Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells

Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Ce...

Full description

Saved in:
Bibliographic Details
Published inCells (Basel, Switzerland) Vol. 8; no. 1; p. 74
Main Authors Namekawa, Takeshi, Ikeda, Kazuhiro, Horie-Inoue, Kuniko, Inoue, Satoshi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.01.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
AbstractList Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
Author Horie-Inoue, Kuniko
Inoue, Satoshi
Namekawa, Takeshi
Ikeda, Kazuhiro
AuthorAffiliation 2 Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
1 Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; takeshi.namekawa@gmail.com (T.N.); ikeda@saitama-med.ac.jp (K.I.); khorie07@saitama-med.ac.jp (K.H.-I.)
3 Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
AuthorAffiliation_xml – name: 1 Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; takeshi.namekawa@gmail.com (T.N.); ikeda@saitama-med.ac.jp (K.I.); khorie07@saitama-med.ac.jp (K.H.-I.)
– name: 3 Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
– name: 2 Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
Author_xml – sequence: 1
  givenname: Takeshi
  orcidid: 0000-0002-0054-0985
  surname: Namekawa
  fullname: Namekawa, Takeshi
– sequence: 2
  givenname: Kazuhiro
  surname: Ikeda
  fullname: Ikeda, Kazuhiro
– sequence: 3
  givenname: Kuniko
  surname: Horie-Inoue
  fullname: Horie-Inoue, Kuniko
– sequence: 4
  givenname: Satoshi
  surname: Inoue
  fullname: Inoue, Satoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30669516$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAURk1JadI0u66LoJsu4lay9bC6KAyTPgJTGmgK3RlZup5o8EgTSR7IT-u_q-bRMBlqMDb3nnt8Zb6XxYnzDoriNcHv61riDxqGITaYYCzos-KswqIuKcXy5OD9tLiIcYHz1RBOMHtRnNaYc8kIPyv-TFarwWqVrHfI9-gm-JhUAjRVTkNA372BIaLeh9wCPViX4QH9TKN5-IgmZq1cUnOISDmDZnZp01YVN65pXi7XHMRLdJPL4FJ5BcGuwaDf4Pw8qD7l3mb09i4AlFd2CS7m-fyJ6TikMcB2qaPhjTi-Kp73aohwsX-eF7--fL6dfitnP75eTyezUjNKU8k4Y7pjiteKao6F0JIY1RBNdMdpxQ3RRtR9j_MtoSG1VJSwSgotOm50X58X1zuv8WrRroJdqvDQemXbbcGHeatCsnqAlvWEgaCSaikoNNAwRjTrGkVVDYp12fVp51qN3RKMzocKangifdpx9q6d-3XLayYww1nwbi8I_n6EmNqljZsQKAd-jG1FhKSUNo3I6NsjdOHHkP9sphht6ooTJjP15nCjx1X-JSQDlztA52TEAP0jQnC7yWB7mMGMV0e43kcin8cO_x_6CxJl4q8
CitedBy_id crossref_primary_10_3390_cimb46110743
crossref_primary_10_5483_BMBRep_2022_0200
crossref_primary_10_1002_wsbm_1590
crossref_primary_10_1021_acs_jmedchem_2c01662
crossref_primary_10_1080_15287394_2020_1784339
crossref_primary_10_1007_s10616_021_00495_y
crossref_primary_10_3892_ijo_2022_5342
crossref_primary_10_1080_15287394_2023_2293218
crossref_primary_10_1039_D0RA01179G
crossref_primary_10_1140_epjp_s13360_021_02254_6
crossref_primary_10_3390_biomedicines9080893
crossref_primary_10_3390_cells9061398
crossref_primary_10_3389_fcell_2022_858013
crossref_primary_10_1002_pros_24473
crossref_primary_10_3390_ijms23094814
crossref_primary_10_1016_j_yexcr_2024_113991
crossref_primary_10_1039_D2BM02060B
crossref_primary_10_3390_biomedicines11102743
crossref_primary_10_1016_j_biopha_2023_115581
crossref_primary_10_1016_j_gendis_2025_101520
crossref_primary_10_1016_j_actatropica_2020_105708
crossref_primary_10_3390_genes11101174
crossref_primary_10_3390_ijms252011200
crossref_primary_10_1038_s41467_020_15426_2
crossref_primary_10_1007_s11033_024_09836_4
crossref_primary_10_1136_jitc_2022_006290
crossref_primary_10_3390_cancers13040737
crossref_primary_10_3389_fonc_2024_1321694
crossref_primary_10_3390_ijms24032040
crossref_primary_10_3390_curroncol30110683
crossref_primary_10_1093_glycob_cwad044
crossref_primary_10_3390_app131810349
crossref_primary_10_3390_antiox13080902
crossref_primary_10_1016_j_reprotox_2022_05_006
crossref_primary_10_3390_ph17081072
crossref_primary_10_3390_medicines6030082
crossref_primary_10_3390_cancers13184688
crossref_primary_10_3390_ph16020231
crossref_primary_10_1080_23808993_2019_1685868
crossref_primary_10_1007_s11033_021_06406_w
crossref_primary_10_1016_j_jaim_2021_08_012
crossref_primary_10_1186_s13765_024_00965_9
crossref_primary_10_3389_fonc_2022_976065
crossref_primary_10_3389_fcell_2021_641963
crossref_primary_10_3390_cancers14071708
crossref_primary_10_1016_j_coemr_2020_02_005
crossref_primary_10_1016_j_isci_2024_108984
crossref_primary_10_1186_s12885_021_07844_2
crossref_primary_10_1038_s41585_023_00726_1
crossref_primary_10_1186_s13046_022_02328_y
crossref_primary_10_3390_molecules26206142
crossref_primary_10_1016_j_csbj_2022_08_064
crossref_primary_10_1002_cam4_4113
crossref_primary_10_3389_fmed_2022_999004
crossref_primary_10_3390_pharmaceutics13050704
crossref_primary_10_1038_s41585_022_00677_z
crossref_primary_10_1002_mco2_437
crossref_primary_10_1038_s41585_021_00500_1
crossref_primary_10_3389_fruro_2023_1239328
crossref_primary_10_3390_antiox10101591
crossref_primary_10_3390_cells13121005
crossref_primary_10_3390_ijms222011242
crossref_primary_10_1038_s41391_023_00679_x
crossref_primary_10_3390_cells11020260
crossref_primary_10_1038_s41598_022_21856_3
crossref_primary_10_1126_sciadv_adm7515
crossref_primary_10_3390_pharmaceutics16050583
crossref_primary_10_1038_s41419_023_05627_0
crossref_primary_10_1186_s13550_024_01116_3
crossref_primary_10_1016_j_canlet_2020_05_040
crossref_primary_10_3389_fendo_2022_1106175
crossref_primary_10_1016_j_heliyon_2023_e13829
crossref_primary_10_2139_ssrn_4053283
crossref_primary_10_1021_acsami_4c03453
crossref_primary_10_1074_mcp_RA119_001876
crossref_primary_10_1002_pros_23966
crossref_primary_10_1016_j_omtn_2020_03_003
crossref_primary_10_1016_j_semcancer_2021_12_002
crossref_primary_10_3389_fonc_2021_736431
crossref_primary_10_1002_cam4_70416
crossref_primary_10_3390_biomedicines10020271
crossref_primary_10_3390_nu13031000
crossref_primary_10_3892_or_2024_8791
crossref_primary_10_1155_2020_6051210
crossref_primary_10_2174_1871520621666210910084216
crossref_primary_10_3390_ijms24043135
crossref_primary_10_1016_j_tiv_2023_105624
crossref_primary_10_3390_ijms23063203
crossref_primary_10_3390_molecules26196018
crossref_primary_10_1093_toxres_tfae056
crossref_primary_10_1002_1878_0261_12762
crossref_primary_10_1016_j_foodres_2025_116124
crossref_primary_10_1016_j_ijbiomac_2024_136519
crossref_primary_10_1093_mtomcs_mfac040
crossref_primary_10_1016_j_ebiom_2020_103059
crossref_primary_10_1016_j_addr_2021_113839
crossref_primary_10_1016_j_xcrm_2023_101042
crossref_primary_10_2147_CMAR_S303122
crossref_primary_10_3389_fonc_2023_1130048
crossref_primary_10_1038_s41598_024_59052_0
crossref_primary_10_1016_j_critrevonc_2020_103087
crossref_primary_10_3390_cancers12040777
crossref_primary_10_3390_cancers13235882
crossref_primary_10_1016_j_jnutbio_2020_108580
crossref_primary_10_1002_cam4_5998
crossref_primary_10_1186_s12915_023_01729_5
crossref_primary_10_18632_oncotarget_27601
crossref_primary_10_3390_ijms25021093
crossref_primary_10_1038_s41585_020_00389_2
crossref_primary_10_1073_pnas_2220190120
crossref_primary_10_1002_med_21924
crossref_primary_10_1038_s41598_023_33073_7
crossref_primary_10_1002_pros_24314
crossref_primary_10_1186_s12935_020_01583_3
crossref_primary_10_1007_s10735_024_10341_y
crossref_primary_10_1093_neuonc_noae195
crossref_primary_10_1186_s12957_022_02510_8
crossref_primary_10_1080_10937404_2024_2407452
crossref_primary_10_1080_17460441_2021_1943354
crossref_primary_10_1038_s41598_021_86021_8
crossref_primary_10_1016_j_jddst_2021_102340
crossref_primary_10_3390_cancers16193262
Cites_doi 10.18632/oncotarget.15237
10.1080/15592294.2016.1146851
10.1002/pros.23701
10.1002/pros.1084
10.1073/pnas.87.17.6698
10.1002/jcb.23134
10.1126/scisignal.2005070
10.1016/j.eururo.2018.02.019
10.1158/0008-5472.CAN-10-1998
10.1002/ijc.2910440128
10.1158/0008-5472.CAN-15-0361
10.1158/1535-7163.MCT-11-0289
10.1038/sj.bjc.6690684
10.1158/1078-0432.CCR-11-1867
10.1111/j.1432-0436.1991.tb00250.x
10.1007/s00432-018-2803-5
10.1158/0008-5472.CAN-05-0817
10.1038/s41467-018-04495-z
10.1073/pnas.0707498104
10.1021/mp500085p
10.1158/0008-5472.CAN-09-2984
10.1038/nm0596-561
10.1158/2159-8290.CD-15-1263
10.1158/1078-0432.CCR-16-2955
10.1002/pros.20255
10.1158/1535-7163.MCT-16-0912
10.1111/j.1464-410X.2008.07618.x
10.1002/pros.20225
10.1002/pros.23282
10.1016/j.exphem.2013.11.005
10.1002/pros.10198
10.1038/301527a0
10.1056/NEJMoa1209096
10.1074/jbc.M109.079525
10.1158/1535-7163.MCT-12-0798
10.1038/onc.2011.637
10.1002/1097-0045(20000601)43:4<263::AID-PROS5>3.0.CO;2-I
10.1371/journal.pone.0023144
10.1158/0008-5472.CAN-17-0314
10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2
10.1016/j.bbrc.2011.12.047
10.1002/pros.2990260206
10.1016/j.gde.2015.02.007
10.1002/pros.23313
10.1111/j.1399-0039.1983.tb00162.x
10.1038/nm0497-402
10.1002/pros.2990220202
10.1097/01.ju.0000141580.30910.57
10.1158/1078-0432.CCR-13-2308
10.1002/jcb.25091
10.1002/pros.10091
10.1038/nrurol.2013.126
10.1016/j.cell.2014.12.021
10.1158/0008-5472.CAN-13-2876
10.1182/blood-2001-12-0207
10.1038/bjc.1994.279
10.1002/pros.21058
10.1158/0008-5472.CAN-13-2921-T
10.1038/nprot.2013.043
10.1038/nature04304
10.1002/pros.21301
10.1038/nature.2016.19364
10.4049/jimmunol.174.10.6477
10.3109/08977190109029117
10.1016/j.cell.2014.08.016
10.1200/JCO.2013.54.3553
10.1002/jcb.24464
10.1002/pros.2990230206
10.1016/j.bcp.2018.10.002
10.1038/ncomms9219
10.1186/1476-4598-10-126
10.1007/s11626-999-0115-4
10.1038/nm1296-1329
10.1371/journal.pone.0040021
10.1007/s13346-011-0042-2
10.1038/sj.bjc.6604822
10.1038/nature07935
10.1158/1078-0432.CCR-15-2956
10.1053/j.gastro.2011.07.050
10.1002/pros.10290
10.1002/pros.21037
10.1097/01.ju.0000149989.01263.dc
10.1002/pros.21383
10.1016/S0065-2776(08)60490-3
10.7150/ijbs.9406
10.1158/1078-0432.CCR-16-2054
10.1016/j.cell.2016.05.082
10.1016/j.eururo.2018.06.020
10.1016/S0022-5347(17)39903-2
10.1530/ERC-18-0226
10.1002/pros.2990050409
10.1007/BF00925693
10.1002/ijc.2910210305
10.1111/j.1365-2605.2009.01030.x
10.1016/j.ccell.2017.09.003
10.1038/nature24028
10.18632/oncotarget.4347
10.1158/0008-5472.CAN-08-0594
10.3892/ijo.2016.3396
10.1073/pnas.93.26.15152
10.1016/S0022-5347(05)68158-X
10.1111/j.1442-2042.2007.01532.x
10.1158/1078-0432.CCR-12-2408
10.1158/1535-7163.MCT-17-0013
10.1002/1878-0261.12030
10.1002/pros.23437
10.3892/or.2016.4809
10.1158/1078-0432.CCR-15-0157
10.1016/j.eururo.2017.02.038
10.1002/pros.21185
10.1002/pros.20581
10.1017/S0016672300010168
10.1016/S0022-5347(17)57628-4
10.1016/j.humpath.2008.07.014
10.1038/emboj.2013.99
10.1158/0008-5472.CAN-11-3812
10.1158/0008-5472.CAN-08-4210
10.1038/sj.pcan.4500606
10.3322/caac.21442
10.1002/stem.668
10.1016/S0006-291X(05)80067-1
10.1074/jbc.M116.718536
10.1002/pros.1045
10.1158/1078-0432.CCR-11-2900
10.1016/S0140-6736(10)61389-X
10.1111/bju.14043
10.1248/cpb.c17-00789
10.1016/S0022-5347(17)36978-1
10.3390/ijerph13010012
10.1002/pros.2990010113
10.1038/nrc775
10.1016/0090-4295(90)80319-I
10.1016/S0002-9440(10)64226-5
10.1158/0008-5472.CAN-17-3677
10.1038/nri3311
10.1210/me.2011-1242
10.1002/gcc.1149
10.1038/nprot.2016.006
10.4149/neo_2018_170822N551
10.1002/pros.23039
10.18632/oncotarget.6864
10.1159/000133468
10.1016/j.eururo.2017.08.012
10.1016/j.cyto.2013.06.313
10.1111/cas.13729
10.1002/ijc.2910440525
10.1056/NEJMoa1207506
10.1158/0008-5472.CAN-13-2971
10.18632/oncotarget.24609
10.1002/pros.20053
10.1002/ijc.2910570319
10.1007/s10585-004-2869-0
10.1038/nature13448
10.1016/j.eururo.2005.12.035
10.1038/bjc.2017.474
10.1002/pros.23288
10.1002/ijc.21292
10.1074/mcp.M114.039909
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.3390/cells8010074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_5f15e7494c974e8e8551c5b8a4a3ea5b
PMC6357050
30669516
10_3390_cells8010074
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c544t-5655cb5a63a4c6077c91da81c1cb6426d1cd73ff03ff9e8139a415297c7b6dcf3
IEDL.DBID M48
ISSN 2073-4409
IngestDate Wed Aug 27 01:26:48 EDT 2025
Thu Aug 21 18:43:22 EDT 2025
Fri Jul 11 12:29:29 EDT 2025
Fri Jul 25 11:42:19 EDT 2025
Thu Jan 02 22:59:22 EST 2025
Tue Jul 01 01:05:49 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords prostate cancer
patient-derived xenograft
cell line
organoid
spheroid
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-5655cb5a63a4c6077c91da81c1cb6426d1cd73ff03ff9e8139a415297c7b6dcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0054-0985
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells8010074
PMID 30669516
PQID 2548326159
PQPubID 2032536
ParticipantIDs doaj_primary_oai_doaj_org_article_5f15e7494c974e8e8551c5b8a4a3ea5b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357050
proquest_miscellaneous_2179444887
proquest_journals_2548326159
pubmed_primary_30669516
crossref_primary_10_3390_cells8010074
crossref_citationtrail_10_3390_cells8010074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190120
PublicationDateYYYYMMDD 2019-01-20
PublicationDate_xml – month: 1
  year: 2019
  text: 20190120
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bluemn (ref_7) 2017; 32
ref_94
Kleb (ref_155) 2016; 11
Zhao (ref_59) 1999; 162
Toivanen (ref_124) 2011; 29
Oudard (ref_6) 2010; 376
Masters (ref_30) 2002; 2
Wang (ref_123) 2005; 64
Nguyen (ref_20) 2017; 77
Billstrom (ref_35) 1995; 26
Takayama (ref_78) 2013; 32
Li (ref_95) 2011; 1
Ellis (ref_61) 1996; 2
True (ref_135) 2002; 161
Takayama (ref_14) 2012; 26
Lange (ref_47) 2014; 20
Veldscholte (ref_55) 1990; 173
Billstrom (ref_36) 1989; 44
Kuruma (ref_84) 2013; 12
Li (ref_88) 2010; 70
Terada (ref_151) 2010; 70
Terada (ref_72) 2010; 70
Lee (ref_156) 2015; 14
Krupski (ref_169) 2001; 18
Masko (ref_65) 2017; 77
Claas (ref_118) 1983; 21
Bakht (ref_143) 2018; 26
Williams (ref_33) 1980; 17
Ledford (ref_19) 2016; 530
Nomura (ref_120) 2005; 14
Iwasa (ref_77) 2007; 14
Jones (ref_74) 2015; 6
McCulloch (ref_142) 2005; 65
Lange (ref_46) 2012; 18
Horoszewicz (ref_9) 1980; 37
Kopetz (ref_24) 2012; 18
Rubin (ref_69) 2000; 6
Zhang (ref_134) 2015; 21
Jin (ref_137) 2017; 77
Behjati (ref_173) 2014; 513
Simon (ref_53) 2009; 40
Wang (ref_8) 2014; 32
Li (ref_68) 2011; 71
Muraki (ref_116) 1990; 36
Tai (ref_51) 2011; 71
Shultz (ref_170) 2012; 12
Kim (ref_93) 2013; 114
Kaighn (ref_11) 1979; 17
Koochekpour (ref_39) 2014; 10
Boj (ref_174) 2015; 160
Kato (ref_100) 2013; 64
Sowery (ref_102) 2008; 102
Solit (ref_16) 2006; 439
Korch (ref_117) 2001; 61
Porter (ref_161) 2018; 121
Schmelz (ref_119) 2001; 48
Lin (ref_147) 2014; 74
Mickey (ref_10) 1977; 37
Corey (ref_130) 2002; 52
ref_82
Yang (ref_90) 2016; 36
Wang (ref_50) 1991; 48
Suominen (ref_136) 2017; 23
Gao (ref_29) 2014; 159
Korenchuk (ref_70) 2001; 15
Sugawara (ref_73) 2016; 7
Theodore (ref_41) 2010; 37
McDermott (ref_31) 2007; 104
Li (ref_152) 2014; 7
Lawrence (ref_158) 2013; 8
Qu (ref_149) 2018; 118
Wiid (ref_114) 1994; 70
Fong (ref_157) 2014; 11
Romijn (ref_127) 2000; 43
Sramkoski (ref_66) 1999; 35
Hoehn (ref_126) 1984; 5
Mo (ref_148) 2018; 73
Bishop (ref_86) 2017; 7
Li (ref_96) 2011; 112
Fujita (ref_97) 2010; 285
Kojima (ref_98) 2010; 70
Narayan (ref_115) 1992; 148
Bangma (ref_22) 2009; 100
Yin (ref_91) 2016; 48
Lam (ref_132) 2017; 23
Prencipe (ref_103) 2011; 10
Iwamoto (ref_165) 2014; 42
Winters (ref_131) 2017; 37
Gao (ref_17) 2015; 30
ref_177
Williams (ref_34) 1978; 119
Borgmann (ref_85) 2018; 73
Liu (ref_92) 2015; 116
Portella (ref_140) 2014; 74
Lin (ref_146) 2017; 8
Yoshida (ref_71) 2005; 65
Basu (ref_42) 2017; 77
Su (ref_64) 2017; 77
Chen (ref_3) 2016; 22
Bastide (ref_45) 2002; 5
Flanagan (ref_162) 1966; 8
Hanrahan (ref_104) 2017; 11
Liu (ref_83) 2017; 16
Ci (ref_150) 2018; 78
Shultz (ref_168) 2005; 174
Dehm (ref_2) 2008; 68
Navone (ref_60) 2000; 6
Hoehn (ref_125) 1980; 1
Tzelepi (ref_154) 2012; 18
Aparicio (ref_153) 2011; 71
Hongo (ref_106) 2018; 109
Clevers (ref_171) 2016; 165
Sato (ref_172) 2009; 459
Carroll (ref_56) 1993; 23
Stangelberger (ref_133) 2006; 118
Drost (ref_178) 2016; 11
Korch (ref_37) 2003; 57
Marchiani (ref_52) 2010; 33
Misawa (ref_79) 2016; 291
Machioka (ref_107) 2018; 9
Siegel (ref_1) 2018; 68
Verdaasdonk (ref_121) 1996; 149
Li (ref_21) 2008; 118
Korch (ref_108) 2001; 47
Stone (ref_43) 1978; 21
Ito (ref_167) 2002; 100
Luo (ref_144) 2018; 65
Puca (ref_179) 2018; 9
Kozlowski (ref_49) 1984; 44
Klein (ref_63) 1997; 3
Chen (ref_113) 1993; 62
Kikutani (ref_164) 1992; 51
Sobel (ref_12) 2005; 173
Ishiguro (ref_176) 2016; 76
Isaacs (ref_57) 1991; 51
Wilding (ref_18) 2014; 74
Lasko (ref_138) 2017; 550
Daniel (ref_25) 2009; 69
Sobel (ref_62) 2005; 173
MacLeod (ref_110) 1999; 83
Fridman (ref_122) 1990; 87
Marques (ref_75) 2006; 49
Takayama (ref_13) 2015; 6
Tepper (ref_67) 2002; 62
Thalmann (ref_81) 1994; 54
Larochelle (ref_166) 1996; 2
Craft (ref_141) 1999; 59
Okada (ref_23) 2018; 66
Horoszewicz (ref_54) 1983; 43
Kato (ref_99) 2012; 417
Lawrence (ref_159) 2015; 75
Brothman (ref_112) 1989; 44
Ching (ref_48) 1993; 126
Li (ref_139) 2012; 31
Scher (ref_4) 2012; 367
Navone (ref_26) 2018; 78
Kiefer (ref_128) 2004; 21
Zhau (ref_58) 1996; 93
Takeda (ref_87) 2007; 67
Ohata (ref_175) 2012; 72
Koochekpour (ref_38) 2004; 60
Corey (ref_129) 2003; 55
Ryan (ref_5) 2013; 368
Souchek (ref_89) 2017; 16
Byun (ref_101) 2018; 158
Hao (ref_145) 2018; 73
ref_40
Sato (ref_27) 2011; 141
Sherwood (ref_44) 1990; 143
Culig (ref_32) 1999; 81
Bosma (ref_163) 1983; 301
Druker (ref_15) 1996; 2
Centenera (ref_28) 2013; 10
Kanaya (ref_76) 2003; 5
Kalko (ref_105) 2012; 11
Lawrence (ref_160) 2018; 74
Loop (ref_111) 1993; 22
Wu (ref_80) 1994; 57
Boomer (ref_109) 2001; 31
References_xml – volume: 8
  start-page: 25928
  year: 2017
  ident: ref_146
  article-title: Metabolic heterogeneity signature of primary treatment-naive prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15237
– volume: 11
  start-page: 184
  year: 2016
  ident: ref_155
  article-title: Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas
  publication-title: Epigenetics
  doi: 10.1080/15592294.2016.1146851
– volume: 78
  start-page: 1262
  year: 2018
  ident: ref_26
  article-title: Movember gap1 pdx project: An international collection of serially transplantable prostate cancer patient-derived xenograft (pdx) models
  publication-title: Prostate
  doi: 10.1002/pros.23701
– volume: 48
  start-page: 79
  year: 2001
  ident: ref_119
  article-title: Peaz-1: A new human prostate neoplastic epithelial cell line
  publication-title: Prostate
  doi: 10.1002/pros.1084
– volume: 87
  start-page: 6698
  year: 1990
  ident: ref_122
  article-title: Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.17.6698
– volume: 112
  start-page: 2125
  year: 2011
  ident: ref_96
  article-title: Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.23134
– volume: 7
  start-page: ra47
  year: 2014
  ident: ref_152
  article-title: Targeting poly(adp-ribose) polymerase and the c-myb-regulated DNA damage response pathway in castration-resistant prostate cancer
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2005070
– volume: 73
  start-page: 949
  year: 2018
  ident: ref_145
  article-title: Patient-derived hormone-naive prostate cancer xenograft models reveal growth factor receptor bound protein 10 as an androgen receptor-repressed gene driving the development of castration-resistant prostate cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2018.02.019
– volume: 71
  start-page: 2108
  year: 2011
  ident: ref_68
  article-title: Intragenic rearrangement and altered rna splicing of the androgen receptor in a cell-based model of prostate cancer progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1998
– volume: 61
  start-page: 6340
  year: 2001
  ident: ref_117
  article-title: Tsu-pr1 and jca-1 cells are derivatives of t24 bladder carcinoma cells and are not of prostatic origin
  publication-title: Cancer Res.
– volume: 44
  start-page: 161
  year: 1989
  ident: ref_36
  article-title: Identification by c-banding of two human prostate tumour cell lines, 1013l and du 145
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910440128
– volume: 76
  start-page: 150
  year: 2016
  ident: ref_176
  article-title: Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0361
– volume: 11
  start-page: 329
  year: 2012
  ident: ref_105
  article-title: Identification of docetaxel resistance genes in castration-resistant prostate cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-11-0289
– volume: 81
  start-page: 242
  year: 1999
  ident: ref_32
  article-title: Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6690684
– volume: 18
  start-page: 666
  year: 2012
  ident: ref_154
  article-title: Modeling a lethal prostate cancer variant with small-cell carcinoma features
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-1867
– volume: 48
  start-page: 115
  year: 1991
  ident: ref_50
  article-title: Isolation and characterization of pc-3 human prostatic tumor sublines which preferentially metastasize to select organs in s.C.I.D. Mice
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1991.tb00250.x
– volume: 37
  start-page: 3385
  year: 2017
  ident: ref_131
  article-title: Inhibition of erg activity in patient-derived prostate cancer xenografts by yk-4-279
  publication-title: Anticancer Res.
– ident: ref_177
  doi: 10.1007/s00432-018-2803-5
– volume: 65
  start-page: 9611
  year: 2005
  ident: ref_71
  article-title: Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0817
– volume: 9
  start-page: 2404
  year: 2018
  ident: ref_179
  article-title: Patient derived organoids to model rare prostate cancer phenotypes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04495-z
– volume: 104
  start-page: 19936
  year: 2007
  ident: ref_31
  article-title: Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0707498104
– volume: 11
  start-page: 2040
  year: 2014
  ident: ref_157
  article-title: Hydrogel-based 3d model of patient-derived prostate xenograft tumors suitable for drug screening
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500085p
– volume: 70
  start-page: 1606
  year: 2010
  ident: ref_151
  article-title: Identification of ep4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-2984
– volume: 59
  start-page: 5030
  year: 1999
  ident: ref_141
  article-title: Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process
  publication-title: Cancer Res.
– volume: 2
  start-page: 561
  year: 1996
  ident: ref_15
  article-title: Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of bcr-abl positive cells
  publication-title: Nat. Med.
  doi: 10.1038/nm0596-561
– volume: 54
  start-page: 2577
  year: 1994
  ident: ref_81
  article-title: Androgen-independent cancer progression and bone metastasis in the lncap model of human prostate cancer
  publication-title: Cancer Res.
– volume: 7
  start-page: 54
  year: 2017
  ident: ref_86
  article-title: The master neural transcription factor brn2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-1263
– volume: 23
  start-page: 4335
  year: 2017
  ident: ref_136
  article-title: Radium-223 inhibits osseous prostate cancer growth by dual targeting of cancer cells and bone microenvironment in mouse models
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2955
– volume: 65
  start-page: 35
  year: 2005
  ident: ref_142
  article-title: Bm18: A novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis
  publication-title: Prostate
  doi: 10.1002/pros.20255
– volume: 16
  start-page: 1521
  year: 2017
  ident: ref_83
  article-title: Niclosamide and bicalutamide combination treatment overcomes enzalutamide- and bicalutamide-resistant prostate cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-16-0912
– volume: 102
  start-page: 389
  year: 2008
  ident: ref_102
  article-title: Clusterin knockdown using the antisense oligonucleotide ogx-011 re-sensitizes docetaxel-refractory prostate cancer pc-3 cells to chemotherapy
  publication-title: BJU Int.
  doi: 10.1111/j.1464-410X.2008.07618.x
– volume: 64
  start-page: 149
  year: 2005
  ident: ref_123
  article-title: Development and characterization of efficient xenograft models for benign and malignant human prostate tissue
  publication-title: Prostate
  doi: 10.1002/pros.20225
– volume: 77
  start-page: 446
  year: 2017
  ident: ref_65
  article-title: Evidence for feedback regulation following cholesterol lowering therapy in a prostate cancer xenograft model
  publication-title: Prostate
  doi: 10.1002/pros.23282
– volume: 42
  start-page: 163
  year: 2014
  ident: ref_165
  article-title: The balb/c-specific polymorphic sirpa enhances its affinity for human cd47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2013.11.005
– volume: 55
  start-page: 239
  year: 2003
  ident: ref_129
  article-title: Lucap 35: A new model of prostate cancer progression to androgen independence
  publication-title: Prostate
  doi: 10.1002/pros.10198
– volume: 301
  start-page: 527
  year: 1983
  ident: ref_163
  article-title: A severe combined immunodeficiency mutation in the mouse
  publication-title: Nature
  doi: 10.1038/301527a0
– volume: 368
  start-page: 138
  year: 2013
  ident: ref_5
  article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1209096
– volume: 285
  start-page: 19076
  year: 2010
  ident: ref_97
  article-title: Mir-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer pc3 cells by regulating msk1 expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.079525
– volume: 12
  start-page: 567
  year: 2013
  ident: ref_84
  article-title: A novel antiandrogen, compound 30, suppresses castration-resistant and mdv3100-resistant prostate cancer growth in vitro and in vivo
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-12-0798
– volume: 31
  start-page: 4759
  year: 2012
  ident: ref_139
  article-title: Ar intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression
  publication-title: Oncogene
  doi: 10.1038/onc.2011.637
– volume: 43
  start-page: 263
  year: 2000
  ident: ref_127
  article-title: Use of nude mouse xenograft models in prostate cancer research
  publication-title: Prostate
  doi: 10.1002/1097-0045(20000601)43:4<263::AID-PROS5>3.0.CO;2-I
– ident: ref_82
  doi: 10.1371/journal.pone.0023144
– volume: 77
  start-page: 5564
  year: 2017
  ident: ref_137
  article-title: Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0314
– volume: 17
  start-page: 16
  year: 1979
  ident: ref_11
  article-title: Establishment and characterization of a human prostatic carcinoma cell line (pc-3)
  publication-title: Invest. Urol.
– volume: 6
  start-page: 1190
  year: 2000
  ident: ref_60
  article-title: Tabbo: A model reflecting common molecular features of androgen-independent prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 51
  start-page: 4716
  year: 1991
  ident: ref_57
  article-title: Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles
  publication-title: Cancer Res.
– volume: 83
  start-page: 555
  year: 1999
  ident: ref_110
  article-title: Widespread intraspecies cross-contamination of human tumor cell lines arising at source
  publication-title: Int. J. Cancer
  doi: 10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2
– volume: 417
  start-page: 966
  year: 2012
  ident: ref_99
  article-title: Ets1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory pc3 prostate cancer cells by up-regulating mdr1 and mmp9 expression
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.12.047
– volume: 26
  start-page: 94
  year: 1995
  ident: ref_35
  article-title: Differential expression of upa in an aggressive (du 145) and a nonaggressive (1013l) human prostate cancer xenograft
  publication-title: Prostate
  doi: 10.1002/pros.2990260206
– volume: 30
  start-page: 42
  year: 2015
  ident: ref_17
  article-title: Organoid development in cancer genome discovery
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2015.02.007
– volume: 77
  start-page: 654
  year: 2017
  ident: ref_20
  article-title: Lucap prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease an--d serve as models for evaluating cancer therapeutics
  publication-title: Prostate
  doi: 10.1002/pros.23313
– volume: 21
  start-page: 227
  year: 1983
  ident: ref_118
  article-title: Expression of hla-like structures on a permanent human tumor line pc-93
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.1983.tb00162.x
– volume: 3
  start-page: 402
  year: 1997
  ident: ref_63
  article-title: Progression of metastatic human prostate cancer to androgen independence in immunodeficient scid mice
  publication-title: Nat. Med.
  doi: 10.1038/nm0497-402
– volume: 22
  start-page: 93
  year: 1993
  ident: ref_111
  article-title: Human primary prostate tumor cell line, alva-31: A new model for studying the hormonal regulation of prostate tumor cell growth
  publication-title: Prostate
  doi: 10.1002/pros.2990220202
– volume: 173
  start-page: 342
  year: 2005
  ident: ref_12
  article-title: Cell lines used in prostate cancer research: A compendium of old and new lines--part 1
  publication-title: J. Urol.
  doi: 10.1097/01.ju.0000141580.30910.57
– volume: 20
  start-page: 1791
  year: 2014
  ident: ref_47
  article-title: Aberrant presentation of hpa-reactive carbohydrates implies selectin-independent metastasis formation in human prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-2308
– volume: 116
  start-page: 1341
  year: 2015
  ident: ref_92
  article-title: The upregulation of pi3k/akt and map kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.25091
– volume: 52
  start-page: 20
  year: 2002
  ident: ref_130
  article-title: Establishment and characterization of osseous prostate cancer models: Intra-tibial injection of human prostate cancer cells
  publication-title: Prostate
  doi: 10.1002/pros.10091
– volume: 10
  start-page: 483
  year: 2013
  ident: ref_28
  article-title: Ex vivo culture of human prostate tissue and drug development
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2013.126
– volume: 160
  start-page: 324
  year: 2015
  ident: ref_174
  article-title: Organoid models of human and mouse ductal pancreatic cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.021
– volume: 74
  start-page: 2270
  year: 2014
  ident: ref_140
  article-title: Androgen receptor splice variants determine taxane sensitivity in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2876
– volume: 100
  start-page: 3175
  year: 2002
  ident: ref_167
  article-title: Nod/scid/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells
  publication-title: Blood
  doi: 10.1182/blood-2001-12-0207
– volume: 70
  start-page: 195
  year: 1994
  ident: ref_114
  article-title: Detection by DNA fingerprinting of somatic changes during the establishment of a new prostate cell line
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1994.279
– volume: 70
  start-page: 252
  year: 2010
  ident: ref_72
  article-title: Antiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the w741c mutant androgen receptor in a novel prostate cancer xenograft
  publication-title: Prostate
  doi: 10.1002/pros.21058
– volume: 74
  start-page: 1272
  year: 2014
  ident: ref_147
  article-title: High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2921-T
– volume: 8
  start-page: 836
  year: 2013
  ident: ref_158
  article-title: A preclinical xenograft model of prostate cancer using human tumors
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.043
– volume: 439
  start-page: 358
  year: 2006
  ident: ref_16
  article-title: Braf mutation predicts sensitivity to mek inhibition
  publication-title: Nature
  doi: 10.1038/nature04304
– volume: 15
  start-page: 163
  year: 2001
  ident: ref_70
  article-title: Vcap, a cell-based model system of human prostate cancer
  publication-title: In Vivo
– volume: 71
  start-page: 846
  year: 2011
  ident: ref_153
  article-title: Neuroendocrine prostate cancer xenografts with large-cell and small-cell features derived from a single patient’s tumor: Morphological, immunohistochemical, and gene expression profiles
  publication-title: Prostate
  doi: 10.1002/pros.21301
– volume: 530
  start-page: 391
  year: 2016
  ident: ref_19
  article-title: Us cancer institute to overhaul tumour cell lines
  publication-title: Nature
  doi: 10.1038/nature.2016.19364
– volume: 174
  start-page: 6477
  year: 2005
  ident: ref_168
  article-title: Human lymphoid and myeloid cell development in nod/ltsz-scid il2r gamma null mice engrafted with mobilized human hemopoietic stem cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.10.6477
– volume: 18
  start-page: 287
  year: 2001
  ident: ref_169
  article-title: The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells
  publication-title: Growth Factors
  doi: 10.3109/08977190109029117
– volume: 159
  start-page: 176
  year: 2014
  ident: ref_29
  article-title: Organoid cultures derived from patients with advanced prostate cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.016
– volume: 32
  start-page: 3383
  year: 2014
  ident: ref_8
  article-title: Neuroendocrine prostate cancer (nepc) progressing from conventional prostatic adenocarcinoma: Factors associated with time to development of nepc and survival from NEPC diagnosis-a systematic review and pooled analysis
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.54.3553
– volume: 114
  start-page: 1286
  year: 2013
  ident: ref_93
  article-title: Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.24464
– volume: 2
  start-page: 1039
  year: 1996
  ident: ref_61
  article-title: Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: Lucap 23
  publication-title: Clin. Cancer Res.
– volume: 118
  start-page: 2697
  year: 2008
  ident: ref_21
  article-title: Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through fgf9-mediated mechanisms
  publication-title: J. Clin. Investig.
– volume: 23
  start-page: 123
  year: 1993
  ident: ref_56
  article-title: P53 oncogene mutations in three human prostate cancer cell lines
  publication-title: Prostate
  doi: 10.1002/pros.2990230206
– volume: 158
  start-page: 84
  year: 2018
  ident: ref_101
  article-title: A novel selenonucleoside suppresses tumor growth by targeting skp2 degradation in paclitaxel-resistant prostate cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.10.002
– volume: 6
  start-page: 8219
  year: 2015
  ident: ref_13
  article-title: Tet2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9219
– volume: 10
  start-page: 126
  year: 2011
  ident: ref_103
  article-title: Characterisation and manipulation of docetaxel resistant prostate cancer cell lines
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-10-126
– volume: 35
  start-page: 403
  year: 1999
  ident: ref_66
  article-title: A new human prostate carcinoma cell line, 22rv1
  publication-title: In Vitro Cell Dev. Biol. Anim.
  doi: 10.1007/s11626-999-0115-4
– volume: 2
  start-page: 1329
  year: 1996
  ident: ref_166
  article-title: Identification of primitive human hematopoietic cells capable of repopulating nod/scid mouse bone marrow: Implications for gene therapy
  publication-title: Nat. Med.
  doi: 10.1038/nm1296-1329
– volume: 17
  start-page: 359
  year: 1980
  ident: ref_33
  article-title: Human urologic cancer cell lines
  publication-title: Invest. Urol.
– ident: ref_94
  doi: 10.1371/journal.pone.0040021
– volume: 1
  start-page: 420
  year: 2011
  ident: ref_95
  article-title: Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in prostate cancer
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-011-0042-2
– volume: 100
  start-page: 13
  year: 2009
  ident: ref_22
  article-title: Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6604822
– volume: 459
  start-page: 262
  year: 2009
  ident: ref_172
  article-title: Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 22
  start-page: 4505
  year: 2016
  ident: ref_3
  article-title: Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-2956
– volume: 141
  start-page: 1762
  year: 2011
  ident: ref_27
  article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.07.050
– volume: 57
  start-page: 205
  year: 2003
  ident: ref_37
  article-title: Molecular characterization of human prostate carcinoma cell lines
  publication-title: Prostate
  doi: 10.1002/pros.10290
– volume: 6
  start-page: 1038
  year: 2000
  ident: ref_69
  article-title: Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer
  publication-title: Clin. Cancer Res.
– volume: 70
  start-page: 48
  year: 2010
  ident: ref_88
  article-title: Cten/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.21037
– volume: 173
  start-page: 360
  year: 2005
  ident: ref_62
  article-title: Cell lines used in prostate cancer research: A compendium of old and new lines--part 2
  publication-title: J. Urol.
  doi: 10.1097/01.ju.0000149989.01263.dc
– volume: 71
  start-page: 1668
  year: 2011
  ident: ref_51
  article-title: Pc3 is a cell line characteristic of prostatic small cell carcinoma
  publication-title: Prostate
  doi: 10.1002/pros.21383
– volume: 51
  start-page: 285
  year: 1992
  ident: ref_164
  article-title: The murine autoimmune diabetes model: Nod and related strains
  publication-title: Adv. Immunol.
  doi: 10.1016/S0065-2776(08)60490-3
– volume: 10
  start-page: 834
  year: 2014
  ident: ref_39
  article-title: Establishment and characterization of a highly tumorigenic african american prostate cancer cell line, e006aa-ht
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.9406
– volume: 23
  start-page: 2301
  year: 2017
  ident: ref_132
  article-title: Characterization of an abiraterone ultraresponsive phenotype in castration-resistant prostate cancer patient-derived xenografts
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2054
– volume: 165
  start-page: 1586
  year: 2016
  ident: ref_171
  article-title: Modeling development and disease with organoids
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.082
– volume: 5
  start-page: 9
  year: 2003
  ident: ref_76
  article-title: Androgen-independent growth in lncap cell lines and steroid uridine diphosphate-glucuronosyltransferase expression
  publication-title: Asian J. Androl.
– volume: 37
  start-page: 115
  year: 1980
  ident: ref_9
  article-title: The lncap cell line--a new model for studies on human prostatic carcinoma
  publication-title: Prog. Clin. Biol. Res.
– volume: 37
  start-page: 4049
  year: 1977
  ident: ref_10
  article-title: Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice
  publication-title: Cancer Res.
– volume: 74
  start-page: 562
  year: 2018
  ident: ref_160
  article-title: Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2018.06.020
– volume: 143
  start-page: 167
  year: 1990
  ident: ref_44
  article-title: Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(17)39903-2
– volume: 26
  start-page: 131
  year: 2018
  ident: ref_143
  article-title: Neuroendocrine differentiation of prostate cancer leads to psma suppression
  publication-title: Endocr. Relat. Cancer
  doi: 10.1530/ERC-18-0226
– volume: 5
  start-page: 445
  year: 1984
  ident: ref_126
  article-title: Prostatic adenocarcinoma pc ew, a new human tumor line transplantable in nude mice
  publication-title: Prostate
  doi: 10.1002/pros.2990050409
– volume: 126
  start-page: 151
  year: 1993
  ident: ref_48
  article-title: Expression of mrna for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/BF00925693
– volume: 21
  start-page: 274
  year: 1978
  ident: ref_43
  article-title: Isolation of a human prostate carcinoma cell line (du 145)
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910210305
– volume: 33
  start-page: 784
  year: 2010
  ident: ref_52
  article-title: Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation
  publication-title: Int. J. Androl.
  doi: 10.1111/j.1365-2605.2009.01030.x
– volume: 32
  start-page: 474
  year: 2017
  ident: ref_7
  article-title: Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.09.003
– volume: 550
  start-page: 128
  year: 2017
  ident: ref_138
  article-title: Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours
  publication-title: Nature
  doi: 10.1038/nature24028
– volume: 44
  start-page: 3522
  year: 1984
  ident: ref_49
  article-title: Metastatic behavior of human tumor cell lines grown in the nude mouse
  publication-title: Cancer Res.
– volume: 6
  start-page: 26029
  year: 2015
  ident: ref_74
  article-title: Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4347
– volume: 68
  start-page: 5469
  year: 2008
  ident: ref_2
  article-title: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-0594
– volume: 48
  start-page: 1730
  year: 2016
  ident: ref_91
  article-title: Downregulation of cytokeratin 18 is associated with paclitaxelresistance and tumor aggressiveness in prostate cancer
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3396
– volume: 93
  start-page: 15152
  year: 1996
  ident: ref_58
  article-title: Androgen-repressed phenotype in human prostate cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.26.15152
– volume: 162
  start-page: 2192
  year: 1999
  ident: ref_59
  article-title: Two mutations identified in the androgen receptor of the new human prostate cancer cell line mda pca 2a
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(05)68158-X
– volume: 14
  start-page: 233
  year: 2007
  ident: ref_77
  article-title: Establishment and characterization of androgen-independent human prostate cancer cell lines, ln-rec4 and lncap-sf, from lncap
  publication-title: Int. J. Urol.
  doi: 10.1111/j.1442-2042.2007.01532.x
– volume: 18
  start-page: 5160
  year: 2012
  ident: ref_24
  article-title: The promise of patient-derived xenografts: The best laid plans of mice and men
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-2408
– volume: 16
  start-page: 1819
  year: 2017
  ident: ref_89
  article-title: Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhances microtubule stability in taxane-resistant prostate cancer cells
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-17-0013
– volume: 11
  start-page: 251
  year: 2017
  ident: ref_104
  article-title: The role of epithelial-mesenchymal transition drivers zeb1 and zeb2 in mediating docetaxel-resistant prostate cancer
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12030
– volume: 77
  start-page: 1601
  year: 2017
  ident: ref_42
  article-title: The 22rv1 prostate cancer cell line carries mixed genetic ancestry: Implications for prostate cancer health disparities research using pre-clinical models
  publication-title: Prostate
  doi: 10.1002/pros.23437
– volume: 36
  start-page: 559
  year: 2016
  ident: ref_90
  article-title: Skp2 is associated with paclitaxel resistance in prostate cancer cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4809
– volume: 21
  start-page: 4698
  year: 2015
  ident: ref_134
  article-title: Srrm4 expression and the loss of rest activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0157
– volume: 73
  start-page: 524
  year: 2018
  ident: ref_148
  article-title: Stromal gene expression is predictive for metastatic primary prostate cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2017.02.038
– volume: 70
  start-page: 1501
  year: 2010
  ident: ref_98
  article-title: Mir-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer pc3 cells through direct and indirect mechanisms
  publication-title: Prostate
  doi: 10.1002/pros.21185
– volume: 67
  start-page: 955
  year: 2007
  ident: ref_87
  article-title: The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines
  publication-title: Prostate
  doi: 10.1002/pros.20581
– volume: 8
  start-page: 295
  year: 1966
  ident: ref_162
  article-title: ‘Nude’, a new hairless gene with pleiotropic effects in the mouse
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300010168
– volume: 119
  start-page: 768
  year: 1978
  ident: ref_34
  article-title: Biochemical markers of cultured human prostatic epithelium
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(17)57628-4
– volume: 40
  start-page: 252
  year: 2009
  ident: ref_53
  article-title: Cd44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2008.07.014
– volume: 32
  start-page: 1665
  year: 2013
  ident: ref_78
  article-title: Androgen-responsive long noncoding rna ctbp1-as promotes prostate cancer
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.99
– volume: 72
  start-page: 5101
  year: 2012
  ident: ref_175
  article-title: Induction of the stem-like cell regulator cd44 by rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3812
– volume: 69
  start-page: 3364
  year: 2009
  ident: ref_25
  article-title: A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4210
– volume: 5
  start-page: 311
  year: 2002
  ident: ref_45
  article-title: A nod scid mouse model to study human prostate cancer
  publication-title: Prostate Cancer Prostatic Dis.
  doi: 10.1038/sj.pcan.4500606
– volume: 68
  start-page: 7
  year: 2018
  ident: ref_1
  article-title: Cancer statistics, 2018
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21442
– volume: 29
  start-page: 1310
  year: 2011
  ident: ref_124
  article-title: Brief report: A bioassay to identify primary human prostate cancer repopulating cells
  publication-title: Stem Cells
  doi: 10.1002/stem.668
– volume: 173
  start-page: 534
  year: 1990
  ident: ref_55
  article-title: A mutation in the ligand binding domain of the androgen receptor of human lncap cells affects steroid binding characteristics and response to anti-androgens
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(05)80067-1
– volume: 291
  start-page: 17861
  year: 2016
  ident: ref_79
  article-title: Androgen-induced long noncoding rna (lncrna) socs2-as1 promotes cell growth and inhibits apoptosis in prostate cancer cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.718536
– volume: 47
  start-page: 36
  year: 2001
  ident: ref_108
  article-title: Widely used prostate carcinoma cell lines share common origins
  publication-title: Prostate
  doi: 10.1002/pros.1045
– volume: 18
  start-page: 1364
  year: 2012
  ident: ref_46
  article-title: Human prostate cancer in a clinically relevant xenograft mouse model: Identification of beta(1,6)-branched oligosaccharides as a marker of tumor progression
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-2900
– volume: 376
  start-page: 1147
  year: 2010
  ident: ref_6
  article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)61389-X
– volume: 121
  start-page: 971
  year: 2018
  ident: ref_161
  article-title: Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate-tolerant cells
  publication-title: BJU Int.
  doi: 10.1111/bju.14043
– volume: 66
  start-page: 225
  year: 2018
  ident: ref_23
  article-title: Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c17-00789
– volume: 148
  start-page: 1600
  year: 1992
  ident: ref_115
  article-title: Establishment and characterization of a human primary prostatic adenocarcinoma cell line (nd-1)
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(17)36978-1
– ident: ref_40
  doi: 10.3390/ijerph13010012
– volume: 1
  start-page: 95
  year: 1980
  ident: ref_125
  article-title: Human prostatic adenocarcinoma: Some characteristics of a serially transplantable line in nude mice (pc 82)
  publication-title: Prostate
  doi: 10.1002/pros.2990010113
– volume: 2
  start-page: 315
  year: 2002
  ident: ref_30
  article-title: Hela cells 50 years on: The good, the bad and the ugly
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc775
– volume: 36
  start-page: 79
  year: 1990
  ident: ref_116
  article-title: Establishment of new human prostatic cancer cell line (jca-1)
  publication-title: Urology
  doi: 10.1016/0090-4295(90)80319-I
– volume: 161
  start-page: 705
  year: 2002
  ident: ref_135
  article-title: A neuroendocrine/small cell prostate carcinoma xenograft-lucap 49
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64226-5
– volume: 14
  start-page: 993
  year: 2005
  ident: ref_120
  article-title: Expression of the inhibitors of apoptosis proteins in cisplatin-resistant prostate cancer cells
  publication-title: Oncol. Rep.
– volume: 78
  start-page: 2691
  year: 2018
  ident: ref_150
  article-title: Heterochromatin protein 1alpha mediates development and aggressiveness of neuroendocrine prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3677
– volume: 12
  start-page: 786
  year: 2012
  ident: ref_170
  article-title: Humanized mice for immune system investigation: Progress, promise and challenges
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3311
– volume: 26
  start-page: 748
  year: 2012
  ident: ref_14
  article-title: Tacc2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2011-1242
– volume: 31
  start-page: 303
  year: 2001
  ident: ref_109
  article-title: Karyotypic similarity identified by multiplex-fish relates four prostate adenocarcinoma cell lines: Pc-3, ppc-1, alva-31, and alva-41
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.1149
– volume: 11
  start-page: 347
  year: 2016
  ident: ref_178
  article-title: Organoid culture systems for prostate epithelial and cancer tissue
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.006
– volume: 37
  start-page: 1477
  year: 2010
  ident: ref_41
  article-title: Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an african american prostate cancer patient
  publication-title: Int. J. Oncol.
– volume: 65
  start-page: 815
  year: 2018
  ident: ref_144
  article-title: Tmem45b is a novel predictive biomarker for prostate cancer progression and metastasis
  publication-title: Neoplasma
  doi: 10.4149/neo_2018_170822N551
– volume: 75
  start-page: 1475
  year: 2015
  ident: ref_159
  article-title: Establishment of primary patient-derived xenografts of palliative turp specimens to study castrate-resistant prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.23039
– volume: 7
  start-page: 6015
  year: 2016
  ident: ref_73
  article-title: Bay 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6864
– volume: 62
  start-page: 183
  year: 1993
  ident: ref_113
  article-title: Chromosome identity of human prostate cancer cell lines, pc-3 and ppc-1
  publication-title: Cytogenet. Cell Genet.
  doi: 10.1159/000133468
– volume: 73
  start-page: 4
  year: 2018
  ident: ref_85
  article-title: Moving towards precision urologic oncology: Targeting enzalutamide-resistant prostate cancer and mutated forms of the androgen receptor using the novel inhibitor darolutamide (odm-201)
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2017.08.012
– volume: 64
  start-page: 251
  year: 2013
  ident: ref_100
  article-title: Ccr1/ccl5 interaction promotes invasion of taxane-resistant pc3 prostate cancer cells by increasing secretion of mmps 2/9 and by activating erk and rac signaling
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2013.06.313
– volume: 109
  start-page: 2937
  year: 2018
  ident: ref_106
  article-title: Analysis of cabazitaxel-resistant mechanism in human castration-resistant prostate cancer
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13729
– volume: 44
  start-page: 898
  year: 1989
  ident: ref_112
  article-title: Phenotypic and cytogenetic characterization of a cell line derived from primary prostatic carcinoma
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910440525
– volume: 367
  start-page: 1187
  year: 2012
  ident: ref_4
  article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1207506
– volume: 74
  start-page: 2377
  year: 2014
  ident: ref_18
  article-title: Cancer cell lines for drug discovery and development
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2971
– volume: 9
  start-page: 16185
  year: 2018
  ident: ref_107
  article-title: Establishment and characterization of two cabazitaxel-resistant prostate cancer cell lines
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24609
– volume: 43
  start-page: 1809
  year: 1983
  ident: ref_54
  article-title: Lncap model of human prostatic carcinoma
  publication-title: Cancer Res.
– volume: 60
  start-page: 141
  year: 2004
  ident: ref_38
  article-title: Establishment and characterization of a primary androgen-responsive african-american prostate cancer cell line, e006aa
  publication-title: Prostate
  doi: 10.1002/pros.20053
– volume: 57
  start-page: 406
  year: 1994
  ident: ref_80
  article-title: Derivation of androgen-independent human lncap prostatic cancer cell sublines: Role of bone stromal cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910570319
– volume: 21
  start-page: 381
  year: 2004
  ident: ref_128
  article-title: The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic lucap 23.1 prostate cancer xenograft
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-004-2869-0
– volume: 513
  start-page: 422
  year: 2014
  ident: ref_173
  article-title: Genome sequencing of normal cells reveals developmental lineages and mutational processes
  publication-title: Nature
  doi: 10.1038/nature13448
– volume: 49
  start-page: 245
  year: 2006
  ident: ref_75
  article-title: The human pc346 xenograft and cell line panel: A model system for prostate cancer progression
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2005.12.035
– volume: 149
  start-page: 1055
  year: 1996
  ident: ref_121
  article-title: Development of seven new human prostate tumor xenograft models and their histopathological characterization
  publication-title: Am. J. Pathol.
– volume: 118
  start-page: 802
  year: 2018
  ident: ref_149
  article-title: Treatment with docetaxel in combination with aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2017.474
– volume: 77
  start-page: 505
  year: 2017
  ident: ref_64
  article-title: Up-regulation of follistatin-like 1 by the androgen receptor and melanoma antigen-a11 in prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.23288
– volume: 62
  start-page: 6606
  year: 2002
  ident: ref_67
  article-title: Characterization of a novel androgen receptor mutation in a relapsed cwr22 prostate cancer xenograft and cell line
  publication-title: Cancer Res.
– volume: 118
  start-page: 222
  year: 2006
  ident: ref_133
  article-title: Targeted chemotherapy with cytotoxic bombesin analogue an-215 inhibits growth of experimental human prostate cancers
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21292
– volume: 14
  start-page: 471
  year: 2015
  ident: ref_156
  article-title: Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment
  publication-title: Mol. Cell Proteom.
  doi: 10.1074/mcp.M114.039909
SSID ssj0000816105
Score 2.4828913
SecondaryResourceType review_article
Snippet Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 74
SubjectTerms Androgens
Animals
Cancer therapies
Cell culture
Cell Culture Techniques - methods
cell line
Cell Line, Tumor
Cytokeratin
Drug resistance
Drug Resistance, Neoplasm
Extracellular matrix
Gene expression
Humans
Immunodeficiency
Male
Metastases
Metastasis
Mutation
organoid
Organoids
patient-derived xenograft
Patients
Precision medicine
Prostate cancer
Prostatic Neoplasms - pathology
Review
spheroid
Tissue engineering
Transplantation
Tumor cell lines
Tumorigenesis
Tumors
Xenograft Model Antitumor Assays
Xenografts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVChPbUm9lov95ZuGkKhJYcE9mb0Mi0Eb4mdQH5a_12_sbzb3ZDSSw97WEu2pZ3RzDfa0TeMvZ15N2tpoyoYZ3LhXMhrW7g8IOgR5cypxLP99Zs6ORdfFnKxUeqLcsISPXD64Q5kW8qoRS08kG800cDFe-mMFbaKVjqyvvB5G8HUaIMNkEwhU6Z7hbj-gPbBe5hj8plbPmik6r8LX95Ok9zwO8eP2MMJMPLDNNDH7F7snrD7qYTkzVP26_DPP9B82fJTOsUB_MjnJM5LTrXOLnoOaIqmuDoHySl98OYjH2sqDzApPbdd4ONpp7SFR8-aYzK4BmP4gZ8m_tX8CBp7HQNfxI4Su9oBbXTrGXQi5kdUKyDxfPBE1hnHQd26mR7cP2Pnx5_P5if5VI4h91KIIQf0k95JqyorvCq09nUZrCl96SHSmQqlD7pq2wKfOhpAS0vooNZeOxV8Wz1nO92yiy8ZV8J5sjXKx0JYHU3wWgld4ZuIytcZe78SUOOniVPJjIsGMQuJs9kUZ8berXv_TBwdf-n3iWS97kPM2uMF6Fsz6VvzL33L2N5KU5ppufcNomxYRoBDjPzNuhkLlV5vu7i8Qh8yfQiGjc7Yi6RY65EgblOAuipjekvltoa63dL9-D6SgROfYCGLV_9jbrvsAfAg5c_BeO6xneHyKr4G5hrc_ri8fgMXuy61
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS91AEF5apdCXUnuNtbKF9qldTE72lr4UPSpSqByKwnkLe4stSKInseBP67_rTDYnekT7kIdkN8mGmZ39ZjL7DSEfJ85OKgxUeW0149Z6VpjUMg9OD88mVkae7R_H8uiUf5-L-RBwa4e0yqVN7A21bxzGyHfAkQHlg_W3-HZxybBqFP5dHUpoPCbrYII1OF_rewfHs59jlAXLSgCCiBnvOfj3OxgPb8Es49q5shb1lP334cy76ZK31p_D5-TZABzpbpT0BnkU6hfkSSwlef2S_N29-RNNm4rOcDcH4Eg6RbEuKNY8O28pQFRoCsv9kBTTCK-_0r62cgempaWm9rTf9RRDefisKXwMXAOj-IXOIg8r2wfN_RM8nYcaE7yqDtrw1hPQjcD2sWZA5PugkbQz9IO6czM-uH1FTg8PTqZHbCjLwJzgvGMAAYWzwsjccCdTpVyReaMzlzkQ7UT6zHmVV1UKRxE0QEyDKKFQTlnpXZW_Jmt1U4e3hEpuHdoc6ULKjQraOyW5yuGMB-mKhHxeCqh0w4dj6YzzEnwXFGd5W5wJ-TT2vohcHQ_020NZj32QYbu_0CzOymHClqLKRFC84A48rqCDBmjphNWGmzwYYROytdSUcpj2bXmjpAn5MDbDhMXXmzo0V9AHTSA4xVol5E1UrHEk4L9JgLwyIWpF5VaGutpS__7Vk4Ijr2Aq0s3_D-sdeQqIDzPkwDxukbVucRXeA6rq7PYwdf4Bps0naA
  priority: 102
  providerName: ProQuest
Title Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30669516
https://www.proquest.com/docview/2548326159
https://www.proquest.com/docview/2179444887
https://pubmed.ncbi.nlm.nih.gov/PMC6357050
https://doaj.org/article/5f15e7494c974e8e8551c5b8a4a3ea5b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJiReJu4ERmUkeIJALo7tICG0dZsmpE0VWqW-Rb4FkKp0NBmiP41_xzl2UtYxJB760NhxnZyLv889PoeQl5nRWY0bVVZqGTOtbVyqRMcWSA9LM81Dnu3TM34yZZ9mxWyLDNVG-xfY3kjtsJ7UdDl_-_P76iMY_AdknEDZ3-EWdwueFpfDW2QH1iSBJnraA33vkyUgGx_PmIFOxwxYTYiC_2uAjfXJp_G_CXteD6G8siYd3yW7PZik-0H698iWa-6T26G85OoB-bX_599puqjpBE94ALakYxT1kmIdtHlLAbZCkxvOSFIMLVy9p77ecgfupqWqsdSfhArbezjWGB4GroGjfEMnITdrfAja_MNZOnMNBn3VHbThreegLy4-xDoCIQcIDYk8nZ_UtZtx4PYhmR4fnY9P4r5UQ2wKxroYYGFhdKF4rpjhiRCmTK2SqUkNiDvjNjVW5HWdwKd0EmCnQuRQCiM0t6bOH5HtZtG4J4Rypg36IW5cwpRw0hrBmcjhG3PclBF5PQioMv2DYzmNeQV8BsVZXRVnRF6te1-E_B3_6HeAsl73wazb_sJi-aXqjbgq6rRwgpXMAAtz0kmAm6bQUjGVO1XoiOwNmlINmlwBAwevCcARZv5i3QxGjD-vGre4hD7oFoEoSxGRx0Gx1jMBTscBBvOIiA2V25jqZkvz7atPFI65BpMiefqf7-AZuQNwEMPnwHfuke1ueemeA-Tq9IjsHBydTT6P_JbFyNvWb_v7MBY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAotET2DVj_WujYRQm7RKaRtFKJV6M_syIFVOiVNQ_hR3_h0zfqRNBdx6yCHe9XqsmZ35Zjw7A_A6MjoqKFBlU536XGvrZyrQvkWnh4eRFk2d7aORGB7zjyfJyRr86s7CUFplpxNrRW2nhmLkW-jIoPCh_c0-nH33qWsUfV3tWmg0YnHgFj_RZave7w-Qv5tRtLc76Q_9tquAbxLO5z4imMToRIlYcSMCKU0WWpWGJjRIWSRsaKyMiyLAX-ZSREiKjFwmjdTCmiLGdW_AOo_RlenB-s7uaPxpGdWhNhaIWJoM-zjOgi2Kv1doBshWr9i-ukXA33Dt1fTMS_Zu7y7caYEq224k6x6sufI-3GxaVy4ewO_tiy_fbFqwMZ0eQdzK-iRGM0Y91k4rhpAYh1x3_pJR2uLiHat7Oc9RlVVMlZbVp6ya0CGt1ceXwWuohN-ycVP31R_gTvnhLDtxJSWUFXMco1snKIvOH1CPgqa-CGuKhLqaqCs308LVQzi-FoY9gl45Ld0TYIJrQzpOGBdwJV1qjRRcxviPO2EyD950DMpN--LUquM0R1-J2JlfZqcHm8vZZ01tkH_M2yFeL-dQRe_6wnT2JW8VRJ4UYeIkz7hBD8-lLkUoaxKdKq5ipxLtwUYnKXmrZqr8YlN48Go5jAqCHq9KNz3HOaRy0QlPpQePG8FaUoL-okCILTyQKyK3QurqSPnta12EnOoYBknw9P9kvYRbw8nRYX64Pzp4BrcRbVJ2HqrmDejNZ-fuOSK6uX7RbiMGn6975_4Bi1xkeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJxAviG8CAw6JPUHUfFzuEiSEtnbVxqCq0Cb1LeQ-AkhTOpoO1D8N_jrsXNKtE_C2hz40d7k4ss_-2fHZAC8jraKSAlUmVanPlTJ-VgTKN-j08DBSwtXZ_jgW-8f8_TSZbsDv7iwMpVV2OrFR1GamKUbeR0cGhQ_tb9Yv27SIyXD07vS7Tx2k6Etr107DicihXf5E961-ezBEXm9H0WjvaLDvtx0GfJ1wvvARzSRaJYWIC65FIKXOQlOkoQ41UhkJE2oj47IM8JfZFNFSQQYvk1oqYXQZ47rXYFOiVxT0YHN3bzz5tIrwUEsLRC8u2z6Os6BPsfgaTQLZ7TU72LQL-BvGvZyqecH2jW7DrRa0sh0nZXdgw1Z34bprY7m8B792zr-Cs1nJJnSSBDEsG5BIzRn1WzupGcJjHLLdWUxGKYzLN6zp67xAtVazojKsOXHlwoi01gBfBq-hQn7NJq4GrD_EXfPDGja1FSWXlQsco1uPUC6tP6R-Ba7WCHMFQ21D1KWbaeH6PhxfCcMeQK-aVfYRMMGVJn0ntA14IW1qtBRcxviPW6EzD151DMp1--LUtuMkR7-J2JlfZKcH26vZp65OyD_m7RKvV3OoundzYTb_krfKIk_KMLGSZ1yjt2dTmyKs1YlKC17EtkiUB1udpOStyqnz8w3iwYvVMCoLenxR2dkZziH1iw55Kj146ARrRQn6jgLhtvBAroncGqnrI9W3r01BcqppGCTB4_-T9Rxu4I7NPxyMD5_ATQSelKiHWnoLeov5mX2K4G6hnrW7iMHnq964fwDaUGiu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Prostate+Cancer+Models+for+Preclinical+Study%3A+Advantages+and+Limitations+of+Cell+Lines%2C+Patient-Derived+Xenografts%2C+and+Three-Dimensional+Culture+of+Patient-Derived+Cells&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Namekawa%2C+Takeshi&rft.au=Ikeda%2C+Kazuhiro&rft.au=Horie-Inoue%2C+Kuniko&rft.au=Inoue%2C+Satoshi&rft.date=2019-01-20&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=8&rft.issue=1&rft.spage=74&rft_id=info:doi/10.3390%2Fcells8010074&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cells8010074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon