Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma

Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Her...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 146; no. 2; pp. 209 - 221
Main Authors Liu, Chong, Sage, Jonathan C., Miller, Michael R., Verhaak, Roel G.W., Hippenmeyer, Simon, Vogel, Hannes, Foreman, Oded, Bronson, Roderick T., Nishiyama, Akiko, Luo, Liqun, Zong, Hui
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.07.2011
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2011.06.014

Cover

Abstract Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin. [Display omitted] ► Modeling human glioma using mosaic analysis with double markers (MADM) ► Tracking lineage-specific aberrant growth at pretransformation stages ► Oligodendrocyte precursor cells (OPCs) are a cell of origin for glioma ► Cancer cell of mutation and cell of origin are distinct
AbstractList Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.
Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.
Cancer cell-of-origin is difficult to identify by analyzing cells within terminal-stage tumors, whose identity could be concealed by the acquired plasticity. Thus an ideal approach to identify the cell-of-origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here we use Mosaic Analysis with Double Markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell-of-origin in this model even when initial mutations occur in NSCs, and highlight the importance of analyzing pre-malignant stages to identify the cancer cell-of-origin.
Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin. [Display omitted] ► Modeling human glioma using mosaic analysis with double markers (MADM) ► Tracking lineage-specific aberrant growth at pretransformation stages ► Oligodendrocyte precursor cells (OPCs) are a cell of origin for glioma ► Cancer cell of mutation and cell of origin are distinct
Author Liu, Chong
Hippenmeyer, Simon
Nishiyama, Akiko
Luo, Liqun
Zong, Hui
Verhaak, Roel G.W.
Vogel, Hannes
Foreman, Oded
Bronson, Roderick T.
Sage, Jonathan C.
Miller, Michael R.
AuthorAffiliation 3 HHMI and Department of Biology, Stanford University, Stanford, CA94305
2 Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030
4 Neuropathology, Stanford University School of Medicine, Stanford, CA94305
5 The Jackson Laboratory, Sacramento, CA95838
7 Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
1 Institute of Molecular Biology, University of Oregon, Eugene, OR97403
6 Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA01536
AuthorAffiliation_xml – name: 3 HHMI and Department of Biology, Stanford University, Stanford, CA94305
– name: 5 The Jackson Laboratory, Sacramento, CA95838
– name: 6 Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA01536
– name: 4 Neuropathology, Stanford University School of Medicine, Stanford, CA94305
– name: 1 Institute of Molecular Biology, University of Oregon, Eugene, OR97403
– name: 2 Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030
– name: 7 Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269
Author_xml – sequence: 1
  givenname: Chong
  surname: Liu
  fullname: Liu, Chong
  organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
– sequence: 2
  givenname: Jonathan C.
  surname: Sage
  fullname: Sage, Jonathan C.
  organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
– sequence: 3
  givenname: Michael R.
  surname: Miller
  fullname: Miller, Michael R.
  organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
– sequence: 4
  givenname: Roel G.W.
  surname: Verhaak
  fullname: Verhaak, Roel G.W.
  organization: Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 5
  givenname: Simon
  surname: Hippenmeyer
  fullname: Hippenmeyer, Simon
  organization: HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
– sequence: 6
  givenname: Hannes
  surname: Vogel
  fullname: Vogel, Hannes
  organization: Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
– sequence: 7
  givenname: Oded
  surname: Foreman
  fullname: Foreman, Oded
  organization: The Jackson Laboratory, Sacramento, CA 95838, USA
– sequence: 8
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
  organization: Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
– sequence: 9
  givenname: Akiko
  surname: Nishiyama
  fullname: Nishiyama, Akiko
  organization: Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
– sequence: 10
  givenname: Liqun
  surname: Luo
  fullname: Luo, Liqun
  organization: HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
– sequence: 11
  givenname: Hui
  surname: Zong
  fullname: Zong, Hui
  email: hzong@uoregon.edu
  organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21737130$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFF2AB2cEm4fovcSRUqRqggFpVgnZteZybqYckLnYyqG-Pw5QKWAySJcvyd861zzkiB4MfkJDnFAoKtHyzKSx2XcGA0gLKAqh4RBYU6ioXtGIHZAFQs1yVlTgkRzFuAEBJKZ-QQ0YrXlEOC_L5wkfjbHY6mO4uupj9cONN9s5Pqw6zCxO-YYjZF9yi6WJ2NfU-ZMs0NPNtdhnc2g1ZWmed8715Sh63icJn9_sxuf7w_mr5MT-_PPu0PD3PrRRizFfMNEzwUmFtmJGmBiFKm05S2oZaxaClJa2AMYXWCi5hhYpyxZRsERjyY3Ky872dVj02FocxmE7fBtebcKe9cfrvm8Hd6LXfak4FZyVNBq_uDYL_PmEcde_iHKUZ0E9Rq6pO-dZyJl_vJVmKFHilFP8vmnrhQjBZy4S--PMDDy__3UoC2A6wwccYsH1AKOi5er3Rs7Weq9dQ6lR9Eql_RNaNZnR-DsF1-6Uvd9LWeG3WwUV9_TUB5fw9KH9F9nZHYCp26zDoaB0OFhsX0I668W7fgJ_xoNCu
CitedBy_id crossref_primary_10_1016_j_wneu_2018_05_246
crossref_primary_10_3389_fonc_2023_1098328
crossref_primary_10_1007_s11302_017_9562_7
crossref_primary_10_3390_cancers11091335
crossref_primary_10_1007_s00401_011_0905_0
crossref_primary_10_1016_j_ccell_2016_03_027
crossref_primary_10_5966_sctm_2014_0090
crossref_primary_10_3389_fonc_2020_602217
crossref_primary_10_1007_s00441_017_2641_9
crossref_primary_10_3389_fimmu_2024_1427200
crossref_primary_10_1089_ars_2023_0262
crossref_primary_10_1016_j_ccell_2020_04_001
crossref_primary_10_1038_s41598_018_27613_9
crossref_primary_10_1158_0008_5472_CAN_19_1272
crossref_primary_10_3390_cells10030621
crossref_primary_10_1016_j_trecan_2015_07_003
crossref_primary_10_3389_fonc_2020_615400
crossref_primary_10_34014_2227_1848_2021_4_32_44
crossref_primary_10_1007_s00401_022_02405_8
crossref_primary_10_1016_j_semcdb_2014_03_006
crossref_primary_10_1073_pnas_1408233111
crossref_primary_10_1101_gad_176800_111
crossref_primary_10_1155_2016_6809105
crossref_primary_10_1371_journal_pcbi_1005977
crossref_primary_10_1016_j_ccr_2014_06_005
crossref_primary_10_5858_arpa_2016_0493_RA
crossref_primary_10_1038_s41388_018_0437_3
crossref_primary_10_2478_acb_2024_0001
crossref_primary_10_1016_j_celrep_2015_06_012
crossref_primary_10_2492_inflammregen_33_181
crossref_primary_10_1038_cdd_2014_38
crossref_primary_10_1080_00207454_2022_2107514
crossref_primary_10_1016_j_ceb_2017_11_004
crossref_primary_10_7554_eLife_31926
crossref_primary_10_1016_j_neo_2024_101042
crossref_primary_10_1038_nrc3184
crossref_primary_10_1002_glia_22563
crossref_primary_10_1038_bjc_2016_354
crossref_primary_10_1038_s41419_021_03897_0
crossref_primary_10_1073_pnas_2014308117
crossref_primary_10_1016_j_celrep_2017_10_009
crossref_primary_10_1016_j_celrep_2013_02_002
crossref_primary_10_1093_neuonc_now299
crossref_primary_10_1007_s00018_012_1063_9
crossref_primary_10_1016_j_bbcan_2023_188951
crossref_primary_10_1038_s41591_019_0383_9
crossref_primary_10_3390_cancers5031049
crossref_primary_10_1038_s41467_023_41919_x
crossref_primary_10_3389_fonc_2019_00779
crossref_primary_10_1038_ncomms10068
crossref_primary_10_18632_oncotarget_3716
crossref_primary_10_1126_science_1252304
crossref_primary_10_1016_j_pneurobio_2020_101966
crossref_primary_10_3171_2013_10_JNS132205
crossref_primary_10_3171_2014_9_FOCUS14494
crossref_primary_10_1038_onc_2013_148
crossref_primary_10_1007_s00441_013_1730_7
crossref_primary_10_1242_dev_193342
crossref_primary_10_1073_pnas_2122529119
crossref_primary_10_3390_ijms17111895
crossref_primary_10_1038_onc_2012_580
crossref_primary_10_1038_s41586_023_05968_y
crossref_primary_10_1093_neuonc_now062
crossref_primary_10_1007_s11060_014_1498_y
crossref_primary_10_1002_bit_26443
crossref_primary_10_1038_srep08468
crossref_primary_10_1242_dmm_050219
crossref_primary_10_1126_sciadv_aaw4543
crossref_primary_10_1038_cmi_2017_159
crossref_primary_10_1038_s41419_019_2120_1
crossref_primary_10_1016_j_ceb_2019_06_001
crossref_primary_10_1016_j_molcel_2022_03_018
crossref_primary_10_3174_ajnr_A5015
crossref_primary_10_1016_j_celrep_2013_04_035
crossref_primary_10_1016_j_expneurol_2013_01_027
crossref_primary_10_1093_neuonc_noaa036
crossref_primary_10_1093_neuonc_noaa158
crossref_primary_10_1186_s13073_018_0567_9
crossref_primary_10_1038_nrn3765
crossref_primary_10_1016_j_ydbio_2020_07_008
crossref_primary_10_3390_curroncol30070490
crossref_primary_10_1016_j_celrep_2017_01_003
crossref_primary_10_1242_dmm_023184
crossref_primary_10_1093_neuonc_noab138
crossref_primary_10_1002_wdev_342
crossref_primary_10_18632_oncotarget_16400
crossref_primary_10_3389_fimmu_2021_659659
crossref_primary_10_1007_s00441_014_2046_y
crossref_primary_10_1093_neuonc_noy068
crossref_primary_10_1146_annurev_genet_120213_092412
crossref_primary_10_4252_wjsc_v6_i1_43
crossref_primary_10_1016_j_jbc_2023_105265
crossref_primary_10_1016_j_tins_2023_05_007
crossref_primary_10_2176_nmc_ra2013_0207
crossref_primary_10_1073_pnas_1215899109
crossref_primary_10_1371_journal_pone_0084072
crossref_primary_10_3390_cells9061538
crossref_primary_10_1158_0008_5472_CAN_13_1839
crossref_primary_10_3389_fncel_2021_709917
crossref_primary_10_1369_00221554211032003
crossref_primary_10_1002_bit_26594
crossref_primary_10_1161_CIRCULATIONAHA_119_045566
crossref_primary_10_3389_fncel_2020_600018
crossref_primary_10_1038_ncb3042
crossref_primary_10_1016_j_cell_2012_03_009
crossref_primary_10_1002_glia_23837
crossref_primary_10_1111_neup_12732
crossref_primary_10_1128_MCB_01122_12
crossref_primary_10_1038_nrc3129
crossref_primary_10_1038_s42003_024_05833_2
crossref_primary_10_1371_journal_pone_0077672
crossref_primary_10_1038_s41598_019_41235_9
crossref_primary_10_1016_j_cell_2012_01_002
crossref_primary_10_1016_j_conb_2017_10_009
crossref_primary_10_1016_j_nbd_2023_106327
crossref_primary_10_2176_nmc_ra_2017_0089
crossref_primary_10_3390_ijms23062949
crossref_primary_10_1002_cam4_1174
crossref_primary_10_1186_s40478_023_01569_y
crossref_primary_10_1007_s11060_017_2547_0
crossref_primary_10_1002_dvdy_24565
crossref_primary_10_1016_j_conb_2012_04_012
crossref_primary_10_1016_j_genrep_2023_101825
crossref_primary_10_1016_j_mam_2020_100871
crossref_primary_10_1155_2015_141793
crossref_primary_10_1158_2159_8290_CD_21_0245
crossref_primary_10_1016_j_cellsig_2020_109883
crossref_primary_10_1111_bpa_12348
crossref_primary_10_1002_advs_202102274
crossref_primary_10_1007_s12035_023_03288_w
crossref_primary_10_1007_s10014_019_00341_2
crossref_primary_10_1016_j_ejca_2025_115230
crossref_primary_10_1109_RBME_2021_3111744
crossref_primary_10_1016_j_wneu_2012_07_004
crossref_primary_10_1186_1471_2407_15_S1_S1
crossref_primary_10_1146_annurev_cancerbio_030419_033349
crossref_primary_10_1016_j_mbm_2025_100126
crossref_primary_10_1021_acsbiomaterials_4c00041
crossref_primary_10_1172_JCI71048
crossref_primary_10_1016_j_ccr_2011_11_025
crossref_primary_10_1007_s12035_017_0423_8
crossref_primary_10_1016_j_ccell_2017_02_009
crossref_primary_10_1158_0008_5472_CAN_16_0171
crossref_primary_10_3390_cancers15112902
crossref_primary_10_1016_j_semcancer_2021_02_014
crossref_primary_10_1016_j_trecan_2018_11_002
crossref_primary_10_1586_erm_12_30
crossref_primary_10_1002_jbm_a_36432
crossref_primary_10_1016_j_brainres_2015_06_003
crossref_primary_10_1016_j_stem_2022_03_009
crossref_primary_10_1016_j_heliyon_2025_e42997
crossref_primary_10_1007_s12264_019_00436_y
crossref_primary_10_1088_1361_6560_ad64b8
crossref_primary_10_1136_gutjnl_2015_310913
crossref_primary_10_3389_fonc_2014_00341
crossref_primary_10_7554_eLife_77335
crossref_primary_10_1016_j_conb_2017_10_013
crossref_primary_10_1038_onc_2011_380
crossref_primary_10_1097_CM9_0000000000002976
crossref_primary_10_1016_j_celrep_2021_108853
crossref_primary_10_1523_JNEUROSCI_2977_14_2014
crossref_primary_10_3390_cancers16091743
crossref_primary_10_1016_j_cell_2024_02_025
crossref_primary_10_1093_neuonc_nou288
crossref_primary_10_1093_noajnl_vdab100
crossref_primary_10_1038_cr_2012_13
crossref_primary_10_1371_journal_pbio_1002382
crossref_primary_10_1088_1478_3975_ac4ee2
crossref_primary_10_1158_0008_5472_CAN_23_0024
crossref_primary_10_1002_adbi_202200122
crossref_primary_10_1016_j_ccell_2015_09_013
crossref_primary_10_3390_cancers13195008
crossref_primary_10_1111_bpa_12434
crossref_primary_10_1158_1078_0432_CCR_11_3064
crossref_primary_10_18632_oncotarget_8592
crossref_primary_10_1016_j_ccell_2019_07_009
crossref_primary_10_1111_cas_13351
crossref_primary_10_3390_ijms22073301
crossref_primary_10_1007_s00018_021_04077_1
crossref_primary_10_1016_j_bbamcr_2016_01_018
crossref_primary_10_1016_j_celrep_2012_07_004
crossref_primary_10_1242_dev_162693
crossref_primary_10_1093_neuonc_nov188
crossref_primary_10_1146_annurev_pathol_012615_044208
crossref_primary_10_1186_1749_8104_7_3
crossref_primary_10_4103_glioma_glioma_5_22
crossref_primary_10_1093_carcin_bgu073
crossref_primary_10_18632_oncotarget_17589
crossref_primary_10_1016_j_molcel_2013_09_026
crossref_primary_10_1016_j_neuron_2024_10_016
crossref_primary_10_1158_0008_5472_CAN_16_2482
crossref_primary_10_1038_s41583_023_00744_3
crossref_primary_10_1021_acsbiomaterials_4c01455
crossref_primary_10_1111_cas_13579
crossref_primary_10_1016_j_cell_2024_04_032
crossref_primary_10_1002_glia_23344
crossref_primary_10_1007_s13402_024_01007_8
crossref_primary_10_1007_s11684_019_0700_1
crossref_primary_10_1038_nn_3390
crossref_primary_10_1134_S0026893312060064
crossref_primary_10_1155_2016_2759403
crossref_primary_10_1242_dev_099382
crossref_primary_10_1016_j_nec_2018_08_001
crossref_primary_10_1038_nn_4159
crossref_primary_10_2183_pjab_94_016
crossref_primary_10_1016_j_stemcr_2015_08_013
crossref_primary_10_1126_science_1226929
crossref_primary_10_1158_1078_0432_CCR_12_0339
crossref_primary_10_3390_ijms222413211
crossref_primary_10_1084_jem_20220808
crossref_primary_10_3892_mmr_2022_12886
crossref_primary_10_1002_bies_201200101
crossref_primary_10_1101_cshperspect_a030395
crossref_primary_10_4161_epi_25440
crossref_primary_10_3389_fonc_2022_1002933
crossref_primary_10_1002_glia_23203
crossref_primary_10_1093_braincomms_fcad040
crossref_primary_10_1371_journal_pgen_1003887
crossref_primary_10_1016_j_ccr_2012_05_036
crossref_primary_10_1007_s00018_011_0898_9
crossref_primary_10_1016_j_ccell_2015_09_007
crossref_primary_10_3389_fcell_2024_1418100
crossref_primary_10_1016_j_mrrev_2020_108308
crossref_primary_10_1186_s12920_023_01585_w
crossref_primary_10_1016_j_nbd_2013_05_011
crossref_primary_10_1093_neuonc_noy204
crossref_primary_10_18632_oncotarget_2953
crossref_primary_10_3390_cells13030219
crossref_primary_10_1021_jacs_8b13363
crossref_primary_10_1242_dev_106534
crossref_primary_10_3389_fped_2023_1143363
crossref_primary_10_1016_j_xpro_2022_101903
crossref_primary_10_1186_s40478_022_01428_2
crossref_primary_10_1158_0008_5472_CAN_22_0059
crossref_primary_10_1007_s11427_020_1889_9
crossref_primary_10_1093_jmcb_mjr023
crossref_primary_10_3389_fonc_2022_854598
crossref_primary_10_1172_JCI68836
crossref_primary_10_1111_j_1349_7006_2012_02260_x
crossref_primary_10_1242_dev_137281
crossref_primary_10_1016_j_tins_2022_08_006
crossref_primary_10_15406_jccr_2016_07_00258
crossref_primary_10_1016_j_stemcr_2015_05_014
crossref_primary_10_1098_rstb_2013_0012
crossref_primary_10_1038_nrclinonc_2012_87
crossref_primary_10_1038_nature20123
crossref_primary_10_1146_annurev_neuro_111020_092702
crossref_primary_10_1101_gad_200907_112
crossref_primary_10_3389_fonc_2018_00429
crossref_primary_10_1073_pnas_1414389111
crossref_primary_10_1016_j_tox_2015_04_011
crossref_primary_10_18632_oncotarget_8720
crossref_primary_10_1016_j_neuron_2013_10_034
crossref_primary_10_1016_j_ejmp_2019_10_039
crossref_primary_10_1038_s41467_019_09949_6
crossref_primary_10_1016_j_jtos_2015_11_007
crossref_primary_10_1158_1541_7786_MCR_13_0531
crossref_primary_10_3390_ijms21197193
crossref_primary_10_4252_wjsc_v13_i7_877
crossref_primary_10_1128_MCB_00492_16
crossref_primary_10_3389_fnmol_2018_00048
crossref_primary_10_3390_ijms17071118
crossref_primary_10_3389_fonc_2022_790976
crossref_primary_10_1016_j_cell_2011_06_047
crossref_primary_10_18632_oncotarget_2076
crossref_primary_10_1038_s41586_018_0389_3
crossref_primary_10_1097_NEN_0b013e31828afdbd
crossref_primary_10_1371_journal_pone_0277305
crossref_primary_10_1146_annurev_cancerbio_030617_050224
crossref_primary_10_1002_advs_202001724
crossref_primary_10_1126_science_1231594
crossref_primary_10_1016_j_ebiom_2018_02_024
crossref_primary_10_15252_embj_2019102675
crossref_primary_10_3390_cancers11040448
crossref_primary_10_1016_j_molmed_2024_04_003
crossref_primary_10_1093_neuonc_noae011
crossref_primary_10_1186_s13293_020_00291_x
crossref_primary_10_1038_srep43605
crossref_primary_10_1093_neuonc_noae136
crossref_primary_10_1093_neuonc_nou312
crossref_primary_10_1093_brain_awaa277
crossref_primary_10_3389_fonc_2022_1022716
crossref_primary_10_1159_000530329
crossref_primary_10_3892_ol_2024_14339
crossref_primary_10_2174_1568009621666210504091722
crossref_primary_10_1523_JNEUROSCI_4077_13_2014
crossref_primary_10_3390_cancers12071964
crossref_primary_10_18632_oncotarget_17150
crossref_primary_10_1002_1873_3468_12906
crossref_primary_10_18632_oncotarget_5477
crossref_primary_10_1007_s00401_012_0957_9
crossref_primary_10_1016_j_celrep_2014_08_002
crossref_primary_10_1016_j_molcel_2019_08_030
crossref_primary_10_1007_s00285_015_0963_3
crossref_primary_10_1016_j_bbadis_2024_167449
crossref_primary_10_3390_biomedicines12010238
crossref_primary_10_1016_j_neulet_2019_134593
crossref_primary_10_2174_1574888X13666180726110138
crossref_primary_10_1371_journal_pone_0057489
crossref_primary_10_1242_dev_083691
crossref_primary_10_1038_s41583_018_0014_3
crossref_primary_10_1016_j_ajpath_2023_02_018
crossref_primary_10_1038_s42255_022_00707_5
crossref_primary_10_1021_acs_biomac_0c01164
crossref_primary_10_1007_s12264_022_00953_3
crossref_primary_10_1016_j_medp_2024_100068
crossref_primary_10_1038_s41467_020_17186_5
crossref_primary_10_1126_sciadv_adi2167
crossref_primary_10_1007_s11515_013_1279_6
crossref_primary_10_1016_j_cell_2015_04_012
crossref_primary_10_1007_s00018_017_2608_8
crossref_primary_10_1093_bfgp_elt020
crossref_primary_10_1016_j_clon_2016_09_005
crossref_primary_10_1186_s13046_015_0137_6
crossref_primary_10_1093_noajnl_vdad110
crossref_primary_10_1002_0471141755_ph1437s72
crossref_primary_10_1038_ncb2735
crossref_primary_10_1007_s00401_021_02307_1
crossref_primary_10_1038_s41598_017_00654_2
crossref_primary_10_1158_1541_7786_MCR_23_0048
crossref_primary_10_1038_s41576_024_00788_w
crossref_primary_10_1101_gad_187922_112
crossref_primary_10_1016_j_cell_2019_12_024
crossref_primary_10_1074_jbc_M113_487553
crossref_primary_10_3390_ijms24044217
crossref_primary_10_1038_ncomms11628
crossref_primary_10_1093_brain_awz044
crossref_primary_10_1186_s13619_022_00150_7
crossref_primary_10_1093_neuonc_nou144
crossref_primary_10_1016_j_celrep_2024_114650
crossref_primary_10_1038_s41467_021_22640_z
crossref_primary_10_1016_j_celrep_2024_114775
crossref_primary_10_1016_j_intimp_2019_106038
crossref_primary_10_1093_carcin_bgu243
crossref_primary_10_1016_j_inat_2020_100993
crossref_primary_10_1111_nyas_14786
crossref_primary_10_1016_j_ceb_2015_10_002
crossref_primary_10_1371_journal_pone_0276657
crossref_primary_10_1002_glia_23297
crossref_primary_10_3390_cancers16101814
crossref_primary_10_1177_0300985818777794
crossref_primary_10_1016_j_ccr_2013_08_001
crossref_primary_10_1002_med_21408
crossref_primary_10_1016_j_ccell_2024_08_009
crossref_primary_10_1093_neuonc_nov321
crossref_primary_10_1111_cns_70097
crossref_primary_10_1186_s40478_019_0738_y
crossref_primary_10_3390_cells12192384
crossref_primary_10_1007_s40778_019_0153_0
crossref_primary_10_1097_MPA_0b013e31828643df
crossref_primary_10_1371_journal_pone_0137311
crossref_primary_10_1016_j_ccell_2018_03_020
crossref_primary_10_1002_cpz1_665
crossref_primary_10_1158_0008_5472_CAN_18_1087
crossref_primary_10_3390_cells10071609
crossref_primary_10_1093_neuonc_noae193
crossref_primary_10_1155_2014_725921
crossref_primary_10_1016_j_bbrep_2020_100905
crossref_primary_10_1016_j_jnutbio_2023_109483
crossref_primary_10_1038_s41467_018_05099_3
crossref_primary_10_1074_jbc_REV120_011631
crossref_primary_10_1146_annurev_pathol_052016_100228
crossref_primary_10_1038_onc_2016_245
crossref_primary_10_1113_jphysiol_2012_228486
crossref_primary_10_1158_0008_5472_CAN_13_2150
crossref_primary_10_1186_s13104_020_05214_y
crossref_primary_10_1097_PPO_0b013e3182431c57
crossref_primary_10_1111_neup_12389
crossref_primary_10_1016_j_yexcr_2018_12_010
crossref_primary_10_1186_s13578_022_00775_w
crossref_primary_10_1007_s40139_012_0006_3
crossref_primary_10_1021_acs_biomac_0c00828
crossref_primary_10_1007_s00701_012_1338_9
crossref_primary_10_7554_eLife_80273
crossref_primary_10_3389_fnins_2014_00133
crossref_primary_10_1158_0008_5472_CAN_13_1072
crossref_primary_10_1016_j_nec_2017_02_008
crossref_primary_10_18632_oncotarget_3676
crossref_primary_10_1007_s00018_014_1675_3
crossref_primary_10_1007_s10571_013_9951_6
crossref_primary_10_1089_scd_2015_0081
crossref_primary_10_1016_j_bcp_2017_05_008
crossref_primary_10_1016_j_semcdb_2020_11_009
crossref_primary_10_4161_23723556_2014_985548
crossref_primary_10_1016_j_celrep_2022_111623
crossref_primary_10_1111_cns_70185
crossref_primary_10_1186_1479_5876_9_156
crossref_primary_10_1016_j_stem_2019_04_011
crossref_primary_10_1038_mt_2012_2
crossref_primary_10_18632_oncotarget_425
crossref_primary_10_1002_glia_23930
crossref_primary_10_1093_neuonc_noy083
crossref_primary_10_1002_stem_2299
crossref_primary_10_1016_j_celrep_2021_109274
crossref_primary_10_1016_j_neuron_2017_07_009
crossref_primary_10_1158_1078_0432_CCR_18_1627
crossref_primary_10_1002_path_4018
crossref_primary_10_1016_j_xpro_2024_103092
crossref_primary_10_1007_s11060_014_1682_0
crossref_primary_10_1038_s41586_022_04719_9
crossref_primary_10_1111_j_1365_2990_2011_01231_x
crossref_primary_10_1016_j_trecan_2016_12_008
crossref_primary_10_1016_j_stem_2019_03_006
crossref_primary_10_1186_s40478_023_01605_x
crossref_primary_10_3390_biomedicines12092111
crossref_primary_10_3390_cancers11030312
crossref_primary_10_1007_s11060_016_2145_6
crossref_primary_10_1080_15384101_2017_1361062
crossref_primary_10_1016_j_pharmthera_2015_05_005
crossref_primary_10_1080_17501911_2024_2442297
crossref_primary_10_2478_s13380_011_0037_y
crossref_primary_10_1098_rstb_2015_0433
crossref_primary_10_1016_j_celrep_2017_10_083
crossref_primary_10_1016_j_ijdevneu_2012_08_006
crossref_primary_10_1371_journal_pone_0029486
crossref_primary_10_1038_s41598_022_17559_4
crossref_primary_10_3390_biomedicines12112631
crossref_primary_10_1002_2211_5463_13671
crossref_primary_10_1093_brain_awad138
crossref_primary_10_1038_s41422_020_00451_z
crossref_primary_10_1038_srep05371
crossref_primary_10_1007_s11060_016_2278_7
crossref_primary_10_1016_j_celrep_2017_10_030
crossref_primary_10_1186_s10020_022_00454_z
crossref_primary_10_1016_j_canlet_2019_11_010
crossref_primary_10_1002_glia_22945
crossref_primary_10_1111_jcmm_18393
crossref_primary_10_1159_000446645
crossref_primary_10_18632_oncotarget_20193
crossref_primary_10_1016_j_celrep_2020_01_089
crossref_primary_10_1093_jb_mvt112
crossref_primary_10_3390_medsci6040085
crossref_primary_10_1038_nrc3638
crossref_primary_10_18632_oncoscience_112
crossref_primary_10_1177_10738584241259773
crossref_primary_10_1016_j_stemcr_2013_09_006
crossref_primary_10_1016_j_semcancer_2020_12_003
crossref_primary_10_1002_dneu_22541
crossref_primary_10_3390_cells9102304
crossref_primary_10_1158_2159_8290_CD_20_0219
crossref_primary_10_1038_s41568_024_00754_y
crossref_primary_10_1093_noajnl_vdz040
crossref_primary_10_1371_journal_pcbi_1003481
crossref_primary_10_3389_fphar_2024_1395156
crossref_primary_10_1038_nature11287
crossref_primary_10_18632_oncotarget_14740
crossref_primary_10_1016_j_cancergen_2015_04_008
crossref_primary_10_1016_j_ccell_2015_10_008
crossref_primary_10_1016_j_bbapap_2012_12_006
crossref_primary_10_3390_ijms19113677
crossref_primary_10_1038_s41586_024_08356_2
crossref_primary_10_1007_s00018_014_1815_9
crossref_primary_10_1038_cr_2015_65
crossref_primary_10_1007_s10555_012_9407_3
crossref_primary_10_1007_s12094_020_02448_x
crossref_primary_10_1016_j_devcel_2021_08_004
crossref_primary_10_1089_scd_2015_0136
crossref_primary_10_1016_j_cell_2019_08_013
crossref_primary_10_1155_2012_537861
crossref_primary_10_2139_ssrn_3379970
crossref_primary_10_1038_s41593_024_01654_y
crossref_primary_10_3390_cells13141209
crossref_primary_10_1016_j_wneu_2018_04_022
crossref_primary_10_3389_fonc_2022_904479
crossref_primary_10_3390_cancers15102856
crossref_primary_10_1038_ncomms12685
crossref_primary_10_3390_cancers14061499
crossref_primary_10_1016_j_brainres_2015_10_051
crossref_primary_10_1021_acsbiomaterials_7b00374
crossref_primary_10_1038_nrc3655
crossref_primary_10_1007_s00018_013_1386_1
crossref_primary_10_1016_j_isci_2023_106742
crossref_primary_10_1158_0008_5472_CAN_22_1577
crossref_primary_10_1161_CIRCULATIONAHA_122_061192
crossref_primary_10_1007_s11523_014_0308_y
crossref_primary_10_1080_14728222_2016_1220543
crossref_primary_10_1038_onc_2017_88
crossref_primary_10_1073_pnas_2303224120
crossref_primary_10_1093_noajnl_vdac074
crossref_primary_10_1016_j_cell_2014_01_053
crossref_primary_10_1371_journal_pone_0111219
crossref_primary_10_3109_03009734_2012_658976
crossref_primary_10_1523_JNEUROSCI_0546_13_2013
crossref_primary_10_1158_0008_5472_CAN_20_1037
crossref_primary_10_1002_dvg_22005
crossref_primary_10_1523_JNEUROSCI_1109_17_2017
Cites_doi 10.1016/j.neuron.2007.01.009
10.1126/science.1164382
10.1038/nature03128
10.1523/JNEUROSCI.4178-07.2008
10.1038/onc.2009.76
10.1101/gad.862101
10.1016/S0092-8674(00)80783-7
10.1523/JNEUROSCI.0514-06.2006
10.1002/gene.10008
10.1093/hmg/ddq395
10.1016/j.ccr.2008.07.005
10.1038/nature01124
10.1038/nature09781
10.1016/j.cell.2005.07.013
10.1016/j.ccr.2005.07.004
10.1016/j.ccr.2008.12.006
10.1111/j.1750-3639.2009.00295.x
10.1073/pnas.68.4.820
10.1016/j.ccr.2008.07.003
10.1016/j.ccr.2009.12.020
10.1002/cne.21917
10.1038/79075
10.1242/dev.004895
10.1016/j.cell.2005.02.012
10.1038/nm837
10.1038/nature07385
10.1016/j.ccr.2009.04.001
10.1038/nmeth.1329
10.1093/cercor/bhj167
10.1523/JNEUROSCI.21-16-06195.2001
10.1038/nm1208
10.1016/S0092-8674(01)00333-6
10.1126/science.1088474
10.1016/S1535-6108(02)00046-6
10.1016/j.neuron.2010.09.027
10.1523/JNEUROSCI.23-18-07207.2003
10.1038/nature03681
10.1126/science.289.5485.1754
10.1038/nature08460
10.1016/S0960-9822(00)00002-6
10.1016/S1044-7431(03)00210-0
10.1016/j.ccr.2010.10.033
10.1016/S0092-8674(01)00332-4
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
2011 Elsevier Inc. All rights reserved 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc. All rights reserved 2011
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7S9
L.6
7X8
5PM
DOI 10.1016/j.cell.2011.06.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
AGRICOLA
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 221
ExternalDocumentID PMC3143261
21737130
10_1016_j_cell_2011_06_014
US201600000661
S0092867411006568
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R55-CA136495
– fundername: NINDS NIH HHS
  grantid: R01 NS050835
– fundername: NCI NIH HHS
  grantid: R55 CA136495
– fundername: NCI NIH HHS
  grantid: R01-CA136495
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: R01 CA136495
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
6TJ
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
ZY4
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
AAHBH
AALRI
AAMRU
AAQFI
AAQXK
ABDPE
ABEFU
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AETEA
AI.
AKAPO
AKRWK
FBQ
FEDTE
FGOYB
G-2
HVGLF
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
ZGI
ZHY
ZKB
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7TK
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c544t-b2ad24368e9a2a5a90446c8e955cd1c820f16170228ecc4350be8138285fe02e3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:05:32 EDT 2025
Fri Sep 05 09:01:09 EDT 2025
Thu Sep 04 23:01:10 EDT 2025
Thu Sep 04 23:58:03 EDT 2025
Mon Jul 21 05:50:57 EDT 2025
Tue Jul 01 03:52:00 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Thu Apr 03 09:45:56 EDT 2025
Fri Feb 23 02:28:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-b2ad24368e9a2a5a90446c8e955cd1c820f16170228ecc4350be8138285fe02e3
Notes http://dx.doi.org/10.1016/j.cell.2011.06.014
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867411006568
PMID 21737130
PQID 1093442595
PQPubID 23462
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3143261
proquest_miscellaneous_879101951
proquest_miscellaneous_2000037883
proquest_miscellaneous_1093442595
pubmed_primary_21737130
crossref_primary_10_1016_j_cell_2011_06_014
crossref_citationtrail_10_1016_j_cell_2011_06_014
fao_agris_US201600000661
elsevier_sciencedirect_doi_10_1016_j_cell_2011_06_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-22
PublicationDateYYYYMMDD 2011-07-22
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Knudson (bib13) 1971; 68
Zhu, Bergles, Nishiyama (bib35) 2008; 135
Visvader (bib32) 2011; 469
Tapon, Ito, Dickson, Treisman, Hariharan (bib30) 2001; 105
Genove, DeMarco, Xu, Goins, Ahrens (bib11) 2005; 11
Ligon, Huillard, Mehta, Kesari, Liu, Alberta, Bachoo, Kane, Louis, Depinho (bib17) 2007; 53
Bachoo, Maher, Ligon, Sharpless, Chan, You, Tang, DeFrances, Stover, Weissleder (bib3) 2002; 1
Petersen, Zou, Hwang, Jan, Zhong (bib25) 2002; 419
Singh, Hawkins, Clarke, Squire, Bayani, Hide, Henkelman, Cusimano, Dirks (bib29) 2004; 432
Bennett, Rizvi, Karyala, McKinnon, Ratner (bib4) 2003; 23
Louis, Ohgaki, Wiestler, Cavenee (bib19) 2007
Parsons, Jones, Zhang, Lin, Leary, Angenendt, Mankoo, Carter, Siu, Gallia (bib23) 2008; 321
McLendon, Friedman, Bigner, Van Meir, Brat, Mastrogianakis, Olson, Mikkelsen, Lehman, Aldape (bib20) 2008; 455
Alcantara Llaguno, Chen, Kwon, Jackson, Li, Burns, Alvarez-Buylla, Parada (bib1) 2009; 15
Persson, Petritsch, Swartling, Itsara, Sim, Auvergne, Goldenberg, Vandenberg, Nguyen, Yakovenko (bib24) 2010; 18
Schüller, Heine, Mao, Kho, Dillon, Han, Huillard, Sun, Ligon, Qian (bib28) 2008; 14
Kondo, Raff (bib15) 2000; 289
Pagliarini, Xu (bib22) 2003; 302
Reilly, Loisel, Bronson, McLaughlin, Jacks (bib27) 2000; 26
Verhaak, Hoadley, Purdom, Wang, Qi, Wilkerson, Miller, Ding, Golub, Mesirov (bib31) 2010; 17
Doetsch, Caillé, Lim, García-Verdugo, Alvarez-Buylla (bib9) 1999; 97
Nunes, Roy, Keyoung, Goodman, McKhann, Jiang, Kang, Nedergaard, Goldman (bib21) 2003; 9
Potter, Huang, Xu (bib26) 2001; 105
Cahoy, Emery, Kaushal, Foo, Zamanian, Christopherson, Xing, Lubischer, Krieg, Krupenko (bib5) 2008; 28
Hippenmeyer, Youn, Moon, Miyamichi, Zong, Wynshaw-Boris, Luo (bib12) 2010; 68
Komitova, Zhu, Serwanski, Nishiyama (bib14) 2009; 512
Lindberg, Kastemar, Olofsson, Smits, Uhrbom (bib18) 2009; 28
Geha, Pallud, Junier, Devaux, Leonard, Chassoux, Chneiweiss, Daumas-Duport, Varlet (bib10) 2010; 20
Assanah, Lochhead, Ogden, Bruce, Goldman, Canoll (bib2) 2006; 26
Lee, Padmanabhan, Shin, Zhu, Guo, Kanki, Epstein, Look (bib16) 2010; 19
Wang, Yang, Zheng, Tomasek, Zhang, McKeever, Lee, Zhu (bib33) 2009; 15
Ding, Wu, Li, Han, Zhuang, Xu (bib8) 2005; 122
Yang, Ellis, Markant, Read, Kessler, Bourboulas, Schüller, Machold, Fishell, Rowitch (bib34) 2008; 14
Zhu, Guignard, Zhao, Liu, Burns, Mason, Messing, Parada (bib36) 2005; 8
Collier, Carlson, Ravimohan, Dupuy, Largaespada (bib6) 2005; 436
Dawson, Polito, Levine, Reynolds (bib7) 2003; 24
Zhuo, Theis, Alvarez-Maya, Brenner, Willecke, Messing (bib37) 2001; 31
Zong, Espinosa, Su, Muzumdar, Luo (bib38) 2005; 121
Collier (10.1016/j.cell.2011.06.014_bib6) 2005; 436
Ligon (10.1016/j.cell.2011.06.014_bib17) 2007; 53
Reilly (10.1016/j.cell.2011.06.014_bib27) 2000; 26
Wang (10.1016/j.cell.2011.06.014_bib33) 2009; 15
Zhu (10.1016/j.cell.2011.06.014_bib36) 2005; 8
Genove (10.1016/j.cell.2011.06.014_bib11) 2005; 11
Alcantara Llaguno (10.1016/j.cell.2011.06.014_bib1) 2009; 15
Pagliarini (10.1016/j.cell.2011.06.014_bib22) 2003; 302
Doetsch (10.1016/j.cell.2011.06.014_bib9) 1999; 97
Yang (10.1016/j.cell.2011.06.014_bib34) 2008; 14
McLendon (10.1016/j.cell.2011.06.014_bib20) 2008; 455
Zhu (10.1016/j.cell.2011.06.014_bib35) 2008; 135
Zhuo (10.1016/j.cell.2011.06.014_bib37) 2001; 31
Verhaak (10.1016/j.cell.2011.06.014_bib31) 2010; 17
Knudson (10.1016/j.cell.2011.06.014_bib13) 1971; 68
10.1016/j.cell.2011.06.014_bib39
Tapon (10.1016/j.cell.2011.06.014_bib30) 2001; 105
Singh (10.1016/j.cell.2011.06.014_bib29) 2004; 432
Komitova (10.1016/j.cell.2011.06.014_bib14) 2009; 512
Bennett (10.1016/j.cell.2011.06.014_bib4) 2003; 23
Lee (10.1016/j.cell.2011.06.014_bib16) 2010; 19
Lindberg (10.1016/j.cell.2011.06.014_bib18) 2009; 28
Parsons (10.1016/j.cell.2011.06.014_bib23) 2008; 321
Schüller (10.1016/j.cell.2011.06.014_bib28) 2008; 14
10.1016/j.cell.2011.06.014_bib40
10.1016/j.cell.2011.06.014_bib45
10.1016/j.cell.2011.06.014_bib46
10.1016/j.cell.2011.06.014_bib47
10.1016/j.cell.2011.06.014_bib48
Louis (10.1016/j.cell.2011.06.014_bib19) 2007
10.1016/j.cell.2011.06.014_bib41
Geha (10.1016/j.cell.2011.06.014_bib10) 2010; 20
Visvader (10.1016/j.cell.2011.06.014_bib32) 2011; 469
10.1016/j.cell.2011.06.014_bib42
10.1016/j.cell.2011.06.014_bib44
Kondo (10.1016/j.cell.2011.06.014_bib15) 2000; 289
Zong (10.1016/j.cell.2011.06.014_bib38) 2005; 121
10.1016/j.cell.2011.06.014_bib49
Ding (10.1016/j.cell.2011.06.014_bib8) 2005; 122
Dawson (10.1016/j.cell.2011.06.014_bib7) 2003; 24
Cahoy (10.1016/j.cell.2011.06.014_bib5) 2008; 28
Assanah (10.1016/j.cell.2011.06.014_bib2) 2006; 26
Persson (10.1016/j.cell.2011.06.014_bib24) 2010; 18
10.1016/j.cell.2011.06.014_bib50
10.1016/j.cell.2011.06.014_bib51
Hippenmeyer (10.1016/j.cell.2011.06.014_bib12) 2010; 68
Petersen (10.1016/j.cell.2011.06.014_bib25) 2002; 419
10.1016/j.cell.2011.06.014_bib52
10.1016/j.cell.2011.06.014_bib53
Bachoo (10.1016/j.cell.2011.06.014_bib3) 2002; 1
Potter (10.1016/j.cell.2011.06.014_bib26) 2001; 105
Nunes (10.1016/j.cell.2011.06.014_bib21) 2003; 9
21784240 - Cell. 2011 Jul 22;146(2):187-8. doi: 10.1016/j.cell.2011.06.047.
21863049 - Nat Rev Cancer. 2011 Aug 24;11(9):627. doi: 10.1038/nrc3129.
References_xml – volume: 20
  start-page: 399
  year: 2010
  end-page: 411
  ident: bib10
  article-title: NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain
  publication-title: Brain Pathol.
– volume: 455
  start-page: 1061
  year: 2008
  end-page: 1068
  ident: bib20
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
– volume: 28
  start-page: 264
  year: 2008
  end-page: 278
  ident: bib5
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
– year: 2007
  ident: bib19
  article-title: WHO Classification of Tumours of the Central Nervous System, Fourth Edition
– volume: 26
  start-page: 6781
  year: 2006
  end-page: 6790
  ident: bib2
  article-title: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses
  publication-title: J. Neurosci.
– volume: 19
  start-page: 4643
  year: 2010
  end-page: 4653
  ident: bib16
  article-title: Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene
  publication-title: Hum. Mol. Genet.
– volume: 302
  start-page: 1227
  year: 2003
  end-page: 1231
  ident: bib22
  article-title: A genetic screen in Drosophila for metastatic behavior
  publication-title: Science
– volume: 15
  start-page: 45
  year: 2009
  end-page: 56
  ident: bib1
  article-title: Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model
  publication-title: Cancer Cell
– volume: 97
  start-page: 703
  year: 1999
  end-page: 716
  ident: bib9
  article-title: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain
  publication-title: Cell
– volume: 68
  start-page: 695
  year: 2010
  end-page: 709
  ident: bib12
  article-title: Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration
  publication-title: Neuron
– volume: 432
  start-page: 396
  year: 2004
  end-page: 401
  ident: bib29
  article-title: Identification of human brain tumour initiating cells
  publication-title: Nature
– volume: 419
  start-page: 929
  year: 2002
  end-page: 934
  ident: bib25
  article-title: Progenitor cell maintenance requires numb and numblike during mouse neurogenesis
  publication-title: Nature
– volume: 105
  start-page: 345
  year: 2001
  end-page: 355
  ident: bib30
  article-title: The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
  publication-title: Cell
– volume: 9
  start-page: 439
  year: 2003
  end-page: 447
  ident: bib21
  article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain
  publication-title: Nat. Med.
– volume: 11
  start-page: 450
  year: 2005
  end-page: 454
  ident: bib11
  article-title: A new transgene reporter for in vivo magnetic resonance imaging
  publication-title: Nat. Med.
– volume: 469
  start-page: 314
  year: 2011
  end-page: 322
  ident: bib32
  article-title: Cells of origin in cancer
  publication-title: Nature
– volume: 28
  start-page: 2266
  year: 2009
  end-page: 2275
  ident: bib18
  article-title: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma
  publication-title: Oncogene
– volume: 8
  start-page: 119
  year: 2005
  end-page: 130
  ident: bib36
  article-title: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma
  publication-title: Cancer Cell
– volume: 436
  start-page: 272
  year: 2005
  end-page: 276
  ident: bib6
  article-title: Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse
  publication-title: Nature
– volume: 17
  start-page: 98
  year: 2010
  end-page: 110
  ident: bib31
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
– volume: 23
  start-page: 7207
  year: 2003
  end-page: 7217
  ident: bib4
  article-title: Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants
  publication-title: J. Neurosci.
– volume: 53
  start-page: 503
  year: 2007
  end-page: 517
  ident: bib17
  article-title: Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma
  publication-title: Neuron
– volume: 512
  start-page: 702
  year: 2009
  end-page: 716
  ident: bib14
  article-title: NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone
  publication-title: J. Comp. Neurol.
– volume: 135
  start-page: 145
  year: 2008
  end-page: 157
  ident: bib35
  article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes
  publication-title: Development
– volume: 1
  start-page: 269
  year: 2002
  end-page: 277
  ident: bib3
  article-title: Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis
  publication-title: Cancer Cell
– volume: 26
  start-page: 109
  year: 2000
  end-page: 113
  ident: bib27
  article-title: Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects
  publication-title: Nat. Genet.
– volume: 31
  start-page: 85
  year: 2001
  end-page: 94
  ident: bib37
  article-title: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo
  publication-title: Genesis
– volume: 15
  start-page: 514
  year: 2009
  end-page: 526
  ident: bib33
  article-title: Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model
  publication-title: Cancer Cell
– volume: 24
  start-page: 476
  year: 2003
  end-page: 488
  ident: bib7
  article-title: NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS
  publication-title: Mol. Cell. Neurosci.
– volume: 122
  start-page: 473
  year: 2005
  end-page: 483
  ident: bib8
  article-title: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice
  publication-title: Cell
– volume: 68
  start-page: 820
  year: 1971
  end-page: 823
  ident: bib13
  article-title: Mutation and cancer: statistical study of retinoblastoma
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 135
  year: 2008
  end-page: 145
  ident: bib34
  article-title: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells
  publication-title: Cancer Cell
– volume: 121
  start-page: 479
  year: 2005
  end-page: 492
  ident: bib38
  article-title: Mosaic analysis with double markers in mice
  publication-title: Cell
– volume: 289
  start-page: 1754
  year: 2000
  end-page: 1757
  ident: bib15
  article-title: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells
  publication-title: Science
– volume: 18
  start-page: 669
  year: 2010
  end-page: 682
  ident: bib24
  article-title: Non-stem cell origin for oligodendroglioma
  publication-title: Cancer Cell
– volume: 14
  start-page: 123
  year: 2008
  end-page: 134
  ident: bib28
  article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma
  publication-title: Cancer Cell
– volume: 321
  start-page: 1807
  year: 2008
  end-page: 1812
  ident: bib23
  article-title: An integrated genomic analysis of human glioblastoma multiforme
  publication-title: Science
– volume: 105
  start-page: 357
  year: 2001
  end-page: 368
  ident: bib26
  article-title: Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
  publication-title: Cell
– volume: 53
  start-page: 503
  year: 2007
  ident: 10.1016/j.cell.2011.06.014_bib17
  article-title: Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.01.009
– volume: 321
  start-page: 1807
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib23
  article-title: An integrated genomic analysis of human glioblastoma multiforme
  publication-title: Science
  doi: 10.1126/science.1164382
– volume: 432
  start-page: 396
  year: 2004
  ident: 10.1016/j.cell.2011.06.014_bib29
  article-title: Identification of human brain tumour initiating cells
  publication-title: Nature
  doi: 10.1038/nature03128
– ident: 10.1016/j.cell.2011.06.014_bib40
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 28
  start-page: 2266
  year: 2009
  ident: 10.1016/j.cell.2011.06.014_bib18
  article-title: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma
  publication-title: Oncogene
  doi: 10.1038/onc.2009.76
– ident: 10.1016/j.cell.2011.06.014_bib52
  doi: 10.1101/gad.862101
– ident: 10.1016/j.cell.2011.06.014_bib41
  doi: 10.1016/S0092-8674(00)80783-7
– volume: 26
  start-page: 6781
  year: 2006
  ident: 10.1016/j.cell.2011.06.014_bib2
  article-title: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0514-06.2006
– ident: 10.1016/j.cell.2011.06.014_bib53
  doi: 10.1002/gene.10008
– volume: 19
  start-page: 4643
  year: 2010
  ident: 10.1016/j.cell.2011.06.014_bib16
  article-title: Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq395
– volume: 14
  start-page: 123
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib28
  article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.07.005
– ident: 10.1016/j.cell.2011.06.014_bib47
  doi: 10.1038/nature01124
– volume: 469
  start-page: 314
  year: 2011
  ident: 10.1016/j.cell.2011.06.014_bib32
  article-title: Cells of origin in cancer
  publication-title: Nature
  doi: 10.1038/nature09781
– volume: 31
  start-page: 85
  year: 2001
  ident: 10.1016/j.cell.2011.06.014_bib37
  article-title: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo
  publication-title: Genesis
  doi: 10.1002/gene.10008
– volume: 122
  start-page: 473
  year: 2005
  ident: 10.1016/j.cell.2011.06.014_bib8
  article-title: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice
  publication-title: Cell
  doi: 10.1016/j.cell.2005.07.013
– volume: 8
  start-page: 119
  year: 2005
  ident: 10.1016/j.cell.2011.06.014_bib36
  article-title: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.07.004
– volume: 15
  start-page: 45
  year: 2009
  ident: 10.1016/j.cell.2011.06.014_bib1
  article-title: Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.12.006
– year: 2007
  ident: 10.1016/j.cell.2011.06.014_bib19
– volume: 20
  start-page: 399
  year: 2010
  ident: 10.1016/j.cell.2011.06.014_bib10
  article-title: NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.2009.00295.x
– volume: 68
  start-page: 820
  year: 1971
  ident: 10.1016/j.cell.2011.06.014_bib13
  article-title: Mutation and cancer: statistical study of retinoblastoma
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.68.4.820
– volume: 14
  start-page: 135
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib34
  article-title: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.07.003
– ident: 10.1016/j.cell.2011.06.014_bib50
  doi: 10.1016/j.ccr.2009.12.020
– volume: 512
  start-page: 702
  year: 2009
  ident: 10.1016/j.cell.2011.06.014_bib14
  article-title: NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21917
– volume: 26
  start-page: 109
  year: 2000
  ident: 10.1016/j.cell.2011.06.014_bib27
  article-title: Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects
  publication-title: Nat. Genet.
  doi: 10.1038/79075
– volume: 135
  start-page: 145
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib35
  article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes
  publication-title: Development
  doi: 10.1242/dev.004895
– ident: 10.1016/j.cell.2011.06.014_bib51
  doi: 10.1242/dev.004895
– volume: 121
  start-page: 479
  year: 2005
  ident: 10.1016/j.cell.2011.06.014_bib38
  article-title: Mosaic analysis with double markers in mice
  publication-title: Cell
  doi: 10.1016/j.cell.2005.02.012
– volume: 9
  start-page: 439
  year: 2003
  ident: 10.1016/j.cell.2011.06.014_bib21
  article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain
  publication-title: Nat. Med.
  doi: 10.1038/nm837
– volume: 455
  start-page: 1061
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib20
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 15
  start-page: 514
  year: 2009
  ident: 10.1016/j.cell.2011.06.014_bib33
  article-title: Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.04.001
– ident: 10.1016/j.cell.2011.06.014_bib46
  doi: 10.1038/nmeth.1329
– ident: 10.1016/j.cell.2011.06.014_bib48
  doi: 10.1093/cercor/bhj167
– ident: 10.1016/j.cell.2011.06.014_bib49
  doi: 10.1523/JNEUROSCI.21-16-06195.2001
– volume: 11
  start-page: 450
  year: 2005
  ident: 10.1016/j.cell.2011.06.014_bib11
  article-title: A new transgene reporter for in vivo magnetic resonance imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm1208
– volume: 105
  start-page: 357
  year: 2001
  ident: 10.1016/j.cell.2011.06.014_bib26
  article-title: Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00333-6
– volume: 17
  start-page: 98
  year: 2010
  ident: 10.1016/j.cell.2011.06.014_bib31
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.12.020
– volume: 302
  start-page: 1227
  year: 2003
  ident: 10.1016/j.cell.2011.06.014_bib22
  article-title: A genetic screen in Drosophila for metastatic behavior
  publication-title: Science
  doi: 10.1126/science.1088474
– volume: 1
  start-page: 269
  year: 2002
  ident: 10.1016/j.cell.2011.06.014_bib3
  article-title: Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00046-6
– ident: 10.1016/j.cell.2011.06.014_bib42
  doi: 10.1016/j.neuron.2010.09.027
– volume: 419
  start-page: 929
  year: 2002
  ident: 10.1016/j.cell.2011.06.014_bib25
  article-title: Progenitor cell maintenance requires numb and numblike during mouse neurogenesis
  publication-title: Nature
  doi: 10.1038/nature01124
– volume: 23
  start-page: 7207
  year: 2003
  ident: 10.1016/j.cell.2011.06.014_bib4
  article-title: Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-18-07207.2003
– ident: 10.1016/j.cell.2011.06.014_bib45
  doi: 10.1002/cne.21917
– volume: 436
  start-page: 272
  year: 2005
  ident: 10.1016/j.cell.2011.06.014_bib6
  article-title: Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse
  publication-title: Nature
  doi: 10.1038/nature03681
– volume: 289
  start-page: 1754
  year: 2000
  ident: 10.1016/j.cell.2011.06.014_bib15
  article-title: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells
  publication-title: Science
  doi: 10.1126/science.289.5485.1754
– volume: 97
  start-page: 703
  year: 1999
  ident: 10.1016/j.cell.2011.06.014_bib9
  article-title: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80783-7
– ident: 10.1016/j.cell.2011.06.014_bib39
  doi: 10.1038/nature08460
– ident: 10.1016/j.cell.2011.06.014_bib44
  doi: 10.1016/S0960-9822(00)00002-6
– volume: 24
  start-page: 476
  year: 2003
  ident: 10.1016/j.cell.2011.06.014_bib7
  article-title: NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/S1044-7431(03)00210-0
– volume: 18
  start-page: 669
  year: 2010
  ident: 10.1016/j.cell.2011.06.014_bib24
  article-title: Non-stem cell origin for oligodendroglioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.033
– volume: 105
  start-page: 345
  year: 2001
  ident: 10.1016/j.cell.2011.06.014_bib30
  article-title: The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00332-4
– volume: 28
  start-page: 264
  year: 2008
  ident: 10.1016/j.cell.2011.06.014_bib5
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 68
  start-page: 695
  year: 2010
  ident: 10.1016/j.cell.2011.06.014_bib12
  article-title: Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.027
– reference: 21863049 - Nat Rev Cancer. 2011 Aug 24;11(9):627. doi: 10.1038/nrc3129.
– reference: 21784240 - Cell. 2011 Jul 22;146(2):187-8. doi: 10.1016/j.cell.2011.06.047.
SSID ssj0008555
Score 2.556743
Snippet Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity....
Cancer cell-of-origin is difficult to identify by analyzing cells within terminal-stage tumors, whose identity could be concealed by the acquired plasticity....
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Animal models
Animals
Astrocytes - pathology
Biomarkers
Brain Neoplasms - embryology
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Brain tumors
Gene expression
Genes, p53
Glial stem cells
Glioma
Glioma - embryology
Glioma - genetics
Glioma - pathology
Malignancy
Mice
Molecular Sequence Data
Mosaicism
Mosaics
Mutation
neoplasm cells
neoplasms
Neoplastic Stem Cells - pathology
Neural stem cells
Neural Stem Cells - pathology
Neurofibromin 1 - genetics
Neurons - pathology
Oligodendroglia - pathology
p53 protein
stem cells
transcriptome
Tumor cells
Tumors
Title Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma
URI https://dx.doi.org/10.1016/j.cell.2011.06.014
https://www.ncbi.nlm.nih.gov/pubmed/21737130
https://www.proquest.com/docview/1093442595
https://www.proquest.com/docview/2000037883
https://www.proquest.com/docview/879101951
https://pubmed.ncbi.nlm.nih.gov/PMC3143261
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6wqAvY23X1utWVOhb8RrLlj8e17A0BLpCm0DehCTLm0tih3wU9t_vzh-hKU0fCn6xfQL5JN39JN_9DuBC2dgPDQ_dMNC-G_g8dlVktctTcn7oYyKPkpNvf4f9UTAYi_EOdNtcGAqrbGx_bdMra908uWq0eTXLc8rxTXgcokf0yI-GlPBLWaWUxDe-XlvjWIi6ikGCKx-lm8SZOsaLDscbGs_wR8cLtjmnD5kqX4OgLyMpn7mm3mf41GBK9rPu9j7s2OIAPtZVJv8dwuC2XKjcsJZ_hNHZK0PkrCeWUa4OIkB2b58QMi7YcDUt56yLPWZlxu6qslkMr5tJXk7VFxj1fg27fbcpoeAaEQRLV3OVciKZt4niSqiE_t8avBPCpJ5B95_RBodIcHAsETp1tI2JljAWme1w6x_BblEW9gSY1klmuSY--pRY1RKtrEkzxF9Gx1HqOeC1upOm4RenMhcT2QaSPUrStyR9S4qm8wIHLtdtZjW7xpvSoh0SuTFHJJr_N9ud4PhJ9QfNphw9cCLVq_x0iJ0-bwdV4rqilqqw5WpBf-b9AA1aIrbLUJpThwj5fQfYFpk4QkDmIY514LieK-svxd2gHyGGcCDamEVrAaL-3nxT5H8rCnAfYS7ufb--UyOnsFefjUcu599gdzlf2e8Irpb6jFybOKvW0H_MIB9k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe0PhcYICReENhjRM7ziOrNrqxDglaqW-W7TgQ1CXT2iLx33OXj4oiugekvCQ5S87ZvvvZufsdwFvjVSwdl6FMbBwmMVehSb0NeU7OD31MGlFy8vhSjqbJ-UzMdmDY58JQWGVn-1ub3ljr7slRp82j67KkHN-MK4keMSI_KtUu3EE0IIlA_2x2vDbHSoi2jEGGSx_Fu8yZNsiLTsc7Hk_5fhAl27zTbmHqf2HQv0Mp__BNp_vwoAOV7EPb74ew46tHcLctM_nrMZyP64UpHesJSBgdvjKEznbuGSXrIARkX_xPxIwLNlld1TdsiD1mdcE-N3WzGF4f52V9ZZ7A9PRkMhyFXQ2F0IkkWYaWm5wTy7zPDDfCZPQD1-GdEC6PHPr_gnY4xIKDg4nYaWC9Il5CJQo_4D5-CntVXfkDYNZmheeWCOlzolXLrPEuLxCAOavSPAog6nWnXUcwTnUu5rqPJPuhSd-a9K0pnC5KAni3bnPd0mvcKi36IdEbk0Sj_b-13QGOnzbf0G7q6VdOrHqNo5bY6Tf9oGpcWNTSVL5eLejXfJygRcvEdhnKcxoQI38cANsio1JEZBEC2QCetXNl_aW4HYxTBBEBpBuzaC1A3N-bb6rye8MBHiPOxc3v8__UyGu4N5qML_TF2eWnF3C_PShPQ84PYW95s_IvEWkt7atmJf0Ghewhog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+Analysis+with+Double+Markers+Reveals+Tumor+Cell+of+Origin+in+Glioma&rft.jtitle=Cell&rft.au=Liu%2C+Chong&rft.au=Sage%2C+Jonathan%C2%A0C.&rft.au=Miller%2C+Michael%C2%A0R.&rft.au=Verhaak%2C+Roel%C2%A0G.W.&rft.date=2011-07-22&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=146&rft.issue=2&rft.spage=209&rft.epage=221&rft_id=info:doi/10.1016%2Fj.cell.2011.06.014&rft.externalDocID=S0092867411006568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon