A large, open source dataset of stroke anatomical brain images and manual lesion segmentations
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabil...
Saved in:
Published in | Scientific data Vol. 5; no. 1; p. 180011 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
Design Type(s)
parallel group design
Measurement Type(s)
nuclear magnetic resonance assay
Technology Type(s)
MRI Scanner
Factor Type(s)
regional part of brain • cerebral hemisphere • Clinical Diagnosis
Sample Characteristic(s)
Homo sapiens • brain
Machine-accessible metadata file describing the reported data
(ISA-Tab format) |
---|---|
AbstractList | Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods. Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods. Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods. Design Type(s) parallel group design Measurement Type(s) nuclear magnetic resonance assay Technology Type(s) MRI Scanner Factor Type(s) regional part of brain • cerebral hemisphere • Clinical Diagnosis Sample Characteristic(s) Homo sapiens • brain Machine-accessible metadata file describing the reported data (ISA-Tab format) |
ArticleNumber | 180011 |
Author | Craddock, R. Cameron Lefebvre, Stephanie Lakich, Matthew Pienta, Amy Kim, Hosung Liu, Jingchun Soekadar, Surjo Nakamura, William Ito, Kaori L. Saldana, David Koo, Bonhwang Tran, Cathy Ito, Joyce Banks, Nick W. Jung, Connie Nordvik, Jan-Egil Ard, Tyler Wang, Junping Liew, Sook-Lei Khoshab, Nima Kim, Bokkyu Yu, Chunshui Anglin, Julia M. Milham, Michael Chan, Jennifer Winstein, Carolee Cramer, Steven C. Ai, Lei Westlye, Lars T. Heydari, Panthea Aziz-Zadeh, Lisa Vo, Danny Stroud, Alison Schmiesing, Allie Sondag, Matt |
Author_xml | – sequence: 1 givenname: Sook-Lei surname: Liew fullname: Liew, Sook-Lei email: sliew@usc.edu organization: University of Southern California – sequence: 2 givenname: Julia M. surname: Anglin fullname: Anglin, Julia M. organization: University of Southern California – sequence: 3 givenname: Nick W. surname: Banks fullname: Banks, Nick W. organization: University of Southern California – sequence: 4 givenname: Matt surname: Sondag fullname: Sondag, Matt organization: University of Southern California – sequence: 5 givenname: Kaori L. surname: Ito fullname: Ito, Kaori L. organization: University of Southern California – sequence: 6 givenname: Hosung surname: Kim fullname: Kim, Hosung organization: University of Southern California – sequence: 7 givenname: Jennifer surname: Chan fullname: Chan, Jennifer organization: University of Southern California – sequence: 8 givenname: Joyce surname: Ito fullname: Ito, Joyce organization: University of Southern California – sequence: 9 givenname: Connie surname: Jung fullname: Jung, Connie organization: University of Southern California – sequence: 10 givenname: Nima surname: Khoshab fullname: Khoshab, Nima organization: University of California, Irvine – sequence: 11 givenname: Stephanie surname: Lefebvre fullname: Lefebvre, Stephanie organization: University of Southern California – sequence: 12 givenname: William surname: Nakamura fullname: Nakamura, William organization: University of Southern California – sequence: 13 givenname: David surname: Saldana fullname: Saldana, David organization: University of Southern California – sequence: 14 givenname: Allie surname: Schmiesing fullname: Schmiesing, Allie organization: University of Southern California – sequence: 15 givenname: Cathy surname: Tran fullname: Tran, Cathy organization: University of Southern California – sequence: 16 givenname: Danny orcidid: 0000-0001-8769-994X surname: Vo fullname: Vo, Danny organization: University of Southern California – sequence: 17 givenname: Tyler surname: Ard fullname: Ard, Tyler organization: University of Southern California – sequence: 18 givenname: Panthea surname: Heydari fullname: Heydari, Panthea organization: University of Southern California – sequence: 19 givenname: Bokkyu surname: Kim fullname: Kim, Bokkyu organization: University of Southern California – sequence: 20 givenname: Lisa surname: Aziz-Zadeh fullname: Aziz-Zadeh, Lisa organization: University of Southern California – sequence: 21 givenname: Steven C. surname: Cramer fullname: Cramer, Steven C. organization: University of California, Irvine – sequence: 22 givenname: Jingchun surname: Liu fullname: Liu, Jingchun organization: Tianjin Medical University General Hospital – sequence: 23 givenname: Surjo surname: Soekadar fullname: Soekadar, Surjo organization: University of Tübingen – sequence: 24 givenname: Jan-Egil surname: Nordvik fullname: Nordvik, Jan-Egil organization: Sunnaas Rehabilitation Hospital HT – sequence: 25 givenname: Lars T. orcidid: 0000-0001-8644-956X surname: Westlye fullname: Westlye, Lars T. organization: Division of Mental Health and Addiction, NORMENT and KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Department of Psychology, University of Oslo – sequence: 26 givenname: Junping surname: Wang fullname: Wang, Junping organization: Tianjin Medical University General Hospital – sequence: 27 givenname: Carolee surname: Winstein fullname: Winstein, Carolee organization: University of Southern California – sequence: 28 givenname: Chunshui surname: Yu fullname: Yu, Chunshui organization: Tianjin Medical University General Hospital – sequence: 29 givenname: Lei surname: Ai fullname: Ai, Lei organization: Child Mind Institute – sequence: 30 givenname: Bonhwang surname: Koo fullname: Koo, Bonhwang organization: Child Mind Institute – sequence: 31 givenname: R. Cameron orcidid: 0000-0002-4950-1303 surname: Craddock fullname: Craddock, R. Cameron organization: Child Mind Institute, Nathan S. Kline Institute for Psychiatric Research – sequence: 32 givenname: Michael surname: Milham fullname: Milham, Michael organization: Child Mind Institute, Nathan S. Kline Institute for Psychiatric Research – sequence: 33 givenname: Matthew surname: Lakich fullname: Lakich, Matthew organization: University of Texas Medical Branch – sequence: 34 givenname: Amy surname: Pienta fullname: Pienta, Amy organization: University of Michigan – sequence: 35 givenname: Alison surname: Stroud fullname: Stroud, Alison organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29461514$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1UREvpkStY4tIDWWYSO3EulaqqfEiVuMAVy-tMgktiL3aCxH-Pw7alVHCyPf7N8xu_p-zAB0-MPUfYIFTqTerMbDYloNogPmJHJciyEKKuDu7tD9lJStcAgJUA2cATdli2okaJ4oh9OeejiQO95mFHnqewREt8lU0089DzNMfwjbjxZg6Ts2bk22ic524yA6Vc7_hk_JLrIyUXsgQNE_nZzPmQnrHHvRkTndysx-zz28tPF--Lq4_vPlycXxVWCjEXtW1qK6XFphWl7UqsoBYdYWfEtq-paSrsy2Yra-i7TPbSSAWqaQEEmErJ6pid7XV3y3aizmYD0Yx6F7PN-FMH4_TfN9591UP4oaXCVijIAi_3Aja6NDuvfYhGIyhZ6rpFaDJxevNEDN8XSrOeXLI0jsZTWJIuARrEVokVffUAvc7_6vMHrJTIs2G9Ui_ue74zextOBopbTyGlSP0dgqDX_PXv_PWav0bMfPWAt26fQx7Zjf_t2uy7Ulb3A8U_Zv_d8AtczcJb |
CitedBy_id | crossref_primary_10_1145_3638044 crossref_primary_10_1097_j_pain_0000000000001998 crossref_primary_10_1002_cpe_7060 crossref_primary_10_1016_j_cmpb_2020_105521 crossref_primary_10_1111_1754_9485_13193 crossref_primary_10_1049_cit2_12350 crossref_primary_10_1016_j_ajhg_2023_11_006 crossref_primary_10_1016_j_nicl_2020_102276 crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_3233_XST_210851 crossref_primary_10_1016_j_compbiomed_2022_106472 crossref_primary_10_1162_imag_a_00241 crossref_primary_10_3390_bioengineering11010086 crossref_primary_10_1016_j_media_2020_101713 crossref_primary_10_1007_s11042_024_18336_3 crossref_primary_10_1007_s00521_021_06816_8 crossref_primary_10_1016_j_jmbbm_2019_103442 crossref_primary_10_1007_s11042_023_16009_1 crossref_primary_10_1016_j_compbiomed_2022_106226 crossref_primary_10_1002_hbm_24729 crossref_primary_10_1016_j_eswa_2023_120637 crossref_primary_10_1016_j_compmedimag_2020_101770 crossref_primary_10_1038_s41597_020_0360_7 crossref_primary_10_47836_pjst_29_2_03 crossref_primary_10_1016_j_asoc_2022_109568 crossref_primary_10_1007_s12021_020_09462_y crossref_primary_10_1038_s41598_024_71273_x crossref_primary_10_1002_hbm_25210 crossref_primary_10_3389_fnhum_2024_1308549 crossref_primary_10_1371_journal_pone_0298328 crossref_primary_10_1016_j_nicl_2019_101981 crossref_primary_10_1038_s41598_023_29974_2 crossref_primary_10_3390_diagnostics12092055 crossref_primary_10_1016_j_compbiomed_2024_108326 crossref_primary_10_3174_ajnr_A6883 crossref_primary_10_3389_fnins_2023_1298514 crossref_primary_10_1212_WNL_0000000000209387 crossref_primary_10_1007_s12204_021_2273_9 crossref_primary_10_3389_fneur_2022_981653 crossref_primary_10_1038_s41597_022_01426_y crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_3390_app15052830 crossref_primary_10_1007_s42979_021_00835_x crossref_primary_10_1161_STROKEAHA_122_040001 crossref_primary_10_1007_s43681_022_00195_z crossref_primary_10_3390_app12010468 crossref_primary_10_1016_j_cortex_2021_11_008 crossref_primary_10_1016_j_compbiomed_2023_107913 crossref_primary_10_23934_2223_9022_2020_9_2_231_237 crossref_primary_10_1109_TMI_2023_3336788 crossref_primary_10_1177_15459683211068441 crossref_primary_10_3389_fneur_2019_00445 crossref_primary_10_3390_electronics14030543 crossref_primary_10_1093_brain_awaa027 crossref_primary_10_1161_STROKEAHA_119_025898 crossref_primary_10_1587_nolta_11_16 crossref_primary_10_3389_fnimg_2023_1099301 crossref_primary_10_1002_hbm_25474 crossref_primary_10_1007_s00429_023_02630_1 crossref_primary_10_1016_j_neuropsychologia_2025_109067 crossref_primary_10_7554_eLife_47895 crossref_primary_10_1016_j_compbiomed_2023_106717 crossref_primary_10_1016_j_heliyon_2023_e22412 crossref_primary_10_3390_diagnostics12112765 crossref_primary_10_1155_2021_7552185 crossref_primary_10_1016_j_compbiomed_2024_108509 crossref_primary_10_1002_mp_15936 crossref_primary_10_1007_s42979_024_03389_w crossref_primary_10_1038_s41597_022_01401_7 crossref_primary_10_1016_j_compeleceng_2022_108345 crossref_primary_10_1155_2018_3524960 crossref_primary_10_3390_s21061952 crossref_primary_10_1162_imag_a_00446 crossref_primary_10_1038_s41597_023_02457_9 crossref_primary_10_3389_fmed_2024_1269742 crossref_primary_10_3788_CJL240614 crossref_primary_10_1186_s40644_022_00445_7 crossref_primary_10_3389_fnimg_2022_1098604 crossref_primary_10_1016_j_neuroimage_2023_120041 crossref_primary_10_3389_fninf_2018_00063 crossref_primary_10_1162_imag_a_00337 crossref_primary_10_1016_j_wneu_2024_01_059 crossref_primary_10_1088_1742_6596_2547_1_012007 crossref_primary_10_1126_sciadv_add3607 crossref_primary_10_3390_e23111429 crossref_primary_10_1016_j_clinph_2020_11_009 crossref_primary_10_1109_TCYB_2020_3027724 crossref_primary_10_1016_j_compbiomed_2023_106840 crossref_primary_10_1007_s11831_023_09967_0 crossref_primary_10_32604_cmc_2024_047027 crossref_primary_10_1002_hbm_25459 crossref_primary_10_1002_hbm_26701 crossref_primary_10_1016_j_bspc_2021_102959 crossref_primary_10_1016_j_jad_2018_10_087 crossref_primary_10_1109_JBHI_2020_2996783 crossref_primary_10_1007_s11682_023_00827_w crossref_primary_10_1002_hbm_25015 crossref_primary_10_1080_21681163_2023_2264410 crossref_primary_10_1007_s11548_021_02451_9 crossref_primary_10_1016_j_compeleceng_2023_108926 crossref_primary_10_1016_j_nicl_2019_102118 crossref_primary_10_1007_s00330_019_06459_3 crossref_primary_10_3389_fnins_2022_836412 crossref_primary_10_1016_j_compbiomed_2022_106332 crossref_primary_10_1016_j_compbiomed_2023_107302 crossref_primary_10_1136_bmjopen_2021_053103 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1161_JAHA_121_025109 crossref_primary_10_3390_app13021087 crossref_primary_10_1049_ell2_12444 crossref_primary_10_1016_j_ajo_2021_06_004 crossref_primary_10_32604_cmc_2022_020998 crossref_primary_10_1016_j_media_2021_102208 crossref_primary_10_3390_app11041675 crossref_primary_10_1016_j_bbe_2022_01_002 crossref_primary_10_1212_WNL_0000000000207219 crossref_primary_10_1016_j_compmedimag_2022_102120 crossref_primary_10_1007_s11042_024_18622_0 crossref_primary_10_1109_TMI_2023_3298093 crossref_primary_10_1016_j_neucom_2023_126970 crossref_primary_10_1109_JBHI_2021_3113460 crossref_primary_10_1016_j_cmpb_2020_105728 crossref_primary_10_1038_s41598_023_39826_8 crossref_primary_10_1007_s10462_025_11146_5 |
Cites_doi | 10.1161/STROKEAHA.109.572065 10.1161/STROKEAHA.107.485631 10.1097/01.WCB.0000100044.07481.97 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y 10.3897/rio.2.e9113 10.1016/j.nicl.2015.06.013 10.1161/STROKEAHA.110.599340 10.1097/WCO.0b013e3283186f96 10.1212/WNL.0b013e31822e1482 10.1016/j.media.2016.07.009 10.1111/j.1747-4949.2012.00902.x 10.1016/S0140-6736(13)61953-4 10.1016/S0028-3908(99)00261-0 10.1161/CIR.0000000000000485 10.1002/ana.24309 10.1002/hbm.23110 10.1097/00004728-199403000-00005 10.3886/ICPSR36684.v1 10.1161/01.STR.0000087172.16305.CD 10.1161/01.STR.17.4.765 10.2214/ajr.149.2.351 10.1148/radiol.2222001731 10.1016/S1474-4422(10)70247-7 10.1016/j.jstrokecerebrovasdis.2012.09.018 10.1109/42.668698 10.1155/2000/421719 10.1161/STROKEAHA.109.577023 10.1016/S1474-4422(15)00012-5 10.3897/rio.3.e12259 10.1177/1545968307305302 10.15387/fcp_indi.atlas |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Feb 2018 info:eu-repo/semantics/openAccess Copyright © 2018, The Author(s) 2018 The Author(s) |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Feb 2018 – notice: info:eu-repo/semantics/openAccess – notice: Copyright © 2018, The Author(s) 2018 The Author(s) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 3HK 5PM |
DOI | 10.1038/sdata.2018.11 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
ExternalDocumentID | PMC5819480 10852_69107 29461514 10_1038_sdata_2018_11 |
Genre | Dataset Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: P2C HD065702 – fundername: NICHD NIH HHS grantid: K12 HD055929 – fundername: NICHD NIH HHS grantid: K01 HD091283 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 3HK 5PM |
ID | FETCH-LOGICAL-c544t-6c76c55c17942cd213064de1da4bf6e7731f27b560fd76cf5a5808790040a3853 |
IEDL.DBID | 7X7 |
ISSN | 2052-4463 |
IngestDate | Thu Aug 21 14:11:34 EDT 2025 Sat Apr 29 05:43:35 EDT 2023 Fri Jul 11 03:25:40 EDT 2025 Sat Aug 23 13:15:22 EDT 2025 Mon Jul 21 05:48:07 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Tue Jul 01 03:48:54 EDT 2025 Fri Feb 21 02:37:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-6c76c55c17942cd213064de1da4bf6e7731f27b560fd76cf5a5808790040a3853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 NFR/249795 S.-L.L. conceptualized the study, reviewed lesions, analyzed data, established archives, and contributed to the writing and editing of the manuscript. J.M.A. segmented and reviewed lesions, oversaw the organization to the segmentation process and contributed to the writing and editing of the manuscript. N.W.B. organized, segmented and reviewed lesions. M.S. provided the neuroradiology expertise and information. K.L.I. and H.K. performed data analysis. H.K. also performed data processing and generated the standardized dataset and probabilistic lesion maps. T.A. provided data visualization expertise and generated the figures/videos. J.C., D.S., A.S. J.I., C.J., W.N., D.V. and S.L. segmented and/or reviewed lesions. P.H., B.K., N.K., L.A.-Z., S.C.C., J.L., S.S., L.T.W., J.W., C.W., C.Y. collected and provided the MRI data. M.L., A.P., and A.S. handled the archiving of the data. These authors contributed equally to this work. |
ORCID | 0000-0001-8769-994X 0000-0002-4950-1303 0000-0001-8644-956X |
OpenAccessLink | https://www.proquest.com/docview/2004064167?pq-origsite=%requestingapplication% |
PMID | 29461514 |
PQID | 2004064167 |
PQPubID | 2041912 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5819480 cristin_nora_10852_69107 proquest_miscellaneous_2007119847 proquest_journals_2004064167 pubmed_primary_29461514 crossref_primary_10_1038_sdata_2018_11 crossref_citationtrail_10_1038_sdata_2018_11 springer_journals_10_1038_sdata_2018_11 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-20 |
PublicationDateYYYYMMDD | 2018-02-20 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wittsack (CR20) 2002; 222 Heuer, Ghosh, Robinson Sterling, Toro (CR29) 2016; 2 Stinear (CR14) 2010; 9 Nijland, van Wegen, Harmeling-van der Wel, Kwakkel (CR8) 2010; 41 Ren, Kaplan, Charette, Speller, Finklestein (CR4) 2000; 39 Liew (CR32) 2017 Burke Quinlan (CR6) 2015; 77 (CR5) 2015; 14 Prabhakaran (CR13) 2007; 22 Maier (CR23) 2017; 35 Cox (CR28) 2004; 22 Liew (CR31) 2017 Jongbloed (CR11) 1986; 17 Sled, Zijdenbos, Evans (CR26) 1998; 17 Feigin (CR2) 2014; 383 Riley (CR9) 2011; 42 Cramer (CR10) 2007; 38 Nouri, Cramer (CR12) 2011; 77 Fazekas, Chawluk, Alavi, Hurtig, Zimmerman (CR25) 1987; 149 Collins, Neelin, Peters, Evans (CR27) 1994; 18 Kwakkel, Kollen, Van der Grond, Prevo (CR3) 2003; 34 Marie-Héléne, Cramer (CR7) 2008; 21 Fiez, Damasio, Grabowski (CR16) 2000; 9 Pustina (CR21) 2016; 37 Montaner (CR17) 2003; 23 Benjamin (CR1) 2017; 135 Sakamoto (CR18) 2013; 8 Rorden, Brett (CR24) 2000; 12 Ito, Anglin, Liew (CR30) 2017; 3 Thomas (CR19) 2013; 22 Zhu, Lindenberg, Alexander, Schlaug (CR15) 2010; 41 de Haan, Clas, Juenger, Wilke, Karnath (CR22) 2015; 9 K Ito (BFsdata201811_CR30) 2017; 3 RW Cox (BFsdata201811_CR28) 2004; 22 LL Zhu (BFsdata201811_CR15) 2010; 41 K Heuer (BFsdata201811_CR29) 2016; 2 RHM Nijland (BFsdata201811_CR8) 2010; 41 Group, I.-C. (BFsdata201811_CR5) 2015; 14 JD Riley (BFsdata201811_CR9) 2011; 42 S Prabhakaran (BFsdata201811_CR13) 2007; 22 VL Feigin (BFsdata201811_CR2) 2014; 383 J Ren (BFsdata201811_CR4) 2000; 39 F Fazekas (BFsdata201811_CR25) 1987; 149 S.-L. Liew (BFsdata201811_CR32) 2017 JG Sled (BFsdata201811_CR26) 1998; 17 LYN Jongbloed (BFsdata201811_CR11) 1986; 17 LD Collins (BFsdata201811_CR27) 1994; 18 E Burke Quinlan (BFsdata201811_CR6) 2015; 77 H-J Wittsack (BFsdata201811_CR20) 2002; 222 Y Sakamoto (BFsdata201811_CR18) 2013; 8 C Rorden (BFsdata201811_CR24) 2000; 12 S Nouri (BFsdata201811_CR12) 2011; 77 D Pustina (BFsdata201811_CR21) 2016; 37 O Maier (BFsdata201811_CR23) 2017; 35 G Kwakkel (BFsdata201811_CR3) 2003; 34 M Marie-Héléne (BFsdata201811_CR7) 2008; 21 J Montaner (BFsdata201811_CR17) 2003; 23 EJ Benjamin (BFsdata201811_CR1) 2017; 135 RGR Thomas (BFsdata201811_CR19) 2013; 22 JA Fiez (BFsdata201811_CR16) 2000; 9 SC Cramer (BFsdata201811_CR10) 2007; 38 B de Haan (BFsdata201811_CR22) 2015; 9 C Stinear (BFsdata201811_CR14) 2010; 9 S.-L. Liew (BFsdata201811_CR31) 2017 |
References_xml | – volume: 41 start-page: 745 year: 2010 end-page: 750 ident: CR8 article-title: Presence of finger extension and shoulder abduction within 72 Hours after stroke predicts functional recovery publication-title: Stroke doi: 10.1161/STROKEAHA.109.572065 – volume: 38 start-page: 2108 year: 2007 end-page: 2114 ident: CR10 article-title: Predicting functional gains in a stroke trial publication-title: Stroke doi: 10.1161/STROKEAHA.107.485631 – volume: 23 start-page: 1403 year: 2003 end-page: 1407 ident: CR17 article-title: Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke publication-title: Journal of Cerebral Blood Flow & Metabolism doi: 10.1097/01.WCB.0000100044.07481.97 – volume: 9 start-page: 192 year: 2000 end-page: 211 ident: CR16 article-title: Lesion segmentation and manual warping to a reference brain: Intra- and interobserver reliability publication-title: Human Brain Mapping doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y – volume: 2 start-page: e9113 year: 2016 ident: CR29 article-title: Open Neuroimaging Laboratory publication-title: Research Ideas and Outcomes doi: 10.3897/rio.2.e9113 – volume: 9 start-page: 69 year: 2015 end-page: 74 ident: CR22 article-title: Fast semi-automated lesion demarcation in stroke publication-title: NeuroImage. Clinical doi: 10.1016/j.nicl.2015.06.013 – volume: 42 start-page: 421 year: 2011 end-page: 426 ident: CR9 article-title: Anatomy of stroke injury predicts gains from therapy publication-title: Stroke doi: 10.1161/STROKEAHA.110.599340 – volume: 21 start-page: 654 year: 2008 end-page: 659 ident: CR7 article-title: Biomarkers of recovery after stroke publication-title: Current opinion in neurology doi: 10.1097/WCO.0b013e3283186f96 – volume: 77 start-page: 1076 year: 2011 end-page: 1083 ident: CR12 article-title: Anatomy and physiology predict response to motor cortex stimulation after stroke publication-title: Neurology doi: 10.1212/WNL.0b013e31822e1482 – volume: 35 start-page: 250 year: 2017 end-page: 269 ident: CR23 article-title: ISLES 2015—A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.07.009 – volume: 8 start-page: 321 year: 2013 end-page: 326 ident: CR18 article-title: Early ischaemic diffusion lesion reduction in patients treated with intravenous tissue plasminogen activator: infrequent, but significantly associated with recanalization publication-title: International Journal of Stroke doi: 10.1111/j.1747-4949.2012.00902.x – volume: 383 start-page: 245 year: 2014 end-page: 254 ident: CR2 article-title: Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010 publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(13)61953-4 – volume: 39 start-page: 860 year: 2000 end-page: 865 ident: CR4 article-title: Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke publication-title: Neuropharmacology doi: 10.1016/S0028-3908(99)00261-0 – volume: 135 start-page: e146 year: 2017 end-page: e603 ident: CR1 article-title: Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000485 – volume: 77 start-page: 132 year: 2015 end-page: 145 ident: CR6 article-title: Neural function, injury, and stroke subtype predict treatment gains after stroke publication-title: Ann Neurol doi: 10.1002/ana.24309 – volume: 37 start-page: 1405 year: 2016 end-page: 1421 ident: CR21 article-title: Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis publication-title: Human Brain Mapping doi: 10.1002/hbm.23110 – volume: 18 start-page: 192 year: 1994 end-page: 205 ident: CR27 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: Journal of Computer Assisted Tomography doi: 10.1097/00004728-199403000-00005 – year: 2017 ident: CR31 publication-title: ICPSR—Interuniversity Consortium for Political and Social Research doi: 10.3886/ICPSR36684.v1 – volume: 34 start-page: 2181 year: 2003 end-page: 2186 ident: CR3 article-title: Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke publication-title: Stroke doi: 10.1161/01.STR.0000087172.16305.CD – volume: 17 start-page: 765 year: 1986 end-page: 776 ident: CR11 article-title: Prediction of function after stroke: a critical review publication-title: Stroke doi: 10.1161/01.STR.17.4.765 – volume: 149 start-page: 351 year: 1987 end-page: 356 ident: CR25 article-title: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging publication-title: American Journal of Roentgenology doi: 10.2214/ajr.149.2.351 – volume: 222 start-page: 397 year: 2002 end-page: 403 ident: CR20 article-title: MR Imaging in Acute Stroke: Diffusion-weighted and Perfusion Imaging Parameters for Predicting Infarct Size publication-title: Radiology doi: 10.1148/radiol.2222001731 – volume: 9 start-page: 1228 year: 2010 end-page: 1232 ident: CR14 article-title: Prediction of recovery of motor function after stroke publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(10)70247-7 – volume: 22 start-page: 906 year: 2013 end-page: 909 ident: CR19 article-title: Apparent diffusion coefficient thresholds and diffusion lesion volume in acute stroke publication-title: Journal of Stroke and Cerebrovascular Diseases doi: 10.1016/j.jstrokecerebrovasdis.2012.09.018 – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: CR26 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.668698 – volume: 12 start-page: 191 year: 2000 end-page: 200 ident: CR24 article-title: Stereotaxic display of brain lesions publication-title: Behav Neurol doi: 10.1155/2000/421719 – year: 2017 ident: CR32 publication-title: Child Mind Institute – volume: 41 start-page: 910 year: 2010 end-page: 915 ident: CR15 article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.109.577023 – volume: 22 start-page: e1440 year: 2004 ident: CR28 article-title: A (sort of) new image data format standard: Nifti-1 publication-title: Neuroimage – volume: 14 start-page: 485 year: 2015 end-page: 496 ident: CR5 article-title: Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(15)00012-5 – volume: 3 start-page: e12259 year: 2017 ident: CR30 article-title: Semi-automated Robust Quantification of Lesions (SRQL) Toolbox publication-title: Research Ideas and Outcomes doi: 10.3897/rio.3.e12259 – volume: 22 start-page: 64 year: 2007 end-page: 71 ident: CR13 article-title: Inter-individual variability in the capacity for motor recovery after ischemic stroke publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968307305302 – volume: 37 start-page: 1405 year: 2016 ident: BFsdata201811_CR21 publication-title: Human Brain Mapping doi: 10.1002/hbm.23110 – volume: 14 start-page: 485 year: 2015 ident: BFsdata201811_CR5 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(15)00012-5 – volume: 17 start-page: 87 year: 1998 ident: BFsdata201811_CR26 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.668698 – volume: 77 start-page: 1076 year: 2011 ident: BFsdata201811_CR12 publication-title: Neurology doi: 10.1212/WNL.0b013e31822e1482 – volume: 41 start-page: 745 year: 2010 ident: BFsdata201811_CR8 publication-title: Stroke doi: 10.1161/STROKEAHA.109.572065 – volume: 18 start-page: 192 year: 1994 ident: BFsdata201811_CR27 publication-title: Journal of Computer Assisted Tomography doi: 10.1097/00004728-199403000-00005 – volume: 9 start-page: 69 year: 2015 ident: BFsdata201811_CR22 publication-title: NeuroImage. Clinical doi: 10.1016/j.nicl.2015.06.013 – volume: 135 start-page: e146 year: 2017 ident: BFsdata201811_CR1 publication-title: Circulation doi: 10.1161/CIR.0000000000000485 – volume: 23 start-page: 1403 year: 2003 ident: BFsdata201811_CR17 publication-title: Journal of Cerebral Blood Flow & Metabolism doi: 10.1097/01.WCB.0000100044.07481.97 – volume: 8 start-page: 321 year: 2013 ident: BFsdata201811_CR18 publication-title: International Journal of Stroke doi: 10.1111/j.1747-4949.2012.00902.x – volume: 34 start-page: 2181 year: 2003 ident: BFsdata201811_CR3 publication-title: Stroke doi: 10.1161/01.STR.0000087172.16305.CD – volume: 17 start-page: 765 year: 1986 ident: BFsdata201811_CR11 publication-title: Stroke doi: 10.1161/01.STR.17.4.765 – volume: 222 start-page: 397 year: 2002 ident: BFsdata201811_CR20 publication-title: Radiology doi: 10.1148/radiol.2222001731 – volume: 21 start-page: 654 year: 2008 ident: BFsdata201811_CR7 publication-title: Current opinion in neurology doi: 10.1097/WCO.0b013e3283186f96 – volume: 9 start-page: 1228 year: 2010 ident: BFsdata201811_CR14 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(10)70247-7 – volume: 9 start-page: 192 year: 2000 ident: BFsdata201811_CR16 publication-title: Human Brain Mapping doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y – volume: 42 start-page: 421 year: 2011 ident: BFsdata201811_CR9 publication-title: Stroke doi: 10.1161/STROKEAHA.110.599340 – volume: 22 start-page: e1440 year: 2004 ident: BFsdata201811_CR28 publication-title: Neuroimage – volume: 2 start-page: e9113 year: 2016 ident: BFsdata201811_CR29 publication-title: Research Ideas and Outcomes doi: 10.3897/rio.2.e9113 – volume: 38 start-page: 2108 year: 2007 ident: BFsdata201811_CR10 publication-title: Stroke doi: 10.1161/STROKEAHA.107.485631 – volume: 22 start-page: 906 year: 2013 ident: BFsdata201811_CR19 publication-title: Journal of Stroke and Cerebrovascular Diseases doi: 10.1016/j.jstrokecerebrovasdis.2012.09.018 – volume: 77 start-page: 132 year: 2015 ident: BFsdata201811_CR6 publication-title: Ann Neurol doi: 10.1002/ana.24309 – year: 2017 ident: BFsdata201811_CR31 doi: 10.3886/ICPSR36684.v1 – volume: 12 start-page: 191 year: 2000 ident: BFsdata201811_CR24 publication-title: Behav Neurol doi: 10.1155/2000/421719 – volume: 149 start-page: 351 year: 1987 ident: BFsdata201811_CR25 publication-title: American Journal of Roentgenology doi: 10.2214/ajr.149.2.351 – volume: 383 start-page: 245 year: 2014 ident: BFsdata201811_CR2 publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(13)61953-4 – volume: 35 start-page: 250 year: 2017 ident: BFsdata201811_CR23 publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.07.009 – year: 2017 ident: BFsdata201811_CR32 doi: 10.15387/fcp_indi.atlas – volume: 39 start-page: 860 year: 2000 ident: BFsdata201811_CR4 publication-title: Neuropharmacology doi: 10.1016/S0028-3908(99)00261-0 – volume: 22 start-page: 64 year: 2007 ident: BFsdata201811_CR13 publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968307305302 – volume: 41 start-page: 910 year: 2010 ident: BFsdata201811_CR15 publication-title: Stroke doi: 10.1161/STROKEAHA.109.577023 – volume: 3 start-page: e12259 year: 2017 ident: BFsdata201811_CR30 publication-title: Research Ideas and Outcomes doi: 10.3897/rio.3.e12259 |
SSID | ssj0001340570 |
Score | 2.5355694 |
Snippet | Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging... |
SourceID | pubmedcentral cristin proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 180011 |
SubjectTerms | 692/617/375/534 692/698/1688/64 692/700/1421/1628 692/700/1421/65 Adult Algorithms Brain - diagnostic imaging Brain - pathology Data Descriptor Datasets Humanities and Social Sciences Humans Image processing Learning algorithms Magnetic Resonance Imaging multidisciplinary Neuroimaging Rehabilitation Science Segmentation Stroke Stroke - diagnostic imaging Stroke - pathology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0heuFSlQIlBSojIdpKhObDjrOHCiEEQkj0xEqcGtmO06LuessmSO2_Z8bxLlqW9hpP5Ngzk3m2x28ADjBESY2BLK4HmYi5amysDPqV0YURdWOLxOfmXH8rLof86lbcPlEKhQlsX1zaUT2p4XR0_Of-7wk6_Nf-ynj5paVkSsrSKo_plu8rDEqSfPQ6IH2_3ZITMkkCy-bSW4h-jXcqtxiflkDncu7kswNUH5cu3sDrACjZaW8B67Bi3VtYDy7bsk-BV_rzBnw_ZSPK-z5iNETWb9sz-r7WdmzSsLabTn5ZphwuxD2LANNUQILdjfGn0-Lzmo0VUZiykaVNNtbaH-Nwd8m1mzC8OL85u4xDeYXYCM67uDAS9SEMuWRm6iylxUht01px3RRWyjxtMqkREjU1SjZCiTIp5YD8XuUY5rdg1U2c3QYmcTpylWqpteGIaRQ3jbSZLFWeGV0WEWyH6a0cWjaxkoqsKhCqyAiOZvNdmUBLTtUxRpU_Hs_LyiuqIkXhciWCw7n4756P41-CuzPlVTOropqbCGAQg2K3-_NmdCg6JVHOTh68jEzTAUbtCN71up73lA04IUAegVywgrkAkXUvtri7n560WyD04mUSwceZvTx91osDeP__AezAGgn62_XJLqx20we7h_io0x-85T8Cwm4QSg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heuGCCuURCpWREG0lQvOw4-wRrVghJDgViROR7TgUsZsgHP5_Zxzvrra0Um9RMpGdGY_nczz-BuAEQ5TUGMjiepSJmKvGxsqgXxldGFE3tkh8bs7NbXF1x6_vxX04rO5CWuVAaemn6Xl22A9HCZOUiVWe00neD8TaTgN6XIyXv1RyQh9JYNJM8nL1LUS4xjtOuxqD3gHL9_mRf2yS-tgz-QibATSyi6GbW7Bm223YCm7p2LfAHf39EzxcsCnldp8xKovFhl_zjPrnbM-6hrn-tXu2TOHXd54pgGkqEsGeZjixOLxfs5kimlKG-kCbMWcfZ-F8Uut24G5y-XN8FYcSCrERnPdxYSTqXBhyu8zUWUoLjtqmteK6KayUedpkUiPsaWqUbIQSZVLKEfm2yjGU78J627V2H5hEdeQq1VJrwxG3KG4aaTNZqjwzuiwi2A_qrVocvcQ8KrKqQDgiIzib67sygXqcKmBMK78FnpeVN1RFhsIlSQSnC_GXgXPjX4KHc-NVwfUc1dVEkII4E5s9XjxGp6GdENXa7s3LyDQdYWSOYG-w9aKlbMQJ5fEI5MooWAgQIffqk_bplyfmFgiveJlE8HU-Xpbd-usHHPy35GfYoCt_mD45hPX-9c0eIRzq9RfvBL8BSvYKgw priority: 102 providerName: Springer Nature |
Title | A large, open source dataset of stroke anatomical brain images and manual lesion segmentations |
URI | https://link.springer.com/article/10.1038/sdata.2018.11 https://www.ncbi.nlm.nih.gov/pubmed/29461514 https://www.proquest.com/docview/2004064167 https://www.proquest.com/docview/2007119847 http://hdl.handle.net/10852/69107 https://pubmed.ncbi.nlm.nih.gov/PMC5819480 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9sILYhuwwKg8CfEhLSwfdpw-oVJtmiptQsCkPhHZjgMTrTOW7P_nznVbdQNeEik5KYnvzvfz-fI7gNcYoqTGQBbXw0zEXDU2Vgb9yujCiLqxReJrc84virNLPpmKaUi4daGscjkn-om6bg3lyI9Jmxg-00J-vP4dU9co2l0NLTQewjZRl1FJl5zKdY4lJziSBGrNJC-PO6q7pIKu8oPvGWS8J7nNoHQPad4vmLyza-qD0ekTeBxQJBst1L4DD6zbhZ3gpx17F8ik3-_B9xGbUbH3EaM-WWyRq2f0fp3tWduwrr9pf1mmHK6-PXUA09Q1gl3Ncabp8HrN5op4S9nMUmaNdfbHPPyw5LqncHl68m18FoeeCrERnPdxYSQqQRjyw8zUWUorkNqmteK6KayUedpkUiMOamqUbIQSZVLKIY2-yjG2P4Mt1zq7D0zicOQq1VJrwxHIKG4aaTNZqjwzuiwi2A_DWzk0Z6IiFVlVID6RERwtx7sygYucWmLMKr8nnpeVV1RFisI1SgRvVuLXCxKOfwkeLJVXBV_sqrXlRHC4uo1eRFsjytn21stItCAM1RE8X-h69aRsyAn28QjkhhWsBIihe_OOu_rpmboF4i1eJhG8XdrL-rX--gEv_v8BL-ERCfpf6pMD2Opvbu0rBEW9HnjLH8D2aDT5OsHzp5OLz1_w6rgYD3yiAY_nvPwD-nUTIw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcUMurgQJG4ik1NHGcOHtAqECrLW1XCLVSTwTbcUrFblKaVIg_xW9kxkl2tRS49RpPFMfz-uwZzwA8QRclNToyPx_y2BeqsL4yqFdGJybOC5sELjfnYJyMjsSH4_h4CX71d2EorbK3ic5Q55WhM_JN4ia6zzCRb86--9Q1iqKrfQuNViz27M8fuGWrX---R_4-5Xxn-_DdyO-6CvgmFqLxEyNxGrEhSeQm5yFh8NyGuRK6SKyUUVhwqREJFDlSFrGK0yCVQ_q-ilLqEoEmf1lEuJUZwPLb7fHHT_NTnYgAUNAV8wyidLOmTE9KIUtfuS5FxuluuegGL2Hbyymaf8RpnfvbWYEbHW5lW62grcKSLW_CamcZavaiK1_98hZ83mITSi_fYNSZi7XRAUbzq23DqoLVzXn1zTJV4n7fFStgmvpUsNMp2rYan-dsqqhSKptYOstjtT2Zdlekyvo2HF3Jet-BQVmVdg2YxOWIVKil1kYgdFLCFNJymaqIG50mHqx1y5uVqEBU_DTmWYKISHqw0a93Zrrq59SEY5K5KHyUZo5RGTEKd0UePJuRn7VlP_5FuN4zL-u0v87msurB49kw6i0FY1RpqwtHI8NwiODAg7str2df4kNBQFN4IBekYEZANcEXR8rTr642eIwIT6SBB897eZlP668_cO__P_AIro0OD_az_d3x3n24Ti-5C_3BOgya8wv7ACFZox92esDgy1Wr3m8zYEne |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOXVQAEj8ZQaNnHsOHtAqKKsWgoVByrtiWA7DlTsJqVJhfhr_DpmnGRXS4Fbr_FEcTyvz57xDMAjdFHKoCMLizGXodClC7VFvbImtbIoXRr53Jz3h-nekXg7ldM1-DXchaG0ysEmekNd1JbOyEfETXSfcapGZZ8W8WF38urke0gdpCjSOrTT6ETkwP38gdu35uX-LvL6MeeTNx9f74V9h4HQSiHaMLUKpyQtSSW3BY8JjxcuLrQwZeqUSuKSK4OooCyQspRaZlGmxjQXnWTUMQLN_yWVyJh0TE3V8nwnISgU9WU9oyQbNZTzSclk2Qvfr8h6La5WHeI5lHs-WfOPiK13hJNrcLVHsGynE7kNWHPVddjobUTDnvWFrJ_fgE87bEaJ5tuMenSxLk7AaH6Na1ldsqY9rb85pivc-fuyBcxQxwp2PEcr1-Dzgs011UxlM0eneqxxX-b9ZamquQlHF7Lat2C9qiu3CUzhciQ6NsoYKxBEaWFL5bjKdMKtydIANvvlzStUJSqDKnmeIjZSAWwP653bvg46teOY5T4en2S5Z1ROjML9UQBPFuQnXQGQfxFuDczLezvQ5EupDeDhYhg1mMIyunL1madRcTxGmBDA7Y7Xiy_xsSDIKQJQK1KwIKDq4Ksj1fFXXyVcItYTWRTA00FeltP66w_c-f8PPIDLqHD5u_3Dg7twhd7xN_ujLVhvT8_cPcRmrbnvlYDB54vWut_e20yu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+large%2C+open+source+dataset+of+stroke+anatomical+brain+images+and+manual+lesion+segmentations&rft.jtitle=Scientific+data&rft.au=Liew%2C+Sook-lei&rft.au=Anglin%2C+Julia+M&rft.au=Banks%2C+Nick+W&rft.au=Sondag%2C+Matt&rft.date=2018-02-20&rft.pub=Nature+Publishing+Group&rft.eissn=2052-4463&rft.volume=5&rft.spage=180011&rft_id=info:doi/10.1038%2Fsdata.2018.11&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |