Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues

Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection co...

Full description

Saved in:
Bibliographic Details
Published inClinical proteomics Vol. 17; no. 1; p. 24
Main Authors Herrera, Jeremy A., Mallikarjun, Venkatesh, Rosini, Silvia, Montero, Maria Angeles, Lawless, Craig, Warwood, Stacey, O’Cualain, Ronan, Knight, David, Schwartz, Martin A., Swift, Joe
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.06.2020
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1542-6416
1559-0275
DOI10.1186/s12014-020-09287-6

Cover

Abstract Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm 3 ) and human lung blood vessels (0.094 mm 3 ) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm 3 . Conclusion Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
AbstractList Background Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm.sup.3) and human lung blood vessels (0.094 mm.sup.3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm.sup.3. Conclusion Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm ) and human lung blood vessels (0.094 mm ) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm . Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm.sup.3) and human lung blood vessels (0.094 mm.sup.3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm.sup.3. Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm 3 ) and human lung blood vessels (0.094 mm 3 ) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm 3 . Conclusion Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues.BACKGROUNDHaematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues.Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes.METHODSHerein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes.This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3.RESULTSThis approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3.Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.CONCLUSIONHerein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
ArticleNumber 24
Audience Academic
Author Warwood, Stacey
Montero, Maria Angeles
Knight, David
O’Cualain, Ronan
Schwartz, Martin A.
Rosini, Silvia
Herrera, Jeremy A.
Lawless, Craig
Swift, Joe
Mallikarjun, Venkatesh
Author_xml – sequence: 1
  givenname: Jeremy A.
  orcidid: 0000-0003-4845-8494
  surname: Herrera
  fullname: Herrera, Jeremy A.
  email: Jeremy.Herrera@manchester.ac.uk
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 2
  givenname: Venkatesh
  surname: Mallikarjun
  fullname: Mallikarjun, Venkatesh
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 3
  givenname: Silvia
  surname: Rosini
  fullname: Rosini, Silvia
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 4
  givenname: Maria Angeles
  surname: Montero
  fullname: Montero, Maria Angeles
  organization: Histopathology Department, Manchester University NHS Foundation Trust
– sequence: 5
  givenname: Craig
  surname: Lawless
  fullname: Lawless, Craig
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 6
  givenname: Stacey
  surname: Warwood
  fullname: Warwood, Stacey
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 7
  givenname: Ronan
  surname: O’Cualain
  fullname: O’Cualain, Ronan
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 8
  givenname: David
  surname: Knight
  fullname: Knight, David
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 9
  givenname: Martin A.
  surname: Schwartz
  fullname: Schwartz, Martin A.
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
– sequence: 10
  givenname: Joe
  orcidid: 0000-0002-5039-9094
  surname: Swift
  fullname: Swift, Joe
  email: Joe.Swift@manchester.ac.uk
  organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32565759$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUHaRiP_QP-CABQdqHqUkmycy8CGVRK2zxQX0OmUxmNyWTrEmmuD_Df-yd3Va6IiUPCfeec5Kbc06LIx-8KYrXBF8S0oj3iVBMWIkpLnFLm7oUz4oTwnkLpZofzWdGS8GIOC5OU7rFmLasbV4UxxXlgte8PSl-L1UyEWm1yVM0aLQ6ht6mZHS2wSMdpo0zPRpVSihtoBrDaHLcovPl4qa8-XaBhhCho7JVzm1RNCm4O2Aor9w22YTCMENG5awvB_tr1-pRysp6OK-nUXnkJr9CGa6dTHpZPB-US-bV_X5W_Pj08fviulx-_fxlcbUsNWcslwIzGKBvKlpx2laYCK6FUII2RgvS1W07aKxo16lBU806gw0fGO-6tmrqoabVWfFhr7uZutH02vgclZObaEcVtzIoKw873q7lKtzJusKUVC0InN8LxPATHp7laJM2zilvwpQkZYQ3FRO7u97uoSvljLR-CKCoZ7i8ErQGhxgjgLr8DwpWb8AX8H6wUD8gvHtEWBvl8hq-f5qtS4fAN49n_TvkQw4A0OwBYH9K0QxS26xmHXiCdZJgOUdO7iMnIXJyFzkpgEr_oT6oP0mq9qQEYL8yUd6GKUJk0lOsP5sA6fc
CitedBy_id crossref_primary_10_1128_iai_00442_22
crossref_primary_10_1172_jci_insight_156115
crossref_primary_10_1007_s00018_023_04926_1
crossref_primary_10_1186_s12953_024_00231_2
crossref_primary_10_1016_j_crmeth_2024_100866
crossref_primary_10_1080_14789450_2021_1984886
crossref_primary_10_1016_j_matbio_2022_06_006
crossref_primary_10_1101_cshperspect_a041323
crossref_primary_10_3389_fonc_2023_1275346
crossref_primary_10_3390_biomimetics8020146
crossref_primary_10_1016_j_bpj_2023_07_001
crossref_primary_10_1039_D2AN01678H
crossref_primary_10_1016_j_optlaseng_2025_108882
crossref_primary_10_1038_s41467_023_43520_8
crossref_primary_10_1186_s12931_023_02400_x
crossref_primary_10_26508_lsa_202001000
crossref_primary_10_1088_1478_3975_ac6eb0
crossref_primary_10_1242_dmm_048801
crossref_primary_10_1002_pmic_202000077
crossref_primary_10_1038_s41467_024_54643_x
crossref_primary_10_1038_s41467_022_34824_2
crossref_primary_10_1103_PhysRevE_108_034408
crossref_primary_10_3389_frhem_2023_1279863
crossref_primary_10_3390_ani15020200
crossref_primary_10_1016_j_crmeth_2023_100598
crossref_primary_10_7554_eLife_95842_3
crossref_primary_10_1038_s42003_024_06354_8
crossref_primary_10_1016_j_biomaterials_2022_121960
crossref_primary_10_7554_eLife_95842
crossref_primary_10_2139_ssrn_4132722
crossref_primary_10_1039_D0MO00108B
crossref_primary_10_3389_fmed_2023_1191205
crossref_primary_10_1038_s41388_023_02863_8
Cites_doi 10.1074/mcp.M300133-MCP200
10.1074/mcp.M500102-MCP200
10.1158/1078-0432.CCR-07-1215
10.1158/1078-0432.CCR-07-1497
10.1183/09031936.00209911
10.15252/embr.201439246
10.1111/iep.12011
10.1369/jhc.2010.955526
10.1016/j.jprot.2018.02.027
10.1016/S2213-2600(17)30433-2
10.1186/s12014-019-9226-4
10.3390/ijms16023537
10.1093/nar/gkw1099
10.1093/nar/gkx1132
10.1016/j.ymeth.2015.12.008
10.1002/dvdy.20462
10.1038/labinvest.3700343
10.21873/cgp.20008
10.1172/JCI93557
10.1371/journal.pone.0098187
10.1007/BF00268879
10.1172/jci.insight.125185
10.1016/j.biomaterials.2015.10.011
10.1152/ajplung.00543.2017
10.1007/s00401-009-0618-9
10.1002/ar.22504
10.1172/JCI200318650
10.1021/acs.jproteome.8b00505
10.3390/cancers4041180
10.2174/156652413804486214
10.1042/BJ20150844
10.1136/mp.54.4.253
10.1016/j.tcm.2006.11.001
10.1038/nprot.2006.85
10.1021/acs.jproteome.8b00981
10.1016/S1044-0305(02)00644-X
10.1074/mcp.TIR118.000686
10.1021/acs.jproteome.9b00468
10.1021/acs.jproteome.7b00191
10.1242/jcs.137802
10.1165/rcmb.2008-0169TR
10.1038/nprot.2016.136
10.1002/(SICI)1096-9896(199706)182:2<217::AID-PATH833>3.0.CO;2-A
10.1161/CIRCRESAHA.110.223800
10.1172/JCI71386
10.1002/pmic.201300553
10.1002/path.4858
10.1074/mcp.M300105-MCP200
10.1164/rccm.201709-1823OC
10.15252/msb.20156123
10.1038/nrm3896
10.7554/eLife.09579
10.1016/j.jprot.2010.12.001
10.1007/s00418-013-1097-6
10.1038/labinvest.3700596
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
COPYRIGHT 2020 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: COPYRIGHT 2020 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1186/s12014-020-09287-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0275
ExternalDocumentID PMC7302139
A627416441
32565759
10_1186_s12014_020_09287_6
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203128/Z/16/Z
  funderid: http://dx.doi.org/10.13039/100004440
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L024551/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: ;
  grantid: 203128/Z/16/Z
– fundername: ;
  grantid: BB/L024551/1
GroupedDBID ---
.86
0R~
29B
4.4
53G
5GY
5VS
6NX
7X7
8AO
8CJ
8FE
8FH
8FI
8TC
AAFWJ
AAJSJ
AASML
ABDBF
ABMNI
ACGFS
ACGOD
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AFBBN
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BA0
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BKSAR
BMC
BPHCQ
BVXVI
C6C
CAG
CS3
D1J
DIK
EBLON
EBS
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HG6
HYE
IAO
IHR
IHW
ITC
I~X
KQ8
LK8
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
Q2X
RBZ
RNS
ROL
RPM
RPX
RSV
S27
SBL
SDH
SOJ
T13
TUS
U2A
VC2
~KM
AAYXX
ALIPV
CITATION
-Y2
2VQ
88I
8FJ
AAIAL
AANXM
AAYZH
ABFSG
ABUWG
ACOMO
ACSTC
ADQRH
ADRFC
AEUYN
AEZWR
AFHIU
AFKRA
AFLOW
AGJBK
AHSBF
AHWEU
AIXLP
AZQEC
BHPHI
CCPQU
COF
DWQXO
EJD
GNUQQ
H13
HF~
HMCUK
HZ~
IPNFZ
M2P
NPM
O9-
OVD
PCBAR
PHGZM
PHGZT
PQGLB
RIG
S1Z
TEORI
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c544t-604759d832352930165c66a628ec61b799fc0a2bbafc2c4be0e5f45bb9387f723
IEDL.DBID M48
ISSN 1542-6416
IngestDate Thu Aug 21 18:33:32 EDT 2025
Fri Sep 05 03:05:00 EDT 2025
Tue Jun 17 21:29:41 EDT 2025
Tue Jun 10 20:33:31 EDT 2025
Thu May 22 21:20:15 EDT 2025
Mon Jul 21 06:02:20 EDT 2025
Tue Jul 01 00:33:47 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
Sat Sep 06 07:27:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License The Author(s) 2020.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-604759d832352930165c66a628ec61b799fc0a2bbafc2c4be0e5f45bb9387f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5039-9094
0000-0003-4845-8494
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12014-020-09287-6
PMID 32565759
PQID 2415834672
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7302139
proquest_miscellaneous_2415834672
gale_infotracmisc_A627416441
gale_infotracacademiconefile_A627416441
gale_healthsolutions_A627416441
pubmed_primary_32565759
crossref_citationtrail_10_1186_s12014_020_09287_6
crossref_primary_10_1186_s12014_020_09287_6
springer_journals_10_1186_s12014_020_09287_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-17
PublicationDateYYYYMMDD 2020-06-17
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Clinical proteomics
PublicationTitleAbbrev Clin Proteom
PublicationTitleAlternate Clin Proteomics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References A Zougman (9287_CR24) 2014; 14
J Herrera (9287_CR55) 2019
A Fabregat (9287_CR30) 2018; 46
GJ van Eys (9287_CR38) 2007; 17
A Azimi (9287_CR16) 2016; 13
Y Hiroshima (9287_CR49) 2017; 13
A Naba (9287_CR21) 2017; 16
9287_CR57
P Chelladurai (9287_CR44) 2012; 40
V Espina (9287_CR3) 2006; 1
S Tyanova (9287_CR31) 2016; 11
A Naba (9287_CR33) 2012; 11
Q Li (9287_CR35) 2016; 75
BJ Xu (9287_CR7) 2002; 13
R Wilson (9287_CR20) 2012; 11
MW Parker (9287_CR54) 2014; 124
R Donato (9287_CR48) 2013; 13
MA Dassah (9287_CR50) 2014; 127
K Iyonaga (9287_CR42) 1997; 182
R Longuespée (9287_CR10) 2016; 104
M HaileMariam (9287_CR25) 2018; 17
M Milacic (9287_CR29) 2012; 4
MR Larsen (9287_CR51) 2004; 3
The UniProt Consortium (9287_CR32) 2017; 45
Z Xiao (9287_CR19) 2010; 58
P Feist (9287_CR26) 2015; 16
Y Tian (9287_CR34) 2019
C Li (9287_CR4) 2004; 3
HB Schiller (9287_CR37) 2015
DK Crockett (9287_CR9) 2005; 85
JR Wright (9287_CR47) 2003; 111
A Byron (9287_CR2) 2013; 94
V Patel (9287_CR15) 2008; 14
A Yurdagul (9287_CR52) 2016; 473
KC Hadley (9287_CR59) 2015; 4
A-L Cheng (9287_CR6) 2008; 14
SM Walsh (9287_CR45) 2018; 315
P Cunnea (9287_CR40) 2010; 119
M Kasper (9287_CR43) 1993; 100
JD Humphrey (9287_CR1) 2014; 15
9287_CR39
S Davis (9287_CR13) 2019; 18
CB Fowler (9287_CR17) 2007; 87
NL Flintoff-Dye (9287_CR41) 2005; 234
LC Lawrie (9287_CR5) 2001; 54
KC Kim (9287_CR46) 2008; 39
E Åhrman (9287_CR36) 2018; 189
J Herrera (9287_CR53) 2018; 198
BL Hood (9287_CR8) 2005; 4
DA Lynch (9287_CR27) 2018; 6
A Tanca (9287_CR18) 2011; 74
M Herfs (9287_CR11) 2017; 241
J Herrera (9287_CR22) 2018; 128
A Römpp (9287_CR58) 2013; 139
JR Wiśniewski (9287_CR12) 2013; 79
MW Pickup (9287_CR23) 2014; 15
V Mallikarjun (9287_CR28) 2020
KM Mak (9287_CR56) 2012; 295
Y Zhu (9287_CR14) 2018; 17
References_xml – volume: 3
  start-page: 399
  year: 2004
  ident: 9287_CR4
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M300133-MCP200
– volume: 4
  start-page: 1741
  year: 2005
  ident: 9287_CR8
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M500102-MCP200
– volume: 14
  start-page: 435
  year: 2008
  ident: 9287_CR6
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1215
– volume: 14
  start-page: 1002
  year: 2008
  ident: 9287_CR15
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1497
– volume: 40
  start-page: 766
  year: 2012
  ident: 9287_CR44
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00209911
– volume: 15
  start-page: 1243
  year: 2014
  ident: 9287_CR23
  publication-title: EMBO Rep
  doi: 10.15252/embr.201439246
– volume: 94
  start-page: 75
  year: 2013
  ident: 9287_CR2
  publication-title: Int J Exp Pathol
  doi: 10.1111/iep.12011
– volume: 58
  start-page: 517
  year: 2010
  ident: 9287_CR19
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.2010.955526
– volume: 189
  start-page: 23
  year: 2018
  ident: 9287_CR36
  publication-title: J Proteomics.
  doi: 10.1016/j.jprot.2018.02.027
– volume: 6
  start-page: 138
  year: 2018
  ident: 9287_CR27
  publication-title: Lancet Respir Med.
  doi: 10.1016/S2213-2600(17)30433-2
– year: 2019
  ident: 9287_CR34
  publication-title: Clin Proteomics.
  doi: 10.1186/s12014-019-9226-4
– volume: 16
  start-page: 3537
  year: 2015
  ident: 9287_CR26
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16023537
– volume: 45
  start-page: 158
  year: 2017
  ident: 9287_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1099
– volume: 46
  start-page: D649
  year: 2018
  ident: 9287_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1132
– volume: 104
  start-page: 154
  year: 2016
  ident: 9287_CR10
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.12.008
– volume: 234
  start-page: 11
  year: 2005
  ident: 9287_CR41
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.20462
– volume: 85
  start-page: 1405
  year: 2005
  ident: 9287_CR9
  publication-title: Lab Invest
  doi: 10.1038/labinvest.3700343
– volume: 13
  start-page: 453
  year: 2016
  ident: 9287_CR16
  publication-title: Cancer Genomics Proteomics
  doi: 10.21873/cgp.20008
– volume: 128
  start-page: 45
  year: 2018
  ident: 9287_CR22
  publication-title: J Clin Invest.
  doi: 10.1172/JCI93557
– ident: 9287_CR57
  doi: 10.1371/journal.pone.0098187
– volume: 100
  start-page: 65
  year: 1993
  ident: 9287_CR43
  publication-title: Histochemistry
  doi: 10.1007/BF00268879
– year: 2019
  ident: 9287_CR55
  publication-title: JCI Insight.
  doi: 10.1172/jci.insight.125185
– volume: 75
  start-page: 37
  year: 2016
  ident: 9287_CR35
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.011
– volume: 315
  start-page: 697
  year: 2018
  ident: 9287_CR45
  publication-title: Am J Physiol Lung Cell Mol Physiol.
  doi: 10.1152/ajplung.00543.2017
– volume: 119
  start-page: 601
  year: 2010
  ident: 9287_CR40
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-009-0618-9
– volume: 295
  start-page: 1159
  year: 2012
  ident: 9287_CR56
  publication-title: Anat Rec (Hoboken)
  doi: 10.1002/ar.22504
– volume: 111
  start-page: 1453
  year: 2003
  ident: 9287_CR47
  publication-title: J Clin Invest.
  doi: 10.1172/JCI200318650
– volume: 17
  start-page: 2917
  year: 2018
  ident: 9287_CR25
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00505
– volume: 4
  start-page: 1180
  year: 2012
  ident: 9287_CR29
  publication-title: Cancers (Basel).
  doi: 10.3390/cancers4041180
– volume: 13
  start-page: 24
  issue: 1
  year: 2013
  ident: 9287_CR48
  publication-title: Curr Mol Med
  doi: 10.2174/156652413804486214
– volume: 473
  start-page: 1281
  year: 2016
  ident: 9287_CR52
  publication-title: Biochem J.
  doi: 10.1042/BJ20150844
– volume: 54
  start-page: 253
  year: 2001
  ident: 9287_CR5
  publication-title: Mol Pathol.
  doi: 10.1136/mp.54.4.253
– volume: 17
  start-page: 26
  year: 2007
  ident: 9287_CR38
  publication-title: Trends Cardiovasc Med
  doi: 10.1016/j.tcm.2006.11.001
– volume: 1
  start-page: 586
  year: 2006
  ident: 9287_CR3
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.85
– volume: 18
  start-page: 1787
  year: 2019
  ident: 9287_CR13
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00981
– volume: 11
  start-page: 014159
  issue: M111
  year: 2012
  ident: 9287_CR20
  publication-title: Mol Cell Proteomics
– volume: 13
  start-page: 1292
  year: 2002
  ident: 9287_CR7
  publication-title: J Am Soc Mass Spectrom
  doi: 10.1016/S1044-0305(02)00644-X
– volume: 17
  start-page: 1864
  year: 2018
  ident: 9287_CR14
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.TIR118.000686
– year: 2020
  ident: 9287_CR28
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.9b00468
– volume: 16
  start-page: 3083
  year: 2017
  ident: 9287_CR21
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.7b00191
– volume: 79
  start-page: e50589
  year: 2013
  ident: 9287_CR12
  publication-title: J Vis Exp.
– volume: 127
  start-page: 828
  year: 2014
  ident: 9287_CR50
  publication-title: J Cell Sci
  doi: 10.1242/jcs.137802
– volume: 39
  start-page: 644
  year: 2008
  ident: 9287_CR46
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2008-0169TR
– volume: 11
  start-page: 2301
  year: 2016
  ident: 9287_CR31
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.136
– volume: 182
  start-page: 217
  year: 1997
  ident: 9287_CR42
  publication-title: J Pathol.
  doi: 10.1002/(SICI)1096-9896(199706)182:2<217::AID-PATH833>3.0.CO;2-A
– ident: 9287_CR39
  doi: 10.1161/CIRCRESAHA.110.223800
– volume: 124
  start-page: 1622
  year: 2014
  ident: 9287_CR54
  publication-title: J Clin Invest.
  doi: 10.1172/JCI71386
– volume: 14
  start-page: 1006
  year: 2014
  ident: 9287_CR24
  publication-title: Proteomics
  doi: 10.1002/pmic.201300553
– volume: 241
  start-page: 522
  year: 2017
  ident: 9287_CR11
  publication-title: J Pathol.
  doi: 10.1002/path.4858
– volume: 3
  start-page: 456
  year: 2004
  ident: 9287_CR51
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M300105-MCP200
– volume: 198
  start-page: 486
  year: 2018
  ident: 9287_CR53
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201709-1823OC
– year: 2015
  ident: 9287_CR37
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156123
– volume: 13
  start-page: 24
  year: 2017
  ident: 9287_CR49
  publication-title: Immunol Cell Biol
– volume: 15
  start-page: 802
  year: 2014
  ident: 9287_CR1
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3896
– volume: 11
  start-page: 014647
  issue: M111
  year: 2012
  ident: 9287_CR33
  publication-title: Mol Cell Proteomics
– volume: 4
  start-page: e09579
  year: 2015
  ident: 9287_CR59
  publication-title: Elife.
  doi: 10.7554/eLife.09579
– volume: 74
  start-page: 359
  year: 2011
  ident: 9287_CR18
  publication-title: J Proteomics.
  doi: 10.1016/j.jprot.2010.12.001
– volume: 139
  start-page: 759
  year: 2013
  ident: 9287_CR58
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-013-1097-6
– volume: 87
  start-page: 836
  year: 2007
  ident: 9287_CR17
  publication-title: Lab Inves.
  doi: 10.1038/labinvest.3700596
SSID ssj0029498
Score 2.3528225
Snippet Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical...
Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based...
Background Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical...
Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24
SubjectTerms Biomedical and Life Sciences
Biotechnology
Cell Biology
Formaldehyde
Life Sciences
Mass spectrometry
Pathology
Proteins
Proteomics
Respiratory tract diseases
Scientific equipment industry
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZguXBBwPIILGAkxENgkTixkxyrFasV2nKBSnuzYsfWrpQmVZMi-jP4x4wnD5EKrcSt1UzaNOOZ-abzIuSNTmJdprZgNjUhBCgiZPBeslK4RGhRuhh7q5bf5Pkq-XopLoemsHasdh9TkmipUa0z-bmNwFclzIc7YQ44n8nb5I6A2N2r44ovpjArT3ADLmADziTgjbFV5p-fMXNHh0b5L690WDF5kDZFb3R2n9wbYCRd9HJ_QG7Z-iE5XtQQQq_39C3Fwk78x_yY_L4AT7Wlptj4bAFd-xI8TMNjSwM1zW5T2ZKuAUZTbLz0Ewy67Z6-vzhdsuX3DxSALVBAhkVV7SkE6E31E64ohoEmtHEUsS88VuaufyGppNiZBa9xDSCtwKrQDsXcPiKrsy8_Ts_ZsImBGZEkHZOhHwtYgvYDXstj3wJlpCwkz6yRkU7z3Jmw4FoXznCTaBtalLXO4yx1KY8fk6O6qe1TQqULCxNpLSJnE5drgGeRExC2xdZBeBUFJBoFoswwptxvy6gUhiuZVL0QFQhRoRCVDMjH6ZpNP6TjRu5XXs6qbzSdNFwtcA2Rx4cBeYccXsfhu00xtCrAL_DTsmacJzNO0E0zI78ez5LyJF_QVttm1yoPnLIYvBQPyJP-bE23HnOfixZ5QNLZqZsY_EjwOaW-vsLR4GCvOWD6gHwaz6cabFJ7wxN59n_sz8ldjiokWZSekKNuu7MvAJp1-iVq4h8uRDE9
  priority: 102
  providerName: Springer Nature
Title Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues
URI https://link.springer.com/article/10.1186/s12014-020-09287-6
https://www.ncbi.nlm.nih.gov/pubmed/32565759
https://www.proquest.com/docview/2415834672
https://pubmed.ncbi.nlm.nih.gov/PMC7302139
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLe2IaG9IGB8BMY4JMSH2EFySS7NA0JVtWlCKy9QaW-n3OVOTEqT0g-0vvA_8B_jc5NqrcZeolR22iS2zz_XZxvgtU5iXWa24DYzIQYoacjxs-Rl6pJUp6WLqbZq-E2ejZKvF-nFDnTjjtoXOLsxtPPzpEbT6uPVr-UXNPjPZPA9-WkWoRdLuA-EwhwjAC534Q56JumDsWGyziqIPKHZuIgaBJdI74pobvyOfbgbC58U9G1Mr_ms7ZX7muva3la5lVsll3V6H-61WJP1V8rxAHZs_RAO-jXG2eMle8No9yf9rX4Af8_RnU2ZKSY-pcDGfp8e5eqp7oGZZjGpbMnGiLUZVWf6Ngfz6ZK9Ox8M-fD7e4boFyko6KKqlgyj-Kb6jVcUbdcT1jhGABlxLXeXV0QqGZVv4TnNCmQVLj1sTrowewSj05MfgzPejmvgJk2SOZeh7x1Y4hKBoC6PfZ2UkbKQomeNjHSW586EhdC6cEaYRNvQkkLoPO5lLhPxY9irm9o-BSZdWJhI6zRyNnG5RgwXuRRju9g6jMGiAKJOIMq0vcz9SI1KUUzTk2olT4XyVCRPJQP4sL5msurkcSv3Sy9ntapGXS8Dqk-zijyIDOAtcXjVxN82RVvPgE_gW2ptcB5ucKIBmw3yq06XlCf5XW-1bRYz5dFVL0ZXJgJ4stKt9a13uhlAtqF1awbfN3yTUl_-pP7huKgLBP4BHHf6qTq7u-WNPPvvLTyHfUGGI3mUHcLefLqwLxCqzfUR7A7k4Iis0B__nOBxJPr_AMvDOlk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BeoALAsrDUOgiIR6CFX6u7aNVUYWQ9NJW6m3lXe-KSo4dxUnV_Az-MbPjh3CEKnFLNOPE8ezMfJN5EfJehoEsYp0zHSsXApTIZfCesyIyYSSjwgTYW7U449PLcHYVXXVNYU1f7d6nJNFSo1on_Fvjga8KmQ133BRwPuP3yUECaCSckIMsm53PhkArDXEHLqADn3FAHH2zzD8_ZeSQ9s3yX35pv2ZyL3GK_uj0MXnUAUmatZJ_Qu7p6ik5zCoIopc7-oFiaSf-Z35Ifs_BV62pylc2X0CXtggPE_HY1EBVvV2VuqBLANIUWy_tDIPNekc_zU8WbHH-mQK0BQpIMS_LHYUQvS5v4Iq8G2lCa0MR_cKDZeb6FkkFxd4seI2LAGkJdoVuUNDNM3J5-v3iZMq6XQxMRWG4Ydy1gwEL0H9AbGlgm6AU5zn3E624J-M0NcrNfSlzo3wVSu1qlLZMgyQ2sR88J5OqrvRLQrlxc-VJGXlGhyaVANA8E0HgFmgDAZbnEK8XiFDdoHK7L6MUGLAkXLRCFCBEgUIU3CFfhmtW7ZiOO7mPrZxF22o66LjIcBGRRYgO-YgcVsvhu1XeNSvAL7DzskacRyNO0E41Ir_rz5KwJFvSVul62wgLnZIA_JTvkBft2RpuPfBtNjpKHRKPTt3AYIeCjynV9S8cDg4W2wdU75Cv_fkUnVVq7ngir_6P_Zg8mF4s5mL-4-zna_LQR3XizIuPyGSz3uo3ANQ28m2nl38A0801gA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB50BfFF1PUSXd0RxAs6bC6TSfJYqmXVdhF0Yd-GzGQGF9KktKnYn-E_9szJhU2RBd9a5qRNc27f6bkR8krxSBWJyZlJtA8BSuwzeC9YEVseq7iwEfZWLc7E6Tn_chFfXOnix2r3PiXZ9jS4KU1Vc7IqbKviqTjZBOC3OHOhj58B5mfiJrnFnetz6VoxHUKujOM2XMAJIROAPfq2mX9-xsg17RvoKx5qv3pyL4WKnml2j9ztICWdtDJwn9ww1QNyOKkgnF7u6GuKRZ747_kh-TMHr7WmOl-5zAFdunI8TMljewPV9XZVmoIuAVJTbMJ00wya9Y6-nU8XbPH9HQWQCyfAz7wsdxSC9br8BVfk3XATWluKOBgeMbOXv_GooNilBa9xJSAtwcLQBlm-eUjOZ59-TE9Zt5WB6ZjzhgnfjQgswBIAdssi1w6lhchFmBotApVkmdV-HiqVWx1qroxvkO8qi9LEJmH0iBxUdWWeECqsn-tAqTiwhttMAVQLbAwhXGQshFqBR4KeIVJ3I8vd5oxSYuiSCtkyUQITJTJRCo-8H65ZtQM7rqU-dnyWbdPpoO1ygiuJHFb0yBukcPoO363zrm0BfoGbnDWiPBpRgp7q0fHLXpakO3LFbZWptxvpQFQagccKPfK4la3h1qPQ5aXjzCPJSOoGAjcefHxSXf7EMeFgu0PA9x750Mun7OzT5pon8vT_yI_J7W8fZ3L--ezrM3InRG0SLEiOyEGz3prngNga9QKV8i_BfThW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+capture+microdissection+coupled+mass+spectrometry+%28LCM-MS%29+for+spatially+resolved+analysis+of+formalin-fixed+and+stained+human+lung+tissues&rft.jtitle=Clinical+proteomics&rft.au=Herrera%2C+Jeremy+A&rft.au=Mallikarjun%2C+Venkatesh&rft.au=Rosini%2C+Silvia&rft.au=Montero%2C+Maria+Angeles&rft.date=2020-06-17&rft.issn=1542-6416&rft.volume=17&rft.spage=24&rft_id=info:doi/10.1186%2Fs12014-020-09287-6&rft_id=info%3Apmid%2F32565759&rft.externalDocID=32565759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-6416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-6416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-6416&client=summon