020)066 – volume: 285 start-page: 454 year: 1987 ident: 16757_CR84 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(87)90349-X – ident: 16757_CR23 – volume: 6 start-page: 159 year: 2012 ident: 16757_CR28 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2012.v6.n1.a4 – volume: 66 start-page: 23 year: 1974 ident: 16757_CR14 publication-title: Zh. Eksp. Teor. Fiz. – ident: 16757_CR26 – volume: 126 start-page: 211602 year: 2021 ident: 16757_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.211602 – ident: 16757_CR83 doi: 10.1142/S0217979293003759 – ident: 16757_CR78 – volume: 05 start-page: 027 year: 2017 ident: 16757_CR16 publication-title: JHEP doi: 10.1007/JHEP05(2017)027 – ident: 16757_CR70 – volume: 10 start-page: 217 year: 2019 ident: 16757_CR12 publication-title: JHEP doi: 10.1007/JHEP10(2019)217 – ident: 16757_CR5 – volume: 11 start-page: 337 year: 2017 ident: 16757_CR79 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2017.v11.n2.a4 – ident: 16757_CR89 – volume: 06 start-page: 117 year: 2017 ident: 16757_CR43 publication-title: JHEP doi: 10.1007/JHEP06(2017)117 – volume: 04 start-page: 033 year: 2021 ident: 16757_CR62 publication-title: JHEP doi: 10.1007/JHEP04(2021)033 – ident: 16757_CR68 – ident: 16757_CR22 – volume: 118 start-page: 081601 year: 2017 ident: 16757_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.081601 – volume: 69 start-page: 2188 year: 1992 ident: 16757_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2188 – volume: 08 start-page: 130 year: 2011 ident: 16757_CR1 publication-title: JHEP doi: 10.1007/JHEP08(2011)130 – volume: 10 start-page: 180 year: 2013 ident: 16757_CR49 publication-title: JHEP doi: 10.1007/JHEP10(2013)180 – volume: 462 start-page: 012011 year: 2013 ident: 16757_CR31 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/462/1/012011 – volume: 21 start-page: 739 year: 2010 ident: 16757_CR80 publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652461003643412 – volume: 145 start-page: 281 year: 2008 ident: 16757_CR88 publication-title: Duke Math. J. doi: 10.1215/00127094-2008-052 – volume-title: Lectures on modular functions of one complex variable year: 1983 ident: 16757_CR85 doi: 10.1007/978-3-662-02380-8 – volume: 06 start-page: 070 year: 2012 ident: 16757_CR91 publication-title: JHEP doi: 10.1007/JHEP06(2012)070 – ident: 16757_CR77 – ident: 16757_CR2 – ident: 16757_CR58 – ident: 16757_CR35 – volume: 05 start-page: 212 year: 2019 ident: 16757_CR75 publication-title: JHEP doi: 10.1007/JHEP05(2019)212 – volume: 02 start-page: 064 year: 2021 ident: 16757_CR32 publication-title: JHEP doi: 10.1007/JHEP02(2021)064 – volume: 371 start-page: 1497 year: 2018 ident: 16757_CR87 publication-title: Math. Ann. doi: 10.1007/s00208-018-1677-9 – volume: 767 start-page: 327 year: 2007 ident: 16757_CR3 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2007.01.007 – volume: 08 start-page: 146 year: 2017 ident: 16757_CR40 publication-title: JHEP doi: 10.1007/JHEP08(2017)146 – volume: 10 start-page: 187 year: 2020 ident: 16757_CR20 publication-title: JHEP doi: 10.1007/JHEP10(2020)187 – volume: 209 start-page: 275 year: 2000 ident: 16757_CR29 publication-title: Commun. Math. Phys. doi: 10.1007/s002200050022 – volume: 09 start-page: 078 year: 2017 ident: 16757_CR9 publication-title: JHEP doi: 10.1007/JHEP09(2017)078 – volume: 05 start-page: 092 year: 2018 ident: 16757_CR51 publication-title: JHEP doi: 10.1007/JHEP05(2018)092 – ident: 16757_CR82 – ident: 16757_CR44 – ident: 16757_CR13 doi: 10.1007/JHEP03(2019)052 – volume: 208 start-page: 273 year: 1991 ident: 16757_CR47 publication-title: Math. Z. doi: 10.1007/BF02571525 – ident: 16757_CR19 doi: 10.1007/978-1-4614-7972-7 – ident: 16757_CR7 – ident: 16757_CR76 – volume: 94 start-page: 106002 year: 2016 ident: 16757_CR6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.106002 – volume: 12 start-page: 040 year: 2018 ident: 16757_CR17 publication-title: JHEP doi: 10.1007/JHEP12(2018)040 – ident: 16757_CR34 doi: 10.1017/S0305004100021101 – ident: 16757_CR37 doi: 10.4310/CNTP.2015.v9.n2.a3 – volume: 05 start-page: 087 year: 2019 ident: 16757_CR53 publication-title: JHEP doi: 10.1007/JHEP05(2019)087 – volume: 04 start-page: 267 year: 2021 ident: 16757_CR67 publication-title: JHEP doi: 10.1007/JHEP04(2021)267 – ident: 16757_CR72 – volume: 324 start-page: 107 year: 2013 ident: 16757_CR48 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1797-8 – volume: 09 start-page: 034 year: 2020 ident: 16757_CR57 publication-title: JHEP doi: 10.1007/JHEP09(2020)034 – volume: 02 start-page: 080 year: 2015 ident: 16757_CR56 publication-title: JHEP doi: 10.1007/JHEP02(2015)080 – ident: 16757_CR41 – volume: 2006 start-page: 71281 year: 2006 ident: 16757_CR45 publication-title: Int. Math. Res. Not. – volume: 09 start-page: 061 year: 2018 ident: 16757_CR50 publication-title: JHEP doi: 10.1007/JHEP09(2018)061 – ident: 16757_CR66 – volume: 01 start-page: 025 year: 2019 ident: 16757_CR74 publication-title: JHEP doi: 10.1007/JHEP01(2019)025 – volume: 12 start-page: 048 year: 2019 ident: 16757_CR54 publication-title: JHEP doi: 10.1007/JHEP12(2019)048 – volume: 01 start-page: 130 year: 2021 ident: 16757_CR21 publication-title: JHEP doi: 10.1007/JHEP01(2021)130 – volume: 06 start-page: 082 year: 2019 ident: 16757_CR42 publication-title: JHEP doi: 10.1007/JHEP06(2019)082 – volume: 11 start-page: 015 year: 2020 ident: 16757_CR63 publication-title: JHEP doi: 10.1007/JHEP11(2020)015 – volume: 06 start-page: 092 year: 2019 ident: 16757_CR38 publication-title: JHEP doi: 10.1007/JHEP06(2019)092 – ident: 16757_CR30 doi: 10.1007/978-1-4613-0729-7_27 – ident: 16757_CR86 doi: 10.1007/JHEP04(2020)084 – ident: 16757_CR39 doi: 10.1007/JHEP04(2019)136 – volume: 44 start-page: 416 year: 1943 ident: 16757_CR81 publication-title: Ann. Math. doi: 10.2307/1968973 |
SSID | ssj0015190 |
Score | 2.5823922 |
Snippet | A
bstract
We apply the theory of harmonic analysis on the fundamental domain of SL(2
,
ℤ) to partition functions of two-dimensional conformal field theories.... We apply the theory of harmonic analysis on the fundamental domain of SL(2 , ℤ) to partition functions of two-dimensional conformal field theories. We... We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We decompose... We apply the theory of harmonic analysis on the fundamental domain of SL(2, Z) to partition functions of two-dimensional conformal field theories. We decompose... Abstract We apply the theory of harmonic analysis on the fundamental domain of SL(2, ℤ) to partition functions of two-dimensional conformal field theories. We... |
SourceID | doaj osti hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Bosons Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Conformal and W Symmetry Conformal Field Theory Decomposition Eigenvectors Elementary Particles Field Theories in Lower Dimensions Fourier analysis Harmonic analysis High energy physics High Energy Physics - Theory Operators (mathematics) Partitions (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Spectral theory String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT1xfBPFgD2s3brLJHrVYFlHx0EJvIZsHHrSVtvr7ndmHWqF48bqbzWa-SfLNkOELIed5yj0SSwxbn4i5hZVequDiEnNnmUlrKzGdh8esGPG7sRj_uOoLa8JqeeAauJ4Q0gtunRJJ4I6lCv_pYbvIXVbKWucTOK9NpprzA4hLklbIJ5G9u-L2KckvINFnXSb5EgdVUv3ALM9YCNmZwsJaCjZ_nY9WtDPYIptNvEiv63FukzU_2SHrVd2mne-SXmFmr6huS02jLkKngV452h8M6Rtah8BTZK9qgu2R0eB22C_i5g6E2ArOF7GFlKxMhWNOBuV8xp1KXBAuKSFUsdwEY5ly1ltYe8InRgHIlgEDATWlgsl0n3Qm04k_IDTNg_e8Spokz4M1Is-NUSLIkongTEQuW1S0bQTC8Z6KF91KG9cwaoRRA4wRufj64K3Wxljd9AZh_mqGotbVA3C1blyt_3J1RM7ASUt9FNf3Gp-BsQyFZz5YRI7QhxoCCFTBtVguZBcawhIIfWEcx61rdbNY5xp2LZklnCkVkW7r7u_XK0w6_A-TjsgG9ocFKFfymHQWs3d_AlHOojytJvQnGRv03A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLZY0aRdELBNCzAUoR3gkDUmduycJkCtIsQQmkDiZjnP9nbYmq4t_P28lzpFRYJr4ljx-_W9Zz99ZuxbVQhPwJJh6JOZAPT0RgeXNVQ7q1IBdGQ6P6_L-k5c3sv7uOE2j22VfUzsArVrgfbIh2haqswF1_rH9H9Gt0bR6Wq8QuMd28QQrLH42jwfXd_8Wp0jYH6S94Q-uRpe1qObvDrGgp-fcCXWsKij7EeE-UMNkYMWHWwt6XxxTtrBz3ibbcW8MT1bKnqHbfjJLnvf9W_C_CMb1nb2j1huUxtZRtI2pKcuvRjfplMyD1JASijWGdondjce3V7UWbwLIQMpxCIDLM2aQjruVNDOl8Lp3AXp8gZTFhA2WODagQf0Qelzq1HYwBGJEKIKyVXxmQ0m7cR_YWlRBe9FVzwpUQWwsqqs1TKohsvgbMK-91IxEInC6b6Kv6anOF6K0ZAYDYoxYcerD6ZLjozXh56TmFfDiNy6e9DOfpvoK0ZK5aUAp2UehOOFJjPziBCVKxuMUAk7QiWtzVGfXRl6hovlREDzyBO2Tzo0mEgQGy5Q2xAsDKYnmALjfxz0qjXRaefm2cQSdtKr-_n1K0vae3uqffaBRlKLyak6YIPF7MF_xTxm0RxGY30CdsfsjQ priority: 102 providerName: ProQuest |
Title | Harmonic analysis of 2d CFT partition functions |
URI | https://link.springer.com/article/10.1007/JHEP09(2021)174 https://www.proquest.com/docview/2577604188 https://hal.science/hal-03315948 https://www.osti.gov/servlets/purl/1851504 https://doaj.org/article/557e54cd850f4d138eccaeeac9d6b703 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CoklcprENkQFVNHGAQyBu7Ng5lqpdhAZCE5W4WY4_4LC1qBT-_r3nJqBu4sDFihw7St6H38_x888AR1XBPQWWDIc-kXGLnt6o4LKG5s6ylNZGMp3Lq7Ke8otbcbsBrNsLE7PduyXJOFJ3m90u6vF1Xh3jZJ2dIIzehC2B12TUI9rg0C4cICDJOwaf_zutBZ_I0Y8h5Z4yIHtz9Kg1lPnPwmiMN5NP8LEFiulwpdkd2PCzz_AhJmzaxy9wVpvFH6K1TU1LK5LOQzpw6Whykz6QPZDEUwpb0bK-wnQyvhnVWXv4QWYF58vM4lysKYRjTgblfMmdyl0QLm8Qo1hugrFMOestOp3wuVEoXcsw9GBMKgSTxS70ZvOZ34O0qIL3PM6WJK-CNaKqjFEiyIaJ4EwCp51UtG2ZwemAit-64zReiVGTGDWKMYHjlw4PK1KMt5uek5hfmhGbdayYL-506xxaCOkFt06JPHDHCkV25TEkVK5scEhK4Dsqae0Z9fCnpjr8WEaMM88sgX3SoUbkQPS3lvKE7FIjHkHMi-9x0KlWt176qHG4kmXOmVIJnHTqfr39xid9e0fbfdimS0owGcgD6C0XT_4QUcyy6cOmmvzow9b5-Or6Vz9aMZXlqB__C2A5HQz_AvYP68k |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAQXxFO4LWAhkNqDidfe9a4PCJXS4LZpxSGVetva-4BDG6dJaMWf4jcy49ipglRuvfqx2p355rHe8TcA7_OUOwosEbo-EXGDll4pb6OK9s4yk8Y0ZDpHx1lxwg9Oxeka_On-haGyys4nNo7a1oa-kfcRWjKLOVPq8-Qyoq5RdLratdBYwOLQ_b7GLdvs0_5X1O-HJBnsjXaLqO0qEBnB-TwyuMmpUmGZlV5Zl3GrYuuFjSsM_oaXvjRMWeMMolm4uFQ4bcPQp6OzTwWTKY57D-7zNM3JotTg2_LUArOhuKMPimX_oNj7HudbCYbRbSb5SuRrGgRgPPtJ5Ze9Gs15JcX951S2CXaDJ_C4zVLDnQWsnsKaGz-DB021qJk9h35RTi-IUzcsW06TsPZhYsPdwSicEBhJ3SHFzAbWL-DkTmT0EnrjeuxeQZjm3jnebNUkz70pRZ6XpRJeVkx4WwbwsZOKNi0tOXXHONcdofJCjJrEqFGMAWwtX5gsGDluf_QLiXn5GFFpNxfq6Q_dWqYWQjrBjVUi9tyyVBGoHcaj3GYV-sMA3qGSVsYodoaaruFiGdHdXLEANkiHGtMW4t41VKRk5hqTIUy4cR6bnWp16yJm-gbQAWx36r65fcuS1v8_1Ft4WIyOhnq4f3y4AY_oLSpuSeQm9ObTX-41ZlDz6k0D2xDO7tpO_gKUXSgS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiKcwLbBCILUHE6-967UPCPWRyH0QRaiVelvsfdBDiUMSQPw1fh0zjp0qSOXWqx8r78w3r-zkG4C3eSIcBZYQXZ8MhUFLrzJvw4pqZ5UqYxoynU-jtDgXxxfyYgP-dP-FobbKzic2jtrWhn4j7yO0VBoJjgWbb9sixofDj9PvIU2QopPWbpzGEiIn7vcvLN_mH44OUdfv4ng4ODsownbCQGikEIvQYMFTJdJyq3xmXSpsFlkvbVRhImBE6UvDM2ucQWRLF5UZbsFw9O_o-BPJVYLr3oFNhVVR1IPN_cFo_Hl1hoG5UdSRCUWqf1wMxlG-E2NQ3eVKrMXBZlwARrdLasbs1WjcawnvP2e0TegbPoQHbc7K9pYgewQbbvIY7ja9o2b-BPpFOftGDLusbBlOWO1ZbNnB8IxNCZqkfEYRtAH5Uzi_FSk9g96knrjnwJLcOyeawk2J3JtS5nlZZtKriktvywDed1LRpiUpp1kZV7qjV16KUZMYNYoxgJ3VC9MlP8fNj-6TmFePEbF2c6GefdWtnWoplZPC2ExGXlieZARxh9Ept2mF3jGAN6iktTWKvVNN13CznMhvfvIAtkiHGpMYYuI11LJkFhpTI0y_8Tu2O9Xq1mHM9TW8A9jt1H19-4Ytvfj_Uq_hHtqIPj0anWzBfXqJOl1itQ29xeyHe4np1KJ61eKWwZfbNpW_h08tpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+analysis+of+2d+CFT+partition+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Benjamin%2C+Nathan&rft.au=Collier%2C+Scott&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Maloney%2C+Alexander&rft.date=2021-09-27&rft.pub=Springer&rft.issn=1126-6708&rft.eissn=1029-8479&rft.volume=9&rft_id=info:doi/10.1007%2FJHEP09%282021%29174&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03315948v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |