Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Ce...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 8; no. 1; p. 74 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.01.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine. |
---|---|
AbstractList | Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine. Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine. |
Author | Horie-Inoue, Kuniko Inoue, Satoshi Namekawa, Takeshi Ikeda, Kazuhiro |
AuthorAffiliation | 2 Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan 1 Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; takeshi.namekawa@gmail.com (T.N.); ikeda@saitama-med.ac.jp (K.I.); khorie07@saitama-med.ac.jp (K.H.-I.) 3 Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan |
AuthorAffiliation_xml | – name: 1 Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; takeshi.namekawa@gmail.com (T.N.); ikeda@saitama-med.ac.jp (K.I.); khorie07@saitama-med.ac.jp (K.H.-I.) – name: 3 Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan – name: 2 Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan |
Author_xml | – sequence: 1 givenname: Takeshi orcidid: 0000-0002-0054-0985 surname: Namekawa fullname: Namekawa, Takeshi – sequence: 2 givenname: Kazuhiro surname: Ikeda fullname: Ikeda, Kazuhiro – sequence: 3 givenname: Kuniko surname: Horie-Inoue fullname: Horie-Inoue, Kuniko – sequence: 4 givenname: Satoshi surname: Inoue fullname: Inoue, Satoshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30669516$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktr3DAURk1JadI0u66LoJsu4lay9bC6KAyTPgJTGmgK3RlZup5o8EgTSR7IT-u_q-bRMBlqMDb3nnt8Zb6XxYnzDoriNcHv61riDxqGITaYYCzos-KswqIuKcXy5OD9tLiIcYHz1RBOMHtRnNaYc8kIPyv-TFarwWqVrHfI9-gm-JhUAjRVTkNA372BIaLeh9wCPViX4QH9TKN5-IgmZq1cUnOISDmDZnZp01YVN65pXi7XHMRLdJPL4FJ5BcGuwaDf4Pw8qD7l3mb09i4AlFd2CS7m-fyJ6TikMcB2qaPhjTi-Kp73aohwsX-eF7--fL6dfitnP75eTyezUjNKU8k4Y7pjiteKao6F0JIY1RBNdMdpxQ3RRtR9j_MtoSG1VJSwSgotOm50X58X1zuv8WrRroJdqvDQemXbbcGHeatCsnqAlvWEgaCSaikoNNAwRjTrGkVVDYp12fVp51qN3RKMzocKangifdpx9q6d-3XLayYww1nwbi8I_n6EmNqljZsQKAd-jG1FhKSUNo3I6NsjdOHHkP9sphht6ooTJjP15nCjx1X-JSQDlztA52TEAP0jQnC7yWB7mMGMV0e43kcin8cO_x_6CxJl4q8 |
CitedBy_id | crossref_primary_10_3390_cimb46110743 crossref_primary_10_5483_BMBRep_2022_0200 crossref_primary_10_1002_wsbm_1590 crossref_primary_10_1021_acs_jmedchem_2c01662 crossref_primary_10_1080_15287394_2020_1784339 crossref_primary_10_1007_s10616_021_00495_y crossref_primary_10_3892_ijo_2022_5342 crossref_primary_10_1080_15287394_2023_2293218 crossref_primary_10_1039_D0RA01179G crossref_primary_10_1140_epjp_s13360_021_02254_6 crossref_primary_10_3390_biomedicines9080893 crossref_primary_10_3390_cells9061398 crossref_primary_10_3389_fcell_2022_858013 crossref_primary_10_1002_pros_24473 crossref_primary_10_3390_ijms23094814 crossref_primary_10_1016_j_yexcr_2024_113991 crossref_primary_10_1039_D2BM02060B crossref_primary_10_3390_biomedicines11102743 crossref_primary_10_1016_j_biopha_2023_115581 crossref_primary_10_1016_j_gendis_2025_101520 crossref_primary_10_1016_j_actatropica_2020_105708 crossref_primary_10_3390_genes11101174 crossref_primary_10_3390_ijms252011200 crossref_primary_10_1038_s41467_020_15426_2 crossref_primary_10_1007_s11033_024_09836_4 crossref_primary_10_1136_jitc_2022_006290 crossref_primary_10_3390_cancers13040737 crossref_primary_10_3389_fonc_2024_1321694 crossref_primary_10_3390_ijms24032040 crossref_primary_10_3390_curroncol30110683 crossref_primary_10_1093_glycob_cwad044 crossref_primary_10_3390_app131810349 crossref_primary_10_3390_antiox13080902 crossref_primary_10_1016_j_reprotox_2022_05_006 crossref_primary_10_3390_ph17081072 crossref_primary_10_3390_medicines6030082 crossref_primary_10_3390_cancers13184688 crossref_primary_10_3390_ph16020231 crossref_primary_10_1080_23808993_2019_1685868 crossref_primary_10_1007_s11033_021_06406_w crossref_primary_10_1016_j_jaim_2021_08_012 crossref_primary_10_1186_s13765_024_00965_9 crossref_primary_10_3389_fonc_2022_976065 crossref_primary_10_3389_fcell_2021_641963 crossref_primary_10_3390_cancers14071708 crossref_primary_10_1016_j_coemr_2020_02_005 crossref_primary_10_1016_j_isci_2024_108984 crossref_primary_10_1186_s12885_021_07844_2 crossref_primary_10_1038_s41585_023_00726_1 crossref_primary_10_1186_s13046_022_02328_y crossref_primary_10_3390_molecules26206142 crossref_primary_10_1016_j_csbj_2022_08_064 crossref_primary_10_1002_cam4_4113 crossref_primary_10_3389_fmed_2022_999004 crossref_primary_10_3390_pharmaceutics13050704 crossref_primary_10_1038_s41585_022_00677_z crossref_primary_10_1002_mco2_437 crossref_primary_10_1038_s41585_021_00500_1 crossref_primary_10_3389_fruro_2023_1239328 crossref_primary_10_3390_antiox10101591 crossref_primary_10_3390_cells13121005 crossref_primary_10_3390_ijms222011242 crossref_primary_10_1038_s41391_023_00679_x crossref_primary_10_3390_cells11020260 crossref_primary_10_1038_s41598_022_21856_3 crossref_primary_10_1126_sciadv_adm7515 crossref_primary_10_3390_pharmaceutics16050583 crossref_primary_10_1038_s41419_023_05627_0 crossref_primary_10_1186_s13550_024_01116_3 crossref_primary_10_1016_j_canlet_2020_05_040 crossref_primary_10_3389_fendo_2022_1106175 crossref_primary_10_1016_j_heliyon_2023_e13829 crossref_primary_10_2139_ssrn_4053283 crossref_primary_10_1021_acsami_4c03453 crossref_primary_10_1074_mcp_RA119_001876 crossref_primary_10_1002_pros_23966 crossref_primary_10_1016_j_omtn_2020_03_003 crossref_primary_10_1016_j_semcancer_2021_12_002 crossref_primary_10_3389_fonc_2021_736431 crossref_primary_10_1002_cam4_70416 crossref_primary_10_3390_biomedicines10020271 crossref_primary_10_3390_nu13031000 crossref_primary_10_3892_or_2024_8791 crossref_primary_10_1155_2020_6051210 crossref_primary_10_2174_1871520621666210910084216 crossref_primary_10_3390_ijms24043135 crossref_primary_10_1016_j_tiv_2023_105624 crossref_primary_10_3390_ijms23063203 crossref_primary_10_3390_molecules26196018 crossref_primary_10_1093_toxres_tfae056 crossref_primary_10_1002_1878_0261_12762 crossref_primary_10_1016_j_foodres_2025_116124 crossref_primary_10_1016_j_ijbiomac_2024_136519 crossref_primary_10_1093_mtomcs_mfac040 crossref_primary_10_1016_j_ebiom_2020_103059 crossref_primary_10_1016_j_addr_2021_113839 crossref_primary_10_1016_j_xcrm_2023_101042 crossref_primary_10_2147_CMAR_S303122 crossref_primary_10_3389_fonc_2023_1130048 crossref_primary_10_1038_s41598_024_59052_0 crossref_primary_10_1016_j_critrevonc_2020_103087 crossref_primary_10_3390_cancers12040777 crossref_primary_10_3390_cancers13235882 crossref_primary_10_1016_j_jnutbio_2020_108580 crossref_primary_10_1002_cam4_5998 crossref_primary_10_1186_s12915_023_01729_5 crossref_primary_10_18632_oncotarget_27601 crossref_primary_10_3390_ijms25021093 crossref_primary_10_1038_s41585_020_00389_2 crossref_primary_10_1073_pnas_2220190120 crossref_primary_10_1002_med_21924 crossref_primary_10_1038_s41598_023_33073_7 crossref_primary_10_1002_pros_24314 crossref_primary_10_1186_s12935_020_01583_3 crossref_primary_10_1007_s10735_024_10341_y crossref_primary_10_1093_neuonc_noae195 crossref_primary_10_1186_s12957_022_02510_8 crossref_primary_10_1080_10937404_2024_2407452 crossref_primary_10_1080_17460441_2021_1943354 crossref_primary_10_1038_s41598_021_86021_8 crossref_primary_10_1016_j_jddst_2021_102340 crossref_primary_10_3390_cancers16193262 |
Cites_doi | 10.18632/oncotarget.15237 10.1080/15592294.2016.1146851 10.1002/pros.23701 10.1002/pros.1084 10.1073/pnas.87.17.6698 10.1002/jcb.23134 10.1126/scisignal.2005070 10.1016/j.eururo.2018.02.019 10.1158/0008-5472.CAN-10-1998 10.1002/ijc.2910440128 10.1158/0008-5472.CAN-15-0361 10.1158/1535-7163.MCT-11-0289 10.1038/sj.bjc.6690684 10.1158/1078-0432.CCR-11-1867 10.1111/j.1432-0436.1991.tb00250.x 10.1007/s00432-018-2803-5 10.1158/0008-5472.CAN-05-0817 10.1038/s41467-018-04495-z 10.1073/pnas.0707498104 10.1021/mp500085p 10.1158/0008-5472.CAN-09-2984 10.1038/nm0596-561 10.1158/2159-8290.CD-15-1263 10.1158/1078-0432.CCR-16-2955 10.1002/pros.20255 10.1158/1535-7163.MCT-16-0912 10.1111/j.1464-410X.2008.07618.x 10.1002/pros.20225 10.1002/pros.23282 10.1016/j.exphem.2013.11.005 10.1002/pros.10198 10.1038/301527a0 10.1056/NEJMoa1209096 10.1074/jbc.M109.079525 10.1158/1535-7163.MCT-12-0798 10.1038/onc.2011.637 10.1002/1097-0045(20000601)43:4<263::AID-PROS5>3.0.CO;2-I 10.1371/journal.pone.0023144 10.1158/0008-5472.CAN-17-0314 10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2 10.1016/j.bbrc.2011.12.047 10.1002/pros.2990260206 10.1016/j.gde.2015.02.007 10.1002/pros.23313 10.1111/j.1399-0039.1983.tb00162.x 10.1038/nm0497-402 10.1002/pros.2990220202 10.1097/01.ju.0000141580.30910.57 10.1158/1078-0432.CCR-13-2308 10.1002/jcb.25091 10.1002/pros.10091 10.1038/nrurol.2013.126 10.1016/j.cell.2014.12.021 10.1158/0008-5472.CAN-13-2876 10.1182/blood-2001-12-0207 10.1038/bjc.1994.279 10.1002/pros.21058 10.1158/0008-5472.CAN-13-2921-T 10.1038/nprot.2013.043 10.1038/nature04304 10.1002/pros.21301 10.1038/nature.2016.19364 10.4049/jimmunol.174.10.6477 10.3109/08977190109029117 10.1016/j.cell.2014.08.016 10.1200/JCO.2013.54.3553 10.1002/jcb.24464 10.1002/pros.2990230206 10.1016/j.bcp.2018.10.002 10.1038/ncomms9219 10.1186/1476-4598-10-126 10.1007/s11626-999-0115-4 10.1038/nm1296-1329 10.1371/journal.pone.0040021 10.1007/s13346-011-0042-2 10.1038/sj.bjc.6604822 10.1038/nature07935 10.1158/1078-0432.CCR-15-2956 10.1053/j.gastro.2011.07.050 10.1002/pros.10290 10.1002/pros.21037 10.1097/01.ju.0000149989.01263.dc 10.1002/pros.21383 10.1016/S0065-2776(08)60490-3 10.7150/ijbs.9406 10.1158/1078-0432.CCR-16-2054 10.1016/j.cell.2016.05.082 10.1016/j.eururo.2018.06.020 10.1016/S0022-5347(17)39903-2 10.1530/ERC-18-0226 10.1002/pros.2990050409 10.1007/BF00925693 10.1002/ijc.2910210305 10.1111/j.1365-2605.2009.01030.x 10.1016/j.ccell.2017.09.003 10.1038/nature24028 10.18632/oncotarget.4347 10.1158/0008-5472.CAN-08-0594 10.3892/ijo.2016.3396 10.1073/pnas.93.26.15152 10.1016/S0022-5347(05)68158-X 10.1111/j.1442-2042.2007.01532.x 10.1158/1078-0432.CCR-12-2408 10.1158/1535-7163.MCT-17-0013 10.1002/1878-0261.12030 10.1002/pros.23437 10.3892/or.2016.4809 10.1158/1078-0432.CCR-15-0157 10.1016/j.eururo.2017.02.038 10.1002/pros.21185 10.1002/pros.20581 10.1017/S0016672300010168 10.1016/S0022-5347(17)57628-4 10.1016/j.humpath.2008.07.014 10.1038/emboj.2013.99 10.1158/0008-5472.CAN-11-3812 10.1158/0008-5472.CAN-08-4210 10.1038/sj.pcan.4500606 10.3322/caac.21442 10.1002/stem.668 10.1016/S0006-291X(05)80067-1 10.1074/jbc.M116.718536 10.1002/pros.1045 10.1158/1078-0432.CCR-11-2900 10.1016/S0140-6736(10)61389-X 10.1111/bju.14043 10.1248/cpb.c17-00789 10.1016/S0022-5347(17)36978-1 10.3390/ijerph13010012 10.1002/pros.2990010113 10.1038/nrc775 10.1016/0090-4295(90)80319-I 10.1016/S0002-9440(10)64226-5 10.1158/0008-5472.CAN-17-3677 10.1038/nri3311 10.1210/me.2011-1242 10.1002/gcc.1149 10.1038/nprot.2016.006 10.4149/neo_2018_170822N551 10.1002/pros.23039 10.18632/oncotarget.6864 10.1159/000133468 10.1016/j.eururo.2017.08.012 10.1016/j.cyto.2013.06.313 10.1111/cas.13729 10.1002/ijc.2910440525 10.1056/NEJMoa1207506 10.1158/0008-5472.CAN-13-2971 10.18632/oncotarget.24609 10.1002/pros.20053 10.1002/ijc.2910570319 10.1007/s10585-004-2869-0 10.1038/nature13448 10.1016/j.eururo.2005.12.035 10.1038/bjc.2017.474 10.1002/pros.23288 10.1002/ijc.21292 10.1074/mcp.M114.039909 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.3390/cells8010074 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_5f15e7494c974e8e8551c5b8a4a3ea5b PMC6357050 30669516 10_3390_cells8010074 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c544t-5655cb5a63a4c6077c91da81c1cb6426d1cd73ff03ff9e8139a415297c7b6dcf3 |
IEDL.DBID | M48 |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:26:48 EDT 2025 Thu Aug 21 18:43:22 EDT 2025 Fri Jul 11 12:29:29 EDT 2025 Fri Jul 25 11:42:19 EDT 2025 Thu Jan 02 22:59:22 EST 2025 Tue Jul 01 01:05:49 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | prostate cancer patient-derived xenograft cell line organoid spheroid |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-5655cb5a63a4c6077c91da81c1cb6426d1cd73ff03ff9e8139a415297c7b6dcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0054-0985 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells8010074 |
PMID | 30669516 |
PQID | 2548326159 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f15e7494c974e8e8551c5b8a4a3ea5b pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357050 proquest_miscellaneous_2179444887 proquest_journals_2548326159 pubmed_primary_30669516 crossref_primary_10_3390_cells8010074 crossref_citationtrail_10_3390_cells8010074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190120 |
PublicationDateYYYYMMDD | 2019-01-20 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190120 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bluemn (ref_7) 2017; 32 ref_94 Kleb (ref_155) 2016; 11 Zhao (ref_59) 1999; 162 Toivanen (ref_124) 2011; 29 Oudard (ref_6) 2010; 376 Masters (ref_30) 2002; 2 Wang (ref_123) 2005; 64 Nguyen (ref_20) 2017; 77 Billstrom (ref_35) 1995; 26 Takayama (ref_78) 2013; 32 Li (ref_95) 2011; 1 Ellis (ref_61) 1996; 2 True (ref_135) 2002; 161 Takayama (ref_14) 2012; 26 Lange (ref_47) 2014; 20 Veldscholte (ref_55) 1990; 173 Billstrom (ref_36) 1989; 44 Kuruma (ref_84) 2013; 12 Li (ref_88) 2010; 70 Terada (ref_151) 2010; 70 Terada (ref_72) 2010; 70 Lee (ref_156) 2015; 14 Krupski (ref_169) 2001; 18 Masko (ref_65) 2017; 77 Claas (ref_118) 1983; 21 Bakht (ref_143) 2018; 26 Williams (ref_33) 1980; 17 Ledford (ref_19) 2016; 530 Nomura (ref_120) 2005; 14 Iwasa (ref_77) 2007; 14 Jones (ref_74) 2015; 6 McCulloch (ref_142) 2005; 65 Lange (ref_46) 2012; 18 Horoszewicz (ref_9) 1980; 37 Kopetz (ref_24) 2012; 18 Rubin (ref_69) 2000; 6 Zhang (ref_134) 2015; 21 Jin (ref_137) 2017; 77 Behjati (ref_173) 2014; 513 Simon (ref_53) 2009; 40 Wang (ref_8) 2014; 32 Li (ref_68) 2011; 71 Muraki (ref_116) 1990; 36 Tai (ref_51) 2011; 71 Shultz (ref_170) 2012; 12 Kim (ref_93) 2013; 114 Kaighn (ref_11) 1979; 17 Koochekpour (ref_39) 2014; 10 Boj (ref_174) 2015; 160 Kato (ref_100) 2013; 64 Sowery (ref_102) 2008; 102 Solit (ref_16) 2006; 439 Korch (ref_117) 2001; 61 Porter (ref_161) 2018; 121 Schmelz (ref_119) 2001; 48 Lin (ref_147) 2014; 74 Mickey (ref_10) 1977; 37 Corey (ref_130) 2002; 52 ref_82 Yang (ref_90) 2016; 36 Wang (ref_50) 1991; 48 Suominen (ref_136) 2017; 23 Gao (ref_29) 2014; 159 Korenchuk (ref_70) 2001; 15 Sugawara (ref_73) 2016; 7 Theodore (ref_41) 2010; 37 McDermott (ref_31) 2007; 104 Li (ref_152) 2014; 7 Lawrence (ref_158) 2013; 8 Qu (ref_149) 2018; 118 Wiid (ref_114) 1994; 70 Fong (ref_157) 2014; 11 Romijn (ref_127) 2000; 43 Sramkoski (ref_66) 1999; 35 Hoehn (ref_126) 1984; 5 Mo (ref_148) 2018; 73 Bishop (ref_86) 2017; 7 Li (ref_96) 2011; 112 Fujita (ref_97) 2010; 285 Kojima (ref_98) 2010; 70 Narayan (ref_115) 1992; 148 Bangma (ref_22) 2009; 100 Yin (ref_91) 2016; 48 Lam (ref_132) 2017; 23 Prencipe (ref_103) 2011; 10 Iwamoto (ref_165) 2014; 42 Winters (ref_131) 2017; 37 Gao (ref_17) 2015; 30 ref_177 Williams (ref_34) 1978; 119 Borgmann (ref_85) 2018; 73 Liu (ref_92) 2015; 116 Portella (ref_140) 2014; 74 Lin (ref_146) 2017; 8 Yoshida (ref_71) 2005; 65 Basu (ref_42) 2017; 77 Su (ref_64) 2017; 77 Chen (ref_3) 2016; 22 Bastide (ref_45) 2002; 5 Flanagan (ref_162) 1966; 8 Hanrahan (ref_104) 2017; 11 Liu (ref_83) 2017; 16 Ci (ref_150) 2018; 78 Shultz (ref_168) 2005; 174 Dehm (ref_2) 2008; 68 Navone (ref_60) 2000; 6 Hoehn (ref_125) 1980; 1 Tzelepi (ref_154) 2012; 18 Aparicio (ref_153) 2011; 71 Hongo (ref_106) 2018; 109 Clevers (ref_171) 2016; 165 Sato (ref_172) 2009; 459 Carroll (ref_56) 1993; 23 Stangelberger (ref_133) 2006; 118 Drost (ref_178) 2016; 11 Korch (ref_37) 2003; 57 Marchiani (ref_52) 2010; 33 Misawa (ref_79) 2016; 291 Machioka (ref_107) 2018; 9 Siegel (ref_1) 2018; 68 Verdaasdonk (ref_121) 1996; 149 Li (ref_21) 2008; 118 Korch (ref_108) 2001; 47 Stone (ref_43) 1978; 21 Ito (ref_167) 2002; 100 Luo (ref_144) 2018; 65 Puca (ref_179) 2018; 9 Kozlowski (ref_49) 1984; 44 Klein (ref_63) 1997; 3 Chen (ref_113) 1993; 62 Kikutani (ref_164) 1992; 51 Sobel (ref_12) 2005; 173 Ishiguro (ref_176) 2016; 76 Isaacs (ref_57) 1991; 51 Wilding (ref_18) 2014; 74 Lasko (ref_138) 2017; 550 Daniel (ref_25) 2009; 69 Sobel (ref_62) 2005; 173 MacLeod (ref_110) 1999; 83 Fridman (ref_122) 1990; 87 Marques (ref_75) 2006; 49 Takayama (ref_13) 2015; 6 Tepper (ref_67) 2002; 62 Thalmann (ref_81) 1994; 54 Larochelle (ref_166) 1996; 2 Craft (ref_141) 1999; 59 Okada (ref_23) 2018; 66 Horoszewicz (ref_54) 1983; 43 Kato (ref_99) 2012; 417 Lawrence (ref_159) 2015; 75 Brothman (ref_112) 1989; 44 Ching (ref_48) 1993; 126 Li (ref_139) 2012; 31 Scher (ref_4) 2012; 367 Navone (ref_26) 2018; 78 Kiefer (ref_128) 2004; 21 Zhau (ref_58) 1996; 93 Takeda (ref_87) 2007; 67 Ohata (ref_175) 2012; 72 Koochekpour (ref_38) 2004; 60 Corey (ref_129) 2003; 55 Ryan (ref_5) 2013; 368 Souchek (ref_89) 2017; 16 Byun (ref_101) 2018; 158 Hao (ref_145) 2018; 73 ref_40 Sato (ref_27) 2011; 141 Sherwood (ref_44) 1990; 143 Culig (ref_32) 1999; 81 Bosma (ref_163) 1983; 301 Druker (ref_15) 1996; 2 Centenera (ref_28) 2013; 10 Kanaya (ref_76) 2003; 5 Kalko (ref_105) 2012; 11 Lawrence (ref_160) 2018; 74 Loop (ref_111) 1993; 22 Wu (ref_80) 1994; 57 Boomer (ref_109) 2001; 31 |
References_xml | – volume: 8 start-page: 25928 year: 2017 ident: ref_146 article-title: Metabolic heterogeneity signature of primary treatment-naive prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.15237 – volume: 11 start-page: 184 year: 2016 ident: ref_155 article-title: Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas publication-title: Epigenetics doi: 10.1080/15592294.2016.1146851 – volume: 78 start-page: 1262 year: 2018 ident: ref_26 article-title: Movember gap1 pdx project: An international collection of serially transplantable prostate cancer patient-derived xenograft (pdx) models publication-title: Prostate doi: 10.1002/pros.23701 – volume: 48 start-page: 79 year: 2001 ident: ref_119 article-title: Peaz-1: A new human prostate neoplastic epithelial cell line publication-title: Prostate doi: 10.1002/pros.1084 – volume: 87 start-page: 6698 year: 1990 ident: ref_122 article-title: Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.17.6698 – volume: 112 start-page: 2125 year: 2011 ident: ref_96 article-title: Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells publication-title: J. Cell Biochem. doi: 10.1002/jcb.23134 – volume: 7 start-page: ra47 year: 2014 ident: ref_152 article-title: Targeting poly(adp-ribose) polymerase and the c-myb-regulated DNA damage response pathway in castration-resistant prostate cancer publication-title: Sci. Signal doi: 10.1126/scisignal.2005070 – volume: 73 start-page: 949 year: 2018 ident: ref_145 article-title: Patient-derived hormone-naive prostate cancer xenograft models reveal growth factor receptor bound protein 10 as an androgen receptor-repressed gene driving the development of castration-resistant prostate cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2018.02.019 – volume: 71 start-page: 2108 year: 2011 ident: ref_68 article-title: Intragenic rearrangement and altered rna splicing of the androgen receptor in a cell-based model of prostate cancer progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1998 – volume: 61 start-page: 6340 year: 2001 ident: ref_117 article-title: Tsu-pr1 and jca-1 cells are derivatives of t24 bladder carcinoma cells and are not of prostatic origin publication-title: Cancer Res. – volume: 44 start-page: 161 year: 1989 ident: ref_36 article-title: Identification by c-banding of two human prostate tumour cell lines, 1013l and du 145 publication-title: Int. J. Cancer doi: 10.1002/ijc.2910440128 – volume: 76 start-page: 150 year: 2016 ident: ref_176 article-title: Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0361 – volume: 11 start-page: 329 year: 2012 ident: ref_105 article-title: Identification of docetaxel resistance genes in castration-resistant prostate cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0289 – volume: 81 start-page: 242 year: 1999 ident: ref_32 article-title: Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6690684 – volume: 18 start-page: 666 year: 2012 ident: ref_154 article-title: Modeling a lethal prostate cancer variant with small-cell carcinoma features publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-1867 – volume: 48 start-page: 115 year: 1991 ident: ref_50 article-title: Isolation and characterization of pc-3 human prostatic tumor sublines which preferentially metastasize to select organs in s.C.I.D. Mice publication-title: Differentiation doi: 10.1111/j.1432-0436.1991.tb00250.x – volume: 37 start-page: 3385 year: 2017 ident: ref_131 article-title: Inhibition of erg activity in patient-derived prostate cancer xenografts by yk-4-279 publication-title: Anticancer Res. – ident: ref_177 doi: 10.1007/s00432-018-2803-5 – volume: 65 start-page: 9611 year: 2005 ident: ref_71 article-title: Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0817 – volume: 9 start-page: 2404 year: 2018 ident: ref_179 article-title: Patient derived organoids to model rare prostate cancer phenotypes publication-title: Nat. Commun. doi: 10.1038/s41467-018-04495-z – volume: 104 start-page: 19936 year: 2007 ident: ref_31 article-title: Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0707498104 – volume: 11 start-page: 2040 year: 2014 ident: ref_157 article-title: Hydrogel-based 3d model of patient-derived prostate xenograft tumors suitable for drug screening publication-title: Mol. Pharm. doi: 10.1021/mp500085p – volume: 70 start-page: 1606 year: 2010 ident: ref_151 article-title: Identification of ep4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2984 – volume: 59 start-page: 5030 year: 1999 ident: ref_141 article-title: Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process publication-title: Cancer Res. – volume: 2 start-page: 561 year: 1996 ident: ref_15 article-title: Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of bcr-abl positive cells publication-title: Nat. Med. doi: 10.1038/nm0596-561 – volume: 54 start-page: 2577 year: 1994 ident: ref_81 article-title: Androgen-independent cancer progression and bone metastasis in the lncap model of human prostate cancer publication-title: Cancer Res. – volume: 7 start-page: 54 year: 2017 ident: ref_86 article-title: The master neural transcription factor brn2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1263 – volume: 23 start-page: 4335 year: 2017 ident: ref_136 article-title: Radium-223 inhibits osseous prostate cancer growth by dual targeting of cancer cells and bone microenvironment in mouse models publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2955 – volume: 65 start-page: 35 year: 2005 ident: ref_142 article-title: Bm18: A novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis publication-title: Prostate doi: 10.1002/pros.20255 – volume: 16 start-page: 1521 year: 2017 ident: ref_83 article-title: Niclosamide and bicalutamide combination treatment overcomes enzalutamide- and bicalutamide-resistant prostate cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0912 – volume: 102 start-page: 389 year: 2008 ident: ref_102 article-title: Clusterin knockdown using the antisense oligonucleotide ogx-011 re-sensitizes docetaxel-refractory prostate cancer pc-3 cells to chemotherapy publication-title: BJU Int. doi: 10.1111/j.1464-410X.2008.07618.x – volume: 64 start-page: 149 year: 2005 ident: ref_123 article-title: Development and characterization of efficient xenograft models for benign and malignant human prostate tissue publication-title: Prostate doi: 10.1002/pros.20225 – volume: 77 start-page: 446 year: 2017 ident: ref_65 article-title: Evidence for feedback regulation following cholesterol lowering therapy in a prostate cancer xenograft model publication-title: Prostate doi: 10.1002/pros.23282 – volume: 42 start-page: 163 year: 2014 ident: ref_165 article-title: The balb/c-specific polymorphic sirpa enhances its affinity for human cd47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2013.11.005 – volume: 55 start-page: 239 year: 2003 ident: ref_129 article-title: Lucap 35: A new model of prostate cancer progression to androgen independence publication-title: Prostate doi: 10.1002/pros.10198 – volume: 301 start-page: 527 year: 1983 ident: ref_163 article-title: A severe combined immunodeficiency mutation in the mouse publication-title: Nature doi: 10.1038/301527a0 – volume: 368 start-page: 138 year: 2013 ident: ref_5 article-title: Abiraterone in metastatic prostate cancer without previous chemotherapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1209096 – volume: 285 start-page: 19076 year: 2010 ident: ref_97 article-title: Mir-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer pc3 cells by regulating msk1 expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.079525 – volume: 12 start-page: 567 year: 2013 ident: ref_84 article-title: A novel antiandrogen, compound 30, suppresses castration-resistant and mdv3100-resistant prostate cancer growth in vitro and in vivo publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0798 – volume: 31 start-page: 4759 year: 2012 ident: ref_139 article-title: Ar intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression publication-title: Oncogene doi: 10.1038/onc.2011.637 – volume: 43 start-page: 263 year: 2000 ident: ref_127 article-title: Use of nude mouse xenograft models in prostate cancer research publication-title: Prostate doi: 10.1002/1097-0045(20000601)43:4<263::AID-PROS5>3.0.CO;2-I – ident: ref_82 doi: 10.1371/journal.pone.0023144 – volume: 77 start-page: 5564 year: 2017 ident: ref_137 article-title: Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0314 – volume: 17 start-page: 16 year: 1979 ident: ref_11 article-title: Establishment and characterization of a human prostatic carcinoma cell line (pc-3) publication-title: Invest. Urol. – volume: 6 start-page: 1190 year: 2000 ident: ref_60 article-title: Tabbo: A model reflecting common molecular features of androgen-independent prostate cancer publication-title: Clin. Cancer Res. – volume: 51 start-page: 4716 year: 1991 ident: ref_57 article-title: Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles publication-title: Cancer Res. – volume: 83 start-page: 555 year: 1999 ident: ref_110 article-title: Widespread intraspecies cross-contamination of human tumor cell lines arising at source publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2 – volume: 417 start-page: 966 year: 2012 ident: ref_99 article-title: Ets1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory pc3 prostate cancer cells by up-regulating mdr1 and mmp9 expression publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.12.047 – volume: 26 start-page: 94 year: 1995 ident: ref_35 article-title: Differential expression of upa in an aggressive (du 145) and a nonaggressive (1013l) human prostate cancer xenograft publication-title: Prostate doi: 10.1002/pros.2990260206 – volume: 30 start-page: 42 year: 2015 ident: ref_17 article-title: Organoid development in cancer genome discovery publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2015.02.007 – volume: 77 start-page: 654 year: 2017 ident: ref_20 article-title: Lucap prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease an--d serve as models for evaluating cancer therapeutics publication-title: Prostate doi: 10.1002/pros.23313 – volume: 21 start-page: 227 year: 1983 ident: ref_118 article-title: Expression of hla-like structures on a permanent human tumor line pc-93 publication-title: Tissue Antigens doi: 10.1111/j.1399-0039.1983.tb00162.x – volume: 3 start-page: 402 year: 1997 ident: ref_63 article-title: Progression of metastatic human prostate cancer to androgen independence in immunodeficient scid mice publication-title: Nat. Med. doi: 10.1038/nm0497-402 – volume: 22 start-page: 93 year: 1993 ident: ref_111 article-title: Human primary prostate tumor cell line, alva-31: A new model for studying the hormonal regulation of prostate tumor cell growth publication-title: Prostate doi: 10.1002/pros.2990220202 – volume: 173 start-page: 342 year: 2005 ident: ref_12 article-title: Cell lines used in prostate cancer research: A compendium of old and new lines--part 1 publication-title: J. Urol. doi: 10.1097/01.ju.0000141580.30910.57 – volume: 20 start-page: 1791 year: 2014 ident: ref_47 article-title: Aberrant presentation of hpa-reactive carbohydrates implies selectin-independent metastasis formation in human prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-2308 – volume: 116 start-page: 1341 year: 2015 ident: ref_92 article-title: The upregulation of pi3k/akt and map kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer publication-title: J. Cell Biochem. doi: 10.1002/jcb.25091 – volume: 52 start-page: 20 year: 2002 ident: ref_130 article-title: Establishment and characterization of osseous prostate cancer models: Intra-tibial injection of human prostate cancer cells publication-title: Prostate doi: 10.1002/pros.10091 – volume: 10 start-page: 483 year: 2013 ident: ref_28 article-title: Ex vivo culture of human prostate tissue and drug development publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2013.126 – volume: 160 start-page: 324 year: 2015 ident: ref_174 article-title: Organoid models of human and mouse ductal pancreatic cancer publication-title: Cell doi: 10.1016/j.cell.2014.12.021 – volume: 74 start-page: 2270 year: 2014 ident: ref_140 article-title: Androgen receptor splice variants determine taxane sensitivity in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2876 – volume: 100 start-page: 3175 year: 2002 ident: ref_167 article-title: Nod/scid/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells publication-title: Blood doi: 10.1182/blood-2001-12-0207 – volume: 70 start-page: 195 year: 1994 ident: ref_114 article-title: Detection by DNA fingerprinting of somatic changes during the establishment of a new prostate cell line publication-title: Br. J. Cancer doi: 10.1038/bjc.1994.279 – volume: 70 start-page: 252 year: 2010 ident: ref_72 article-title: Antiandrogen withdrawal syndrome and alternative antiandrogen therapy associated with the w741c mutant androgen receptor in a novel prostate cancer xenograft publication-title: Prostate doi: 10.1002/pros.21058 – volume: 74 start-page: 1272 year: 2014 ident: ref_147 article-title: High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2921-T – volume: 8 start-page: 836 year: 2013 ident: ref_158 article-title: A preclinical xenograft model of prostate cancer using human tumors publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.043 – volume: 439 start-page: 358 year: 2006 ident: ref_16 article-title: Braf mutation predicts sensitivity to mek inhibition publication-title: Nature doi: 10.1038/nature04304 – volume: 15 start-page: 163 year: 2001 ident: ref_70 article-title: Vcap, a cell-based model system of human prostate cancer publication-title: In Vivo – volume: 71 start-page: 846 year: 2011 ident: ref_153 article-title: Neuroendocrine prostate cancer xenografts with large-cell and small-cell features derived from a single patient’s tumor: Morphological, immunohistochemical, and gene expression profiles publication-title: Prostate doi: 10.1002/pros.21301 – volume: 530 start-page: 391 year: 2016 ident: ref_19 article-title: Us cancer institute to overhaul tumour cell lines publication-title: Nature doi: 10.1038/nature.2016.19364 – volume: 174 start-page: 6477 year: 2005 ident: ref_168 article-title: Human lymphoid and myeloid cell development in nod/ltsz-scid il2r gamma null mice engrafted with mobilized human hemopoietic stem cells publication-title: J. Immunol. doi: 10.4049/jimmunol.174.10.6477 – volume: 18 start-page: 287 year: 2001 ident: ref_169 article-title: The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells publication-title: Growth Factors doi: 10.3109/08977190109029117 – volume: 159 start-page: 176 year: 2014 ident: ref_29 article-title: Organoid cultures derived from patients with advanced prostate cancer publication-title: Cell doi: 10.1016/j.cell.2014.08.016 – volume: 32 start-page: 3383 year: 2014 ident: ref_8 article-title: Neuroendocrine prostate cancer (nepc) progressing from conventional prostatic adenocarcinoma: Factors associated with time to development of nepc and survival from NEPC diagnosis-a systematic review and pooled analysis publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.54.3553 – volume: 114 start-page: 1286 year: 2013 ident: ref_93 article-title: Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer publication-title: J. Cell Biochem. doi: 10.1002/jcb.24464 – volume: 2 start-page: 1039 year: 1996 ident: ref_61 article-title: Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: Lucap 23 publication-title: Clin. Cancer Res. – volume: 118 start-page: 2697 year: 2008 ident: ref_21 article-title: Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through fgf9-mediated mechanisms publication-title: J. Clin. Investig. – volume: 23 start-page: 123 year: 1993 ident: ref_56 article-title: P53 oncogene mutations in three human prostate cancer cell lines publication-title: Prostate doi: 10.1002/pros.2990230206 – volume: 158 start-page: 84 year: 2018 ident: ref_101 article-title: A novel selenonucleoside suppresses tumor growth by targeting skp2 degradation in paclitaxel-resistant prostate cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.10.002 – volume: 6 start-page: 8219 year: 2015 ident: ref_13 article-title: Tet2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression publication-title: Nat. Commun. doi: 10.1038/ncomms9219 – volume: 10 start-page: 126 year: 2011 ident: ref_103 article-title: Characterisation and manipulation of docetaxel resistant prostate cancer cell lines publication-title: Mol. Cancer doi: 10.1186/1476-4598-10-126 – volume: 35 start-page: 403 year: 1999 ident: ref_66 article-title: A new human prostate carcinoma cell line, 22rv1 publication-title: In Vitro Cell Dev. Biol. Anim. doi: 10.1007/s11626-999-0115-4 – volume: 2 start-page: 1329 year: 1996 ident: ref_166 article-title: Identification of primitive human hematopoietic cells capable of repopulating nod/scid mouse bone marrow: Implications for gene therapy publication-title: Nat. Med. doi: 10.1038/nm1296-1329 – volume: 17 start-page: 359 year: 1980 ident: ref_33 article-title: Human urologic cancer cell lines publication-title: Invest. Urol. – ident: ref_94 doi: 10.1371/journal.pone.0040021 – volume: 1 start-page: 420 year: 2011 ident: ref_95 article-title: Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in prostate cancer publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-011-0042-2 – volume: 100 start-page: 13 year: 2009 ident: ref_22 article-title: Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6604822 – volume: 459 start-page: 262 year: 2009 ident: ref_172 article-title: Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 22 start-page: 4505 year: 2016 ident: ref_3 article-title: Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-2956 – volume: 141 start-page: 1762 year: 2011 ident: ref_27 article-title: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.07.050 – volume: 57 start-page: 205 year: 2003 ident: ref_37 article-title: Molecular characterization of human prostate carcinoma cell lines publication-title: Prostate doi: 10.1002/pros.10290 – volume: 6 start-page: 1038 year: 2000 ident: ref_69 article-title: Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer publication-title: Clin. Cancer Res. – volume: 70 start-page: 48 year: 2010 ident: ref_88 article-title: Cten/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer publication-title: Prostate doi: 10.1002/pros.21037 – volume: 173 start-page: 360 year: 2005 ident: ref_62 article-title: Cell lines used in prostate cancer research: A compendium of old and new lines--part 2 publication-title: J. Urol. doi: 10.1097/01.ju.0000149989.01263.dc – volume: 71 start-page: 1668 year: 2011 ident: ref_51 article-title: Pc3 is a cell line characteristic of prostatic small cell carcinoma publication-title: Prostate doi: 10.1002/pros.21383 – volume: 51 start-page: 285 year: 1992 ident: ref_164 article-title: The murine autoimmune diabetes model: Nod and related strains publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(08)60490-3 – volume: 10 start-page: 834 year: 2014 ident: ref_39 article-title: Establishment and characterization of a highly tumorigenic african american prostate cancer cell line, e006aa-ht publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.9406 – volume: 23 start-page: 2301 year: 2017 ident: ref_132 article-title: Characterization of an abiraterone ultraresponsive phenotype in castration-resistant prostate cancer patient-derived xenografts publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2054 – volume: 165 start-page: 1586 year: 2016 ident: ref_171 article-title: Modeling development and disease with organoids publication-title: Cell doi: 10.1016/j.cell.2016.05.082 – volume: 5 start-page: 9 year: 2003 ident: ref_76 article-title: Androgen-independent growth in lncap cell lines and steroid uridine diphosphate-glucuronosyltransferase expression publication-title: Asian J. Androl. – volume: 37 start-page: 115 year: 1980 ident: ref_9 article-title: The lncap cell line--a new model for studies on human prostatic carcinoma publication-title: Prog. Clin. Biol. Res. – volume: 37 start-page: 4049 year: 1977 ident: ref_10 article-title: Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice publication-title: Cancer Res. – volume: 74 start-page: 562 year: 2018 ident: ref_160 article-title: Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy publication-title: Eur. Urol. doi: 10.1016/j.eururo.2018.06.020 – volume: 143 start-page: 167 year: 1990 ident: ref_44 article-title: Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate publication-title: J. Urol. doi: 10.1016/S0022-5347(17)39903-2 – volume: 26 start-page: 131 year: 2018 ident: ref_143 article-title: Neuroendocrine differentiation of prostate cancer leads to psma suppression publication-title: Endocr. Relat. Cancer doi: 10.1530/ERC-18-0226 – volume: 5 start-page: 445 year: 1984 ident: ref_126 article-title: Prostatic adenocarcinoma pc ew, a new human tumor line transplantable in nude mice publication-title: Prostate doi: 10.1002/pros.2990050409 – volume: 126 start-page: 151 year: 1993 ident: ref_48 article-title: Expression of mrna for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines publication-title: Mol. Cell Biochem. doi: 10.1007/BF00925693 – volume: 21 start-page: 274 year: 1978 ident: ref_43 article-title: Isolation of a human prostate carcinoma cell line (du 145) publication-title: Int. J. Cancer doi: 10.1002/ijc.2910210305 – volume: 33 start-page: 784 year: 2010 ident: ref_52 article-title: Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation publication-title: Int. J. Androl. doi: 10.1111/j.1365-2605.2009.01030.x – volume: 32 start-page: 474 year: 2017 ident: ref_7 article-title: Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.09.003 – volume: 550 start-page: 128 year: 2017 ident: ref_138 article-title: Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours publication-title: Nature doi: 10.1038/nature24028 – volume: 44 start-page: 3522 year: 1984 ident: ref_49 article-title: Metastatic behavior of human tumor cell lines grown in the nude mouse publication-title: Cancer Res. – volume: 6 start-page: 26029 year: 2015 ident: ref_74 article-title: Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy publication-title: Oncotarget doi: 10.18632/oncotarget.4347 – volume: 68 start-page: 5469 year: 2008 ident: ref_2 article-title: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-0594 – volume: 48 start-page: 1730 year: 2016 ident: ref_91 article-title: Downregulation of cytokeratin 18 is associated with paclitaxelresistance and tumor aggressiveness in prostate cancer publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3396 – volume: 93 start-page: 15152 year: 1996 ident: ref_58 article-title: Androgen-repressed phenotype in human prostate cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.26.15152 – volume: 162 start-page: 2192 year: 1999 ident: ref_59 article-title: Two mutations identified in the androgen receptor of the new human prostate cancer cell line mda pca 2a publication-title: J. Urol. doi: 10.1016/S0022-5347(05)68158-X – volume: 14 start-page: 233 year: 2007 ident: ref_77 article-title: Establishment and characterization of androgen-independent human prostate cancer cell lines, ln-rec4 and lncap-sf, from lncap publication-title: Int. J. Urol. doi: 10.1111/j.1442-2042.2007.01532.x – volume: 18 start-page: 5160 year: 2012 ident: ref_24 article-title: The promise of patient-derived xenografts: The best laid plans of mice and men publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-2408 – volume: 16 start-page: 1819 year: 2017 ident: ref_89 article-title: Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhances microtubule stability in taxane-resistant prostate cancer cells publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-17-0013 – volume: 11 start-page: 251 year: 2017 ident: ref_104 article-title: The role of epithelial-mesenchymal transition drivers zeb1 and zeb2 in mediating docetaxel-resistant prostate cancer publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12030 – volume: 77 start-page: 1601 year: 2017 ident: ref_42 article-title: The 22rv1 prostate cancer cell line carries mixed genetic ancestry: Implications for prostate cancer health disparities research using pre-clinical models publication-title: Prostate doi: 10.1002/pros.23437 – volume: 36 start-page: 559 year: 2016 ident: ref_90 article-title: Skp2 is associated with paclitaxel resistance in prostate cancer cells publication-title: Oncol. Rep. doi: 10.3892/or.2016.4809 – volume: 21 start-page: 4698 year: 2015 ident: ref_134 article-title: Srrm4 expression and the loss of rest activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0157 – volume: 73 start-page: 524 year: 2018 ident: ref_148 article-title: Stromal gene expression is predictive for metastatic primary prostate cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2017.02.038 – volume: 70 start-page: 1501 year: 2010 ident: ref_98 article-title: Mir-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer pc3 cells through direct and indirect mechanisms publication-title: Prostate doi: 10.1002/pros.21185 – volume: 67 start-page: 955 year: 2007 ident: ref_87 article-title: The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines publication-title: Prostate doi: 10.1002/pros.20581 – volume: 8 start-page: 295 year: 1966 ident: ref_162 article-title: ‘Nude’, a new hairless gene with pleiotropic effects in the mouse publication-title: Genet. Res. doi: 10.1017/S0016672300010168 – volume: 119 start-page: 768 year: 1978 ident: ref_34 article-title: Biochemical markers of cultured human prostatic epithelium publication-title: J. Urol. doi: 10.1016/S0022-5347(17)57628-4 – volume: 40 start-page: 252 year: 2009 ident: ref_53 article-title: Cd44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2008.07.014 – volume: 32 start-page: 1665 year: 2013 ident: ref_78 article-title: Androgen-responsive long noncoding rna ctbp1-as promotes prostate cancer publication-title: EMBO J. doi: 10.1038/emboj.2013.99 – volume: 72 start-page: 5101 year: 2012 ident: ref_175 article-title: Induction of the stem-like cell regulator cd44 by rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3812 – volume: 69 start-page: 3364 year: 2009 ident: ref_25 article-title: A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4210 – volume: 5 start-page: 311 year: 2002 ident: ref_45 article-title: A nod scid mouse model to study human prostate cancer publication-title: Prostate Cancer Prostatic Dis. doi: 10.1038/sj.pcan.4500606 – volume: 68 start-page: 7 year: 2018 ident: ref_1 article-title: Cancer statistics, 2018 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21442 – volume: 29 start-page: 1310 year: 2011 ident: ref_124 article-title: Brief report: A bioassay to identify primary human prostate cancer repopulating cells publication-title: Stem Cells doi: 10.1002/stem.668 – volume: 173 start-page: 534 year: 1990 ident: ref_55 article-title: A mutation in the ligand binding domain of the androgen receptor of human lncap cells affects steroid binding characteristics and response to anti-androgens publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(05)80067-1 – volume: 291 start-page: 17861 year: 2016 ident: ref_79 article-title: Androgen-induced long noncoding rna (lncrna) socs2-as1 promotes cell growth and inhibits apoptosis in prostate cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.718536 – volume: 47 start-page: 36 year: 2001 ident: ref_108 article-title: Widely used prostate carcinoma cell lines share common origins publication-title: Prostate doi: 10.1002/pros.1045 – volume: 18 start-page: 1364 year: 2012 ident: ref_46 article-title: Human prostate cancer in a clinically relevant xenograft mouse model: Identification of beta(1,6)-branched oligosaccharides as a marker of tumor progression publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-2900 – volume: 376 start-page: 1147 year: 2010 ident: ref_6 article-title: Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial publication-title: Lancet doi: 10.1016/S0140-6736(10)61389-X – volume: 121 start-page: 971 year: 2018 ident: ref_161 article-title: Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate-tolerant cells publication-title: BJU Int. doi: 10.1111/bju.14043 – volume: 66 start-page: 225 year: 2018 ident: ref_23 article-title: Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.c17-00789 – volume: 148 start-page: 1600 year: 1992 ident: ref_115 article-title: Establishment and characterization of a human primary prostatic adenocarcinoma cell line (nd-1) publication-title: J. Urol. doi: 10.1016/S0022-5347(17)36978-1 – ident: ref_40 doi: 10.3390/ijerph13010012 – volume: 1 start-page: 95 year: 1980 ident: ref_125 article-title: Human prostatic adenocarcinoma: Some characteristics of a serially transplantable line in nude mice (pc 82) publication-title: Prostate doi: 10.1002/pros.2990010113 – volume: 2 start-page: 315 year: 2002 ident: ref_30 article-title: Hela cells 50 years on: The good, the bad and the ugly publication-title: Nat. Rev. Cancer doi: 10.1038/nrc775 – volume: 36 start-page: 79 year: 1990 ident: ref_116 article-title: Establishment of new human prostatic cancer cell line (jca-1) publication-title: Urology doi: 10.1016/0090-4295(90)80319-I – volume: 161 start-page: 705 year: 2002 ident: ref_135 article-title: A neuroendocrine/small cell prostate carcinoma xenograft-lucap 49 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64226-5 – volume: 14 start-page: 993 year: 2005 ident: ref_120 article-title: Expression of the inhibitors of apoptosis proteins in cisplatin-resistant prostate cancer cells publication-title: Oncol. Rep. – volume: 78 start-page: 2691 year: 2018 ident: ref_150 article-title: Heterochromatin protein 1alpha mediates development and aggressiveness of neuroendocrine prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3677 – volume: 12 start-page: 786 year: 2012 ident: ref_170 article-title: Humanized mice for immune system investigation: Progress, promise and challenges publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3311 – volume: 26 start-page: 748 year: 2012 ident: ref_14 article-title: Tacc2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer publication-title: Mol. Endocrinol. doi: 10.1210/me.2011-1242 – volume: 31 start-page: 303 year: 2001 ident: ref_109 article-title: Karyotypic similarity identified by multiplex-fish relates four prostate adenocarcinoma cell lines: Pc-3, ppc-1, alva-31, and alva-41 publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.1149 – volume: 11 start-page: 347 year: 2016 ident: ref_178 article-title: Organoid culture systems for prostate epithelial and cancer tissue publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.006 – volume: 37 start-page: 1477 year: 2010 ident: ref_41 article-title: Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an african american prostate cancer patient publication-title: Int. J. Oncol. – volume: 65 start-page: 815 year: 2018 ident: ref_144 article-title: Tmem45b is a novel predictive biomarker for prostate cancer progression and metastasis publication-title: Neoplasma doi: 10.4149/neo_2018_170822N551 – volume: 75 start-page: 1475 year: 2015 ident: ref_159 article-title: Establishment of primary patient-derived xenografts of palliative turp specimens to study castrate-resistant prostate cancer publication-title: Prostate doi: 10.1002/pros.23039 – volume: 7 start-page: 6015 year: 2016 ident: ref_73 article-title: Bay 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients publication-title: Oncotarget doi: 10.18632/oncotarget.6864 – volume: 62 start-page: 183 year: 1993 ident: ref_113 article-title: Chromosome identity of human prostate cancer cell lines, pc-3 and ppc-1 publication-title: Cytogenet. Cell Genet. doi: 10.1159/000133468 – volume: 73 start-page: 4 year: 2018 ident: ref_85 article-title: Moving towards precision urologic oncology: Targeting enzalutamide-resistant prostate cancer and mutated forms of the androgen receptor using the novel inhibitor darolutamide (odm-201) publication-title: Eur. Urol. doi: 10.1016/j.eururo.2017.08.012 – volume: 64 start-page: 251 year: 2013 ident: ref_100 article-title: Ccr1/ccl5 interaction promotes invasion of taxane-resistant pc3 prostate cancer cells by increasing secretion of mmps 2/9 and by activating erk and rac signaling publication-title: Cytokine doi: 10.1016/j.cyto.2013.06.313 – volume: 109 start-page: 2937 year: 2018 ident: ref_106 article-title: Analysis of cabazitaxel-resistant mechanism in human castration-resistant prostate cancer publication-title: Cancer Sci. doi: 10.1111/cas.13729 – volume: 44 start-page: 898 year: 1989 ident: ref_112 article-title: Phenotypic and cytogenetic characterization of a cell line derived from primary prostatic carcinoma publication-title: Int. J. Cancer doi: 10.1002/ijc.2910440525 – volume: 367 start-page: 1187 year: 2012 ident: ref_4 article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1207506 – volume: 74 start-page: 2377 year: 2014 ident: ref_18 article-title: Cancer cell lines for drug discovery and development publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2971 – volume: 9 start-page: 16185 year: 2018 ident: ref_107 article-title: Establishment and characterization of two cabazitaxel-resistant prostate cancer cell lines publication-title: Oncotarget doi: 10.18632/oncotarget.24609 – volume: 43 start-page: 1809 year: 1983 ident: ref_54 article-title: Lncap model of human prostatic carcinoma publication-title: Cancer Res. – volume: 60 start-page: 141 year: 2004 ident: ref_38 article-title: Establishment and characterization of a primary androgen-responsive african-american prostate cancer cell line, e006aa publication-title: Prostate doi: 10.1002/pros.20053 – volume: 57 start-page: 406 year: 1994 ident: ref_80 article-title: Derivation of androgen-independent human lncap prostatic cancer cell sublines: Role of bone stromal cells publication-title: Int. J. Cancer doi: 10.1002/ijc.2910570319 – volume: 21 start-page: 381 year: 2004 ident: ref_128 article-title: The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic lucap 23.1 prostate cancer xenograft publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-004-2869-0 – volume: 513 start-page: 422 year: 2014 ident: ref_173 article-title: Genome sequencing of normal cells reveals developmental lineages and mutational processes publication-title: Nature doi: 10.1038/nature13448 – volume: 49 start-page: 245 year: 2006 ident: ref_75 article-title: The human pc346 xenograft and cell line panel: A model system for prostate cancer progression publication-title: Eur. Urol. doi: 10.1016/j.eururo.2005.12.035 – volume: 149 start-page: 1055 year: 1996 ident: ref_121 article-title: Development of seven new human prostate tumor xenograft models and their histopathological characterization publication-title: Am. J. Pathol. – volume: 118 start-page: 802 year: 2018 ident: ref_149 article-title: Treatment with docetaxel in combination with aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2017.474 – volume: 77 start-page: 505 year: 2017 ident: ref_64 article-title: Up-regulation of follistatin-like 1 by the androgen receptor and melanoma antigen-a11 in prostate cancer publication-title: Prostate doi: 10.1002/pros.23288 – volume: 62 start-page: 6606 year: 2002 ident: ref_67 article-title: Characterization of a novel androgen receptor mutation in a relapsed cwr22 prostate cancer xenograft and cell line publication-title: Cancer Res. – volume: 118 start-page: 222 year: 2006 ident: ref_133 article-title: Targeted chemotherapy with cytotoxic bombesin analogue an-215 inhibits growth of experimental human prostate cancers publication-title: Int. J. Cancer doi: 10.1002/ijc.21292 – volume: 14 start-page: 471 year: 2015 ident: ref_156 article-title: Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.M114.039909 |
SSID | ssj0000816105 |
Score | 2.4828913 |
SecondaryResourceType | review_article |
Snippet | Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 74 |
SubjectTerms | Androgens Animals Cancer therapies Cell culture Cell Culture Techniques - methods cell line Cell Line, Tumor Cytokeratin Drug resistance Drug Resistance, Neoplasm Extracellular matrix Gene expression Humans Immunodeficiency Male Metastases Metastasis Mutation organoid Organoids patient-derived xenograft Patients Precision medicine Prostate cancer Prostatic Neoplasms - pathology Review spheroid Tissue engineering Transplantation Tumor cell lines Tumorigenesis Tumors Xenograft Model Antitumor Assays Xenografts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F03aVChPbUm9lov95ZuGkKhJYcE9mb0Mi0Eb4mdQH5a_12_sbzb3ZDSSw97WEu2pZ3RzDfa0TeMvZ15N2tpoyoYZ3LhXMhrW7g8IOgR5cypxLP99Zs6ORdfFnKxUeqLcsISPXD64Q5kW8qoRS08kG800cDFe-mMFbaKVjqyvvB5G8HUaIMNkEwhU6Z7hbj-gPbBe5hj8plbPmik6r8LX95Ok9zwO8eP2MMJMPLDNNDH7F7snrD7qYTkzVP26_DPP9B82fJTOsUB_MjnJM5LTrXOLnoOaIqmuDoHySl98OYjH2sqDzApPbdd4ONpp7SFR8-aYzK4BmP4gZ8m_tX8CBp7HQNfxI4Su9oBbXTrGXQi5kdUKyDxfPBE1hnHQd26mR7cP2Pnx5_P5if5VI4h91KIIQf0k95JqyorvCq09nUZrCl96SHSmQqlD7pq2wKfOhpAS0vooNZeOxV8Wz1nO92yiy8ZV8J5sjXKx0JYHU3wWgld4ZuIytcZe78SUOOniVPJjIsGMQuJs9kUZ8berXv_TBwdf-n3iWS97kPM2uMF6Fsz6VvzL33L2N5KU5ppufcNomxYRoBDjPzNuhkLlV5vu7i8Qh8yfQiGjc7Yi6RY65EgblOAuipjekvltoa63dL9-D6SgROfYCGLV_9jbrvsAfAg5c_BeO6xneHyKr4G5hrc_ri8fgMXuy61 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS91AEF5apdCXUnuNtbKF9qldTE72lr4UPSpSqByKwnkLe4stSKInseBP67_rTDYnekT7kIdkN8mGmZ39ZjL7DSEfJ85OKgxUeW0149Z6VpjUMg9OD88mVkae7R_H8uiUf5-L-RBwa4e0yqVN7A21bxzGyHfAkQHlg_W3-HZxybBqFP5dHUpoPCbrYII1OF_rewfHs59jlAXLSgCCiBnvOfj3OxgPb8Es49q5shb1lP334cy76ZK31p_D5-TZABzpbpT0BnkU6hfkSSwlef2S_N29-RNNm4rOcDcH4Eg6RbEuKNY8O28pQFRoCsv9kBTTCK-_0r62cgempaWm9rTf9RRDefisKXwMXAOj-IXOIg8r2wfN_RM8nYcaE7yqDtrw1hPQjcD2sWZA5PugkbQz9IO6czM-uH1FTg8PTqZHbCjLwJzgvGMAAYWzwsjccCdTpVyReaMzlzkQ7UT6zHmVV1UKRxE0QEyDKKFQTlnpXZW_Jmt1U4e3hEpuHdoc6ULKjQraOyW5yuGMB-mKhHxeCqh0w4dj6YzzEnwXFGd5W5wJ-TT2vohcHQ_020NZj32QYbu_0CzOymHClqLKRFC84A48rqCDBmjphNWGmzwYYROytdSUcpj2bXmjpAn5MDbDhMXXmzo0V9AHTSA4xVol5E1UrHEk4L9JgLwyIWpF5VaGutpS__7Vk4Ijr2Aq0s3_D-sdeQqIDzPkwDxukbVucRXeA6rq7PYwdf4Bps0naA priority: 102 providerName: ProQuest |
Title | Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30669516 https://www.proquest.com/docview/2548326159 https://www.proquest.com/docview/2179444887 https://pubmed.ncbi.nlm.nih.gov/PMC6357050 https://doaj.org/article/5f15e7494c974e8e8551c5b8a4a3ea5b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJiReJu4ERmUkeIJALo7tICG0dZsmpE0VWqW-Rb4FkKp0NBmiP41_xzl2UtYxJB760NhxnZyLv889PoeQl5nRWY0bVVZqGTOtbVyqRMcWSA9LM81Dnu3TM34yZZ9mxWyLDNVG-xfY3kjtsJ7UdDl_-_P76iMY_AdknEDZ3-EWdwueFpfDW2QH1iSBJnraA33vkyUgGx_PmIFOxwxYTYiC_2uAjfXJp_G_CXteD6G8siYd3yW7PZik-0H698iWa-6T26G85OoB-bX_599puqjpBE94ALakYxT1kmIdtHlLAbZCkxvOSFIMLVy9p77ecgfupqWqsdSfhArbezjWGB4GroGjfEMnITdrfAja_MNZOnMNBn3VHbThreegLy4-xDoCIQcIDYk8nZ_UtZtx4PYhmR4fnY9P4r5UQ2wKxroYYGFhdKF4rpjhiRCmTK2SqUkNiDvjNjVW5HWdwKd0EmCnQuRQCiM0t6bOH5HtZtG4J4Rypg36IW5cwpRw0hrBmcjhG3PclBF5PQioMv2DYzmNeQV8BsVZXRVnRF6te1-E_B3_6HeAsl73wazb_sJi-aXqjbgq6rRwgpXMAAtz0kmAm6bQUjGVO1XoiOwNmlINmlwBAwevCcARZv5i3QxGjD-vGre4hD7oFoEoSxGRx0Gx1jMBTscBBvOIiA2V25jqZkvz7atPFI65BpMiefqf7-AZuQNwEMPnwHfuke1ueemeA-Tq9IjsHBydTT6P_JbFyNvWb_v7MBY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAotET2DVj_WujYRQm7RKaRtFKJV6M_syIFVOiVNQ_hR3_h0zfqRNBdx6yCHe9XqsmZ35Zjw7A_A6MjoqKFBlU536XGvrZyrQvkWnh4eRFk2d7aORGB7zjyfJyRr86s7CUFplpxNrRW2nhmLkW-jIoPCh_c0-nH33qWsUfV3tWmg0YnHgFj_RZave7w-Qv5tRtLc76Q_9tquAbxLO5z4imMToRIlYcSMCKU0WWpWGJjRIWSRsaKyMiyLAX-ZSREiKjFwmjdTCmiLGdW_AOo_RlenB-s7uaPxpGdWhNhaIWJoM-zjOgi2Kv1doBshWr9i-ukXA33Dt1fTMS_Zu7y7caYEq224k6x6sufI-3GxaVy4ewO_tiy_fbFqwMZ0eQdzK-iRGM0Y91k4rhpAYh1x3_pJR2uLiHat7Oc9RlVVMlZbVp6ya0CGt1ceXwWuohN-ycVP31R_gTvnhLDtxJSWUFXMco1snKIvOH1CPgqa-CGuKhLqaqCs308LVQzi-FoY9gl45Ld0TYIJrQzpOGBdwJV1qjRRcxviPO2EyD950DMpN--LUquM0R1-J2JlfZqcHm8vZZ01tkH_M2yFeL-dQRe_6wnT2JW8VRJ4UYeIkz7hBD8-lLkUoaxKdKq5ipxLtwUYnKXmrZqr8YlN48Go5jAqCHq9KNz3HOaRy0QlPpQePG8FaUoL-okCILTyQKyK3QurqSPnta12EnOoYBknw9P9kvYRbw8nRYX64Pzp4BrcRbVJ2HqrmDejNZ-fuOSK6uX7RbiMGn6975_4Bi1xkeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJxAviG8CAw6JPUHUfFzuEiSEtnbVxqCq0Cb1LeQ-AkhTOpoO1D8N_jrsXNKtE_C2hz40d7k4ss_-2fHZAC8jraKSAlUmVanPlTJ-VgTKN-j08DBSwtXZ_jgW-8f8_TSZbsDv7iwMpVV2OrFR1GamKUbeR0cGhQ_tb9Yv27SIyXD07vS7Tx2k6Etr107DicihXf5E961-ezBEXm9H0WjvaLDvtx0GfJ1wvvARzSRaJYWIC65FIKXOQlOkoQ41UhkJE2oj47IM8JfZFNFSQQYvk1oqYXQZ47rXYFOiVxT0YHN3bzz5tIrwUEsLRC8u2z6Os6BPsfgaTQLZ7TU72LQL-BvGvZyqecH2jW7DrRa0sh0nZXdgw1Z34bprY7m8B792zr-Cs1nJJnSSBDEsG5BIzRn1WzupGcJjHLLdWUxGKYzLN6zp67xAtVazojKsOXHlwoi01gBfBq-hQn7NJq4GrD_EXfPDGja1FSWXlQsco1uPUC6tP6R-Ba7WCHMFQ21D1KWbaeH6PhxfCcMeQK-aVfYRMMGVJn0ntA14IW1qtBRcxviPW6EzD151DMp1--LUtuMkR7-J2JlfZKcH26vZp65OyD_m7RKvV3OoundzYTb_krfKIk_KMLGSZ1yjt2dTmyKs1YlKC17EtkiUB1udpOStyqnz8w3iwYvVMCoLenxR2dkZziH1iw55Kj146ARrRQn6jgLhtvBAroncGqnrI9W3r01BcqppGCTB4_-T9Rxu4I7NPxyMD5_ATQSelKiHWnoLeov5mX2K4G6hnrW7iMHnq964fwDaUGiu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Prostate+Cancer+Models+for+Preclinical+Study%3A+Advantages+and+Limitations+of+Cell+Lines%2C+Patient-Derived+Xenografts%2C+and+Three-Dimensional+Culture+of+Patient-Derived+Cells&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Namekawa%2C+Takeshi&rft.au=Ikeda%2C+Kazuhiro&rft.au=Horie-Inoue%2C+Kuniko&rft.au=Inoue%2C+Satoshi&rft.date=2019-01-20&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=8&rft.issue=1&rft.spage=74&rft_id=info:doi/10.3390%2Fcells8010074&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cells8010074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |