Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues
Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection co...
Saved in:
Published in | Clinical proteomics Vol. 17; no. 1; p. 24 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
17.06.2020
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1542-6416 1559-0275 |
DOI | 10.1186/s12014-020-09287-6 |
Cover
Abstract | Background
Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues.
Methods
Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm
3
) and human lung blood vessels (0.094 mm
3
) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes.
Results
This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm
3
.
Conclusion
Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. |
---|---|
AbstractList | Background Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm.sup.3) and human lung blood vessels (0.094 mm.sup.3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm.sup.3. Conclusion Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm ) and human lung blood vessels (0.094 mm ) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm . Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm.sup.3) and human lung blood vessels (0.094 mm.sup.3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm.sup.3. Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. Background Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. Methods Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm 3 ) and human lung blood vessels (0.094 mm 3 ) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. Results This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm 3 . Conclusion Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues.BACKGROUNDHaematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues.Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes.METHODSHerein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes.This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3.RESULTSThis approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3.Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.CONCLUSIONHerein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues. |
ArticleNumber | 24 |
Audience | Academic |
Author | Warwood, Stacey Montero, Maria Angeles Knight, David O’Cualain, Ronan Schwartz, Martin A. Rosini, Silvia Herrera, Jeremy A. Lawless, Craig Swift, Joe Mallikarjun, Venkatesh |
Author_xml | – sequence: 1 givenname: Jeremy A. orcidid: 0000-0003-4845-8494 surname: Herrera fullname: Herrera, Jeremy A. email: Jeremy.Herrera@manchester.ac.uk organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 2 givenname: Venkatesh surname: Mallikarjun fullname: Mallikarjun, Venkatesh organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 3 givenname: Silvia surname: Rosini fullname: Rosini, Silvia organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 4 givenname: Maria Angeles surname: Montero fullname: Montero, Maria Angeles organization: Histopathology Department, Manchester University NHS Foundation Trust – sequence: 5 givenname: Craig surname: Lawless fullname: Lawless, Craig organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 6 givenname: Stacey surname: Warwood fullname: Warwood, Stacey organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 7 givenname: Ronan surname: O’Cualain fullname: O’Cualain, Ronan organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 8 givenname: David surname: Knight fullname: Knight, David organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 9 givenname: Martin A. surname: Schwartz fullname: Schwartz, Martin A. organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre – sequence: 10 givenname: Joe orcidid: 0000-0002-5039-9094 surname: Swift fullname: Swift, Joe email: Joe.Swift@manchester.ac.uk organization: The Wellcome Centre for Cell-Matrix Research, University of Manchester, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32565759$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rFDEUHaRiP_QP-CABQdqHqUkmycy8CGVRK2zxQX0OmUxmNyWTrEmmuD_Df-yd3Va6IiUPCfeec5Kbc06LIx-8KYrXBF8S0oj3iVBMWIkpLnFLm7oUz4oTwnkLpZofzWdGS8GIOC5OU7rFmLasbV4UxxXlgte8PSl-L1UyEWm1yVM0aLQ6ht6mZHS2wSMdpo0zPRpVSihtoBrDaHLcovPl4qa8-XaBhhCho7JVzm1RNCm4O2Aor9w22YTCMENG5awvB_tr1-pRysp6OK-nUXnkJr9CGa6dTHpZPB-US-bV_X5W_Pj08fviulx-_fxlcbUsNWcslwIzGKBvKlpx2laYCK6FUII2RgvS1W07aKxo16lBU806gw0fGO-6tmrqoabVWfFhr7uZutH02vgclZObaEcVtzIoKw873q7lKtzJusKUVC0InN8LxPATHp7laJM2zilvwpQkZYQ3FRO7u97uoSvljLR-CKCoZ7i8ErQGhxgjgLr8DwpWb8AX8H6wUD8gvHtEWBvl8hq-f5qtS4fAN49n_TvkQw4A0OwBYH9K0QxS26xmHXiCdZJgOUdO7iMnIXJyFzkpgEr_oT6oP0mq9qQEYL8yUd6GKUJk0lOsP5sA6fc |
CitedBy_id | crossref_primary_10_1128_iai_00442_22 crossref_primary_10_1172_jci_insight_156115 crossref_primary_10_1007_s00018_023_04926_1 crossref_primary_10_1186_s12953_024_00231_2 crossref_primary_10_1016_j_crmeth_2024_100866 crossref_primary_10_1080_14789450_2021_1984886 crossref_primary_10_1016_j_matbio_2022_06_006 crossref_primary_10_1101_cshperspect_a041323 crossref_primary_10_3389_fonc_2023_1275346 crossref_primary_10_3390_biomimetics8020146 crossref_primary_10_1016_j_bpj_2023_07_001 crossref_primary_10_1039_D2AN01678H crossref_primary_10_1016_j_optlaseng_2025_108882 crossref_primary_10_1038_s41467_023_43520_8 crossref_primary_10_1186_s12931_023_02400_x crossref_primary_10_26508_lsa_202001000 crossref_primary_10_1088_1478_3975_ac6eb0 crossref_primary_10_1242_dmm_048801 crossref_primary_10_1002_pmic_202000077 crossref_primary_10_1038_s41467_024_54643_x crossref_primary_10_1038_s41467_022_34824_2 crossref_primary_10_1103_PhysRevE_108_034408 crossref_primary_10_3389_frhem_2023_1279863 crossref_primary_10_3390_ani15020200 crossref_primary_10_1016_j_crmeth_2023_100598 crossref_primary_10_7554_eLife_95842_3 crossref_primary_10_1038_s42003_024_06354_8 crossref_primary_10_1016_j_biomaterials_2022_121960 crossref_primary_10_7554_eLife_95842 crossref_primary_10_2139_ssrn_4132722 crossref_primary_10_1039_D0MO00108B crossref_primary_10_3389_fmed_2023_1191205 crossref_primary_10_1038_s41388_023_02863_8 |
Cites_doi | 10.1074/mcp.M300133-MCP200 10.1074/mcp.M500102-MCP200 10.1158/1078-0432.CCR-07-1215 10.1158/1078-0432.CCR-07-1497 10.1183/09031936.00209911 10.15252/embr.201439246 10.1111/iep.12011 10.1369/jhc.2010.955526 10.1016/j.jprot.2018.02.027 10.1016/S2213-2600(17)30433-2 10.1186/s12014-019-9226-4 10.3390/ijms16023537 10.1093/nar/gkw1099 10.1093/nar/gkx1132 10.1016/j.ymeth.2015.12.008 10.1002/dvdy.20462 10.1038/labinvest.3700343 10.21873/cgp.20008 10.1172/JCI93557 10.1371/journal.pone.0098187 10.1007/BF00268879 10.1172/jci.insight.125185 10.1016/j.biomaterials.2015.10.011 10.1152/ajplung.00543.2017 10.1007/s00401-009-0618-9 10.1002/ar.22504 10.1172/JCI200318650 10.1021/acs.jproteome.8b00505 10.3390/cancers4041180 10.2174/156652413804486214 10.1042/BJ20150844 10.1136/mp.54.4.253 10.1016/j.tcm.2006.11.001 10.1038/nprot.2006.85 10.1021/acs.jproteome.8b00981 10.1016/S1044-0305(02)00644-X 10.1074/mcp.TIR118.000686 10.1021/acs.jproteome.9b00468 10.1021/acs.jproteome.7b00191 10.1242/jcs.137802 10.1165/rcmb.2008-0169TR 10.1038/nprot.2016.136 10.1002/(SICI)1096-9896(199706)182:2<217::AID-PATH833>3.0.CO;2-A 10.1161/CIRCRESAHA.110.223800 10.1172/JCI71386 10.1002/pmic.201300553 10.1002/path.4858 10.1074/mcp.M300105-MCP200 10.1164/rccm.201709-1823OC 10.15252/msb.20156123 10.1038/nrm3896 10.7554/eLife.09579 10.1016/j.jprot.2010.12.001 10.1007/s00418-013-1097-6 10.1038/labinvest.3700596 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. COPYRIGHT 2020 BioMed Central Ltd. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: COPYRIGHT 2020 BioMed Central Ltd. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1186/s12014-020-09287-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-0275 |
ExternalDocumentID | PMC7302139 A627416441 32565759 10_1186_s12014_020_09287_6 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 203128/Z/16/Z funderid: http://dx.doi.org/10.13039/100004440 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L024551/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: ; grantid: 203128/Z/16/Z – fundername: ; grantid: BB/L024551/1 |
GroupedDBID | --- .86 0R~ 29B 4.4 53G 5GY 5VS 6NX 7X7 8AO 8CJ 8FE 8FH 8FI 8TC AAFWJ AAJSJ AASML ABDBF ABMNI ACGFS ACGOD ACPRK ACUHS ADBBV ADRAZ ADUKV AFBBN AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BA0 BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BKSAR BMC BPHCQ BVXVI C6C CAG CS3 D1J DIK EBLON EBS F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HG6 HYE IAO IHR IHW ITC I~X KQ8 LK8 M48 M7P M~E O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC Q2X RBZ RNS ROL RPM RPX RSV S27 SBL SDH SOJ T13 TUS U2A VC2 ~KM AAYXX ALIPV CITATION -Y2 2VQ 88I 8FJ AAIAL AANXM AAYZH ABFSG ABUWG ACOMO ACSTC ADQRH ADRFC AEUYN AEZWR AFHIU AFKRA AFLOW AGJBK AHSBF AHWEU AIXLP AZQEC BHPHI CCPQU COF DWQXO EJD GNUQQ H13 HF~ HMCUK HZ~ IPNFZ M2P NPM O9- OVD PCBAR PHGZM PHGZT PQGLB RIG S1Z TEORI UKHRP 7X8 5PM |
ID | FETCH-LOGICAL-c544t-604759d832352930165c66a628ec61b799fc0a2bbafc2c4be0e5f45bb9387f723 |
IEDL.DBID | M48 |
ISSN | 1542-6416 |
IngestDate | Thu Aug 21 18:33:32 EDT 2025 Fri Sep 05 03:05:00 EDT 2025 Tue Jun 17 21:29:41 EDT 2025 Tue Jun 10 20:33:31 EDT 2025 Thu May 22 21:20:15 EDT 2025 Mon Jul 21 06:02:20 EDT 2025 Tue Jul 01 00:33:47 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 Sat Sep 06 07:27:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | The Author(s) 2020. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-604759d832352930165c66a628ec61b799fc0a2bbafc2c4be0e5f45bb9387f723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5039-9094 0000-0003-4845-8494 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12014-020-09287-6 |
PMID | 32565759 |
PQID | 2415834672 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7302139 proquest_miscellaneous_2415834672 gale_infotracmisc_A627416441 gale_infotracacademiconefile_A627416441 gale_healthsolutions_A627416441 pubmed_primary_32565759 crossref_citationtrail_10_1186_s12014_020_09287_6 crossref_primary_10_1186_s12014_020_09287_6 springer_journals_10_1186_s12014_020_09287_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-17 |
PublicationDateYYYYMMDD | 2020-06-17 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Clinical proteomics |
PublicationTitleAbbrev | Clin Proteom |
PublicationTitleAlternate | Clin Proteomics |
PublicationYear | 2020 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | A Zougman (9287_CR24) 2014; 14 J Herrera (9287_CR55) 2019 A Fabregat (9287_CR30) 2018; 46 GJ van Eys (9287_CR38) 2007; 17 A Azimi (9287_CR16) 2016; 13 Y Hiroshima (9287_CR49) 2017; 13 A Naba (9287_CR21) 2017; 16 9287_CR57 P Chelladurai (9287_CR44) 2012; 40 V Espina (9287_CR3) 2006; 1 S Tyanova (9287_CR31) 2016; 11 A Naba (9287_CR33) 2012; 11 Q Li (9287_CR35) 2016; 75 BJ Xu (9287_CR7) 2002; 13 R Wilson (9287_CR20) 2012; 11 MW Parker (9287_CR54) 2014; 124 R Donato (9287_CR48) 2013; 13 MA Dassah (9287_CR50) 2014; 127 K Iyonaga (9287_CR42) 1997; 182 R Longuespée (9287_CR10) 2016; 104 M HaileMariam (9287_CR25) 2018; 17 M Milacic (9287_CR29) 2012; 4 MR Larsen (9287_CR51) 2004; 3 The UniProt Consortium (9287_CR32) 2017; 45 Z Xiao (9287_CR19) 2010; 58 P Feist (9287_CR26) 2015; 16 Y Tian (9287_CR34) 2019 C Li (9287_CR4) 2004; 3 HB Schiller (9287_CR37) 2015 DK Crockett (9287_CR9) 2005; 85 JR Wright (9287_CR47) 2003; 111 A Byron (9287_CR2) 2013; 94 V Patel (9287_CR15) 2008; 14 A Yurdagul (9287_CR52) 2016; 473 KC Hadley (9287_CR59) 2015; 4 A-L Cheng (9287_CR6) 2008; 14 SM Walsh (9287_CR45) 2018; 315 P Cunnea (9287_CR40) 2010; 119 M Kasper (9287_CR43) 1993; 100 JD Humphrey (9287_CR1) 2014; 15 9287_CR39 S Davis (9287_CR13) 2019; 18 CB Fowler (9287_CR17) 2007; 87 NL Flintoff-Dye (9287_CR41) 2005; 234 LC Lawrie (9287_CR5) 2001; 54 KC Kim (9287_CR46) 2008; 39 E Åhrman (9287_CR36) 2018; 189 J Herrera (9287_CR53) 2018; 198 BL Hood (9287_CR8) 2005; 4 DA Lynch (9287_CR27) 2018; 6 A Tanca (9287_CR18) 2011; 74 M Herfs (9287_CR11) 2017; 241 J Herrera (9287_CR22) 2018; 128 A Römpp (9287_CR58) 2013; 139 JR Wiśniewski (9287_CR12) 2013; 79 MW Pickup (9287_CR23) 2014; 15 V Mallikarjun (9287_CR28) 2020 KM Mak (9287_CR56) 2012; 295 Y Zhu (9287_CR14) 2018; 17 |
References_xml | – volume: 3 start-page: 399 year: 2004 ident: 9287_CR4 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M300133-MCP200 – volume: 4 start-page: 1741 year: 2005 ident: 9287_CR8 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M500102-MCP200 – volume: 14 start-page: 435 year: 2008 ident: 9287_CR6 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1215 – volume: 14 start-page: 1002 year: 2008 ident: 9287_CR15 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1497 – volume: 40 start-page: 766 year: 2012 ident: 9287_CR44 publication-title: Eur Respir J doi: 10.1183/09031936.00209911 – volume: 15 start-page: 1243 year: 2014 ident: 9287_CR23 publication-title: EMBO Rep doi: 10.15252/embr.201439246 – volume: 94 start-page: 75 year: 2013 ident: 9287_CR2 publication-title: Int J Exp Pathol doi: 10.1111/iep.12011 – volume: 58 start-page: 517 year: 2010 ident: 9287_CR19 publication-title: J Histochem Cytochem doi: 10.1369/jhc.2010.955526 – volume: 189 start-page: 23 year: 2018 ident: 9287_CR36 publication-title: J Proteomics. doi: 10.1016/j.jprot.2018.02.027 – volume: 6 start-page: 138 year: 2018 ident: 9287_CR27 publication-title: Lancet Respir Med. doi: 10.1016/S2213-2600(17)30433-2 – year: 2019 ident: 9287_CR34 publication-title: Clin Proteomics. doi: 10.1186/s12014-019-9226-4 – volume: 16 start-page: 3537 year: 2015 ident: 9287_CR26 publication-title: Int J Mol Sci doi: 10.3390/ijms16023537 – volume: 45 start-page: 158 year: 2017 ident: 9287_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1099 – volume: 46 start-page: D649 year: 2018 ident: 9287_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1132 – volume: 104 start-page: 154 year: 2016 ident: 9287_CR10 publication-title: Methods doi: 10.1016/j.ymeth.2015.12.008 – volume: 234 start-page: 11 year: 2005 ident: 9287_CR41 publication-title: Dev Dyn doi: 10.1002/dvdy.20462 – volume: 85 start-page: 1405 year: 2005 ident: 9287_CR9 publication-title: Lab Invest doi: 10.1038/labinvest.3700343 – volume: 13 start-page: 453 year: 2016 ident: 9287_CR16 publication-title: Cancer Genomics Proteomics doi: 10.21873/cgp.20008 – volume: 128 start-page: 45 year: 2018 ident: 9287_CR22 publication-title: J Clin Invest. doi: 10.1172/JCI93557 – ident: 9287_CR57 doi: 10.1371/journal.pone.0098187 – volume: 100 start-page: 65 year: 1993 ident: 9287_CR43 publication-title: Histochemistry doi: 10.1007/BF00268879 – year: 2019 ident: 9287_CR55 publication-title: JCI Insight. doi: 10.1172/jci.insight.125185 – volume: 75 start-page: 37 year: 2016 ident: 9287_CR35 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.011 – volume: 315 start-page: 697 year: 2018 ident: 9287_CR45 publication-title: Am J Physiol Lung Cell Mol Physiol. doi: 10.1152/ajplung.00543.2017 – volume: 119 start-page: 601 year: 2010 ident: 9287_CR40 publication-title: Acta Neuropathol doi: 10.1007/s00401-009-0618-9 – volume: 295 start-page: 1159 year: 2012 ident: 9287_CR56 publication-title: Anat Rec (Hoboken) doi: 10.1002/ar.22504 – volume: 111 start-page: 1453 year: 2003 ident: 9287_CR47 publication-title: J Clin Invest. doi: 10.1172/JCI200318650 – volume: 17 start-page: 2917 year: 2018 ident: 9287_CR25 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00505 – volume: 4 start-page: 1180 year: 2012 ident: 9287_CR29 publication-title: Cancers (Basel). doi: 10.3390/cancers4041180 – volume: 13 start-page: 24 issue: 1 year: 2013 ident: 9287_CR48 publication-title: Curr Mol Med doi: 10.2174/156652413804486214 – volume: 473 start-page: 1281 year: 2016 ident: 9287_CR52 publication-title: Biochem J. doi: 10.1042/BJ20150844 – volume: 54 start-page: 253 year: 2001 ident: 9287_CR5 publication-title: Mol Pathol. doi: 10.1136/mp.54.4.253 – volume: 17 start-page: 26 year: 2007 ident: 9287_CR38 publication-title: Trends Cardiovasc Med doi: 10.1016/j.tcm.2006.11.001 – volume: 1 start-page: 586 year: 2006 ident: 9287_CR3 publication-title: Nat Protoc doi: 10.1038/nprot.2006.85 – volume: 18 start-page: 1787 year: 2019 ident: 9287_CR13 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.8b00981 – volume: 11 start-page: 014159 issue: M111 year: 2012 ident: 9287_CR20 publication-title: Mol Cell Proteomics – volume: 13 start-page: 1292 year: 2002 ident: 9287_CR7 publication-title: J Am Soc Mass Spectrom doi: 10.1016/S1044-0305(02)00644-X – volume: 17 start-page: 1864 year: 2018 ident: 9287_CR14 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.TIR118.000686 – year: 2020 ident: 9287_CR28 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.9b00468 – volume: 16 start-page: 3083 year: 2017 ident: 9287_CR21 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.7b00191 – volume: 79 start-page: e50589 year: 2013 ident: 9287_CR12 publication-title: J Vis Exp. – volume: 127 start-page: 828 year: 2014 ident: 9287_CR50 publication-title: J Cell Sci doi: 10.1242/jcs.137802 – volume: 39 start-page: 644 year: 2008 ident: 9287_CR46 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2008-0169TR – volume: 11 start-page: 2301 year: 2016 ident: 9287_CR31 publication-title: Nat Protoc doi: 10.1038/nprot.2016.136 – volume: 182 start-page: 217 year: 1997 ident: 9287_CR42 publication-title: J Pathol. doi: 10.1002/(SICI)1096-9896(199706)182:2<217::AID-PATH833>3.0.CO;2-A – ident: 9287_CR39 doi: 10.1161/CIRCRESAHA.110.223800 – volume: 124 start-page: 1622 year: 2014 ident: 9287_CR54 publication-title: J Clin Invest. doi: 10.1172/JCI71386 – volume: 14 start-page: 1006 year: 2014 ident: 9287_CR24 publication-title: Proteomics doi: 10.1002/pmic.201300553 – volume: 241 start-page: 522 year: 2017 ident: 9287_CR11 publication-title: J Pathol. doi: 10.1002/path.4858 – volume: 3 start-page: 456 year: 2004 ident: 9287_CR51 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M300105-MCP200 – volume: 198 start-page: 486 year: 2018 ident: 9287_CR53 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201709-1823OC – year: 2015 ident: 9287_CR37 publication-title: Mol Syst Biol doi: 10.15252/msb.20156123 – volume: 13 start-page: 24 year: 2017 ident: 9287_CR49 publication-title: Immunol Cell Biol – volume: 15 start-page: 802 year: 2014 ident: 9287_CR1 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3896 – volume: 11 start-page: 014647 issue: M111 year: 2012 ident: 9287_CR33 publication-title: Mol Cell Proteomics – volume: 4 start-page: e09579 year: 2015 ident: 9287_CR59 publication-title: Elife. doi: 10.7554/eLife.09579 – volume: 74 start-page: 359 year: 2011 ident: 9287_CR18 publication-title: J Proteomics. doi: 10.1016/j.jprot.2010.12.001 – volume: 139 start-page: 759 year: 2013 ident: 9287_CR58 publication-title: Histochem Cell Biol doi: 10.1007/s00418-013-1097-6 – volume: 87 start-page: 836 year: 2007 ident: 9287_CR17 publication-title: Lab Inves. doi: 10.1038/labinvest.3700596 |
SSID | ssj0029498 |
Score | 2.3528225 |
Snippet | Background
Haematoxylin and eosin (H&E)—which respectively stain nuclei blue and other cellular and stromal material pink—are routinely used for clinical... Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based... Background Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical... Haematoxylin and eosin (H&E)--which respectively stain nuclei blue and other cellular and stromal material pink--are routinely used for clinical diagnosis... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24 |
SubjectTerms | Biomedical and Life Sciences Biotechnology Cell Biology Formaldehyde Life Sciences Mass spectrometry Pathology Proteins Proteomics Respiratory tract diseases Scientific equipment industry |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZguXBBwPIILGAkxENgkTixkxyrFasV2nKBSnuzYsfWrpQmVZMi-jP4x4wnD5EKrcSt1UzaNOOZ-abzIuSNTmJdprZgNjUhBCgiZPBeslK4RGhRuhh7q5bf5Pkq-XopLoemsHasdh9TkmipUa0z-bmNwFclzIc7YQ44n8nb5I6A2N2r44ovpjArT3ADLmADziTgjbFV5p-fMXNHh0b5L690WDF5kDZFb3R2n9wbYCRd9HJ_QG7Z-iE5XtQQQq_39C3Fwk78x_yY_L4AT7Wlptj4bAFd-xI8TMNjSwM1zW5T2ZKuAUZTbLz0Ewy67Z6-vzhdsuX3DxSALVBAhkVV7SkE6E31E64ohoEmtHEUsS88VuaufyGppNiZBa9xDSCtwKrQDsXcPiKrsy8_Ts_ZsImBGZEkHZOhHwtYgvYDXstj3wJlpCwkz6yRkU7z3Jmw4FoXznCTaBtalLXO4yx1KY8fk6O6qe1TQqULCxNpLSJnE5drgGeRExC2xdZBeBUFJBoFoswwptxvy6gUhiuZVL0QFQhRoRCVDMjH6ZpNP6TjRu5XXs6qbzSdNFwtcA2Rx4cBeYccXsfhu00xtCrAL_DTsmacJzNO0E0zI78ez5LyJF_QVttm1yoPnLIYvBQPyJP-bE23HnOfixZ5QNLZqZsY_EjwOaW-vsLR4GCvOWD6gHwaz6cabFJ7wxN59n_sz8ldjiokWZSekKNuu7MvAJp1-iVq4h8uRDE9 priority: 102 providerName: Springer Nature |
Title | Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues |
URI | https://link.springer.com/article/10.1186/s12014-020-09287-6 https://www.ncbi.nlm.nih.gov/pubmed/32565759 https://www.proquest.com/docview/2415834672 https://pubmed.ncbi.nlm.nih.gov/PMC7302139 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLe2IaG9IGB8BMY4JMSH2EFySS7NA0JVtWlCKy9QaW-n3OVOTEqT0g-0vvA_8B_jc5NqrcZeolR22iS2zz_XZxvgtU5iXWa24DYzIQYoacjxs-Rl6pJUp6WLqbZq-E2ejZKvF-nFDnTjjtoXOLsxtPPzpEbT6uPVr-UXNPjPZPA9-WkWoRdLuA-EwhwjAC534Q56JumDsWGyziqIPKHZuIgaBJdI74pobvyOfbgbC58U9G1Mr_ms7ZX7muva3la5lVsll3V6H-61WJP1V8rxAHZs_RAO-jXG2eMle8No9yf9rX4Af8_RnU2ZKSY-pcDGfp8e5eqp7oGZZjGpbMnGiLUZVWf6Ngfz6ZK9Ox8M-fD7e4boFyko6KKqlgyj-Kb6jVcUbdcT1jhGABlxLXeXV0QqGZVv4TnNCmQVLj1sTrowewSj05MfgzPejmvgJk2SOZeh7x1Y4hKBoC6PfZ2UkbKQomeNjHSW586EhdC6cEaYRNvQkkLoPO5lLhPxY9irm9o-BSZdWJhI6zRyNnG5RgwXuRRju9g6jMGiAKJOIMq0vcz9SI1KUUzTk2olT4XyVCRPJQP4sL5msurkcSv3Sy9ntapGXS8Dqk-zijyIDOAtcXjVxN82RVvPgE_gW2ptcB5ucKIBmw3yq06XlCf5XW-1bRYz5dFVL0ZXJgJ4stKt9a13uhlAtqF1awbfN3yTUl_-pP7huKgLBP4BHHf6qTq7u-WNPPvvLTyHfUGGI3mUHcLefLqwLxCqzfUR7A7k4Iis0B__nOBxJPr_AMvDOlk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BeoALAsrDUOgiIR6CFX6u7aNVUYWQ9NJW6m3lXe-KSo4dxUnV_Az-MbPjh3CEKnFLNOPE8ezMfJN5EfJehoEsYp0zHSsXApTIZfCesyIyYSSjwgTYW7U449PLcHYVXXVNYU1f7d6nJNFSo1on_Fvjga8KmQ133BRwPuP3yUECaCSckIMsm53PhkArDXEHLqADn3FAHH2zzD8_ZeSQ9s3yX35pv2ZyL3GK_uj0MXnUAUmatZJ_Qu7p6ik5zCoIopc7-oFiaSf-Z35Ifs_BV62pylc2X0CXtggPE_HY1EBVvV2VuqBLANIUWy_tDIPNekc_zU8WbHH-mQK0BQpIMS_LHYUQvS5v4Iq8G2lCa0MR_cKDZeb6FkkFxd4seI2LAGkJdoVuUNDNM3J5-v3iZMq6XQxMRWG4Ydy1gwEL0H9AbGlgm6AU5zn3E624J-M0NcrNfSlzo3wVSu1qlLZMgyQ2sR88J5OqrvRLQrlxc-VJGXlGhyaVANA8E0HgFmgDAZbnEK8XiFDdoHK7L6MUGLAkXLRCFCBEgUIU3CFfhmtW7ZiOO7mPrZxF22o66LjIcBGRRYgO-YgcVsvhu1XeNSvAL7DzskacRyNO0E41Ir_rz5KwJFvSVul62wgLnZIA_JTvkBft2RpuPfBtNjpKHRKPTt3AYIeCjynV9S8cDg4W2wdU75Cv_fkUnVVq7ngir_6P_Zg8mF4s5mL-4-zna_LQR3XizIuPyGSz3uo3ANQ28m2nl38A0801gA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB50BfFF1PUSXd0RxAs6bC6TSfJYqmXVdhF0Yd-GzGQGF9KktKnYn-E_9szJhU2RBd9a5qRNc27f6bkR8krxSBWJyZlJtA8BSuwzeC9YEVseq7iwEfZWLc7E6Tn_chFfXOnix2r3PiXZ9jS4KU1Vc7IqbKviqTjZBOC3OHOhj58B5mfiJrnFnetz6VoxHUKujOM2XMAJIROAPfq2mX9-xsg17RvoKx5qv3pyL4WKnml2j9ztICWdtDJwn9ww1QNyOKkgnF7u6GuKRZ747_kh-TMHr7WmOl-5zAFdunI8TMljewPV9XZVmoIuAVJTbMJ00wya9Y6-nU8XbPH9HQWQCyfAz7wsdxSC9br8BVfk3XATWluKOBgeMbOXv_GooNilBa9xJSAtwcLQBlm-eUjOZ59-TE9Zt5WB6ZjzhgnfjQgswBIAdssi1w6lhchFmBotApVkmdV-HiqVWx1qroxvkO8qi9LEJmH0iBxUdWWeECqsn-tAqTiwhttMAVQLbAwhXGQshFqBR4KeIVJ3I8vd5oxSYuiSCtkyUQITJTJRCo-8H65ZtQM7rqU-dnyWbdPpoO1ygiuJHFb0yBukcPoO363zrm0BfoGbnDWiPBpRgp7q0fHLXpakO3LFbZWptxvpQFQagccKPfK4la3h1qPQ5aXjzCPJSOoGAjcefHxSXf7EMeFgu0PA9x750Mun7OzT5pon8vT_yI_J7W8fZ3L--ezrM3InRG0SLEiOyEGz3prngNga9QKV8i_BfThW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+capture+microdissection+coupled+mass+spectrometry+%28LCM-MS%29+for+spatially+resolved+analysis+of+formalin-fixed+and+stained+human+lung+tissues&rft.jtitle=Clinical+proteomics&rft.au=Herrera%2C+Jeremy+A&rft.au=Mallikarjun%2C+Venkatesh&rft.au=Rosini%2C+Silvia&rft.au=Montero%2C+Maria+Angeles&rft.date=2020-06-17&rft.issn=1542-6416&rft.volume=17&rft.spage=24&rft_id=info:doi/10.1186%2Fs12014-020-09287-6&rft_id=info%3Apmid%2F32565759&rft.externalDocID=32565759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-6416&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-6416&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-6416&client=summon |