Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma
Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Her...
Saved in:
Published in | Cell Vol. 146; no. 2; pp. 209 - 221 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.07.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2011.06.014 |
Cover
Abstract | Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.
[Display omitted]
► Modeling human glioma using mosaic analysis with double markers (MADM) ► Tracking lineage-specific aberrant growth at pretransformation stages ► Oligodendrocyte precursor cells (OPCs) are a cell of origin for glioma ► Cancer cell of mutation and cell of origin are distinct |
---|---|
AbstractList | Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin. Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin.Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin. Cancer cell-of-origin is difficult to identify by analyzing cells within terminal-stage tumors, whose identity could be concealed by the acquired plasticity. Thus an ideal approach to identify the cell-of-origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here we use Mosaic Analysis with Double Markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell-of-origin in this model even when initial mutations occur in NSCs, and highlight the importance of analyzing pre-malignant stages to identify the cancer cell-of-origin. Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity. Thus, an ideal approach to identify the cell of origin is to analyze proliferative abnormalities in distinct lineages prior to malignancy. Here, we use mosaic analysis with double markers (MADM) in mice to model gliomagenesis by initiating concurrent p53/Nf1 mutations sporadically in neural stem cells (NSCs). Surprisingly, MADM-based lineage tracing revealed significant aberrant growth prior to malignancy only in oligodendrocyte precursor cells (OPCs), but not in any other NSC-derived lineages or NSCs themselves. Upon tumor formation, phenotypic and transcriptome analyses of tumor cells revealed salient OPC features. Finally, introducing the same p53/Nf1 mutations directly into OPCs consistently led to gliomagenesis. Our findings suggest OPCs as the cell of origin in this model, even when initial mutations occur in NSCs, and highlight the importance of analyzing premalignant stages to identify the cancer cell of origin. [Display omitted] ► Modeling human glioma using mosaic analysis with double markers (MADM) ► Tracking lineage-specific aberrant growth at pretransformation stages ► Oligodendrocyte precursor cells (OPCs) are a cell of origin for glioma ► Cancer cell of mutation and cell of origin are distinct |
Author | Liu, Chong Hippenmeyer, Simon Nishiyama, Akiko Luo, Liqun Zong, Hui Verhaak, Roel G.W. Vogel, Hannes Foreman, Oded Bronson, Roderick T. Sage, Jonathan C. Miller, Michael R. |
AuthorAffiliation | 3 HHMI and Department of Biology, Stanford University, Stanford, CA94305 2 Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030 4 Neuropathology, Stanford University School of Medicine, Stanford, CA94305 5 The Jackson Laboratory, Sacramento, CA95838 7 Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269 1 Institute of Molecular Biology, University of Oregon, Eugene, OR97403 6 Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA01536 |
AuthorAffiliation_xml | – name: 3 HHMI and Department of Biology, Stanford University, Stanford, CA94305 – name: 5 The Jackson Laboratory, Sacramento, CA95838 – name: 6 Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA01536 – name: 4 Neuropathology, Stanford University School of Medicine, Stanford, CA94305 – name: 1 Institute of Molecular Biology, University of Oregon, Eugene, OR97403 – name: 2 Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030 – name: 7 Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT06269 |
Author_xml | – sequence: 1 givenname: Chong surname: Liu fullname: Liu, Chong organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA – sequence: 2 givenname: Jonathan C. surname: Sage fullname: Sage, Jonathan C. organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA – sequence: 3 givenname: Michael R. surname: Miller fullname: Miller, Michael R. organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA – sequence: 4 givenname: Roel G.W. surname: Verhaak fullname: Verhaak, Roel G.W. organization: Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 5 givenname: Simon surname: Hippenmeyer fullname: Hippenmeyer, Simon organization: HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Hannes surname: Vogel fullname: Vogel, Hannes organization: Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA 94305, USA – sequence: 7 givenname: Oded surname: Foreman fullname: Foreman, Oded organization: The Jackson Laboratory, Sacramento, CA 95838, USA – sequence: 8 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. organization: Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA – sequence: 9 givenname: Akiko surname: Nishiyama fullname: Nishiyama, Akiko organization: Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA – sequence: 10 givenname: Liqun surname: Luo fullname: Luo, Liqun organization: HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA – sequence: 11 givenname: Hui surname: Zong fullname: Zong, Hui email: hzong@uoregon.edu organization: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21737130$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFF2AB2cEm4fovcSRUqRqggFpVgnZteZybqYckLnYyqG-Pw5QKWAySJcvyd861zzkiB4MfkJDnFAoKtHyzKSx2XcGA0gLKAqh4RBYU6ioXtGIHZAFQs1yVlTgkRzFuAEBJKZ-QQ0YrXlEOC_L5wkfjbHY6mO4uupj9cONN9s5Pqw6zCxO-YYjZF9yi6WJ2NfU-ZMs0NPNtdhnc2g1ZWmed8715Sh63icJn9_sxuf7w_mr5MT-_PPu0PD3PrRRizFfMNEzwUmFtmJGmBiFKm05S2oZaxaClJa2AMYXWCi5hhYpyxZRsERjyY3Ky872dVj02FocxmE7fBtebcKe9cfrvm8Hd6LXfak4FZyVNBq_uDYL_PmEcde_iHKUZ0E9Rq6pO-dZyJl_vJVmKFHilFP8vmnrhQjBZy4S--PMDDy__3UoC2A6wwccYsH1AKOi5er3Rs7Weq9dQ6lR9Eql_RNaNZnR-DsF1-6Uvd9LWeG3WwUV9_TUB5fw9KH9F9nZHYCp26zDoaB0OFhsX0I668W7fgJ_xoNCu |
CitedBy_id | crossref_primary_10_1016_j_wneu_2018_05_246 crossref_primary_10_3389_fonc_2023_1098328 crossref_primary_10_1007_s11302_017_9562_7 crossref_primary_10_3390_cancers11091335 crossref_primary_10_1007_s00401_011_0905_0 crossref_primary_10_1016_j_ccell_2016_03_027 crossref_primary_10_5966_sctm_2014_0090 crossref_primary_10_3389_fonc_2020_602217 crossref_primary_10_1007_s00441_017_2641_9 crossref_primary_10_3389_fimmu_2024_1427200 crossref_primary_10_1089_ars_2023_0262 crossref_primary_10_1016_j_ccell_2020_04_001 crossref_primary_10_1038_s41598_018_27613_9 crossref_primary_10_1158_0008_5472_CAN_19_1272 crossref_primary_10_3390_cells10030621 crossref_primary_10_1016_j_trecan_2015_07_003 crossref_primary_10_3389_fonc_2020_615400 crossref_primary_10_34014_2227_1848_2021_4_32_44 crossref_primary_10_1007_s00401_022_02405_8 crossref_primary_10_1016_j_semcdb_2014_03_006 crossref_primary_10_1073_pnas_1408233111 crossref_primary_10_1101_gad_176800_111 crossref_primary_10_1155_2016_6809105 crossref_primary_10_1371_journal_pcbi_1005977 crossref_primary_10_1016_j_ccr_2014_06_005 crossref_primary_10_5858_arpa_2016_0493_RA crossref_primary_10_1038_s41388_018_0437_3 crossref_primary_10_2478_acb_2024_0001 crossref_primary_10_1016_j_celrep_2015_06_012 crossref_primary_10_2492_inflammregen_33_181 crossref_primary_10_1038_cdd_2014_38 crossref_primary_10_1080_00207454_2022_2107514 crossref_primary_10_1016_j_ceb_2017_11_004 crossref_primary_10_7554_eLife_31926 crossref_primary_10_1016_j_neo_2024_101042 crossref_primary_10_1038_nrc3184 crossref_primary_10_1002_glia_22563 crossref_primary_10_1038_bjc_2016_354 crossref_primary_10_1038_s41419_021_03897_0 crossref_primary_10_1073_pnas_2014308117 crossref_primary_10_1016_j_celrep_2017_10_009 crossref_primary_10_1016_j_celrep_2013_02_002 crossref_primary_10_1093_neuonc_now299 crossref_primary_10_1007_s00018_012_1063_9 crossref_primary_10_1016_j_bbcan_2023_188951 crossref_primary_10_1038_s41591_019_0383_9 crossref_primary_10_3390_cancers5031049 crossref_primary_10_1038_s41467_023_41919_x crossref_primary_10_3389_fonc_2019_00779 crossref_primary_10_1038_ncomms10068 crossref_primary_10_18632_oncotarget_3716 crossref_primary_10_1126_science_1252304 crossref_primary_10_1016_j_pneurobio_2020_101966 crossref_primary_10_3171_2013_10_JNS132205 crossref_primary_10_3171_2014_9_FOCUS14494 crossref_primary_10_1038_onc_2013_148 crossref_primary_10_1007_s00441_013_1730_7 crossref_primary_10_1242_dev_193342 crossref_primary_10_1073_pnas_2122529119 crossref_primary_10_3390_ijms17111895 crossref_primary_10_1038_onc_2012_580 crossref_primary_10_1038_s41586_023_05968_y crossref_primary_10_1093_neuonc_now062 crossref_primary_10_1007_s11060_014_1498_y crossref_primary_10_1002_bit_26443 crossref_primary_10_1038_srep08468 crossref_primary_10_1242_dmm_050219 crossref_primary_10_1126_sciadv_aaw4543 crossref_primary_10_1038_cmi_2017_159 crossref_primary_10_1038_s41419_019_2120_1 crossref_primary_10_1016_j_ceb_2019_06_001 crossref_primary_10_1016_j_molcel_2022_03_018 crossref_primary_10_3174_ajnr_A5015 crossref_primary_10_1016_j_celrep_2013_04_035 crossref_primary_10_1016_j_expneurol_2013_01_027 crossref_primary_10_1093_neuonc_noaa036 crossref_primary_10_1093_neuonc_noaa158 crossref_primary_10_1186_s13073_018_0567_9 crossref_primary_10_1038_nrn3765 crossref_primary_10_1016_j_ydbio_2020_07_008 crossref_primary_10_3390_curroncol30070490 crossref_primary_10_1016_j_celrep_2017_01_003 crossref_primary_10_1242_dmm_023184 crossref_primary_10_1093_neuonc_noab138 crossref_primary_10_1002_wdev_342 crossref_primary_10_18632_oncotarget_16400 crossref_primary_10_3389_fimmu_2021_659659 crossref_primary_10_1007_s00441_014_2046_y crossref_primary_10_1093_neuonc_noy068 crossref_primary_10_1146_annurev_genet_120213_092412 crossref_primary_10_4252_wjsc_v6_i1_43 crossref_primary_10_1016_j_jbc_2023_105265 crossref_primary_10_1016_j_tins_2023_05_007 crossref_primary_10_2176_nmc_ra2013_0207 crossref_primary_10_1073_pnas_1215899109 crossref_primary_10_1371_journal_pone_0084072 crossref_primary_10_3390_cells9061538 crossref_primary_10_1158_0008_5472_CAN_13_1839 crossref_primary_10_3389_fncel_2021_709917 crossref_primary_10_1369_00221554211032003 crossref_primary_10_1002_bit_26594 crossref_primary_10_1161_CIRCULATIONAHA_119_045566 crossref_primary_10_3389_fncel_2020_600018 crossref_primary_10_1038_ncb3042 crossref_primary_10_1016_j_cell_2012_03_009 crossref_primary_10_1002_glia_23837 crossref_primary_10_1111_neup_12732 crossref_primary_10_1128_MCB_01122_12 crossref_primary_10_1038_nrc3129 crossref_primary_10_1038_s42003_024_05833_2 crossref_primary_10_1371_journal_pone_0077672 crossref_primary_10_1038_s41598_019_41235_9 crossref_primary_10_1016_j_cell_2012_01_002 crossref_primary_10_1016_j_conb_2017_10_009 crossref_primary_10_1016_j_nbd_2023_106327 crossref_primary_10_2176_nmc_ra_2017_0089 crossref_primary_10_3390_ijms23062949 crossref_primary_10_1002_cam4_1174 crossref_primary_10_1186_s40478_023_01569_y crossref_primary_10_1007_s11060_017_2547_0 crossref_primary_10_1002_dvdy_24565 crossref_primary_10_1016_j_conb_2012_04_012 crossref_primary_10_1016_j_genrep_2023_101825 crossref_primary_10_1016_j_mam_2020_100871 crossref_primary_10_1155_2015_141793 crossref_primary_10_1158_2159_8290_CD_21_0245 crossref_primary_10_1016_j_cellsig_2020_109883 crossref_primary_10_1111_bpa_12348 crossref_primary_10_1002_advs_202102274 crossref_primary_10_1007_s12035_023_03288_w crossref_primary_10_1007_s10014_019_00341_2 crossref_primary_10_1016_j_ejca_2025_115230 crossref_primary_10_1109_RBME_2021_3111744 crossref_primary_10_1016_j_wneu_2012_07_004 crossref_primary_10_1186_1471_2407_15_S1_S1 crossref_primary_10_1146_annurev_cancerbio_030419_033349 crossref_primary_10_1016_j_mbm_2025_100126 crossref_primary_10_1021_acsbiomaterials_4c00041 crossref_primary_10_1172_JCI71048 crossref_primary_10_1016_j_ccr_2011_11_025 crossref_primary_10_1007_s12035_017_0423_8 crossref_primary_10_1016_j_ccell_2017_02_009 crossref_primary_10_1158_0008_5472_CAN_16_0171 crossref_primary_10_3390_cancers15112902 crossref_primary_10_1016_j_semcancer_2021_02_014 crossref_primary_10_1016_j_trecan_2018_11_002 crossref_primary_10_1586_erm_12_30 crossref_primary_10_1002_jbm_a_36432 crossref_primary_10_1016_j_brainres_2015_06_003 crossref_primary_10_1016_j_stem_2022_03_009 crossref_primary_10_1016_j_heliyon_2025_e42997 crossref_primary_10_1007_s12264_019_00436_y crossref_primary_10_1088_1361_6560_ad64b8 crossref_primary_10_1136_gutjnl_2015_310913 crossref_primary_10_3389_fonc_2014_00341 crossref_primary_10_7554_eLife_77335 crossref_primary_10_1016_j_conb_2017_10_013 crossref_primary_10_1038_onc_2011_380 crossref_primary_10_1097_CM9_0000000000002976 crossref_primary_10_1016_j_celrep_2021_108853 crossref_primary_10_1523_JNEUROSCI_2977_14_2014 crossref_primary_10_3390_cancers16091743 crossref_primary_10_1016_j_cell_2024_02_025 crossref_primary_10_1093_neuonc_nou288 crossref_primary_10_1093_noajnl_vdab100 crossref_primary_10_1038_cr_2012_13 crossref_primary_10_1371_journal_pbio_1002382 crossref_primary_10_1088_1478_3975_ac4ee2 crossref_primary_10_1158_0008_5472_CAN_23_0024 crossref_primary_10_1002_adbi_202200122 crossref_primary_10_1016_j_ccell_2015_09_013 crossref_primary_10_3390_cancers13195008 crossref_primary_10_1111_bpa_12434 crossref_primary_10_1158_1078_0432_CCR_11_3064 crossref_primary_10_18632_oncotarget_8592 crossref_primary_10_1016_j_ccell_2019_07_009 crossref_primary_10_1111_cas_13351 crossref_primary_10_3390_ijms22073301 crossref_primary_10_1007_s00018_021_04077_1 crossref_primary_10_1016_j_bbamcr_2016_01_018 crossref_primary_10_1016_j_celrep_2012_07_004 crossref_primary_10_1242_dev_162693 crossref_primary_10_1093_neuonc_nov188 crossref_primary_10_1146_annurev_pathol_012615_044208 crossref_primary_10_1186_1749_8104_7_3 crossref_primary_10_4103_glioma_glioma_5_22 crossref_primary_10_1093_carcin_bgu073 crossref_primary_10_18632_oncotarget_17589 crossref_primary_10_1016_j_molcel_2013_09_026 crossref_primary_10_1016_j_neuron_2024_10_016 crossref_primary_10_1158_0008_5472_CAN_16_2482 crossref_primary_10_1038_s41583_023_00744_3 crossref_primary_10_1021_acsbiomaterials_4c01455 crossref_primary_10_1111_cas_13579 crossref_primary_10_1016_j_cell_2024_04_032 crossref_primary_10_1002_glia_23344 crossref_primary_10_1007_s13402_024_01007_8 crossref_primary_10_1007_s11684_019_0700_1 crossref_primary_10_1038_nn_3390 crossref_primary_10_1134_S0026893312060064 crossref_primary_10_1155_2016_2759403 crossref_primary_10_1242_dev_099382 crossref_primary_10_1016_j_nec_2018_08_001 crossref_primary_10_1038_nn_4159 crossref_primary_10_2183_pjab_94_016 crossref_primary_10_1016_j_stemcr_2015_08_013 crossref_primary_10_1126_science_1226929 crossref_primary_10_1158_1078_0432_CCR_12_0339 crossref_primary_10_3390_ijms222413211 crossref_primary_10_1084_jem_20220808 crossref_primary_10_3892_mmr_2022_12886 crossref_primary_10_1002_bies_201200101 crossref_primary_10_1101_cshperspect_a030395 crossref_primary_10_4161_epi_25440 crossref_primary_10_3389_fonc_2022_1002933 crossref_primary_10_1002_glia_23203 crossref_primary_10_1093_braincomms_fcad040 crossref_primary_10_1371_journal_pgen_1003887 crossref_primary_10_1016_j_ccr_2012_05_036 crossref_primary_10_1007_s00018_011_0898_9 crossref_primary_10_1016_j_ccell_2015_09_007 crossref_primary_10_3389_fcell_2024_1418100 crossref_primary_10_1016_j_mrrev_2020_108308 crossref_primary_10_1186_s12920_023_01585_w crossref_primary_10_1016_j_nbd_2013_05_011 crossref_primary_10_1093_neuonc_noy204 crossref_primary_10_18632_oncotarget_2953 crossref_primary_10_3390_cells13030219 crossref_primary_10_1021_jacs_8b13363 crossref_primary_10_1242_dev_106534 crossref_primary_10_3389_fped_2023_1143363 crossref_primary_10_1016_j_xpro_2022_101903 crossref_primary_10_1186_s40478_022_01428_2 crossref_primary_10_1158_0008_5472_CAN_22_0059 crossref_primary_10_1007_s11427_020_1889_9 crossref_primary_10_1093_jmcb_mjr023 crossref_primary_10_3389_fonc_2022_854598 crossref_primary_10_1172_JCI68836 crossref_primary_10_1111_j_1349_7006_2012_02260_x crossref_primary_10_1242_dev_137281 crossref_primary_10_1016_j_tins_2022_08_006 crossref_primary_10_15406_jccr_2016_07_00258 crossref_primary_10_1016_j_stemcr_2015_05_014 crossref_primary_10_1098_rstb_2013_0012 crossref_primary_10_1038_nrclinonc_2012_87 crossref_primary_10_1038_nature20123 crossref_primary_10_1146_annurev_neuro_111020_092702 crossref_primary_10_1101_gad_200907_112 crossref_primary_10_3389_fonc_2018_00429 crossref_primary_10_1073_pnas_1414389111 crossref_primary_10_1016_j_tox_2015_04_011 crossref_primary_10_18632_oncotarget_8720 crossref_primary_10_1016_j_neuron_2013_10_034 crossref_primary_10_1016_j_ejmp_2019_10_039 crossref_primary_10_1038_s41467_019_09949_6 crossref_primary_10_1016_j_jtos_2015_11_007 crossref_primary_10_1158_1541_7786_MCR_13_0531 crossref_primary_10_3390_ijms21197193 crossref_primary_10_4252_wjsc_v13_i7_877 crossref_primary_10_1128_MCB_00492_16 crossref_primary_10_3389_fnmol_2018_00048 crossref_primary_10_3390_ijms17071118 crossref_primary_10_3389_fonc_2022_790976 crossref_primary_10_1016_j_cell_2011_06_047 crossref_primary_10_18632_oncotarget_2076 crossref_primary_10_1038_s41586_018_0389_3 crossref_primary_10_1097_NEN_0b013e31828afdbd crossref_primary_10_1371_journal_pone_0277305 crossref_primary_10_1146_annurev_cancerbio_030617_050224 crossref_primary_10_1002_advs_202001724 crossref_primary_10_1126_science_1231594 crossref_primary_10_1016_j_ebiom_2018_02_024 crossref_primary_10_15252_embj_2019102675 crossref_primary_10_3390_cancers11040448 crossref_primary_10_1016_j_molmed_2024_04_003 crossref_primary_10_1093_neuonc_noae011 crossref_primary_10_1186_s13293_020_00291_x crossref_primary_10_1038_srep43605 crossref_primary_10_1093_neuonc_noae136 crossref_primary_10_1093_neuonc_nou312 crossref_primary_10_1093_brain_awaa277 crossref_primary_10_3389_fonc_2022_1022716 crossref_primary_10_1159_000530329 crossref_primary_10_3892_ol_2024_14339 crossref_primary_10_2174_1568009621666210504091722 crossref_primary_10_1523_JNEUROSCI_4077_13_2014 crossref_primary_10_3390_cancers12071964 crossref_primary_10_18632_oncotarget_17150 crossref_primary_10_1002_1873_3468_12906 crossref_primary_10_18632_oncotarget_5477 crossref_primary_10_1007_s00401_012_0957_9 crossref_primary_10_1016_j_celrep_2014_08_002 crossref_primary_10_1016_j_molcel_2019_08_030 crossref_primary_10_1007_s00285_015_0963_3 crossref_primary_10_1016_j_bbadis_2024_167449 crossref_primary_10_3390_biomedicines12010238 crossref_primary_10_1016_j_neulet_2019_134593 crossref_primary_10_2174_1574888X13666180726110138 crossref_primary_10_1371_journal_pone_0057489 crossref_primary_10_1242_dev_083691 crossref_primary_10_1038_s41583_018_0014_3 crossref_primary_10_1016_j_ajpath_2023_02_018 crossref_primary_10_1038_s42255_022_00707_5 crossref_primary_10_1021_acs_biomac_0c01164 crossref_primary_10_1007_s12264_022_00953_3 crossref_primary_10_1016_j_medp_2024_100068 crossref_primary_10_1038_s41467_020_17186_5 crossref_primary_10_1126_sciadv_adi2167 crossref_primary_10_1007_s11515_013_1279_6 crossref_primary_10_1016_j_cell_2015_04_012 crossref_primary_10_1007_s00018_017_2608_8 crossref_primary_10_1093_bfgp_elt020 crossref_primary_10_1016_j_clon_2016_09_005 crossref_primary_10_1186_s13046_015_0137_6 crossref_primary_10_1093_noajnl_vdad110 crossref_primary_10_1002_0471141755_ph1437s72 crossref_primary_10_1038_ncb2735 crossref_primary_10_1007_s00401_021_02307_1 crossref_primary_10_1038_s41598_017_00654_2 crossref_primary_10_1158_1541_7786_MCR_23_0048 crossref_primary_10_1038_s41576_024_00788_w crossref_primary_10_1101_gad_187922_112 crossref_primary_10_1016_j_cell_2019_12_024 crossref_primary_10_1074_jbc_M113_487553 crossref_primary_10_3390_ijms24044217 crossref_primary_10_1038_ncomms11628 crossref_primary_10_1093_brain_awz044 crossref_primary_10_1186_s13619_022_00150_7 crossref_primary_10_1093_neuonc_nou144 crossref_primary_10_1016_j_celrep_2024_114650 crossref_primary_10_1038_s41467_021_22640_z crossref_primary_10_1016_j_celrep_2024_114775 crossref_primary_10_1016_j_intimp_2019_106038 crossref_primary_10_1093_carcin_bgu243 crossref_primary_10_1016_j_inat_2020_100993 crossref_primary_10_1111_nyas_14786 crossref_primary_10_1016_j_ceb_2015_10_002 crossref_primary_10_1371_journal_pone_0276657 crossref_primary_10_1002_glia_23297 crossref_primary_10_3390_cancers16101814 crossref_primary_10_1177_0300985818777794 crossref_primary_10_1016_j_ccr_2013_08_001 crossref_primary_10_1002_med_21408 crossref_primary_10_1016_j_ccell_2024_08_009 crossref_primary_10_1093_neuonc_nov321 crossref_primary_10_1111_cns_70097 crossref_primary_10_1186_s40478_019_0738_y crossref_primary_10_3390_cells12192384 crossref_primary_10_1007_s40778_019_0153_0 crossref_primary_10_1097_MPA_0b013e31828643df crossref_primary_10_1371_journal_pone_0137311 crossref_primary_10_1016_j_ccell_2018_03_020 crossref_primary_10_1002_cpz1_665 crossref_primary_10_1158_0008_5472_CAN_18_1087 crossref_primary_10_3390_cells10071609 crossref_primary_10_1093_neuonc_noae193 crossref_primary_10_1155_2014_725921 crossref_primary_10_1016_j_bbrep_2020_100905 crossref_primary_10_1016_j_jnutbio_2023_109483 crossref_primary_10_1038_s41467_018_05099_3 crossref_primary_10_1074_jbc_REV120_011631 crossref_primary_10_1146_annurev_pathol_052016_100228 crossref_primary_10_1038_onc_2016_245 crossref_primary_10_1113_jphysiol_2012_228486 crossref_primary_10_1158_0008_5472_CAN_13_2150 crossref_primary_10_1186_s13104_020_05214_y crossref_primary_10_1097_PPO_0b013e3182431c57 crossref_primary_10_1111_neup_12389 crossref_primary_10_1016_j_yexcr_2018_12_010 crossref_primary_10_1186_s13578_022_00775_w crossref_primary_10_1007_s40139_012_0006_3 crossref_primary_10_1021_acs_biomac_0c00828 crossref_primary_10_1007_s00701_012_1338_9 crossref_primary_10_7554_eLife_80273 crossref_primary_10_3389_fnins_2014_00133 crossref_primary_10_1158_0008_5472_CAN_13_1072 crossref_primary_10_1016_j_nec_2017_02_008 crossref_primary_10_18632_oncotarget_3676 crossref_primary_10_1007_s00018_014_1675_3 crossref_primary_10_1007_s10571_013_9951_6 crossref_primary_10_1089_scd_2015_0081 crossref_primary_10_1016_j_bcp_2017_05_008 crossref_primary_10_1016_j_semcdb_2020_11_009 crossref_primary_10_4161_23723556_2014_985548 crossref_primary_10_1016_j_celrep_2022_111623 crossref_primary_10_1111_cns_70185 crossref_primary_10_1186_1479_5876_9_156 crossref_primary_10_1016_j_stem_2019_04_011 crossref_primary_10_1038_mt_2012_2 crossref_primary_10_18632_oncotarget_425 crossref_primary_10_1002_glia_23930 crossref_primary_10_1093_neuonc_noy083 crossref_primary_10_1002_stem_2299 crossref_primary_10_1016_j_celrep_2021_109274 crossref_primary_10_1016_j_neuron_2017_07_009 crossref_primary_10_1158_1078_0432_CCR_18_1627 crossref_primary_10_1002_path_4018 crossref_primary_10_1016_j_xpro_2024_103092 crossref_primary_10_1007_s11060_014_1682_0 crossref_primary_10_1038_s41586_022_04719_9 crossref_primary_10_1111_j_1365_2990_2011_01231_x crossref_primary_10_1016_j_trecan_2016_12_008 crossref_primary_10_1016_j_stem_2019_03_006 crossref_primary_10_1186_s40478_023_01605_x crossref_primary_10_3390_biomedicines12092111 crossref_primary_10_3390_cancers11030312 crossref_primary_10_1007_s11060_016_2145_6 crossref_primary_10_1080_15384101_2017_1361062 crossref_primary_10_1016_j_pharmthera_2015_05_005 crossref_primary_10_1080_17501911_2024_2442297 crossref_primary_10_2478_s13380_011_0037_y crossref_primary_10_1098_rstb_2015_0433 crossref_primary_10_1016_j_celrep_2017_10_083 crossref_primary_10_1016_j_ijdevneu_2012_08_006 crossref_primary_10_1371_journal_pone_0029486 crossref_primary_10_1038_s41598_022_17559_4 crossref_primary_10_3390_biomedicines12112631 crossref_primary_10_1002_2211_5463_13671 crossref_primary_10_1093_brain_awad138 crossref_primary_10_1038_s41422_020_00451_z crossref_primary_10_1038_srep05371 crossref_primary_10_1007_s11060_016_2278_7 crossref_primary_10_1016_j_celrep_2017_10_030 crossref_primary_10_1186_s10020_022_00454_z crossref_primary_10_1016_j_canlet_2019_11_010 crossref_primary_10_1002_glia_22945 crossref_primary_10_1111_jcmm_18393 crossref_primary_10_1159_000446645 crossref_primary_10_18632_oncotarget_20193 crossref_primary_10_1016_j_celrep_2020_01_089 crossref_primary_10_1093_jb_mvt112 crossref_primary_10_3390_medsci6040085 crossref_primary_10_1038_nrc3638 crossref_primary_10_18632_oncoscience_112 crossref_primary_10_1177_10738584241259773 crossref_primary_10_1016_j_stemcr_2013_09_006 crossref_primary_10_1016_j_semcancer_2020_12_003 crossref_primary_10_1002_dneu_22541 crossref_primary_10_3390_cells9102304 crossref_primary_10_1158_2159_8290_CD_20_0219 crossref_primary_10_1038_s41568_024_00754_y crossref_primary_10_1093_noajnl_vdz040 crossref_primary_10_1371_journal_pcbi_1003481 crossref_primary_10_3389_fphar_2024_1395156 crossref_primary_10_1038_nature11287 crossref_primary_10_18632_oncotarget_14740 crossref_primary_10_1016_j_cancergen_2015_04_008 crossref_primary_10_1016_j_ccell_2015_10_008 crossref_primary_10_1016_j_bbapap_2012_12_006 crossref_primary_10_3390_ijms19113677 crossref_primary_10_1038_s41586_024_08356_2 crossref_primary_10_1007_s00018_014_1815_9 crossref_primary_10_1038_cr_2015_65 crossref_primary_10_1007_s10555_012_9407_3 crossref_primary_10_1007_s12094_020_02448_x crossref_primary_10_1016_j_devcel_2021_08_004 crossref_primary_10_1089_scd_2015_0136 crossref_primary_10_1016_j_cell_2019_08_013 crossref_primary_10_1155_2012_537861 crossref_primary_10_2139_ssrn_3379970 crossref_primary_10_1038_s41593_024_01654_y crossref_primary_10_3390_cells13141209 crossref_primary_10_1016_j_wneu_2018_04_022 crossref_primary_10_3389_fonc_2022_904479 crossref_primary_10_3390_cancers15102856 crossref_primary_10_1038_ncomms12685 crossref_primary_10_3390_cancers14061499 crossref_primary_10_1016_j_brainres_2015_10_051 crossref_primary_10_1021_acsbiomaterials_7b00374 crossref_primary_10_1038_nrc3655 crossref_primary_10_1007_s00018_013_1386_1 crossref_primary_10_1016_j_isci_2023_106742 crossref_primary_10_1158_0008_5472_CAN_22_1577 crossref_primary_10_1161_CIRCULATIONAHA_122_061192 crossref_primary_10_1007_s11523_014_0308_y crossref_primary_10_1080_14728222_2016_1220543 crossref_primary_10_1038_onc_2017_88 crossref_primary_10_1073_pnas_2303224120 crossref_primary_10_1093_noajnl_vdac074 crossref_primary_10_1016_j_cell_2014_01_053 crossref_primary_10_1371_journal_pone_0111219 crossref_primary_10_3109_03009734_2012_658976 crossref_primary_10_1523_JNEUROSCI_0546_13_2013 crossref_primary_10_1158_0008_5472_CAN_20_1037 crossref_primary_10_1002_dvg_22005 crossref_primary_10_1523_JNEUROSCI_1109_17_2017 |
Cites_doi | 10.1016/j.neuron.2007.01.009 10.1126/science.1164382 10.1038/nature03128 10.1523/JNEUROSCI.4178-07.2008 10.1038/onc.2009.76 10.1101/gad.862101 10.1016/S0092-8674(00)80783-7 10.1523/JNEUROSCI.0514-06.2006 10.1002/gene.10008 10.1093/hmg/ddq395 10.1016/j.ccr.2008.07.005 10.1038/nature01124 10.1038/nature09781 10.1016/j.cell.2005.07.013 10.1016/j.ccr.2005.07.004 10.1016/j.ccr.2008.12.006 10.1111/j.1750-3639.2009.00295.x 10.1073/pnas.68.4.820 10.1016/j.ccr.2008.07.003 10.1016/j.ccr.2009.12.020 10.1002/cne.21917 10.1038/79075 10.1242/dev.004895 10.1016/j.cell.2005.02.012 10.1038/nm837 10.1038/nature07385 10.1016/j.ccr.2009.04.001 10.1038/nmeth.1329 10.1093/cercor/bhj167 10.1523/JNEUROSCI.21-16-06195.2001 10.1038/nm1208 10.1016/S0092-8674(01)00333-6 10.1126/science.1088474 10.1016/S1535-6108(02)00046-6 10.1016/j.neuron.2010.09.027 10.1523/JNEUROSCI.23-18-07207.2003 10.1038/nature03681 10.1126/science.289.5485.1754 10.1038/nature08460 10.1016/S0960-9822(00)00002-6 10.1016/S1044-7431(03)00210-0 10.1016/j.ccr.2010.10.033 10.1016/S0092-8674(01)00332-4 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. 2011 Elsevier Inc. All rights reserved 2011 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: 2011 Elsevier Inc. All rights reserved 2011 |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7S9 L.6 7X8 5PM |
DOI | 10.1016/j.cell.2011.06.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 221 |
ExternalDocumentID | PMC3143261 21737130 10_1016_j_cell_2011_06_014 US201600000661 S0092867411006568 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R55-CA136495 – fundername: NINDS NIH HHS grantid: R01 NS050835 – fundername: NCI NIH HHS grantid: R55 CA136495 – fundername: NCI NIH HHS grantid: R01-CA136495 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: R01 CA136495 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 6TJ 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA ZY4 .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS AAHBH AALRI AAMRU AAQFI AAQXK ABDPE ABEFU ABWVN ACRPL ADMUD ADNMO ADVLN AETEA AI. AKAPO AKRWK FBQ FEDTE FGOYB G-2 HVGLF H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP ZGI ZHY ZKB AAYWO AAYXX ABDGV ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7TK 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c544t-b2ad24368e9a2a5a90446c8e955cd1c820f16170228ecc4350be8138285fe02e3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:05:32 EDT 2025 Fri Sep 05 09:01:09 EDT 2025 Thu Sep 04 23:01:10 EDT 2025 Thu Sep 04 23:58:03 EDT 2025 Mon Jul 21 05:50:57 EDT 2025 Tue Jul 01 03:52:00 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Thu Apr 03 09:45:56 EDT 2025 Fri Feb 23 02:28:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-b2ad24368e9a2a5a90446c8e955cd1c820f16170228ecc4350be8138285fe02e3 |
Notes | http://dx.doi.org/10.1016/j.cell.2011.06.014 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867411006568 |
PMID | 21737130 |
PQID | 1093442595 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3143261 proquest_miscellaneous_879101951 proquest_miscellaneous_2000037883 proquest_miscellaneous_1093442595 pubmed_primary_21737130 crossref_primary_10_1016_j_cell_2011_06_014 crossref_citationtrail_10_1016_j_cell_2011_06_014 fao_agris_US201600000661 elsevier_sciencedirect_doi_10_1016_j_cell_2011_06_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-22 |
PublicationDateYYYYMMDD | 2011-07-22 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2011 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Knudson (bib13) 1971; 68 Zhu, Bergles, Nishiyama (bib35) 2008; 135 Visvader (bib32) 2011; 469 Tapon, Ito, Dickson, Treisman, Hariharan (bib30) 2001; 105 Genove, DeMarco, Xu, Goins, Ahrens (bib11) 2005; 11 Ligon, Huillard, Mehta, Kesari, Liu, Alberta, Bachoo, Kane, Louis, Depinho (bib17) 2007; 53 Bachoo, Maher, Ligon, Sharpless, Chan, You, Tang, DeFrances, Stover, Weissleder (bib3) 2002; 1 Petersen, Zou, Hwang, Jan, Zhong (bib25) 2002; 419 Singh, Hawkins, Clarke, Squire, Bayani, Hide, Henkelman, Cusimano, Dirks (bib29) 2004; 432 Bennett, Rizvi, Karyala, McKinnon, Ratner (bib4) 2003; 23 Louis, Ohgaki, Wiestler, Cavenee (bib19) 2007 Parsons, Jones, Zhang, Lin, Leary, Angenendt, Mankoo, Carter, Siu, Gallia (bib23) 2008; 321 McLendon, Friedman, Bigner, Van Meir, Brat, Mastrogianakis, Olson, Mikkelsen, Lehman, Aldape (bib20) 2008; 455 Alcantara Llaguno, Chen, Kwon, Jackson, Li, Burns, Alvarez-Buylla, Parada (bib1) 2009; 15 Persson, Petritsch, Swartling, Itsara, Sim, Auvergne, Goldenberg, Vandenberg, Nguyen, Yakovenko (bib24) 2010; 18 Schüller, Heine, Mao, Kho, Dillon, Han, Huillard, Sun, Ligon, Qian (bib28) 2008; 14 Kondo, Raff (bib15) 2000; 289 Pagliarini, Xu (bib22) 2003; 302 Reilly, Loisel, Bronson, McLaughlin, Jacks (bib27) 2000; 26 Verhaak, Hoadley, Purdom, Wang, Qi, Wilkerson, Miller, Ding, Golub, Mesirov (bib31) 2010; 17 Doetsch, Caillé, Lim, García-Verdugo, Alvarez-Buylla (bib9) 1999; 97 Nunes, Roy, Keyoung, Goodman, McKhann, Jiang, Kang, Nedergaard, Goldman (bib21) 2003; 9 Potter, Huang, Xu (bib26) 2001; 105 Cahoy, Emery, Kaushal, Foo, Zamanian, Christopherson, Xing, Lubischer, Krieg, Krupenko (bib5) 2008; 28 Hippenmeyer, Youn, Moon, Miyamichi, Zong, Wynshaw-Boris, Luo (bib12) 2010; 68 Komitova, Zhu, Serwanski, Nishiyama (bib14) 2009; 512 Lindberg, Kastemar, Olofsson, Smits, Uhrbom (bib18) 2009; 28 Geha, Pallud, Junier, Devaux, Leonard, Chassoux, Chneiweiss, Daumas-Duport, Varlet (bib10) 2010; 20 Assanah, Lochhead, Ogden, Bruce, Goldman, Canoll (bib2) 2006; 26 Lee, Padmanabhan, Shin, Zhu, Guo, Kanki, Epstein, Look (bib16) 2010; 19 Wang, Yang, Zheng, Tomasek, Zhang, McKeever, Lee, Zhu (bib33) 2009; 15 Ding, Wu, Li, Han, Zhuang, Xu (bib8) 2005; 122 Yang, Ellis, Markant, Read, Kessler, Bourboulas, Schüller, Machold, Fishell, Rowitch (bib34) 2008; 14 Zhu, Guignard, Zhao, Liu, Burns, Mason, Messing, Parada (bib36) 2005; 8 Collier, Carlson, Ravimohan, Dupuy, Largaespada (bib6) 2005; 436 Dawson, Polito, Levine, Reynolds (bib7) 2003; 24 Zhuo, Theis, Alvarez-Maya, Brenner, Willecke, Messing (bib37) 2001; 31 Zong, Espinosa, Su, Muzumdar, Luo (bib38) 2005; 121 Collier (10.1016/j.cell.2011.06.014_bib6) 2005; 436 Ligon (10.1016/j.cell.2011.06.014_bib17) 2007; 53 Reilly (10.1016/j.cell.2011.06.014_bib27) 2000; 26 Wang (10.1016/j.cell.2011.06.014_bib33) 2009; 15 Zhu (10.1016/j.cell.2011.06.014_bib36) 2005; 8 Genove (10.1016/j.cell.2011.06.014_bib11) 2005; 11 Alcantara Llaguno (10.1016/j.cell.2011.06.014_bib1) 2009; 15 Pagliarini (10.1016/j.cell.2011.06.014_bib22) 2003; 302 Doetsch (10.1016/j.cell.2011.06.014_bib9) 1999; 97 Yang (10.1016/j.cell.2011.06.014_bib34) 2008; 14 McLendon (10.1016/j.cell.2011.06.014_bib20) 2008; 455 Zhu (10.1016/j.cell.2011.06.014_bib35) 2008; 135 Zhuo (10.1016/j.cell.2011.06.014_bib37) 2001; 31 Verhaak (10.1016/j.cell.2011.06.014_bib31) 2010; 17 Knudson (10.1016/j.cell.2011.06.014_bib13) 1971; 68 10.1016/j.cell.2011.06.014_bib39 Tapon (10.1016/j.cell.2011.06.014_bib30) 2001; 105 Singh (10.1016/j.cell.2011.06.014_bib29) 2004; 432 Komitova (10.1016/j.cell.2011.06.014_bib14) 2009; 512 Bennett (10.1016/j.cell.2011.06.014_bib4) 2003; 23 Lee (10.1016/j.cell.2011.06.014_bib16) 2010; 19 Lindberg (10.1016/j.cell.2011.06.014_bib18) 2009; 28 Parsons (10.1016/j.cell.2011.06.014_bib23) 2008; 321 Schüller (10.1016/j.cell.2011.06.014_bib28) 2008; 14 10.1016/j.cell.2011.06.014_bib40 10.1016/j.cell.2011.06.014_bib45 10.1016/j.cell.2011.06.014_bib46 10.1016/j.cell.2011.06.014_bib47 10.1016/j.cell.2011.06.014_bib48 Louis (10.1016/j.cell.2011.06.014_bib19) 2007 10.1016/j.cell.2011.06.014_bib41 Geha (10.1016/j.cell.2011.06.014_bib10) 2010; 20 Visvader (10.1016/j.cell.2011.06.014_bib32) 2011; 469 10.1016/j.cell.2011.06.014_bib42 10.1016/j.cell.2011.06.014_bib44 Kondo (10.1016/j.cell.2011.06.014_bib15) 2000; 289 Zong (10.1016/j.cell.2011.06.014_bib38) 2005; 121 10.1016/j.cell.2011.06.014_bib49 Ding (10.1016/j.cell.2011.06.014_bib8) 2005; 122 Dawson (10.1016/j.cell.2011.06.014_bib7) 2003; 24 Cahoy (10.1016/j.cell.2011.06.014_bib5) 2008; 28 Assanah (10.1016/j.cell.2011.06.014_bib2) 2006; 26 Persson (10.1016/j.cell.2011.06.014_bib24) 2010; 18 10.1016/j.cell.2011.06.014_bib50 10.1016/j.cell.2011.06.014_bib51 Hippenmeyer (10.1016/j.cell.2011.06.014_bib12) 2010; 68 Petersen (10.1016/j.cell.2011.06.014_bib25) 2002; 419 10.1016/j.cell.2011.06.014_bib52 10.1016/j.cell.2011.06.014_bib53 Bachoo (10.1016/j.cell.2011.06.014_bib3) 2002; 1 Potter (10.1016/j.cell.2011.06.014_bib26) 2001; 105 Nunes (10.1016/j.cell.2011.06.014_bib21) 2003; 9 21784240 - Cell. 2011 Jul 22;146(2):187-8. doi: 10.1016/j.cell.2011.06.047. 21863049 - Nat Rev Cancer. 2011 Aug 24;11(9):627. doi: 10.1038/nrc3129. |
References_xml | – volume: 20 start-page: 399 year: 2010 end-page: 411 ident: bib10 article-title: NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain publication-title: Brain Pathol. – volume: 455 start-page: 1061 year: 2008 end-page: 1068 ident: bib20 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature – volume: 28 start-page: 264 year: 2008 end-page: 278 ident: bib5 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function publication-title: J. Neurosci. – year: 2007 ident: bib19 article-title: WHO Classification of Tumours of the Central Nervous System, Fourth Edition – volume: 26 start-page: 6781 year: 2006 end-page: 6790 ident: bib2 article-title: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses publication-title: J. Neurosci. – volume: 19 start-page: 4643 year: 2010 end-page: 4653 ident: bib16 article-title: Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene publication-title: Hum. Mol. Genet. – volume: 302 start-page: 1227 year: 2003 end-page: 1231 ident: bib22 article-title: A genetic screen in Drosophila for metastatic behavior publication-title: Science – volume: 15 start-page: 45 year: 2009 end-page: 56 ident: bib1 article-title: Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model publication-title: Cancer Cell – volume: 97 start-page: 703 year: 1999 end-page: 716 ident: bib9 article-title: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain publication-title: Cell – volume: 68 start-page: 695 year: 2010 end-page: 709 ident: bib12 article-title: Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration publication-title: Neuron – volume: 432 start-page: 396 year: 2004 end-page: 401 ident: bib29 article-title: Identification of human brain tumour initiating cells publication-title: Nature – volume: 419 start-page: 929 year: 2002 end-page: 934 ident: bib25 article-title: Progenitor cell maintenance requires numb and numblike during mouse neurogenesis publication-title: Nature – volume: 105 start-page: 345 year: 2001 end-page: 355 ident: bib30 article-title: The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation publication-title: Cell – volume: 9 start-page: 439 year: 2003 end-page: 447 ident: bib21 article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain publication-title: Nat. Med. – volume: 11 start-page: 450 year: 2005 end-page: 454 ident: bib11 article-title: A new transgene reporter for in vivo magnetic resonance imaging publication-title: Nat. Med. – volume: 469 start-page: 314 year: 2011 end-page: 322 ident: bib32 article-title: Cells of origin in cancer publication-title: Nature – volume: 28 start-page: 2266 year: 2009 end-page: 2275 ident: bib18 article-title: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma publication-title: Oncogene – volume: 8 start-page: 119 year: 2005 end-page: 130 ident: bib36 article-title: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma publication-title: Cancer Cell – volume: 436 start-page: 272 year: 2005 end-page: 276 ident: bib6 article-title: Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse publication-title: Nature – volume: 17 start-page: 98 year: 2010 end-page: 110 ident: bib31 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell – volume: 23 start-page: 7207 year: 2003 end-page: 7217 ident: bib4 article-title: Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants publication-title: J. Neurosci. – volume: 53 start-page: 503 year: 2007 end-page: 517 ident: bib17 article-title: Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma publication-title: Neuron – volume: 512 start-page: 702 year: 2009 end-page: 716 ident: bib14 article-title: NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone publication-title: J. Comp. Neurol. – volume: 135 start-page: 145 year: 2008 end-page: 157 ident: bib35 article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes publication-title: Development – volume: 1 start-page: 269 year: 2002 end-page: 277 ident: bib3 article-title: Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis publication-title: Cancer Cell – volume: 26 start-page: 109 year: 2000 end-page: 113 ident: bib27 article-title: Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects publication-title: Nat. Genet. – volume: 31 start-page: 85 year: 2001 end-page: 94 ident: bib37 article-title: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo publication-title: Genesis – volume: 15 start-page: 514 year: 2009 end-page: 526 ident: bib33 article-title: Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model publication-title: Cancer Cell – volume: 24 start-page: 476 year: 2003 end-page: 488 ident: bib7 article-title: NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS publication-title: Mol. Cell. Neurosci. – volume: 122 start-page: 473 year: 2005 end-page: 483 ident: bib8 article-title: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice publication-title: Cell – volume: 68 start-page: 820 year: 1971 end-page: 823 ident: bib13 article-title: Mutation and cancer: statistical study of retinoblastoma publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 135 year: 2008 end-page: 145 ident: bib34 article-title: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells publication-title: Cancer Cell – volume: 121 start-page: 479 year: 2005 end-page: 492 ident: bib38 article-title: Mosaic analysis with double markers in mice publication-title: Cell – volume: 289 start-page: 1754 year: 2000 end-page: 1757 ident: bib15 article-title: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells publication-title: Science – volume: 18 start-page: 669 year: 2010 end-page: 682 ident: bib24 article-title: Non-stem cell origin for oligodendroglioma publication-title: Cancer Cell – volume: 14 start-page: 123 year: 2008 end-page: 134 ident: bib28 article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma publication-title: Cancer Cell – volume: 321 start-page: 1807 year: 2008 end-page: 1812 ident: bib23 article-title: An integrated genomic analysis of human glioblastoma multiforme publication-title: Science – volume: 105 start-page: 357 year: 2001 end-page: 368 ident: bib26 article-title: Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size publication-title: Cell – volume: 53 start-page: 503 year: 2007 ident: 10.1016/j.cell.2011.06.014_bib17 article-title: Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma publication-title: Neuron doi: 10.1016/j.neuron.2007.01.009 – volume: 321 start-page: 1807 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib23 article-title: An integrated genomic analysis of human glioblastoma multiforme publication-title: Science doi: 10.1126/science.1164382 – volume: 432 start-page: 396 year: 2004 ident: 10.1016/j.cell.2011.06.014_bib29 article-title: Identification of human brain tumour initiating cells publication-title: Nature doi: 10.1038/nature03128 – ident: 10.1016/j.cell.2011.06.014_bib40 doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 28 start-page: 2266 year: 2009 ident: 10.1016/j.cell.2011.06.014_bib18 article-title: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma publication-title: Oncogene doi: 10.1038/onc.2009.76 – ident: 10.1016/j.cell.2011.06.014_bib52 doi: 10.1101/gad.862101 – ident: 10.1016/j.cell.2011.06.014_bib41 doi: 10.1016/S0092-8674(00)80783-7 – volume: 26 start-page: 6781 year: 2006 ident: 10.1016/j.cell.2011.06.014_bib2 article-title: Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0514-06.2006 – ident: 10.1016/j.cell.2011.06.014_bib53 doi: 10.1002/gene.10008 – volume: 19 start-page: 4643 year: 2010 ident: 10.1016/j.cell.2011.06.014_bib16 article-title: Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq395 – volume: 14 start-page: 123 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib28 article-title: Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.07.005 – ident: 10.1016/j.cell.2011.06.014_bib47 doi: 10.1038/nature01124 – volume: 469 start-page: 314 year: 2011 ident: 10.1016/j.cell.2011.06.014_bib32 article-title: Cells of origin in cancer publication-title: Nature doi: 10.1038/nature09781 – volume: 31 start-page: 85 year: 2001 ident: 10.1016/j.cell.2011.06.014_bib37 article-title: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo publication-title: Genesis doi: 10.1002/gene.10008 – volume: 122 start-page: 473 year: 2005 ident: 10.1016/j.cell.2011.06.014_bib8 article-title: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice publication-title: Cell doi: 10.1016/j.cell.2005.07.013 – volume: 8 start-page: 119 year: 2005 ident: 10.1016/j.cell.2011.06.014_bib36 article-title: Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.07.004 – volume: 15 start-page: 45 year: 2009 ident: 10.1016/j.cell.2011.06.014_bib1 article-title: Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.12.006 – year: 2007 ident: 10.1016/j.cell.2011.06.014_bib19 – volume: 20 start-page: 399 year: 2010 ident: 10.1016/j.cell.2011.06.014_bib10 article-title: NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.2009.00295.x – volume: 68 start-page: 820 year: 1971 ident: 10.1016/j.cell.2011.06.014_bib13 article-title: Mutation and cancer: statistical study of retinoblastoma publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.68.4.820 – volume: 14 start-page: 135 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib34 article-title: Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.07.003 – ident: 10.1016/j.cell.2011.06.014_bib50 doi: 10.1016/j.ccr.2009.12.020 – volume: 512 start-page: 702 year: 2009 ident: 10.1016/j.cell.2011.06.014_bib14 article-title: NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone publication-title: J. Comp. Neurol. doi: 10.1002/cne.21917 – volume: 26 start-page: 109 year: 2000 ident: 10.1016/j.cell.2011.06.014_bib27 article-title: Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects publication-title: Nat. Genet. doi: 10.1038/79075 – volume: 135 start-page: 145 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib35 article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes publication-title: Development doi: 10.1242/dev.004895 – ident: 10.1016/j.cell.2011.06.014_bib51 doi: 10.1242/dev.004895 – volume: 121 start-page: 479 year: 2005 ident: 10.1016/j.cell.2011.06.014_bib38 article-title: Mosaic analysis with double markers in mice publication-title: Cell doi: 10.1016/j.cell.2005.02.012 – volume: 9 start-page: 439 year: 2003 ident: 10.1016/j.cell.2011.06.014_bib21 article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain publication-title: Nat. Med. doi: 10.1038/nm837 – volume: 455 start-page: 1061 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib20 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature doi: 10.1038/nature07385 – volume: 15 start-page: 514 year: 2009 ident: 10.1016/j.cell.2011.06.014_bib33 article-title: Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.04.001 – ident: 10.1016/j.cell.2011.06.014_bib46 doi: 10.1038/nmeth.1329 – ident: 10.1016/j.cell.2011.06.014_bib48 doi: 10.1093/cercor/bhj167 – ident: 10.1016/j.cell.2011.06.014_bib49 doi: 10.1523/JNEUROSCI.21-16-06195.2001 – volume: 11 start-page: 450 year: 2005 ident: 10.1016/j.cell.2011.06.014_bib11 article-title: A new transgene reporter for in vivo magnetic resonance imaging publication-title: Nat. Med. doi: 10.1038/nm1208 – volume: 105 start-page: 357 year: 2001 ident: 10.1016/j.cell.2011.06.014_bib26 article-title: Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size publication-title: Cell doi: 10.1016/S0092-8674(01)00333-6 – volume: 17 start-page: 98 year: 2010 ident: 10.1016/j.cell.2011.06.014_bib31 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 302 start-page: 1227 year: 2003 ident: 10.1016/j.cell.2011.06.014_bib22 article-title: A genetic screen in Drosophila for metastatic behavior publication-title: Science doi: 10.1126/science.1088474 – volume: 1 start-page: 269 year: 2002 ident: 10.1016/j.cell.2011.06.014_bib3 article-title: Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00046-6 – ident: 10.1016/j.cell.2011.06.014_bib42 doi: 10.1016/j.neuron.2010.09.027 – volume: 419 start-page: 929 year: 2002 ident: 10.1016/j.cell.2011.06.014_bib25 article-title: Progenitor cell maintenance requires numb and numblike during mouse neurogenesis publication-title: Nature doi: 10.1038/nature01124 – volume: 23 start-page: 7207 year: 2003 ident: 10.1016/j.cell.2011.06.014_bib4 article-title: Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-18-07207.2003 – ident: 10.1016/j.cell.2011.06.014_bib45 doi: 10.1002/cne.21917 – volume: 436 start-page: 272 year: 2005 ident: 10.1016/j.cell.2011.06.014_bib6 article-title: Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse publication-title: Nature doi: 10.1038/nature03681 – volume: 289 start-page: 1754 year: 2000 ident: 10.1016/j.cell.2011.06.014_bib15 article-title: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells publication-title: Science doi: 10.1126/science.289.5485.1754 – volume: 97 start-page: 703 year: 1999 ident: 10.1016/j.cell.2011.06.014_bib9 article-title: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain publication-title: Cell doi: 10.1016/S0092-8674(00)80783-7 – ident: 10.1016/j.cell.2011.06.014_bib39 doi: 10.1038/nature08460 – ident: 10.1016/j.cell.2011.06.014_bib44 doi: 10.1016/S0960-9822(00)00002-6 – volume: 24 start-page: 476 year: 2003 ident: 10.1016/j.cell.2011.06.014_bib7 article-title: NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS publication-title: Mol. Cell. Neurosci. doi: 10.1016/S1044-7431(03)00210-0 – volume: 18 start-page: 669 year: 2010 ident: 10.1016/j.cell.2011.06.014_bib24 article-title: Non-stem cell origin for oligodendroglioma publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.10.033 – volume: 105 start-page: 345 year: 2001 ident: 10.1016/j.cell.2011.06.014_bib30 article-title: The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation publication-title: Cell doi: 10.1016/S0092-8674(01)00332-4 – volume: 28 start-page: 264 year: 2008 ident: 10.1016/j.cell.2011.06.014_bib5 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 68 start-page: 695 year: 2010 ident: 10.1016/j.cell.2011.06.014_bib12 article-title: Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration publication-title: Neuron doi: 10.1016/j.neuron.2010.09.027 – reference: 21863049 - Nat Rev Cancer. 2011 Aug 24;11(9):627. doi: 10.1038/nrc3129. – reference: 21784240 - Cell. 2011 Jul 22;146(2):187-8. doi: 10.1016/j.cell.2011.06.047. |
SSID | ssj0008555 |
Score | 2.556743 |
Snippet | Cancer cell of origin is difficult to identify by analyzing cells within terminal stage tumors, whose identity could be concealed by the acquired plasticity.... Cancer cell-of-origin is difficult to identify by analyzing cells within terminal-stage tumors, whose identity could be concealed by the acquired plasticity.... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 209 |
SubjectTerms | Animal models Animals Astrocytes - pathology Biomarkers Brain Neoplasms - embryology Brain Neoplasms - genetics Brain Neoplasms - pathology Brain tumors Gene expression Genes, p53 Glial stem cells Glioma Glioma - embryology Glioma - genetics Glioma - pathology Malignancy Mice Molecular Sequence Data Mosaicism Mosaics Mutation neoplasm cells neoplasms Neoplastic Stem Cells - pathology Neural stem cells Neural Stem Cells - pathology Neurofibromin 1 - genetics Neurons - pathology Oligodendroglia - pathology p53 protein stem cells transcriptome Tumor cells Tumors |
Title | Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma |
URI | https://dx.doi.org/10.1016/j.cell.2011.06.014 https://www.ncbi.nlm.nih.gov/pubmed/21737130 https://www.proquest.com/docview/1093442595 https://www.proquest.com/docview/2000037883 https://www.proquest.com/docview/879101951 https://pubmed.ncbi.nlm.nih.gov/PMC3143261 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6wqAvY23X1utWVOhb8RrLlj8e17A0BLpCm0DehCTLm0tih3wU9t_vzh-hKU0fCn6xfQL5JN39JN_9DuBC2dgPDQ_dMNC-G_g8dlVktctTcn7oYyKPkpNvf4f9UTAYi_EOdNtcGAqrbGx_bdMra908uWq0eTXLc8rxTXgcokf0yI-GlPBLWaWUxDe-XlvjWIi6ikGCKx-lm8SZOsaLDscbGs_wR8cLtjmnD5kqX4OgLyMpn7mm3mf41GBK9rPu9j7s2OIAPtZVJv8dwuC2XKjcsJZ_hNHZK0PkrCeWUa4OIkB2b58QMi7YcDUt56yLPWZlxu6qslkMr5tJXk7VFxj1fg27fbcpoeAaEQRLV3OVciKZt4niSqiE_t8avBPCpJ5B95_RBodIcHAsETp1tI2JljAWme1w6x_BblEW9gSY1klmuSY--pRY1RKtrEkzxF9Gx1HqOeC1upOm4RenMhcT2QaSPUrStyR9S4qm8wIHLtdtZjW7xpvSoh0SuTFHJJr_N9ud4PhJ9QfNphw9cCLVq_x0iJ0-bwdV4rqilqqw5WpBf-b9AA1aIrbLUJpThwj5fQfYFpk4QkDmIY514LieK-svxd2gHyGGcCDamEVrAaL-3nxT5H8rCnAfYS7ufb--UyOnsFefjUcu599gdzlf2e8Irpb6jFybOKvW0H_MIB9k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe0PhcYICReENhjRM7ziOrNrqxDglaqW-W7TgQ1CXT2iLx33OXj4oiugekvCQ5S87ZvvvZufsdwFvjVSwdl6FMbBwmMVehSb0NeU7OD31MGlFy8vhSjqbJ-UzMdmDY58JQWGVn-1ub3ljr7slRp82j67KkHN-MK4keMSI_KtUu3EE0IIlA_2x2vDbHSoi2jEGGSx_Fu8yZNsiLTsc7Hk_5fhAl27zTbmHqf2HQv0Mp__BNp_vwoAOV7EPb74ew46tHcLctM_nrMZyP64UpHesJSBgdvjKEznbuGSXrIARkX_xPxIwLNlld1TdsiD1mdcE-N3WzGF4f52V9ZZ7A9PRkMhyFXQ2F0IkkWYaWm5wTy7zPDDfCZPQD1-GdEC6PHPr_gnY4xIKDg4nYaWC9Il5CJQo_4D5-CntVXfkDYNZmheeWCOlzolXLrPEuLxCAOavSPAog6nWnXUcwTnUu5rqPJPuhSd-a9K0pnC5KAni3bnPd0mvcKi36IdEbk0Sj_b-13QGOnzbf0G7q6VdOrHqNo5bY6Tf9oGpcWNTSVL5eLejXfJygRcvEdhnKcxoQI38cANsio1JEZBEC2QCetXNl_aW4HYxTBBEBpBuzaC1A3N-bb6rye8MBHiPOxc3v8__UyGu4N5qML_TF2eWnF3C_PShPQ84PYW95s_IvEWkt7atmJf0Ghewhog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+Analysis+with+Double+Markers+Reveals+Tumor+Cell+of+Origin+in+Glioma&rft.jtitle=Cell&rft.au=Liu%2C+Chong&rft.au=Sage%2C+Jonathan%C2%A0C.&rft.au=Miller%2C+Michael%C2%A0R.&rft.au=Verhaak%2C+Roel%C2%A0G.W.&rft.date=2011-07-22&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=146&rft.issue=2&rft.spage=209&rft.epage=221&rft_id=info:doi/10.1016%2Fj.cell.2011.06.014&rft.externalDocID=S0092867411006568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |