A large, open source dataset of stroke anatomical brain images and manual lesion segmentations

Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabil...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 5; no. 1; p. 180011
Main Authors Liew, Sook-Lei, Anglin, Julia M., Banks, Nick W., Sondag, Matt, Ito, Kaori L., Kim, Hosung, Chan, Jennifer, Ito, Joyce, Jung, Connie, Khoshab, Nima, Lefebvre, Stephanie, Nakamura, William, Saldana, David, Schmiesing, Allie, Tran, Cathy, Vo, Danny, Ard, Tyler, Heydari, Panthea, Kim, Bokkyu, Aziz-Zadeh, Lisa, Cramer, Steven C., Liu, Jingchun, Soekadar, Surjo, Nordvik, Jan-Egil, Westlye, Lars T., Wang, Junping, Winstein, Carolee, Yu, Chunshui, Ai, Lei, Koo, Bonhwang, Craddock, R. Cameron, Milham, Michael, Lakich, Matthew, Pienta, Amy, Stroud, Alison
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.02.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods. Design Type(s) parallel group design Measurement Type(s) nuclear magnetic resonance assay Technology Type(s) MRI Scanner Factor Type(s) regional part of brain • cerebral hemisphere • Clinical Diagnosis Sample Characteristic(s) Homo sapiens • brain Machine-accessible metadata file describing the reported data (ISA-Tab format)
AbstractList Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods. Design Type(s) parallel group design Measurement Type(s) nuclear magnetic resonance assay Technology Type(s) MRI Scanner Factor Type(s) regional part of brain • cerebral hemisphere • Clinical Diagnosis Sample Characteristic(s) Homo sapiens • brain Machine-accessible metadata file describing the reported data (ISA-Tab format)
ArticleNumber 180011
Author Craddock, R. Cameron
Lefebvre, Stephanie
Lakich, Matthew
Pienta, Amy
Kim, Hosung
Liu, Jingchun
Soekadar, Surjo
Nakamura, William
Ito, Kaori L.
Saldana, David
Koo, Bonhwang
Tran, Cathy
Ito, Joyce
Banks, Nick W.
Jung, Connie
Nordvik, Jan-Egil
Ard, Tyler
Wang, Junping
Liew, Sook-Lei
Khoshab, Nima
Kim, Bokkyu
Yu, Chunshui
Anglin, Julia M.
Milham, Michael
Chan, Jennifer
Winstein, Carolee
Cramer, Steven C.
Ai, Lei
Westlye, Lars T.
Heydari, Panthea
Aziz-Zadeh, Lisa
Vo, Danny
Stroud, Alison
Schmiesing, Allie
Sondag, Matt
Author_xml – sequence: 1
  givenname: Sook-Lei
  surname: Liew
  fullname: Liew, Sook-Lei
  email: sliew@usc.edu
  organization: University of Southern California
– sequence: 2
  givenname: Julia M.
  surname: Anglin
  fullname: Anglin, Julia M.
  organization: University of Southern California
– sequence: 3
  givenname: Nick W.
  surname: Banks
  fullname: Banks, Nick W.
  organization: University of Southern California
– sequence: 4
  givenname: Matt
  surname: Sondag
  fullname: Sondag, Matt
  organization: University of Southern California
– sequence: 5
  givenname: Kaori L.
  surname: Ito
  fullname: Ito, Kaori L.
  organization: University of Southern California
– sequence: 6
  givenname: Hosung
  surname: Kim
  fullname: Kim, Hosung
  organization: University of Southern California
– sequence: 7
  givenname: Jennifer
  surname: Chan
  fullname: Chan, Jennifer
  organization: University of Southern California
– sequence: 8
  givenname: Joyce
  surname: Ito
  fullname: Ito, Joyce
  organization: University of Southern California
– sequence: 9
  givenname: Connie
  surname: Jung
  fullname: Jung, Connie
  organization: University of Southern California
– sequence: 10
  givenname: Nima
  surname: Khoshab
  fullname: Khoshab, Nima
  organization: University of California, Irvine
– sequence: 11
  givenname: Stephanie
  surname: Lefebvre
  fullname: Lefebvre, Stephanie
  organization: University of Southern California
– sequence: 12
  givenname: William
  surname: Nakamura
  fullname: Nakamura, William
  organization: University of Southern California
– sequence: 13
  givenname: David
  surname: Saldana
  fullname: Saldana, David
  organization: University of Southern California
– sequence: 14
  givenname: Allie
  surname: Schmiesing
  fullname: Schmiesing, Allie
  organization: University of Southern California
– sequence: 15
  givenname: Cathy
  surname: Tran
  fullname: Tran, Cathy
  organization: University of Southern California
– sequence: 16
  givenname: Danny
  orcidid: 0000-0001-8769-994X
  surname: Vo
  fullname: Vo, Danny
  organization: University of Southern California
– sequence: 17
  givenname: Tyler
  surname: Ard
  fullname: Ard, Tyler
  organization: University of Southern California
– sequence: 18
  givenname: Panthea
  surname: Heydari
  fullname: Heydari, Panthea
  organization: University of Southern California
– sequence: 19
  givenname: Bokkyu
  surname: Kim
  fullname: Kim, Bokkyu
  organization: University of Southern California
– sequence: 20
  givenname: Lisa
  surname: Aziz-Zadeh
  fullname: Aziz-Zadeh, Lisa
  organization: University of Southern California
– sequence: 21
  givenname: Steven C.
  surname: Cramer
  fullname: Cramer, Steven C.
  organization: University of California, Irvine
– sequence: 22
  givenname: Jingchun
  surname: Liu
  fullname: Liu, Jingchun
  organization: Tianjin Medical University General Hospital
– sequence: 23
  givenname: Surjo
  surname: Soekadar
  fullname: Soekadar, Surjo
  organization: University of Tübingen
– sequence: 24
  givenname: Jan-Egil
  surname: Nordvik
  fullname: Nordvik, Jan-Egil
  organization: Sunnaas Rehabilitation Hospital HT
– sequence: 25
  givenname: Lars T.
  orcidid: 0000-0001-8644-956X
  surname: Westlye
  fullname: Westlye, Lars T.
  organization: Division of Mental Health and Addiction, NORMENT and KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Department of Psychology, University of Oslo
– sequence: 26
  givenname: Junping
  surname: Wang
  fullname: Wang, Junping
  organization: Tianjin Medical University General Hospital
– sequence: 27
  givenname: Carolee
  surname: Winstein
  fullname: Winstein, Carolee
  organization: University of Southern California
– sequence: 28
  givenname: Chunshui
  surname: Yu
  fullname: Yu, Chunshui
  organization: Tianjin Medical University General Hospital
– sequence: 29
  givenname: Lei
  surname: Ai
  fullname: Ai, Lei
  organization: Child Mind Institute
– sequence: 30
  givenname: Bonhwang
  surname: Koo
  fullname: Koo, Bonhwang
  organization: Child Mind Institute
– sequence: 31
  givenname: R. Cameron
  orcidid: 0000-0002-4950-1303
  surname: Craddock
  fullname: Craddock, R. Cameron
  organization: Child Mind Institute, Nathan S. Kline Institute for Psychiatric Research
– sequence: 32
  givenname: Michael
  surname: Milham
  fullname: Milham, Michael
  organization: Child Mind Institute, Nathan S. Kline Institute for Psychiatric Research
– sequence: 33
  givenname: Matthew
  surname: Lakich
  fullname: Lakich, Matthew
  organization: University of Texas Medical Branch
– sequence: 34
  givenname: Amy
  surname: Pienta
  fullname: Pienta, Amy
  organization: University of Michigan
– sequence: 35
  givenname: Alison
  surname: Stroud
  fullname: Stroud, Alison
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29461514$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1UREvpkStY4tIDWWYSO3EulaqqfEiVuMAVy-tMgktiL3aCxH-Pw7alVHCyPf7N8xu_p-zAB0-MPUfYIFTqTerMbDYloNogPmJHJciyEKKuDu7tD9lJStcAgJUA2cATdli2okaJ4oh9OeejiQO95mFHnqewREt8lU0089DzNMfwjbjxZg6Ts2bk22ic524yA6Vc7_hk_JLrIyUXsgQNE_nZzPmQnrHHvRkTndysx-zz28tPF--Lq4_vPlycXxVWCjEXtW1qK6XFphWl7UqsoBYdYWfEtq-paSrsy2Yra-i7TPbSSAWqaQEEmErJ6pid7XV3y3aizmYD0Yx6F7PN-FMH4_TfN9591UP4oaXCVijIAi_3Aja6NDuvfYhGIyhZ6rpFaDJxevNEDN8XSrOeXLI0jsZTWJIuARrEVokVffUAvc7_6vMHrJTIs2G9Ui_ue74zextOBopbTyGlSP0dgqDX_PXv_PWav0bMfPWAt26fQx7Zjf_t2uy7Ulb3A8U_Zv_d8AtczcJb
CitedBy_id crossref_primary_10_1145_3638044
crossref_primary_10_1097_j_pain_0000000000001998
crossref_primary_10_1002_cpe_7060
crossref_primary_10_1016_j_cmpb_2020_105521
crossref_primary_10_1111_1754_9485_13193
crossref_primary_10_1049_cit2_12350
crossref_primary_10_1016_j_ajhg_2023_11_006
crossref_primary_10_1016_j_nicl_2020_102276
crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_3233_XST_210851
crossref_primary_10_1016_j_compbiomed_2022_106472
crossref_primary_10_1162_imag_a_00241
crossref_primary_10_3390_bioengineering11010086
crossref_primary_10_1016_j_media_2020_101713
crossref_primary_10_1007_s11042_024_18336_3
crossref_primary_10_1007_s00521_021_06816_8
crossref_primary_10_1016_j_jmbbm_2019_103442
crossref_primary_10_1007_s11042_023_16009_1
crossref_primary_10_1016_j_compbiomed_2022_106226
crossref_primary_10_1002_hbm_24729
crossref_primary_10_1016_j_eswa_2023_120637
crossref_primary_10_1016_j_compmedimag_2020_101770
crossref_primary_10_1038_s41597_020_0360_7
crossref_primary_10_47836_pjst_29_2_03
crossref_primary_10_1016_j_asoc_2022_109568
crossref_primary_10_1007_s12021_020_09462_y
crossref_primary_10_1038_s41598_024_71273_x
crossref_primary_10_1002_hbm_25210
crossref_primary_10_3389_fnhum_2024_1308549
crossref_primary_10_1371_journal_pone_0298328
crossref_primary_10_1016_j_nicl_2019_101981
crossref_primary_10_1038_s41598_023_29974_2
crossref_primary_10_3390_diagnostics12092055
crossref_primary_10_1016_j_compbiomed_2024_108326
crossref_primary_10_3174_ajnr_A6883
crossref_primary_10_3389_fnins_2023_1298514
crossref_primary_10_1212_WNL_0000000000209387
crossref_primary_10_1007_s12204_021_2273_9
crossref_primary_10_3389_fneur_2022_981653
crossref_primary_10_1038_s41597_022_01426_y
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_3390_app15052830
crossref_primary_10_1007_s42979_021_00835_x
crossref_primary_10_1161_STROKEAHA_122_040001
crossref_primary_10_1007_s43681_022_00195_z
crossref_primary_10_3390_app12010468
crossref_primary_10_1016_j_cortex_2021_11_008
crossref_primary_10_1016_j_compbiomed_2023_107913
crossref_primary_10_23934_2223_9022_2020_9_2_231_237
crossref_primary_10_1109_TMI_2023_3336788
crossref_primary_10_1177_15459683211068441
crossref_primary_10_3389_fneur_2019_00445
crossref_primary_10_3390_electronics14030543
crossref_primary_10_1093_brain_awaa027
crossref_primary_10_1161_STROKEAHA_119_025898
crossref_primary_10_1587_nolta_11_16
crossref_primary_10_3389_fnimg_2023_1099301
crossref_primary_10_1002_hbm_25474
crossref_primary_10_1007_s00429_023_02630_1
crossref_primary_10_1016_j_neuropsychologia_2025_109067
crossref_primary_10_7554_eLife_47895
crossref_primary_10_1016_j_compbiomed_2023_106717
crossref_primary_10_1016_j_heliyon_2023_e22412
crossref_primary_10_3390_diagnostics12112765
crossref_primary_10_1155_2021_7552185
crossref_primary_10_1016_j_compbiomed_2024_108509
crossref_primary_10_1002_mp_15936
crossref_primary_10_1007_s42979_024_03389_w
crossref_primary_10_1038_s41597_022_01401_7
crossref_primary_10_1016_j_compeleceng_2022_108345
crossref_primary_10_1155_2018_3524960
crossref_primary_10_3390_s21061952
crossref_primary_10_1162_imag_a_00446
crossref_primary_10_1038_s41597_023_02457_9
crossref_primary_10_3389_fmed_2024_1269742
crossref_primary_10_3788_CJL240614
crossref_primary_10_1186_s40644_022_00445_7
crossref_primary_10_3389_fnimg_2022_1098604
crossref_primary_10_1016_j_neuroimage_2023_120041
crossref_primary_10_3389_fninf_2018_00063
crossref_primary_10_1162_imag_a_00337
crossref_primary_10_1016_j_wneu_2024_01_059
crossref_primary_10_1088_1742_6596_2547_1_012007
crossref_primary_10_1126_sciadv_add3607
crossref_primary_10_3390_e23111429
crossref_primary_10_1016_j_clinph_2020_11_009
crossref_primary_10_1109_TCYB_2020_3027724
crossref_primary_10_1016_j_compbiomed_2023_106840
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_32604_cmc_2024_047027
crossref_primary_10_1002_hbm_25459
crossref_primary_10_1002_hbm_26701
crossref_primary_10_1016_j_bspc_2021_102959
crossref_primary_10_1016_j_jad_2018_10_087
crossref_primary_10_1109_JBHI_2020_2996783
crossref_primary_10_1007_s11682_023_00827_w
crossref_primary_10_1002_hbm_25015
crossref_primary_10_1080_21681163_2023_2264410
crossref_primary_10_1007_s11548_021_02451_9
crossref_primary_10_1016_j_compeleceng_2023_108926
crossref_primary_10_1016_j_nicl_2019_102118
crossref_primary_10_1007_s00330_019_06459_3
crossref_primary_10_3389_fnins_2022_836412
crossref_primary_10_1016_j_compbiomed_2022_106332
crossref_primary_10_1016_j_compbiomed_2023_107302
crossref_primary_10_1136_bmjopen_2021_053103
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1161_JAHA_121_025109
crossref_primary_10_3390_app13021087
crossref_primary_10_1049_ell2_12444
crossref_primary_10_1016_j_ajo_2021_06_004
crossref_primary_10_32604_cmc_2022_020998
crossref_primary_10_1016_j_media_2021_102208
crossref_primary_10_3390_app11041675
crossref_primary_10_1016_j_bbe_2022_01_002
crossref_primary_10_1212_WNL_0000000000207219
crossref_primary_10_1016_j_compmedimag_2022_102120
crossref_primary_10_1007_s11042_024_18622_0
crossref_primary_10_1109_TMI_2023_3298093
crossref_primary_10_1016_j_neucom_2023_126970
crossref_primary_10_1109_JBHI_2021_3113460
crossref_primary_10_1016_j_cmpb_2020_105728
crossref_primary_10_1038_s41598_023_39826_8
crossref_primary_10_1007_s10462_025_11146_5
Cites_doi 10.1161/STROKEAHA.109.572065
10.1161/STROKEAHA.107.485631
10.1097/01.WCB.0000100044.07481.97
10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y
10.3897/rio.2.e9113
10.1016/j.nicl.2015.06.013
10.1161/STROKEAHA.110.599340
10.1097/WCO.0b013e3283186f96
10.1212/WNL.0b013e31822e1482
10.1016/j.media.2016.07.009
10.1111/j.1747-4949.2012.00902.x
10.1016/S0140-6736(13)61953-4
10.1016/S0028-3908(99)00261-0
10.1161/CIR.0000000000000485
10.1002/ana.24309
10.1002/hbm.23110
10.1097/00004728-199403000-00005
10.3886/ICPSR36684.v1
10.1161/01.STR.0000087172.16305.CD
10.1161/01.STR.17.4.765
10.2214/ajr.149.2.351
10.1148/radiol.2222001731
10.1016/S1474-4422(10)70247-7
10.1016/j.jstrokecerebrovasdis.2012.09.018
10.1109/42.668698
10.1155/2000/421719
10.1161/STROKEAHA.109.577023
10.1016/S1474-4422(15)00012-5
10.3897/rio.3.e12259
10.1177/1545968307305302
10.15387/fcp_indi.atlas
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Nature Publishing Group Feb 2018
info:eu-repo/semantics/openAccess
Copyright © 2018, The Author(s) 2018 The Author(s)
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Nature Publishing Group Feb 2018
– notice: info:eu-repo/semantics/openAccess
– notice: Copyright © 2018, The Author(s) 2018 The Author(s)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
3HK
5PM
DOI 10.1038/sdata.2018.11
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database ProQuest
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
ExternalDocumentID PMC5819480
10852_69107
29461514
10_1038_sdata_2018_11
Genre Dataset
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P2C HD065702
– fundername: NICHD NIH HHS
  grantid: K12 HD055929
– fundername: NICHD NIH HHS
  grantid: K01 HD091283
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
3HK
5PM
ID FETCH-LOGICAL-c544t-6c76c55c17942cd213064de1da4bf6e7731f27b560fd76cf5a5808790040a3853
IEDL.DBID 7X7
ISSN 2052-4463
IngestDate Thu Aug 21 14:11:34 EDT 2025
Sat Apr 29 05:43:35 EDT 2023
Fri Jul 11 03:25:40 EDT 2025
Sat Aug 23 13:15:22 EDT 2025
Mon Jul 21 05:48:07 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Tue Jul 01 03:48:54 EDT 2025
Fri Feb 21 02:37:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files made available in this article.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-6c76c55c17942cd213064de1da4bf6e7731f27b560fd76cf5a5808790040a3853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
NFR/249795
S.-L.L. conceptualized the study, reviewed lesions, analyzed data, established archives, and contributed to the writing and editing of the manuscript. J.M.A. segmented and reviewed lesions, oversaw the organization to the segmentation process and contributed to the writing and editing of the manuscript. N.W.B. organized, segmented and reviewed lesions. M.S. provided the neuroradiology expertise and information. K.L.I. and H.K. performed data analysis. H.K. also performed data processing and generated the standardized dataset and probabilistic lesion maps. T.A. provided data visualization expertise and generated the figures/videos. J.C., D.S., A.S. J.I., C.J., W.N., D.V. and S.L. segmented and/or reviewed lesions. P.H., B.K., N.K., L.A.-Z., S.C.C., J.L., S.S., L.T.W., J.W., C.W., C.Y. collected and provided the MRI data. M.L., A.P., and A.S. handled the archiving of the data.
These authors contributed equally to this work.
ORCID 0000-0001-8769-994X
0000-0002-4950-1303
0000-0001-8644-956X
OpenAccessLink https://www.proquest.com/docview/2004064167?pq-origsite=%requestingapplication%
PMID 29461514
PQID 2004064167
PQPubID 2041912
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5819480
cristin_nora_10852_69107
proquest_miscellaneous_2007119847
proquest_journals_2004064167
pubmed_primary_29461514
crossref_primary_10_1038_sdata_2018_11
crossref_citationtrail_10_1038_sdata_2018_11
springer_journals_10_1038_sdata_2018_11
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-20
PublicationDateYYYYMMDD 2018-02-20
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wittsack (CR20) 2002; 222
Heuer, Ghosh, Robinson Sterling, Toro (CR29) 2016; 2
Stinear (CR14) 2010; 9
Nijland, van Wegen, Harmeling-van der Wel, Kwakkel (CR8) 2010; 41
Ren, Kaplan, Charette, Speller, Finklestein (CR4) 2000; 39
Liew (CR32) 2017
Burke Quinlan (CR6) 2015; 77
(CR5) 2015; 14
Prabhakaran (CR13) 2007; 22
Maier (CR23) 2017; 35
Cox (CR28) 2004; 22
Liew (CR31) 2017
Jongbloed (CR11) 1986; 17
Sled, Zijdenbos, Evans (CR26) 1998; 17
Feigin (CR2) 2014; 383
Riley (CR9) 2011; 42
Cramer (CR10) 2007; 38
Nouri, Cramer (CR12) 2011; 77
Fazekas, Chawluk, Alavi, Hurtig, Zimmerman (CR25) 1987; 149
Collins, Neelin, Peters, Evans (CR27) 1994; 18
Kwakkel, Kollen, Van der Grond, Prevo (CR3) 2003; 34
Marie-Héléne, Cramer (CR7) 2008; 21
Fiez, Damasio, Grabowski (CR16) 2000; 9
Pustina (CR21) 2016; 37
Montaner (CR17) 2003; 23
Benjamin (CR1) 2017; 135
Sakamoto (CR18) 2013; 8
Rorden, Brett (CR24) 2000; 12
Ito, Anglin, Liew (CR30) 2017; 3
Thomas (CR19) 2013; 22
Zhu, Lindenberg, Alexander, Schlaug (CR15) 2010; 41
de Haan, Clas, Juenger, Wilke, Karnath (CR22) 2015; 9
K Ito (BFsdata201811_CR30) 2017; 3
RW Cox (BFsdata201811_CR28) 2004; 22
LL Zhu (BFsdata201811_CR15) 2010; 41
K Heuer (BFsdata201811_CR29) 2016; 2
RHM Nijland (BFsdata201811_CR8) 2010; 41
Group, I.-C. (BFsdata201811_CR5) 2015; 14
JD Riley (BFsdata201811_CR9) 2011; 42
S Prabhakaran (BFsdata201811_CR13) 2007; 22
VL Feigin (BFsdata201811_CR2) 2014; 383
J Ren (BFsdata201811_CR4) 2000; 39
F Fazekas (BFsdata201811_CR25) 1987; 149
S.-L. Liew (BFsdata201811_CR32) 2017
JG Sled (BFsdata201811_CR26) 1998; 17
LYN Jongbloed (BFsdata201811_CR11) 1986; 17
LD Collins (BFsdata201811_CR27) 1994; 18
E Burke Quinlan (BFsdata201811_CR6) 2015; 77
H-J Wittsack (BFsdata201811_CR20) 2002; 222
Y Sakamoto (BFsdata201811_CR18) 2013; 8
C Rorden (BFsdata201811_CR24) 2000; 12
S Nouri (BFsdata201811_CR12) 2011; 77
D Pustina (BFsdata201811_CR21) 2016; 37
O Maier (BFsdata201811_CR23) 2017; 35
G Kwakkel (BFsdata201811_CR3) 2003; 34
M Marie-Héléne (BFsdata201811_CR7) 2008; 21
J Montaner (BFsdata201811_CR17) 2003; 23
EJ Benjamin (BFsdata201811_CR1) 2017; 135
RGR Thomas (BFsdata201811_CR19) 2013; 22
JA Fiez (BFsdata201811_CR16) 2000; 9
SC Cramer (BFsdata201811_CR10) 2007; 38
B de Haan (BFsdata201811_CR22) 2015; 9
C Stinear (BFsdata201811_CR14) 2010; 9
S.-L. Liew (BFsdata201811_CR31) 2017
References_xml – volume: 41
  start-page: 745
  year: 2010
  end-page: 750
  ident: CR8
  article-title: Presence of finger extension and shoulder abduction within 72 Hours after stroke predicts functional recovery
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.572065
– volume: 38
  start-page: 2108
  year: 2007
  end-page: 2114
  ident: CR10
  article-title: Predicting functional gains in a stroke trial
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.485631
– volume: 23
  start-page: 1403
  year: 2003
  end-page: 1407
  ident: CR17
  article-title: Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1097/01.WCB.0000100044.07481.97
– volume: 9
  start-page: 192
  year: 2000
  end-page: 211
  ident: CR16
  article-title: Lesion segmentation and manual warping to a reference brain: Intra- and interobserver reliability
  publication-title: Human Brain Mapping
  doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y
– volume: 2
  start-page: e9113
  year: 2016
  ident: CR29
  article-title: Open Neuroimaging Laboratory
  publication-title: Research Ideas and Outcomes
  doi: 10.3897/rio.2.e9113
– volume: 9
  start-page: 69
  year: 2015
  end-page: 74
  ident: CR22
  article-title: Fast semi-automated lesion demarcation in stroke
  publication-title: NeuroImage. Clinical
  doi: 10.1016/j.nicl.2015.06.013
– volume: 42
  start-page: 421
  year: 2011
  end-page: 426
  ident: CR9
  article-title: Anatomy of stroke injury predicts gains from therapy
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.599340
– volume: 21
  start-page: 654
  year: 2008
  end-page: 659
  ident: CR7
  article-title: Biomarkers of recovery after stroke
  publication-title: Current opinion in neurology
  doi: 10.1097/WCO.0b013e3283186f96
– volume: 77
  start-page: 1076
  year: 2011
  end-page: 1083
  ident: CR12
  article-title: Anatomy and physiology predict response to motor cortex stimulation after stroke
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31822e1482
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: CR23
  article-title: ISLES 2015—A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.07.009
– volume: 8
  start-page: 321
  year: 2013
  end-page: 326
  ident: CR18
  article-title: Early ischaemic diffusion lesion reduction in patients treated with intravenous tissue plasminogen activator: infrequent, but significantly associated with recanalization
  publication-title: International Journal of Stroke
  doi: 10.1111/j.1747-4949.2012.00902.x
– volume: 383
  start-page: 245
  year: 2014
  end-page: 254
  ident: CR2
  article-title: Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(13)61953-4
– volume: 39
  start-page: 860
  year: 2000
  end-page: 865
  ident: CR4
  article-title: Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(99)00261-0
– volume: 135
  start-page: e146
  year: 2017
  end-page: e603
  ident: CR1
  article-title: Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000485
– volume: 77
  start-page: 132
  year: 2015
  end-page: 145
  ident: CR6
  article-title: Neural function, injury, and stroke subtype predict treatment gains after stroke
  publication-title: Ann Neurol
  doi: 10.1002/ana.24309
– volume: 37
  start-page: 1405
  year: 2016
  end-page: 1421
  ident: CR21
  article-title: Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23110
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  ident: CR27
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: Journal of Computer Assisted Tomography
  doi: 10.1097/00004728-199403000-00005
– year: 2017
  ident: CR31
  publication-title: ICPSR—Interuniversity Consortium for Political and Social Research
  doi: 10.3886/ICPSR36684.v1
– volume: 34
  start-page: 2181
  year: 2003
  end-page: 2186
  ident: CR3
  article-title: Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke
  publication-title: Stroke
  doi: 10.1161/01.STR.0000087172.16305.CD
– volume: 17
  start-page: 765
  year: 1986
  end-page: 776
  ident: CR11
  article-title: Prediction of function after stroke: a critical review
  publication-title: Stroke
  doi: 10.1161/01.STR.17.4.765
– volume: 149
  start-page: 351
  year: 1987
  end-page: 356
  ident: CR25
  article-title: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging
  publication-title: American Journal of Roentgenology
  doi: 10.2214/ajr.149.2.351
– volume: 222
  start-page: 397
  year: 2002
  end-page: 403
  ident: CR20
  article-title: MR Imaging in Acute Stroke: Diffusion-weighted and Perfusion Imaging Parameters for Predicting Infarct Size
  publication-title: Radiology
  doi: 10.1148/radiol.2222001731
– volume: 9
  start-page: 1228
  year: 2010
  end-page: 1232
  ident: CR14
  article-title: Prediction of recovery of motor function after stroke
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(10)70247-7
– volume: 22
  start-page: 906
  year: 2013
  end-page: 909
  ident: CR19
  article-title: Apparent diffusion coefficient thresholds and diffusion lesion volume in acute stroke
  publication-title: Journal of Stroke and Cerebrovascular Diseases
  doi: 10.1016/j.jstrokecerebrovasdis.2012.09.018
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: CR26
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.668698
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  ident: CR24
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav Neurol
  doi: 10.1155/2000/421719
– year: 2017
  ident: CR32
  publication-title: Child Mind Institute
– volume: 41
  start-page: 910
  year: 2010
  end-page: 915
  ident: CR15
  article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.577023
– volume: 22
  start-page: e1440
  year: 2004
  ident: CR28
  article-title: A (sort of) new image data format standard: Nifti-1
  publication-title: Neuroimage
– volume: 14
  start-page: 485
  year: 2015
  end-page: 496
  ident: CR5
  article-title: Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(15)00012-5
– volume: 3
  start-page: e12259
  year: 2017
  ident: CR30
  article-title: Semi-automated Robust Quantification of Lesions (SRQL) Toolbox
  publication-title: Research Ideas and Outcomes
  doi: 10.3897/rio.3.e12259
– volume: 22
  start-page: 64
  year: 2007
  end-page: 71
  ident: CR13
  article-title: Inter-individual variability in the capacity for motor recovery after ischemic stroke
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968307305302
– volume: 37
  start-page: 1405
  year: 2016
  ident: BFsdata201811_CR21
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23110
– volume: 14
  start-page: 485
  year: 2015
  ident: BFsdata201811_CR5
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(15)00012-5
– volume: 17
  start-page: 87
  year: 1998
  ident: BFsdata201811_CR26
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.668698
– volume: 77
  start-page: 1076
  year: 2011
  ident: BFsdata201811_CR12
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31822e1482
– volume: 41
  start-page: 745
  year: 2010
  ident: BFsdata201811_CR8
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.572065
– volume: 18
  start-page: 192
  year: 1994
  ident: BFsdata201811_CR27
  publication-title: Journal of Computer Assisted Tomography
  doi: 10.1097/00004728-199403000-00005
– volume: 9
  start-page: 69
  year: 2015
  ident: BFsdata201811_CR22
  publication-title: NeuroImage. Clinical
  doi: 10.1016/j.nicl.2015.06.013
– volume: 135
  start-page: e146
  year: 2017
  ident: BFsdata201811_CR1
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000485
– volume: 23
  start-page: 1403
  year: 2003
  ident: BFsdata201811_CR17
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1097/01.WCB.0000100044.07481.97
– volume: 8
  start-page: 321
  year: 2013
  ident: BFsdata201811_CR18
  publication-title: International Journal of Stroke
  doi: 10.1111/j.1747-4949.2012.00902.x
– volume: 34
  start-page: 2181
  year: 2003
  ident: BFsdata201811_CR3
  publication-title: Stroke
  doi: 10.1161/01.STR.0000087172.16305.CD
– volume: 17
  start-page: 765
  year: 1986
  ident: BFsdata201811_CR11
  publication-title: Stroke
  doi: 10.1161/01.STR.17.4.765
– volume: 222
  start-page: 397
  year: 2002
  ident: BFsdata201811_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.2222001731
– volume: 21
  start-page: 654
  year: 2008
  ident: BFsdata201811_CR7
  publication-title: Current opinion in neurology
  doi: 10.1097/WCO.0b013e3283186f96
– volume: 9
  start-page: 1228
  year: 2010
  ident: BFsdata201811_CR14
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(10)70247-7
– volume: 9
  start-page: 192
  year: 2000
  ident: BFsdata201811_CR16
  publication-title: Human Brain Mapping
  doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y
– volume: 42
  start-page: 421
  year: 2011
  ident: BFsdata201811_CR9
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.599340
– volume: 22
  start-page: e1440
  year: 2004
  ident: BFsdata201811_CR28
  publication-title: Neuroimage
– volume: 2
  start-page: e9113
  year: 2016
  ident: BFsdata201811_CR29
  publication-title: Research Ideas and Outcomes
  doi: 10.3897/rio.2.e9113
– volume: 38
  start-page: 2108
  year: 2007
  ident: BFsdata201811_CR10
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.485631
– volume: 22
  start-page: 906
  year: 2013
  ident: BFsdata201811_CR19
  publication-title: Journal of Stroke and Cerebrovascular Diseases
  doi: 10.1016/j.jstrokecerebrovasdis.2012.09.018
– volume: 77
  start-page: 132
  year: 2015
  ident: BFsdata201811_CR6
  publication-title: Ann Neurol
  doi: 10.1002/ana.24309
– year: 2017
  ident: BFsdata201811_CR31
  doi: 10.3886/ICPSR36684.v1
– volume: 12
  start-page: 191
  year: 2000
  ident: BFsdata201811_CR24
  publication-title: Behav Neurol
  doi: 10.1155/2000/421719
– volume: 149
  start-page: 351
  year: 1987
  ident: BFsdata201811_CR25
  publication-title: American Journal of Roentgenology
  doi: 10.2214/ajr.149.2.351
– volume: 383
  start-page: 245
  year: 2014
  ident: BFsdata201811_CR2
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(13)61953-4
– volume: 35
  start-page: 250
  year: 2017
  ident: BFsdata201811_CR23
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.07.009
– year: 2017
  ident: BFsdata201811_CR32
  doi: 10.15387/fcp_indi.atlas
– volume: 39
  start-page: 860
  year: 2000
  ident: BFsdata201811_CR4
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(99)00261-0
– volume: 22
  start-page: 64
  year: 2007
  ident: BFsdata201811_CR13
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968307305302
– volume: 41
  start-page: 910
  year: 2010
  ident: BFsdata201811_CR15
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.577023
– volume: 3
  start-page: e12259
  year: 2017
  ident: BFsdata201811_CR30
  publication-title: Research Ideas and Outcomes
  doi: 10.3897/rio.3.e12259
SSID ssj0001340570
Score 2.5355694
Snippet Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging...
SourceID pubmedcentral
cristin
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 180011
SubjectTerms 692/617/375/534
692/698/1688/64
692/700/1421/1628
692/700/1421/65
Adult
Algorithms
Brain - diagnostic imaging
Brain - pathology
Data Descriptor
Datasets
Humanities and Social Sciences
Humans
Image processing
Learning algorithms
Magnetic Resonance Imaging
multidisciplinary
Neuroimaging
Rehabilitation
Science
Segmentation
Stroke
Stroke - diagnostic imaging
Stroke - pathology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0heuFSlQIlBSojIdpKhObDjrOHCiEEQkj0xEqcGtmO06LuessmSO2_Z8bxLlqW9hpP5Ngzk3m2x28ADjBESY2BLK4HmYi5amysDPqV0YURdWOLxOfmXH8rLof86lbcPlEKhQlsX1zaUT2p4XR0_Of-7wk6_Nf-ynj5paVkSsrSKo_plu8rDEqSfPQ6IH2_3ZITMkkCy-bSW4h-jXcqtxiflkDncu7kswNUH5cu3sDrACjZaW8B67Bi3VtYDy7bsk-BV_rzBnw_ZSPK-z5iNETWb9sz-r7WdmzSsLabTn5ZphwuxD2LANNUQILdjfGn0-Lzmo0VUZiykaVNNtbaH-Nwd8m1mzC8OL85u4xDeYXYCM67uDAS9SEMuWRm6iylxUht01px3RRWyjxtMqkREjU1SjZCiTIp5YD8XuUY5rdg1U2c3QYmcTpylWqpteGIaRQ3jbSZLFWeGV0WEWyH6a0cWjaxkoqsKhCqyAiOZvNdmUBLTtUxRpU_Hs_LyiuqIkXhciWCw7n4756P41-CuzPlVTOropqbCGAQg2K3-_NmdCg6JVHOTh68jEzTAUbtCN71up73lA04IUAegVywgrkAkXUvtri7n560WyD04mUSwceZvTx91osDeP__AezAGgn62_XJLqx20we7h_io0x-85T8Cwm4QSg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heuGCCuURCpWREG0lQvOw4-wRrVghJDgViROR7TgUsZsgHP5_Zxzvrra0Um9RMpGdGY_nczz-BuAEQ5TUGMjiepSJmKvGxsqgXxldGFE3tkh8bs7NbXF1x6_vxX04rO5CWuVAaemn6Xl22A9HCZOUiVWe00neD8TaTgN6XIyXv1RyQh9JYNJM8nL1LUS4xjtOuxqD3gHL9_mRf2yS-tgz-QibATSyi6GbW7Bm223YCm7p2LfAHf39EzxcsCnldp8xKovFhl_zjPrnbM-6hrn-tXu2TOHXd54pgGkqEsGeZjixOLxfs5kimlKG-kCbMWcfZ-F8Uut24G5y-XN8FYcSCrERnPdxYSTqXBhyu8zUWUoLjtqmteK6KayUedpkUiPsaWqUbIQSZVLKEfm2yjGU78J627V2H5hEdeQq1VJrwxG3KG4aaTNZqjwzuiwi2A_qrVocvcQ8KrKqQDgiIzib67sygXqcKmBMK78FnpeVN1RFhsIlSQSnC_GXgXPjX4KHc-NVwfUc1dVEkII4E5s9XjxGp6GdENXa7s3LyDQdYWSOYG-w9aKlbMQJ5fEI5MooWAgQIffqk_bplyfmFgiveJlE8HU-Xpbd-usHHPy35GfYoCt_mD45hPX-9c0eIRzq9RfvBL8BSvYKgw
  priority: 102
  providerName: Springer Nature
Title A large, open source dataset of stroke anatomical brain images and manual lesion segmentations
URI https://link.springer.com/article/10.1038/sdata.2018.11
https://www.ncbi.nlm.nih.gov/pubmed/29461514
https://www.proquest.com/docview/2004064167
https://www.proquest.com/docview/2007119847
http://hdl.handle.net/10852/69107
https://pubmed.ncbi.nlm.nih.gov/PMC5819480
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9sILYhuwwKg8CfEhLSwfdpw-oVJtmiptQsCkPhHZjgMTrTOW7P_nznVbdQNeEik5KYnvzvfz-fI7gNcYoqTGQBbXw0zEXDU2Vgb9yujCiLqxReJrc84virNLPpmKaUi4daGscjkn-om6bg3lyI9Jmxg-00J-vP4dU9co2l0NLTQewjZRl1FJl5zKdY4lJziSBGrNJC-PO6q7pIKu8oPvGWS8J7nNoHQPad4vmLyza-qD0ekTeBxQJBst1L4DD6zbhZ3gpx17F8ik3-_B9xGbUbH3EaM-WWyRq2f0fp3tWduwrr9pf1mmHK6-PXUA09Q1gl3Ncabp8HrN5op4S9nMUmaNdfbHPPyw5LqncHl68m18FoeeCrERnPdxYSQqQRjyw8zUWUorkNqmteK6KayUedpkUiMOamqUbIQSZVLKIY2-yjG2P4Mt1zq7D0zicOQq1VJrwxHIKG4aaTNZqjwzuiwi2A_DWzk0Z6IiFVlVID6RERwtx7sygYucWmLMKr8nnpeVV1RFisI1SgRvVuLXCxKOfwkeLJVXBV_sqrXlRHC4uo1eRFsjytn21stItCAM1RE8X-h69aRsyAn28QjkhhWsBIihe_OOu_rpmboF4i1eJhG8XdrL-rX--gEv_v8BL-ERCfpf6pMD2Opvbu0rBEW9HnjLH8D2aDT5OsHzp5OLz1_w6rgYD3yiAY_nvPwD-nUTIw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcUMurgQJG4ik1NHGcOHtAqECrLW1XCLVSTwTbcUrFblKaVIg_xW9kxkl2tRS49RpPFMfz-uwZzwA8QRclNToyPx_y2BeqsL4yqFdGJybOC5sELjfnYJyMjsSH4_h4CX71d2EorbK3ic5Q55WhM_JN4ia6zzCRb86--9Q1iqKrfQuNViz27M8fuGWrX---R_4-5Xxn-_DdyO-6CvgmFqLxEyNxGrEhSeQm5yFh8NyGuRK6SKyUUVhwqREJFDlSFrGK0yCVQ_q-ilLqEoEmf1lEuJUZwPLb7fHHT_NTnYgAUNAV8wyidLOmTE9KIUtfuS5FxuluuegGL2Hbyymaf8RpnfvbWYEbHW5lW62grcKSLW_CamcZavaiK1_98hZ83mITSi_fYNSZi7XRAUbzq23DqoLVzXn1zTJV4n7fFStgmvpUsNMp2rYan-dsqqhSKptYOstjtT2Zdlekyvo2HF3Jet-BQVmVdg2YxOWIVKil1kYgdFLCFNJymaqIG50mHqx1y5uVqEBU_DTmWYKISHqw0a93Zrrq59SEY5K5KHyUZo5RGTEKd0UePJuRn7VlP_5FuN4zL-u0v87msurB49kw6i0FY1RpqwtHI8NwiODAg7str2df4kNBQFN4IBekYEZANcEXR8rTr642eIwIT6SBB897eZlP668_cO__P_AIro0OD_az_d3x3n24Ti-5C_3BOgya8wv7ACFZox92esDgy1Wr3m8zYEne
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOXVQAEj8ZQaNnHsOHtAqKKsWgoVByrtiWA7DlTsJqVJhfhr_DpmnGRXS4Fbr_FEcTyvz57xDMAjdFHKoCMLizGXodClC7VFvbImtbIoXRr53Jz3h-nekXg7ldM1-DXchaG0ysEmekNd1JbOyEfETXSfcapGZZ8W8WF38urke0gdpCjSOrTT6ETkwP38gdu35uX-LvL6MeeTNx9f74V9h4HQSiHaMLUKpyQtSSW3BY8JjxcuLrQwZeqUSuKSK4OooCyQspRaZlGmxjQXnWTUMQLN_yWVyJh0TE3V8nwnISgU9WU9oyQbNZTzSclk2Qvfr8h6La5WHeI5lHs-WfOPiK13hJNrcLVHsGynE7kNWHPVddjobUTDnvWFrJ_fgE87bEaJ5tuMenSxLk7AaH6Na1ldsqY9rb85pivc-fuyBcxQxwp2PEcr1-Dzgs011UxlM0eneqxxX-b9ZamquQlHF7Lat2C9qiu3CUzhciQ6NsoYKxBEaWFL5bjKdMKtydIANvvlzStUJSqDKnmeIjZSAWwP653bvg46teOY5T4en2S5Z1ROjML9UQBPFuQnXQGQfxFuDczLezvQ5EupDeDhYhg1mMIyunL1madRcTxGmBDA7Y7Xiy_xsSDIKQJQK1KwIKDq4Ksj1fFXXyVcItYTWRTA00FeltP66w_c-f8PPIDLqHD5u_3Dg7twhd7xN_ujLVhvT8_cPcRmrbnvlYDB54vWut_e20yu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+large%2C+open+source+dataset+of+stroke+anatomical+brain+images+and+manual+lesion+segmentations&rft.jtitle=Scientific+data&rft.au=Liew%2C+Sook-lei&rft.au=Anglin%2C+Julia+M&rft.au=Banks%2C+Nick+W&rft.au=Sondag%2C+Matt&rft.date=2018-02-20&rft.pub=Nature+Publishing+Group&rft.eissn=2052-4463&rft.volume=5&rft.spage=180011&rft_id=info:doi/10.1038%2Fsdata.2018.11&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon