Regulation of Prolactin Receptor Gene Expression in the Rat Choroid Plexus via Transcriptional Activation of Multiple First Exons during Postnatal Development and Lactation

Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is regulated in a tissue-specific manner via the transcriptional activation of five distinct first exons, i.e., E11, E12, E13, E14, and E15. In the...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 62; no. 1; pp. 49 - 56
Main Authors HIRAI, Junko, NISHITA, Masahiro, NAKAO, Nobuhiro, SAITO, Toru R., TANAKA, Minoru
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is regulated in a tissue-specific manner via the transcriptional activation of five distinct first exons, i.e., E11, E12, E13, E14, and E15. In the present study, we investigated the expression profiles of these first exon variants of PRLR mRNA in the rat choroid plexus, which is considered to be a site of receptor-mediated PRL transport from the blood to cerebrospinal fluid. Real-time PCR analysis revealed that E13-, E14-, and E15-PRLR mRNA expression levels increased in the choroid plexus in male and female rats during postnatal development, with markedly higher level of E14-PRLR mRNA. In female rats, the E14-PRLR mRNA expression levels increased markedly during lactation compared with the diestrus state, whereas there was no increase in the E13- and E15-PRLR mRNA levels. The E14-PRLR mRNA expression pattern was similar to that of the total PRLR mRNA. The PRL plasma concentration generally correlated with the E14-PRLR mRNA expression levels in both sexes. These findings suggest that PRLR gene expression in the choroid plexus is upregulated mainly via the transcriptional activation of the E14-first exon.
AbstractList Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is regulated in a tissue-specific manner via the transcriptional activation of five distinct first exons, i.e., E1(1), E1(2), E1(3), E1(4), and E1(5). In the present study, we investigated the expression profiles of these first exon variants of PRLR mRNA in the rat choroid plexus, which is considered to be a site of receptor-mediated PRL transport from the blood to cerebrospinal fluid. Real-time PCR analysis revealed that E1(3)-, E1(4)-, and E1(5)-PRLR mRNA expression levels increased in the choroid plexus in male and female rats during postnatal development, with markedly higher level of E1(4)-PRLR mRNA. In female rats, the E1(4)-PRLR mRNA expression levels increased markedly during lactation compared with the diestrus state, whereas there was no increase in the E1(3)- and E1(5)-PRLR mRNA levels. The E1(4)-PRLR mRNA expression pattern was similar to that of the total PRLR mRNA. The PRL plasma concentration generally correlated with the E1(4)-PRLR mRNA expression levels in both sexes. These findings suggest that PRLR gene expression in the choroid plexus is upregulated mainly via the transcriptional activation of the E1(4)-first exon.
Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is regulated in a tissue-specific manner via the transcriptional activation of five distinct first exons, i.e., E1 sub(1), E1 sub(2), E1 sub(3), E1 sub(4), and E1 sub(5). In the present study, we investigated the expression profiles of these first exon variants of PRLR mRNA in the rat choroid plexus, which is considered to be a site of receptor-mediated PRL transport from the blood to cerebrospinal fluid. Real-time PCR analysis revealed that E1 sub(3)-, E1 sub(4)-, and E1 sub(5)-PRLR mRNA expression levels increased in the choroid plexus in male and female rats during postnatal development, with markedly higher level of E1 sub(4)-PRLR mRNA. In female rats, the E1 sub(4)-PRLR mRNA expression levels increased markedly during lactation compared with the diestrus state, whereas there was no increase in the E1 sub(3)- and E1 sub(5)-PRLR mRNA levels. The E1 sub(4)-PRLR mRNA expression pattern was similar to that of the total PRLR mRNA. The PRL plasma concentration generally correlated with the E1 sub(4)-PRLR mRNA expression levels in both sexes. These findings suggest that PRLR gene expression in the choroid plexus is upregulated mainly via the transcriptional activation of the E1 sub(4)-first exon.
Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is regulated in a tissue-specific manner via the transcriptional activation of five distinct first exons, i.e., E11, E12, E13, E14, and E15. In the present study, we investigated the expression profiles of these first exon variants of PRLR mRNA in the rat choroid plexus, which is considered to be a site of receptor-mediated PRL transport from the blood to cerebrospinal fluid. Real-time PCR analysis revealed that E13-, E14-, and E15-PRLR mRNA expression levels increased in the choroid plexus in male and female rats during postnatal development, with markedly higher level of E14-PRLR mRNA. In female rats, the E14-PRLR mRNA expression levels increased markedly during lactation compared with the diestrus state, whereas there was no increase in the E13- and E15-PRLR mRNA levels. The E14-PRLR mRNA expression pattern was similar to that of the total PRLR mRNA. The PRL plasma concentration generally correlated with the E14-PRLR mRNA expression levels in both sexes. These findings suggest that PRLR gene expression in the choroid plexus is upregulated mainly via the transcriptional activation of the E14-first exon.
Author NAKAO, Nobuhiro
HIRAI, Junko
NISHITA, Masahiro
TANAKA, Minoru
SAITO, Toru R.
Author_xml – sequence: 1
  fullname: HIRAI, Junko
  organization: Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
– sequence: 2
  fullname: NISHITA, Masahiro
  organization: Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
– sequence: 3
  fullname: NAKAO, Nobuhiro
  organization: Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
– sequence: 4
  fullname: SAITO, Toru R.
  organization: Laboratory of Behavioral Neuroscience, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
– sequence: 5
  fullname: TANAKA, Minoru
  organization: Laboratory of Animal Physiology, Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23357946$$D View this record in MEDLINE/PubMed
BookMark eNpNkcuO0zAUQC00iHnAki3ykk2KX4mT5ah0BqQiqmpYR45z03rk2sF2qs4_8ZG401Kxsa17j4_u4xZdOe8AoY-UzGjJ6y9wGJUzu1nFZqJ5g25oXdNCUsau8psLWlBeymt0G-MzIUxK1rxD14znYCOqG_RnDZvJqmS8w37Aq-Ct0sk4vAYNY_IBP4IDvDiMAWI8UjmXtoDXKuH51gdveryycJgi3huFn4JyUQczHo3K4vss21_0PyabzGgBP5gQU7Z6F3E_BeM2eOVjcirlP19hD9aPO3AJK9fjZa7oVfEevR2UjfDhfN-hXw-Lp_m3Yvnz8fv8flnoUohUVPVQN13VawmEctINNLddkYH1ohw0kV1Tsr6shNSiq3g3gMyz6CQRAy1rIhS_Q59P3jH43xPE1O5M1GCtcuCn2ObBi5rKijcZLU6oDj7GAEM7BrNT4aWl5MjV7XlBbcVaceQ_ndVTt4P-Qv_bSAYWJ-A5JrWBC6BCMtrC_zr6erCWkJJf8nqrQguO_wVkmqwI
CitedBy_id crossref_primary_10_1016_j_physbeh_2014_10_036
crossref_primary_10_1016_j_brainres_2014_04_018
crossref_primary_10_31829_2691_5502_avs2018_1_1__101
crossref_primary_10_1007_s00441_018_2858_2
crossref_primary_10_1007_s12020_017_1346_x
crossref_primary_10_1016_j_yfrne_2021_100913
crossref_primary_10_1530_JME_14_0212
crossref_primary_10_1159_000354701
Cites_doi 10.1210/endo-120-5-1846
10.1677/jme.0.0230013
10.1677/jme.1.01702
10.1074/jbc.272.22.14263
10.1210/mend-3-4-674
10.1677/jme.0.0300031
10.1002/cne.22208
10.1210/er.19.3.225
10.1210/endo.143.6.8826
10.1210/mend-4-8-1136
10.1016/0018-506X(88)90030-X
10.1677/joe.0.1490335
10.1210/en.133.1.135
10.1080/07435800701764022
10.1074/jbc.273.40.26225
10.1016/0006-8993(94)91269-6
10.1111/j.1365-2826.1994.tb00572.x
10.1210/me.10.6.661
10.1677/jme.0.0310221
10.1210/en.130.3.1747
10.1210/en.136.12.5608
10.3109/07435807609073912
10.1210/en.131.2.698
10.1002/(SICI)1096-9861(19970922)386:2<161::AID-CNE1>3.0.CO;2-#
10.1016/S0021-9258(17)36838-2
10.1210/endo-93-3-660
10.1159/000069510
10.1016/0169-328X(92)90207-R
10.1016/0378-1119(93)90104-B
10.1111/j.1365-2826.2007.01565.x
10.1016/0006-8993(92)90599-5
10.1210/en.137.2.631
ContentType Journal Article
Copyright 2013 Japanese Association for Laboratory Animal Science
Copyright_xml – notice: 2013 Japanese Association for Laboratory Animal Science
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
DOI 10.1538/expanim.62.49
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 56
ExternalDocumentID 10_1538_expanim_62_49
23357946
article_expanim_62_1_62_12_0053_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
AAUGY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
FRP
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
PGMZT
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c544t-68f89b6dc7e0130bf177260f2d45fc07b952d5647c4b63bfe7794b704f15804a3
IEDL.DBID M48
ISSN 1341-1357
IngestDate Thu Aug 15 23:44:21 EDT 2024
Fri Aug 23 03:09:13 EDT 2024
Fri Sep 17 22:56:48 EDT 2021
Thu Aug 17 20:24:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-68f89b6dc7e0130bf177260f2d45fc07b952d5647c4b63bfe7794b704f15804a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.62.49
PMID 23357946
PQID 1534817639
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1534817639
crossref_primary_10_1538_expanim_62_49
pubmed_primary_23357946
jstage_primary_article_expanim_62_1_62_12_0053_article_char_en
PublicationCentury 2000
PublicationDate 2013
2013-00-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2013
Publisher Japanese Association for Laboratory Animal Science
Publisher_xml – name: Japanese Association for Laboratory Animal Science
References 3. Bakowska, J.C. and Morrell, J.I. 1997. Atlas of the neurons that express mRNA forthe long form of the prolactin receptor in the forebrain of the female rat. J. Comp. Neurol. 386: 161-177.
23. Moore, R.C. and Oka, T. 1993. Cloning and sequencing of the cDNA encoding the murine mammary gland long-form prolactin receptor. Gene 134: 263-265.
25. Nagano, M. and Kelly, P.A. 1994. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J. Biol. Chem. 269: 13337-13345.
33. Sugiyama, T., Minoura, H., Toyoda, N., Sakaguchi, K., Tanaka, M., Sudo, S., and Nakashima, K. 1996. Pup contact induces the expression of long form prolactin receptor mRNA in the brain of female rats: effects of ovariectomy and hypophysectomy on receptor gene expression. J. Endocrinol. 149: 335-340.
5. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., and Kelly, P.A. 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev.,19: 225-268.
12. Di Carlo, R., Muccioli, G., Papotti, M., and Bussolati, G. 1992. Characterization of prolactin receptor in human brain and choroid plexus. Brain Res. 570: 341-346.
4. Bakowska, J.C. and Morrell, J.I. 2003. The distribution of mRNA for the short form of the prolactin receptor in the forebrain of the female rat. Brain Res. Mol. Brain Res.,116: 50-58.
11. Davis, J.A. and Linzer, D.I. 1989. Expression of multiple forms of the prolactin receptor in mouse liver. Mol. Endocrinol. 3: 674-680.
31. Pi, X.J. and Grattan, D.R. 1999. Increased expression of both short and long forms of prolactin receptor mRNA in hypothalamic nuclei of lactating rats. J. Mol. Endocrinol. 23: 13-22.
10. Das, R. and Vonderhaar, B.K. 1995. Transduction of prolactin’s (PRL) growth signal through both long and short forms of the PRL receptor. Mol. Endocrinol.,9: 1750-1759.
22. Moldrup, A., Ormandy, C., Nagano, M., Murthy, K., Banville, D., Tronche, F., and Kelly, P.A. 1996. Differential promoter usage in prolactin receptor gene expression: hepatocyte nuclear factor 4 binds to and activates the prpmoter preferentially active in the liver. Mol. Endocrinol. 10: 661-671.
27. Nogami, H., Hoshino, R., Ogasawara, K., Miyamoto, S., and Hisano, S. 2007. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland. J. Neuroendocrinol. 19: 583-593.
18. Hu, Z.Z., Zhuang, L., Meng, J., and Dufau, M.L. 1998. Transcriptional regulation of the generic promoter III of the rat prolactin receptor gene by C/EBPβ and SP1. J. Biol. Chem. 273: 26225-26235.
17. Hu, Z., Zhuang, L., Guan, X., Meng, J., and Dufau, M. 1997. Steroidgenic factor-1 is an essential transcriptional activator for gonad-specific expression of promoter I of the rat prolactin receptor gene. J. Biol. Chem. 272: 14263-14271.
37. Walsh, R.J., Slaby, F.J., and Posner, B.I. 1987. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology 120: 1846-1850.
15. Fujikawa, T., Soya, H., Yoshizato, H., Sakaguchi, K., Doh-Ura, K., Tanaka, M., and Nakashima, K. 1995. Restraint stress enhances the gene expression of prolactin receptor long form at the choroid plexus. Endocrinology 136: 5608-5613.
32. Shirota, M., Banville, D., Ali, S., Jolicoeur, C., Boutin, J.M., Edery, M., Djiane, J., and Kelly, P.A. 1990. Expression of two forms of prolactin receptor in rat ovary and liver. Mol. Endocrinol. 4: 1136-1143.
36. Trott, J.F., Hovey, R.C., Koduri, S., and Vonderhaar, B.K. 2003. Alternative splicing to exon 11 of human prolactin receptor gene results in multiple isoforms including a secreted prolactin-binding protein. J. Mol. Endocrinol. 30: 31-47.
24. Muccioli, G. and Di Carlo, R. 1994. Modulation of prolactin receptors in the rat hypothalamus in response to changes in serum concentration of endogenous prolactin or to ovine prolactin administration. Brain Res. 663: 244-250.
30. Pi, X., Zhang, B., Li, J., and Voogt, J.L. 2003. Promoter usage and estrogen regulation of prolactin receptor gene in the brain of the female rat. Neuroendocrinology 77: 187-197.
20. Kobayashi, M., Suzuki, M., Saito, T.R., and Tanaka, M. 2007. Developmental changes in the expression levels of alternative first exons of prolactin receptor gene in rat brain. Endocr. Res. 32: 143-151.
7. Brown, R.S., Kokay, I.C., Herbison, A.E., and Grattan, D.R. 2010. Distribution of prolactin-responsive neurons in the mouse forebrain. J. Comp. Neurol. 518: 92-102.
2. Augustine, R.A., Kokay, I.C., Andrews, Z.B., Ladyman, S.R., and Grattan, D.R. 2003. Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J. Mol. Endocrinol. 31: 221-232.
16. Hu, Z., Zhuang, L., and Dufau, M.L. 1996. Multiple and tissue-specific promoter control of gonadal and non-gonadal prolactin receptor gene expression. J. Biol. Chem. 271: 10242-10246.
13. Escalada, J., Cacicedo, L., Ortego, J., Melian, E., and Sánchez-Franco, F. 1996. Prolactin gene expression and secretion during pregnancy and lactation in the rat: role of dopamine and vasoactive intestinal peptide. Endocrinology 137: 631-637.
8. Chiu, S., Koos, R.D., and Wise, P.M. 1992. Detection of prolactin receptor (PRL-R) mRNA in the rat hypothalamus and pituitary gland. Endocrinology 130: 1747-1749.
1. Anderson, G.M., Kieser, D.C., Steyn, F.J., and Grattan, D.R. 2008. Hypothalamic prolactin receptor messenger ribonucleic acid levels, prolactin signaling, and hyperprolactinemic inhibition of pulsatile luteinizing hormone secretion are dependent on estradiol. Endocrinology 149: 1562-1570.
35. Tanaka, M., Suzuki, M., Kawana, T., Segawa, M., Yoshikawa, M., Mori, M., Kobayashi, M., Nakai, N., and Saito, T.R. 2005. Differential effects of sex steroid hormones on the expressions of multiple first exons including a novel first exon of prolactin receptor gene in the rat liver. J. Mol. Endocrinol. 34: 667-673.
14. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G. 2000. Prolactin: structure, function, and regulation of secretion. Physiol. Rev. 80: 1523-1631.
6. Brooks, P.J., Funabashi, T., Kleopoulos, S.P., Mobbs, C.V., and Pfaff, D.W. 1992. Prolactin receptor messenger RNA is synthesized by the epithelial cells of the choroid plexus. Brain Res. Mol. Brain Res. 16: 163-167.
28. Ojeda, S.R., Klulich, L., and Jameson, H.E. 1976. Developmental patterns of plasma and pituitary TSH and prolactin and hypothalamic TRH in the female rat. Endocr. Res. Commun. 3: 387-406.
29. Ouhtit, A., Morel, G., and Kelly, P.A. 1993. Visualization of gene expression of short and long forms of prolactin receptor in the rat. Endocrinology 133: 135-144.
34. Tanaka, M., Hayashida, Y., Iguchi, T., Nakao, N., Suzuki, M., Nakai, N., and Nakashima, K. 2002. Identification of a novel first exon of prolactin receptor gene expressed in the rat brain. Endocrinology 143: 2080-2084.
21. Mangurian, L.P., Walsh, R.J., and Posner, B.I. 1992. Prolactin enhancement of its own uptake at the choroid plexus. Endocrinology 131: 698-702.
19. Kinsley, C.H. and Bridges, R.S. 1988. Prolactin modulation of the maternal-like behavior displayed by juvenile rats. Horm. Behav. 22: 49-65.
26. Negro-Vilar, A., Krulich, L., and McCann, S.M. 1973. Changes in serum prolactin and gonadotropins during sexual development of the male rat. Endocrinology 93: 660-664.
9. Chiu, S. and Wise, P.M. 1994. Prolactin receptor mRNA localization in the hypothalamus by in situ hybridization. J. Neuroendocrinol. 6: 191-199.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 35
  doi: 10.1210/endo-120-5-1846
– ident: 29
  doi: 10.1677/jme.0.0230013
– ident: 4
– ident: 33
  doi: 10.1677/jme.1.01702
– ident: 15
  doi: 10.1074/jbc.272.22.14263
– ident: 10
  doi: 10.1210/mend-3-4-674
– ident: 34
  doi: 10.1677/jme.0.0300031
– ident: 7
  doi: 10.1002/cne.22208
– ident: 5
  doi: 10.1210/er.19.3.225
– ident: 32
  doi: 10.1210/endo.143.6.8826
– ident: 30
  doi: 10.1210/mend-4-8-1136
– ident: 17
  doi: 10.1016/0018-506X(88)90030-X
– ident: 31
  doi: 10.1677/joe.0.1490335
– ident: 27
  doi: 10.1210/en.133.1.135
– ident: 18
  doi: 10.1080/07435800701764022
– ident: 16
  doi: 10.1074/jbc.273.40.26225
– ident: 22
  doi: 10.1016/0006-8993(94)91269-6
– ident: 9
  doi: 10.1111/j.1365-2826.1994.tb00572.x
– ident: 1
– ident: 20
  doi: 10.1210/me.10.6.661
– ident: 2
  doi: 10.1677/jme.0.0310221
– ident: 8
  doi: 10.1210/en.130.3.1747
– ident: 14
  doi: 10.1210/en.136.12.5608
– ident: 26
  doi: 10.3109/07435807609073912
– ident: 19
  doi: 10.1210/en.131.2.698
– ident: 3
  doi: 10.1002/(SICI)1096-9861(19970922)386:2<161::AID-CNE1>3.0.CO;2-#
– ident: 13
– ident: 23
  doi: 10.1016/S0021-9258(17)36838-2
– ident: 24
  doi: 10.1210/endo-93-3-660
– ident: 28
  doi: 10.1159/000069510
– ident: 6
  doi: 10.1016/0169-328X(92)90207-R
– ident: 21
  doi: 10.1016/0378-1119(93)90104-B
– ident: 25
  doi: 10.1111/j.1365-2826.2007.01565.x
– ident: 11
  doi: 10.1016/0006-8993(92)90599-5
– ident: 12
  doi: 10.1210/en.137.2.631
SSID ssj0027729
Score 2.0181158
Snippet Prolactin (PRL) has numerous physiological functions that are mediated by its receptors in target cells. Expression of the rat PRL receptor (PRLR) gene is...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 49
SubjectTerms Animals
choroid plexus
Choroid Plexus - metabolism
Exons - genetics
Female
Gene Expression Regulation, Developmental
Lactation - genetics
Male
prolactin
prolactin receptor gene
rat
Rats
Rats, Wistar - growth & development
Rats, Wistar - physiology
Receptors, Prolactin - genetics
transcription
Transcription, Genetic
Title Regulation of Prolactin Receptor Gene Expression in the Rat Choroid Plexus via Transcriptional Activation of Multiple First Exons during Postnatal Development and Lactation
URI https://www.jstage.jst.go.jp/article/expanim/62/1/62_12-0053/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/23357946
https://search.proquest.com/docview/1534817639
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2013, Vol.62(1), pp.49-56
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAYkL4k15aZAQt5TGz-QACK22WiG6qlZUWnGJbMeGoiVZ-kDlP_EjmXHS7iLgxMUXJ57E4xnPjMfzMfbcekIl5CKzVpWZrAkN0BuZee5jEYUwzqVsiyN9OJPvTtTJeUmhfgKXf3XtCE9qtjgdbr79eIMC_yqh94jiZdig4My_DjUfyvIyu8KlkLTYJ7I4971MAiyj8mVZLpTpy23-8fpv29PVL2ihfQr_Nj7TJjS-yW701iO87dh9i10KzW127WObYuN32M_jDlke5xraCNMF_hzqswbQOAxn6F0DVZmGg02f_doA9qEFCMd2Bfuf20U7r2F6GjbrJXyfW0gb2VatEF2_BUOj4Sd9LiKM52hC4qi4gKG79giEAdxQZAguZCWBbWp4j1-UhrjLZuODD_uHWQ_HkHkl5SrTRSxKp2tvAh13upjjpOpR5LVU0Y-MKxWvlZbGS6eFi8GgrDszkjFXxUhacY_tNW0THjCIeRHRN6MQikcPzVkltBU5NxHbMtYD9mLLheqsq7pRkbeC7Kp6dlWaV7IcsNcdj3aP9QJ38bE8NbwihbPrp0ttqBkG7NmWtxUKFp2W2Ca06yURk0WO6heJ3O-YviPCBS6hUuqH_0v-EbvOE74GxXQes73VYh2eoJWzck_T-sX2aDr5BVfrA8Q
link.rule.ids 315,786,790,2236,4043,24346,27956,27957,27958
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Prolactin+Receptor+Gene+Expression+in+the+Rat+Choroid+Plexus+via+Transcriptional+Activation+of+Multiple+First+Exons+during+Postnatal+Development+and+Lactation&rft.jtitle=Experimental+Animals&rft.au=HIRAI%2C+Junko&rft.au=NISHITA%2C+Masahiro&rft.au=NAKAO%2C+Nobuhiro&rft.au=SAITO%2C+Toru+R.&rft.date=2013&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=62&rft.issue=1&rft.spage=49&rft.epage=56&rft_id=info:doi/10.1538%2Fexpanim.62.49&rft.externalDocID=article_expanim_62_1_62_12_0053_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon