NRG Oncology Updated International Consensus Atlas on Pelvic Lymph Node Volumes for Intact and Postoperative Prostate Cancer
In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pel...
Saved in:
Published in | International journal of radiation oncology, biology, physics Vol. 109; no. 1; pp. 174 - 185 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas.
A literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity.
Eighteen radiation oncologists’ contours (54 CTVs) were included. Two urologists’ volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm3, intact node positive case was 409 cm3, and intact node negative case was 342 cm3. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached.
Discordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed. |
---|---|
AbstractList | In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas.
A literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity.
Eighteen radiation oncologists' contours (54 CTVs) were included. Two urologists' volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm
, intact node positive case was 409 cm
, and intact node negative case was 342 cm
. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached.
Discordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed. In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas. A literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity. Eighteen radiation oncologists’ contours (54 CTVs) were included. Two urologists’ volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm3, intact node positive case was 409 cm3, and intact node negative case was 342 cm3. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached. Discordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed. In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas. In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas.PURPOSEIn 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas.A literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity.METHODS AND MATERIALSA literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity.Eighteen radiation oncologists' contours (54 CTVs) were included. Two urologists' volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm3, intact node positive case was 409 cm3, and intact node negative case was 342 cm3. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached.RESULTSEighteen radiation oncologists' contours (54 CTVs) were included. Two urologists' volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm3, intact node positive case was 409 cm3, and intact node negative case was 342 cm3. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached.Discordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed.CONCLUSIONSDiscordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed. |
Author | Tree, Alison C. Michalski, Jeff M. Efstathiou, Jason A. Karnes, R. Jeffrey Hall, William A. Harisinghani, Mukesh Paulson, Eric Sandler, Howard M. Buyyounouski, Mark K. Tran, Phuoc T. Chen, Ronald C. Feng, Felix Jani, Ashesh B. Hope, Thomas A. Koontz, Bridget F. Morgan, Todd M. Cury, Fabio L. Davis, Brian J. Spratt, Daniel E. Wong, Anthony C. Lawton, Colleen A.F. Dearnaley, David Pisansky, Thomas M. Rosenthal, Seth A. Nguyen, Paul L. |
AuthorAffiliation | Department of Radiation Oncology, University of Kansas, Kansas City, Kansas Department of Radiation Oncology, McGill University, Montreal, Canada Department of Radiation Oncology, Washington University, St. Louis, Missouri Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts Department of Urology, Mayo Clinic, Rochester, Minnesota Mayo Clinic, Department of Radiation Oncology, Rochester, Minnesota Department of Radiation Oncology, Emory University, Atlanta, Georgia Department of Radiation Oncology, Sutter Medical Group, Roseville, California Department of Urology, University of Michigan, Ann Arbor, Michigan Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California Department of Radiation Oncology, Johns Hopkins, Baltimore, Maryland Department of Radiation Oncology, Stanford University, Stanford, California Department of Radiation O |
AuthorAffiliation_xml | – name: Department of Urology, University of Michigan, Ann Arbor, Michigan – name: Department of Urology, Mayo Clinic, Rochester, Minnesota – name: Department of Radiation Oncology, McGill University, Montreal, Canada – name: Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina – name: Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts – name: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan – name: Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts – name: Department of Radiation Oncology, University of California San Francisco, San Francisco, California – name: Department of Radiation Oncology, Dana Farber Harvard Cancer Center, Boston, Massachusetts – name: Department of Radiation Oncology, Emory University, Atlanta, Georgia – name: Department of Radiation Oncology, Johns Hopkins, Baltimore, Maryland – name: Department of Radiation Oncology, Sutter Medical Group, Roseville, California – name: Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin – name: The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK – name: Department of Radiation Oncology, Stanford University, Stanford, California – name: Mayo Clinic, Department of Radiation Oncology, Rochester, Minnesota – name: Department of Radiation Oncology, University of Kansas, Kansas City, Kansas – name: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California – name: Department of Radiation Oncology, Washington University, St. Louis, Missouri – name: Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California |
Author_xml | – sequence: 1 givenname: William A. surname: Hall fullname: Hall, William A. email: whall@mcw.edu organization: Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin – sequence: 2 givenname: Eric surname: Paulson fullname: Paulson, Eric organization: Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin – sequence: 3 givenname: Brian J. surname: Davis fullname: Davis, Brian J. organization: Mayo Clinic, Department of Radiation Oncology, Rochester, Minnesota – sequence: 4 givenname: Daniel E. surname: Spratt fullname: Spratt, Daniel E. organization: Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan – sequence: 5 givenname: Todd M. surname: Morgan fullname: Morgan, Todd M. organization: Department of Urology, University of Michigan, Ann Arbor, Michigan – sequence: 6 givenname: David surname: Dearnaley fullname: Dearnaley, David organization: The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK – sequence: 7 givenname: Alison C. surname: Tree fullname: Tree, Alison C. organization: The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK – sequence: 8 givenname: Jason A. surname: Efstathiou fullname: Efstathiou, Jason A. organization: Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts – sequence: 9 givenname: Mukesh surname: Harisinghani fullname: Harisinghani, Mukesh organization: Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts – sequence: 10 givenname: Ashesh B. surname: Jani fullname: Jani, Ashesh B. organization: Department of Radiation Oncology, Emory University, Atlanta, Georgia – sequence: 11 givenname: Mark K. surname: Buyyounouski fullname: Buyyounouski, Mark K. organization: Department of Radiation Oncology, Stanford University, Stanford, California – sequence: 12 givenname: Thomas M. surname: Pisansky fullname: Pisansky, Thomas M. organization: Mayo Clinic, Department of Radiation Oncology, Rochester, Minnesota – sequence: 13 givenname: Phuoc T. surname: Tran fullname: Tran, Phuoc T. organization: Department of Radiation Oncology, Johns Hopkins, Baltimore, Maryland – sequence: 14 givenname: R. Jeffrey surname: Karnes fullname: Karnes, R. Jeffrey organization: Department of Urology, Mayo Clinic, Rochester, Minnesota – sequence: 15 givenname: Ronald C. surname: Chen fullname: Chen, Ronald C. organization: Department of Radiation Oncology, University of Kansas, Kansas City, Kansas – sequence: 16 givenname: Fabio L. surname: Cury fullname: Cury, Fabio L. organization: Department of Radiation Oncology, McGill University, Montreal, Canada – sequence: 17 givenname: Jeff M. surname: Michalski fullname: Michalski, Jeff M. organization: Department of Radiation Oncology, Washington University, St. Louis, Missouri – sequence: 18 givenname: Seth A. surname: Rosenthal fullname: Rosenthal, Seth A. organization: Department of Radiation Oncology, Sutter Medical Group, Roseville, California – sequence: 19 givenname: Bridget F. surname: Koontz fullname: Koontz, Bridget F. organization: Department of Radiation Oncology, Duke Cancer Institute, Durham, North Carolina – sequence: 20 givenname: Anthony C. surname: Wong fullname: Wong, Anthony C. organization: Department of Radiation Oncology, University of California San Francisco, San Francisco, California – sequence: 21 givenname: Paul L. surname: Nguyen fullname: Nguyen, Paul L. organization: Department of Radiation Oncology, Dana Farber Harvard Cancer Center, Boston, Massachusetts – sequence: 22 givenname: Thomas A. surname: Hope fullname: Hope, Thomas A. organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California – sequence: 23 givenname: Felix surname: Feng fullname: Feng, Felix organization: Department of Radiation Oncology, University of California San Francisco, San Francisco, California – sequence: 24 givenname: Howard M. surname: Sandler fullname: Sandler, Howard M. organization: Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California – sequence: 25 givenname: Colleen A.F. surname: Lawton fullname: Lawton, Colleen A.F. organization: Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32861817$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/23198711$$D View this record in Osti.gov |
BookMark | eNqFkV-LEzEUxYOsuN3VbyAS8MWX1mTyZ2ZEhKXoulB2i7jiW8hk7mxT02RMpoWCH37TbV10X_oUQs45Off-ztCJDx4Qek3JhBIq3y8ndhlD008KUpAJqSaE8WdoRKuyHjMhfp6gEWGSjFkWn6KzlJaEEEpL_gKdsqKStKLlCP25_naJb7wJLtxt8W3f6gFafOUHiF4PNnjt8DT4BD6tE74YnE44eDwHt7EGz7arfoGvQwv4R3DrFSTchbizazNg7Vs8D2kIPcSctQE8j_maf8BT7Q3El-h5p12CV4fzHN1--fx9-nU8u7m8ml7MxkZwPox5TThUYIyuaSmkFKzQsjAAQnSdaDRvKlp3puNGygakAN3xSjdSNERoQjU7R5_2uf26WUFrwA9RO9VHu9Jxq4K26v8XbxfqLmxUWTIpiMgBb_cBub5VydgBzMIE78EMqmC0rkpKs-rd4ZsYfq8hDWplkwHntIewTqrgrKprxmqZpW_-bfRY5S-YLOB7gckrSxG6RwklasdfLdWev9rxV6RSmX-2fXhiy10fOOa5rDtmPqwJMouNhbibFDKo1sbdoG2wxwI-PgkwznprtPsF2-P2e-4p5TM |
CitedBy_id | crossref_primary_10_1016_S1470_2045_21_00242_4 crossref_primary_10_3389_fonc_2022_898774 crossref_primary_10_1016_j_ijrobp_2023_09_053 crossref_primary_10_1080_14737140_2023_2181795 crossref_primary_10_3390_curroncol30080526 crossref_primary_10_3390_jcm12237198 crossref_primary_10_1016_j_radonc_2023_109678 crossref_primary_10_3389_fonc_2024_1434504 crossref_primary_10_1016_j_clon_2021_08_010 crossref_primary_10_1016_j_clon_2024_06_043 crossref_primary_10_1016_j_ijrobp_2020_11_062 crossref_primary_10_1016_j_ijrobp_2024_10_026 crossref_primary_10_1186_s40644_024_00742_3 crossref_primary_10_1007_s00259_024_06802_x crossref_primary_10_1016_j_euo_2022_09_006 crossref_primary_10_1007_s00432_022_03950_1 crossref_primary_10_1016_j_adro_2023_101394 crossref_primary_10_1016_j_rpth_2024_102602 crossref_primary_10_1016_j_clon_2024_04_001 crossref_primary_10_1200_JCO_21_00621 crossref_primary_10_1016_j_ijrobp_2020_12_034 crossref_primary_10_3389_fonc_2021_742093 crossref_primary_10_3389_fonc_2021_781040 crossref_primary_10_1038_s41467_024_49873_y crossref_primary_10_1016_j_ijrobp_2021_05_009 crossref_primary_10_1016_j_ijrobp_2021_03_015 crossref_primary_10_3389_fonc_2022_889132 crossref_primary_10_1016_j_ctro_2024_100896 crossref_primary_10_1016_j_eururo_2024_01_012 crossref_primary_10_1016_j_ijrobp_2022_08_012 crossref_primary_10_1016_j_semradonc_2022_10_005 crossref_primary_10_3390_cancers14143484 crossref_primary_10_1002_acm2_14482 crossref_primary_10_1016_j_ijrobp_2023_06_248 crossref_primary_10_1080_0284186X_2023_2224925 crossref_primary_10_3390_biomedicines11010038 crossref_primary_10_1200_EDBK_351033 crossref_primary_10_1016_j_radonc_2024_110215 crossref_primary_10_1016_S1166_7087_22_00173_7 crossref_primary_10_1016_j_neo_2022_100812 crossref_primary_10_1016_j_ctro_2022_09_003 crossref_primary_10_3390_diagnostics14242851 crossref_primary_10_1016_j_ijrobp_2021_09_037 crossref_primary_10_1016_j_radonc_2022_04_020 crossref_primary_10_1016_j_radonc_2024_110690 crossref_primary_10_1016_j_ijrobp_2022_11_027 crossref_primary_10_1016_j_ijrobp_2021_09_036 crossref_primary_10_1016_j_euo_2021_03_003 crossref_primary_10_1016_j_ctrv_2023_102626 crossref_primary_10_1016_j_ijrobp_2020_11_043 crossref_primary_10_1016_j_mednuc_2023_09_004 crossref_primary_10_1016_j_prro_2022_05_014 crossref_primary_10_1111_1754_9485_13655 crossref_primary_10_1016_j_ijrobp_2023_05_017 crossref_primary_10_1016_j_canrad_2024_01_005 crossref_primary_10_3389_fonc_2023_1240939 crossref_primary_10_1016_j_ijrobp_2023_10_009 crossref_primary_10_1177_15330338231154088 crossref_primary_10_1016_j_ijrobp_2024_12_018 crossref_primary_10_1016_j_ctro_2024_100846 crossref_primary_10_1016_j_ijrobp_2022_04_008 crossref_primary_10_1007_s00066_024_02266_y crossref_primary_10_1016_j_adro_2023_101290 crossref_primary_10_1016_j_critrevonc_2025_104623 crossref_primary_10_3390_cancers15102736 crossref_primary_10_1016_j_canrad_2021_11_017 crossref_primary_10_1016_j_ctro_2022_02_005 crossref_primary_10_1038_s41585_021_00498_6 crossref_primary_10_1016_j_eururo_2023_06_018 crossref_primary_10_1111_1754_9485_13806 crossref_primary_10_1016_j_ijrobp_2021_01_040 crossref_primary_10_1016_j_ijrobp_2022_07_011 crossref_primary_10_1016_j_radonc_2022_10_005 crossref_primary_10_1007_s00066_023_02104_7 crossref_primary_10_1016_j_euo_2021_01_007 crossref_primary_10_1016_j_ijrobp_2024_09_040 crossref_primary_10_3390_cancers15061898 crossref_primary_10_1186_s13014_025_02599_7 crossref_primary_10_1200_JCO_20_03636 crossref_primary_10_1016_j_meddos_2021_05_002 crossref_primary_10_1186_s40644_022_00518_7 crossref_primary_10_1080_0284186X_2023_2180661 crossref_primary_10_1016_j_euo_2022_12_001 crossref_primary_10_1016_j_ctro_2023_100622 crossref_primary_10_1016_j_radonc_2024_110513 crossref_primary_10_3389_fonc_2020_590722 crossref_primary_10_3390_cancers16152702 crossref_primary_10_1088_2632_2153_ada8f3 crossref_primary_10_1016_j_ijrobp_2023_07_020 crossref_primary_10_1001_jamanetworkopen_2021_29647 crossref_primary_10_3390_cancers14246194 crossref_primary_10_1016_j_canrad_2021_07_003 crossref_primary_10_1016_j_media_2024_103276 crossref_primary_10_1111_1754_9485_13639 crossref_primary_10_2967_jnumed_122_265159 |
Cites_doi | 10.3389/fonc.2016.00178 10.6004/jnccn.2019.0023 10.1186/s13014-018-0977-2 10.1016/S0140-6736(20)30314-7 10.2967/jnumed.118.209387 10.1007/s00345-018-2330-7 10.2147/IJN.S173182 10.1002/pros.23347 10.1016/j.eururo.2013.09.046 10.1016/j.ijrobp.2011.04.054 10.1016/j.ijrobp.2015.03.021 10.2967/jnumed.117.198119 10.1016/j.ijrobp.2006.05.074 10.1016/j.radonc.2012.10.021 10.1016/j.ijrobp.2018.08.052 10.1016/j.radonc.2017.10.022 10.1016/j.eururo.2018.10.044 10.1016/j.clon.2019.02.012 10.1016/j.ctro.2019.12.006 10.1016/j.radonc.2019.05.016 10.1016/j.euo.2020.04.004 10.1016/j.ijrobp.2008.08.002 10.25259/JCIS_139_2019 10.1016/j.ctrv.2015.10.005 10.1016/j.adro.2019.06.006 10.1109/TPAMI.2015.2408351 10.1038/nrurol.2016.26 10.1007/s00259-017-3746-9 10.1016/j.eururo.2007.07.035 10.1016/j.ijrobp.2009.03.078 10.1016/j.ijrobp.2020.01.003 10.1016/j.eururo.2016.08.003 10.1016/j.eururo.2016.07.043 10.1007/s00276-015-1581-x 10.1016/j.ijrobp.2019.06.127 10.1097/RLU.0000000000002310 10.1016/j.eururo.2016.01.034 10.1016/j.ijrobp.2020.04.025 10.1007/s00259-019-04443-z 10.1016/j.ijrobp.2016.11.014 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
DOI | 10.1016/j.ijrobp.2020.08.034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-355X |
EndPage | 185 |
ExternalDocumentID | PMC7736505 23198711 32861817 10_1016_j_ijrobp_2020_08_034 S0360301620341249 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U10 CA180868 – fundername: NCI NIH HHS grantid: U10 CA180822 – fundername: Department of Health – fundername: NCI NIH HHS grantid: UG1 CA233373 – fundername: Cancer Research UK grantid: 12518 – fundername: Cancer Research UK grantid: 28284 – fundername: Cancer Research UK grantid: 19727 – fundername: NCI NIH HHS grantid: UG1 CA233339 – fundername: NCATS NIH HHS grantid: KL2 TR001438 |
GroupedDBID | --- --K .1- .FO 0R~ 1B1 1P~ 1RT 1~5 4.4 457 4G. 53G 5RE 7-5 AAEDT AAEDW AALRI AAWTL AAXUO ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ADBBV AENEX AEVXI AFRHN AFTJW AGCQF AHHHB AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY DU5 EBS EFKBS F5P FDB GBLVA HED HMO IHE J1W KOM LX3 M41 MO0 O9- OC~ OO- RNS ROL RPZ SDG SEL SES SSZ UV1 XH2 Z5R ~S- AAIAV AFCTW AGZHU ALXNB EFJIC ZA5 .55 .GJ 29J 5VS AAQFI AAQQT AAQXK AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFJKZ AFPUW AGQPQ AGRDE AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB FIRID G-2 HMK HVGLF HX~ HZ~ NQ- R2- RIG SAE SEW UDS X7M XPP ZGI CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-c544t-4904e8ecca917566532a62cee55ff5ba4b819fcf4c66be65eaf48ab65b05a01a3 |
ISSN | 0360-3016 1879-355X |
IngestDate | Thu Aug 21 18:14:29 EDT 2025 Mon Aug 19 05:39:40 EDT 2024 Fri Jul 11 01:35:15 EDT 2025 Mon Jul 21 06:04:53 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 01 01:09:57 EDT 2025 Fri Feb 23 02:46:24 EST 2024 Tue Aug 26 16:33:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c544t-4904e8ecca917566532a62cee55ff5ba4b819fcf4c66be65eaf48ab65b05a01a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7736505 |
PMID | 32861817 |
PQID | 2438993396 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7736505 osti_scitechconnect_23198711 proquest_miscellaneous_2438993396 pubmed_primary_32861817 crossref_primary_10_1016_j_ijrobp_2020_08_034 crossref_citationtrail_10_1016_j_ijrobp_2020_08_034 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2020_08_034 elsevier_clinicalkey_doi_10_1016_j_ijrobp_2020_08_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | International journal of radiation oncology, biology, physics |
PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Meijer, Fortuin, van Lin (bib9) 2013; 106 Spratt, Vargas, Zumsteg (bib10) 2017; 71 Savir-Baruch, Banks, McConathy (bib21) 2018; 43 De Bruycker, De Bleser, Decaestecker (bib32) 2019; 75 Abu-Gheida, Bathala, Maldonado (bib15) 2020 Murray, Gulliford, Griffin (bib25) 2020; 21 Calais, Kishan, Cao (bib35) 2018; 59 Mattei, Fuechsel, Bhatta Dhar (bib26) 2008; 53 Sinha, Witztum, Vasudevan (bib38) 2019; 105 Heidenreich, Bastian, Bellmunt (bib3) 2014; 65 Delpon, Escande, Ruef (bib40) 2016; 6 bib13 Schiller K, Stöhrer L, Düsberg M, et al. PSMA-PET/CT-based lymph node atlas for prostate cancer patients recurring after primary treatment: Clinical implications for salvage radiation therapy [e-pub ahead of print]. Lieng, Kneebone, Hayden (bib2) 2019; 140 Maurer, Eiber, Schwaiger, Gschwend (bib17) 2016; 13 Roach, DeSilvio, Valicenti (bib5) 2006; 66 Schiller, Sauter, Dewes (bib34) 2017; 44 Schiller, Devecka, Maurer (bib11) 2018; 13 Meijer, van Lin, Debats (bib14) 2012; 82 Pollack, Karrison, Balogh, Low, Bruner (bib1) 2018; 102 Michalski, Gay, Jackson, Tucker, Deasy (bib24) 2010; 76 Parker, Evans, Stish (bib33) 2017; 97 Byrne, Eade, Kneebone (bib37) 2018; 126 Lawton, Michalski, El-Naqa (bib6) 2009; 74 Taha, Hanbury (bib12) 2015; 37 Harris, Staffurth, Naismith (bib8) 2015; 92 Nguyen, Huber, Metzger, Genitsch, Schudel, Thalmann (bib30) 2016; 70 Sargos, Guerif, Latorzeff (bib7) 2015; 41 Mottet, Bellmunt, Bolla (bib27) 2017; 71 Hofman, Lawrentschuk, Francis (bib18) 2020; 395 de Korne, Wit, de Jong (bib28) 2019; 46 Ferreira, Thomas, Truelove (bib23) 2019; 31 Mohler, Antonarakis, Armstrong (bib4) 2019; 17 Winter, Kowald, Paulo (bib31) 2018; 13 Jethwa, Hellekson, Evans (bib41) 2019; 4 Wilkins, Naismith, Brand (bib22) 2020; 106 Habl, Sauter, Schiller (bib36) 2017; 77 Songmen, Nepal, Olsavsky, Sapire (bib19) 2019; 9 Harke, Godes, Wagner (bib29) 2018; 36 Eiber, Herrmann, Calais (bib20) 2018; 59 Accessed May 23, 2020. Ramirez, Ingrand, Richer (bib16) 2016; 38 Hofman (10.1016/j.ijrobp.2020.08.034_bib18) 2020; 395 Lawton (10.1016/j.ijrobp.2020.08.034_bib6) 2009; 74 Sargos (10.1016/j.ijrobp.2020.08.034_bib7) 2015; 41 Delpon (10.1016/j.ijrobp.2020.08.034_bib40) 2016; 6 Taha (10.1016/j.ijrobp.2020.08.034_bib12) 2015; 37 Wilkins (10.1016/j.ijrobp.2020.08.034_bib22) 2020; 106 Ferreira (10.1016/j.ijrobp.2020.08.034_bib23) 2019; 31 Calais (10.1016/j.ijrobp.2020.08.034_bib35) 2018; 59 Savir-Baruch (10.1016/j.ijrobp.2020.08.034_bib21) 2018; 43 Mottet (10.1016/j.ijrobp.2020.08.034_bib27) 2017; 71 Michalski (10.1016/j.ijrobp.2020.08.034_bib24) 2010; 76 10.1016/j.ijrobp.2020.08.034_bib39 Abu-Gheida (10.1016/j.ijrobp.2020.08.034_bib15) 2020 Schiller (10.1016/j.ijrobp.2020.08.034_bib11) 2018; 13 Sinha (10.1016/j.ijrobp.2020.08.034_bib38) 2019; 105 Harris (10.1016/j.ijrobp.2020.08.034_bib8) 2015; 92 Nguyen (10.1016/j.ijrobp.2020.08.034_bib30) 2016; 70 Maurer (10.1016/j.ijrobp.2020.08.034_bib17) 2016; 13 Winter (10.1016/j.ijrobp.2020.08.034_bib31) 2018; 13 Mattei (10.1016/j.ijrobp.2020.08.034_bib26) 2008; 53 De Bruycker (10.1016/j.ijrobp.2020.08.034_bib32) 2019; 75 Lieng (10.1016/j.ijrobp.2020.08.034_bib2) 2019; 140 Songmen (10.1016/j.ijrobp.2020.08.034_bib19) 2019; 9 Eiber (10.1016/j.ijrobp.2020.08.034_bib20) 2018; 59 Murray (10.1016/j.ijrobp.2020.08.034_bib25) 2020; 21 Byrne (10.1016/j.ijrobp.2020.08.034_bib37) 2018; 126 Pollack (10.1016/j.ijrobp.2020.08.034_bib1) 2018; 102 Mohler (10.1016/j.ijrobp.2020.08.034_bib4) 2019; 17 Spratt (10.1016/j.ijrobp.2020.08.034_bib10) 2017; 71 Jethwa (10.1016/j.ijrobp.2020.08.034_bib41) 2019; 4 Heidenreich (10.1016/j.ijrobp.2020.08.034_bib3) 2014; 65 Harke (10.1016/j.ijrobp.2020.08.034_bib29) 2018; 36 Habl (10.1016/j.ijrobp.2020.08.034_bib36) 2017; 77 Roach (10.1016/j.ijrobp.2020.08.034_bib5) 2006; 66 Meijer (10.1016/j.ijrobp.2020.08.034_bib14) 2012; 82 Meijer (10.1016/j.ijrobp.2020.08.034_bib9) 2013; 106 Ramirez (10.1016/j.ijrobp.2020.08.034_bib16) 2016; 38 Schiller (10.1016/j.ijrobp.2020.08.034_bib34) 2017; 44 Parker (10.1016/j.ijrobp.2020.08.034_bib33) 2017; 97 de Korne (10.1016/j.ijrobp.2020.08.034_bib28) 2019; 46 33610294 - Int J Radiat Oncol Biol Phys. 2021 Mar 15;109(4):1125-1126. doi: 10.1016/j.ijrobp.2020.11.043. 33989588 - Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):619-620. doi: 10.1016/j.ijrobp.2021.01.040. 33989589 - Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):620-621. doi: 10.1016/j.ijrobp.2021.01.039. |
References_xml | – volume: 75 start-page: 826 year: 2019 end-page: 833 ident: bib32 article-title: Nodal oligorecurrent prostate cancer: anatomic pattern of possible treatment failure in relation to elective surgical and radiotherapy treatment templates publication-title: Eur Urol – volume: 13 start-page: 6689 year: 2018 end-page: 6698 ident: bib31 article-title: Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles publication-title: Int J Nanomedicine – volume: 43 start-page: 909 year: 2018 end-page: 917 ident: bib21 article-title: ACR-ACNM practice parameter for the performance of fluorine-18 fluciclovine-PET/CT for recurrent prostate cancer publication-title: Clin Nucl Med – volume: 106 start-page: 59 year: 2013 end-page: 63 ident: bib9 article-title: Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients publication-title: Radiother Oncol – volume: 74 start-page: 383 year: 2009 end-page: 387 ident: bib6 article-title: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer publication-title: Int J Radiat Oncol Biol Phys – year: 2020 ident: bib15 article-title: Increased frequency of mesorectal and perirectal LN involvement in T4 prostate cancers publication-title: Int J Radiat Oncol Biol Phys – volume: 13 start-page: 226 year: 2016 end-page: 235 ident: bib17 article-title: Current use of PSMA-PET in prostate cancer management publication-title: Nat Rev Urol – volume: 395 year: 2020 ident: bib18 article-title: Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multi-centre study publication-title: Lancet – volume: 59 start-page: 469 year: 2018 end-page: 478 ident: bib20 article-title: Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM classification for the interpretation of PSMA-ligand PET/CT publication-title: J Nucl Med – volume: 126 start-page: 244 year: 2018 end-page: 248 ident: bib37 article-title: Delineating sites of failure following post-prostatectomy radiation treatment using publication-title: Radiother Oncol – volume: 71 start-page: 37 year: 2017 end-page: 43 ident: bib10 article-title: Patterns of lymph node failure after dose-escalated radiotherapy: Implications for extended pelvic lymph node coverage publication-title: Eur Urol – volume: 46 start-page: 2558 year: 2019 end-page: 2568 ident: bib28 article-title: Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer publication-title: Eur J Nucl Med Mol Imaging – volume: 82 start-page: 1405 year: 2012 end-page: 1410 ident: bib14 article-title: High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy publication-title: Int J Radiat Oncol Biol Phys – volume: 106 start-page: 928 year: 2020 end-page: 938 ident: bib22 article-title: Derivation of dose/volume constraints for the anorectum from clinician- and patient-reported outcomes in the CHHiP trial of radiation therapy fractionation publication-title: Int J Radiat Oncol Biol Phys – volume: 4 start-page: 659 year: 2019 end-page: 667 ident: bib41 article-title: C-Choline PET guided salvage radiation therapy for isolated pelvic and paraortic nodal recurrence of prostate cancer after radical prostatectomy: Rationale and early genitourinary or gastrointestinal toxicities publication-title: Adv Radiat Oncol – volume: 53 start-page: 118 year: 2008 end-page: 125 ident: bib26 article-title: The template of the primary lymphatic landing sites of the prostate should be revisited: Results of a multimodality mapping study publication-title: Eur Urol – volume: 36 start-page: 1817 year: 2018 end-page: 1823 ident: bib29 article-title: Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: A prospective, randomized trial publication-title: World J Urol – volume: 97 start-page: 526 year: 2017 end-page: 535 ident: bib33 article-title: Patterns of recurrence after postprostatectomy fossa radiation therapy identified by C-11 choline positron emission tomography/computed tomography publication-title: Int J Radiat Oncol Biol Phys – volume: 65 start-page: 124 year: 2014 end-page: 137 ident: bib3 article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013 publication-title: Eur Urol – volume: 21 start-page: 77 year: 2020 end-page: 84 ident: bib25 article-title: Evaluation of erectile potency and radiation dose to the penile bulb using image guided radiotherapy in the CHHiP trial publication-title: Clin Transl Radiat Oncol – volume: 70 start-page: 734 year: 2016 end-page: 737 ident: bib30 article-title: A specific mapping study using fluorescence sentinel lymph node detection in patients with intermediate- and high-risk prostate cancer undergoing extended pelvic lymph node dissection publication-title: Eur Urol – volume: 38 start-page: 425 year: 2016 end-page: 431 ident: bib16 article-title: What is the pelvic lymph node normal size? Determination from normal MRI examinations publication-title: Surg Radiol Anat – ident: bib13 article-title: MathWorks – volume: 66 start-page: 647 year: 2006 end-page: 653 ident: bib5 article-title: Whole-pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial publication-title: Int J Radiat Oncol Biol Phys – volume: 59 start-page: 1714 year: 2018 end-page: 1721 ident: bib35 article-title: Potential impact of publication-title: J Nucl Med – volume: 6 start-page: 178 year: 2016 ident: bib40 article-title: Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy publication-title: Front Oncol – volume: 77 start-page: 920 year: 2017 end-page: 927 ident: bib36 article-title: Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment publication-title: Prostate – reference: Schiller K, Stöhrer L, Düsberg M, et al. PSMA-PET/CT-based lymph node atlas for prostate cancer patients recurring after primary treatment: Clinical implications for salvage radiation therapy [e-pub ahead of print]. – volume: 102 start-page: 1605 year: 2018 ident: bib1 article-title: Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiotherapy: The NRG Oncology/RTOG 0534 SPPORT trial publication-title: Int J Radiat Oncol Biol Phys – volume: 13 start-page: 36 year: 2018 ident: bib11 article-title: Impact of publication-title: Radiat Oncol – volume: 37 start-page: 2153 year: 2015 end-page: 2163 ident: bib12 article-title: An efficient algorithm for calculating the exact Hausdorff distance publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 71 start-page: 618 year: 2017 end-page: 629 ident: bib27 article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent publication-title: Eur Urol – reference: . Accessed May 23, 2020. – volume: 41 start-page: 814 year: 2015 end-page: 820 ident: bib7 article-title: Definition of lymph node areas for radiotherapy of prostate cancer: A critical literature review by the French Genito-Urinary Group and the French Association of Urology (GETUG-AFU) publication-title: Cancer Treat Rev – volume: 44 start-page: 1656 year: 2017 end-page: 1662 ident: bib34 article-title: Patterns of failure after radical prostatectomy in prostate cancer: Implications for radiation therapy planning after publication-title: Eur J Nucl Med Mol Imaging – volume: 9 start-page: 49 year: 2019 ident: bib19 article-title: Axumin positron emission tomography: Novel agent for prostate cancer biochemical recurrence publication-title: J Clin Imaging Sci – volume: 76 start-page: S123 year: 2010 end-page: S129 ident: bib24 article-title: Radiation dose-volume effects in radiation-induced rectal injury publication-title: Int J Radiat Oncol Biol Phys – volume: 105 start-page: S136 year: 2019 ident: bib38 article-title: Ga-PSMA-11 PET-based prostate cancer lymph node atlas reveals patterns of potential geographic miss in consensus pelvic nodal contours publication-title: Int J Radiat Oncol Biol Phys – volume: 17 start-page: 479 year: 2019 end-page: 505 ident: bib4 article-title: Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology publication-title: J Natl Compr Canc Netw – volume: 92 start-page: 874 year: 2015 end-page: 883 ident: bib8 article-title: Consensus guidelines and contouring atlas for pelvic node delineation in prostate and pelvic node intensity modulated radiation therapy publication-title: Int J Radiat Oncol Biol Phys – volume: 140 start-page: 68 year: 2019 end-page: 75 ident: bib2 article-title: Radiotherapy for node-positive prostate cancer: 2019 recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary group publication-title: Radiother Oncol – volume: 31 start-page: 374 year: 2019 end-page: 384 ident: bib23 article-title: Dosimetry and gastrointestinal toxicity relationships in a phase II trial of pelvic lymph node radiotherapy in advanced localised prostate cancer publication-title: Clin Oncol (R Coll Radiol) – volume: 6 start-page: 178 year: 2016 ident: 10.1016/j.ijrobp.2020.08.034_bib40 article-title: Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy publication-title: Front Oncol doi: 10.3389/fonc.2016.00178 – volume: 17 start-page: 479 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib4 article-title: Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology publication-title: J Natl Compr Canc Netw doi: 10.6004/jnccn.2019.0023 – volume: 13 start-page: 36 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib11 article-title: Impact of 68Ga-PSMA-PET imaging on target volume definition and guidelines in radiation oncology: Patterns of failure analysis in patients with primary diagnosis of prostate cancer publication-title: Radiat Oncol doi: 10.1186/s13014-018-0977-2 – volume: 395 year: 2020 ident: 10.1016/j.ijrobp.2020.08.034_bib18 article-title: Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multi-centre study publication-title: Lancet doi: 10.1016/S0140-6736(20)30314-7 – volume: 59 start-page: 1714 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib35 article-title: Potential impact of 68Ga-PSMA-11 PET/CT on the planning of definitive radiation therapy for prostate cancer publication-title: J Nucl Med doi: 10.2967/jnumed.118.209387 – volume: 36 start-page: 1817 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib29 article-title: Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: A prospective, randomized trial publication-title: World J Urol doi: 10.1007/s00345-018-2330-7 – volume: 13 start-page: 6689 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib31 article-title: Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles publication-title: Int J Nanomedicine doi: 10.2147/IJN.S173182 – volume: 77 start-page: 920 year: 2017 ident: 10.1016/j.ijrobp.2020.08.034_bib36 article-title: 68Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment publication-title: Prostate doi: 10.1002/pros.23347 – volume: 65 start-page: 124 year: 2014 ident: 10.1016/j.ijrobp.2020.08.034_bib3 article-title: EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013 publication-title: Eur Urol doi: 10.1016/j.eururo.2013.09.046 – volume: 82 start-page: 1405 year: 2012 ident: 10.1016/j.ijrobp.2020.08.034_bib14 article-title: High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.04.054 – volume: 92 start-page: 874 year: 2015 ident: 10.1016/j.ijrobp.2020.08.034_bib8 article-title: Consensus guidelines and contouring atlas for pelvic node delineation in prostate and pelvic node intensity modulated radiation therapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.03.021 – volume: 59 start-page: 469 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib20 article-title: Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM classification for the interpretation of PSMA-ligand PET/CT publication-title: J Nucl Med doi: 10.2967/jnumed.117.198119 – volume: 66 start-page: 647 year: 2006 ident: 10.1016/j.ijrobp.2020.08.034_bib5 article-title: Whole-pelvis, “mini-pelvis,” or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.05.074 – volume: 106 start-page: 59 year: 2013 ident: 10.1016/j.ijrobp.2020.08.034_bib9 article-title: Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients publication-title: Radiother Oncol doi: 10.1016/j.radonc.2012.10.021 – volume: 102 start-page: 1605 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib1 article-title: Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiotherapy: The NRG Oncology/RTOG 0534 SPPORT trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.08.052 – volume: 126 start-page: 244 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib37 article-title: Delineating sites of failure following post-prostatectomy radiation treatment using 68Ga-PSMA-PET publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.10.022 – volume: 75 start-page: 826 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib32 article-title: Nodal oligorecurrent prostate cancer: anatomic pattern of possible treatment failure in relation to elective surgical and radiotherapy treatment templates publication-title: Eur Urol doi: 10.1016/j.eururo.2018.10.044 – volume: 31 start-page: 374 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib23 article-title: Dosimetry and gastrointestinal toxicity relationships in a phase II trial of pelvic lymph node radiotherapy in advanced localised prostate cancer publication-title: Clin Oncol (R Coll Radiol) doi: 10.1016/j.clon.2019.02.012 – volume: 21 start-page: 77 year: 2020 ident: 10.1016/j.ijrobp.2020.08.034_bib25 article-title: Evaluation of erectile potency and radiation dose to the penile bulb using image guided radiotherapy in the CHHiP trial publication-title: Clin Transl Radiat Oncol doi: 10.1016/j.ctro.2019.12.006 – volume: 140 start-page: 68 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib2 article-title: Radiotherapy for node-positive prostate cancer: 2019 recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary group publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.05.016 – ident: 10.1016/j.ijrobp.2020.08.034_bib39 doi: 10.1016/j.euo.2020.04.004 – volume: 74 start-page: 383 year: 2009 ident: 10.1016/j.ijrobp.2020.08.034_bib6 article-title: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2008.08.002 – volume: 9 start-page: 49 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib19 article-title: Axumin positron emission tomography: Novel agent for prostate cancer biochemical recurrence publication-title: J Clin Imaging Sci doi: 10.25259/JCIS_139_2019 – volume: 41 start-page: 814 year: 2015 ident: 10.1016/j.ijrobp.2020.08.034_bib7 article-title: Definition of lymph node areas for radiotherapy of prostate cancer: A critical literature review by the French Genito-Urinary Group and the French Association of Urology (GETUG-AFU) publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2015.10.005 – volume: 4 start-page: 659 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib41 article-title: 11C-Choline PET guided salvage radiation therapy for isolated pelvic and paraortic nodal recurrence of prostate cancer after radical prostatectomy: Rationale and early genitourinary or gastrointestinal toxicities publication-title: Adv Radiat Oncol doi: 10.1016/j.adro.2019.06.006 – volume: 37 start-page: 2153 year: 2015 ident: 10.1016/j.ijrobp.2020.08.034_bib12 article-title: An efficient algorithm for calculating the exact Hausdorff distance publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2408351 – volume: 13 start-page: 226 year: 2016 ident: 10.1016/j.ijrobp.2020.08.034_bib17 article-title: Current use of PSMA-PET in prostate cancer management publication-title: Nat Rev Urol doi: 10.1038/nrurol.2016.26 – volume: 44 start-page: 1656 year: 2017 ident: 10.1016/j.ijrobp.2020.08.034_bib34 article-title: Patterns of failure after radical prostatectomy in prostate cancer: Implications for radiation therapy planning after 68Ga-PSMA-PET imaging publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-017-3746-9 – volume: 53 start-page: 118 year: 2008 ident: 10.1016/j.ijrobp.2020.08.034_bib26 article-title: The template of the primary lymphatic landing sites of the prostate should be revisited: Results of a multimodality mapping study publication-title: Eur Urol doi: 10.1016/j.eururo.2007.07.035 – volume: 76 start-page: S123 issue: 3 Suppl year: 2010 ident: 10.1016/j.ijrobp.2020.08.034_bib24 article-title: Radiation dose-volume effects in radiation-induced rectal injury publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.03.078 – volume: 106 start-page: 928 year: 2020 ident: 10.1016/j.ijrobp.2020.08.034_bib22 article-title: Derivation of dose/volume constraints for the anorectum from clinician- and patient-reported outcomes in the CHHiP trial of radiation therapy fractionation publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2020.01.003 – volume: 71 start-page: 618 year: 2017 ident: 10.1016/j.ijrobp.2020.08.034_bib27 article-title: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent publication-title: Eur Urol doi: 10.1016/j.eururo.2016.08.003 – volume: 71 start-page: 37 year: 2017 ident: 10.1016/j.ijrobp.2020.08.034_bib10 article-title: Patterns of lymph node failure after dose-escalated radiotherapy: Implications for extended pelvic lymph node coverage publication-title: Eur Urol doi: 10.1016/j.eururo.2016.07.043 – volume: 38 start-page: 425 year: 2016 ident: 10.1016/j.ijrobp.2020.08.034_bib16 article-title: What is the pelvic lymph node normal size? Determination from normal MRI examinations publication-title: Surg Radiol Anat doi: 10.1007/s00276-015-1581-x – volume: 105 start-page: S136 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib38 article-title: 68Ga-PSMA-11 PET-based prostate cancer lymph node atlas reveals patterns of potential geographic miss in consensus pelvic nodal contours publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2019.06.127 – volume: 43 start-page: 909 year: 2018 ident: 10.1016/j.ijrobp.2020.08.034_bib21 article-title: ACR-ACNM practice parameter for the performance of fluorine-18 fluciclovine-PET/CT for recurrent prostate cancer publication-title: Clin Nucl Med doi: 10.1097/RLU.0000000000002310 – volume: 70 start-page: 734 year: 2016 ident: 10.1016/j.ijrobp.2020.08.034_bib30 article-title: A specific mapping study using fluorescence sentinel lymph node detection in patients with intermediate- and high-risk prostate cancer undergoing extended pelvic lymph node dissection publication-title: Eur Urol doi: 10.1016/j.eururo.2016.01.034 – year: 2020 ident: 10.1016/j.ijrobp.2020.08.034_bib15 article-title: Increased frequency of mesorectal and perirectal LN involvement in T4 prostate cancers publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2020.04.025 – volume: 46 start-page: 2558 year: 2019 ident: 10.1016/j.ijrobp.2020.08.034_bib28 article-title: Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-019-04443-z – volume: 97 start-page: 526 year: 2017 ident: 10.1016/j.ijrobp.2020.08.034_bib33 article-title: Patterns of recurrence after postprostatectomy fossa radiation therapy identified by C-11 choline positron emission tomography/computed tomography publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.11.014 – reference: 33610294 - Int J Radiat Oncol Biol Phys. 2021 Mar 15;109(4):1125-1126. doi: 10.1016/j.ijrobp.2020.11.043. – reference: 33989589 - Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):620-621. doi: 10.1016/j.ijrobp.2021.01.039. – reference: 33989588 - Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):619-620. doi: 10.1016/j.ijrobp.2021.01.040. |
SSID | ssj0001174 |
Score | 2.619851 |
Snippet | In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 174 |
SubjectTerms | Consensus Humans Internationality LYMPH NODES Lymph Nodes - pathology Male NEOPLASMS Oncologists - statistics & numerical data Organ Size Pelvis PROSTATE Prostatic Neoplasms - pathology Prostatic Neoplasms - surgery RADIOLOGY AND NUCLEAR MEDICINE RADIOTHERAPY |
Title | NRG Oncology Updated International Consensus Atlas on Pelvic Lymph Node Volumes for Intact and Postoperative Prostate Cancer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0360301620341249 https://dx.doi.org/10.1016/j.ijrobp.2020.08.034 https://www.ncbi.nlm.nih.gov/pubmed/32861817 https://www.proquest.com/docview/2438993396 https://www.osti.gov/biblio/23198711 https://pubmed.ncbi.nlm.nih.gov/PMC7736505 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTkK8IL4pDGQk3qJUiRO7zWOZgGmj3VStbG-RkzpaS5VW_dA0xH_HP8ZdbKdJN9jgJYqSuHZzv5zvznc_E_IhVVx2lM9cxhl3wyiLXMlS34UTkY27EfMkFif3B-JwFB5d8ItG41cla2mzTtrpj1vrSv5HqnAN5IpVsv8g2fJH4QKcg3zhCBKG471kPBh-cU7yVNMojRbovI93Yny4ISfuZrFyeuuZLNYGTtUM1IPz9RoE6QzmY-V8K1RUwcyAzbFssigiQNKNhTLc4KdYHwI9OAcIlGXVqq13WSGjWCLzgbZJzTBRpMm2REYHVlZbPahXQUwUyOm1S0CYBaVKoON8skoxvdfozQW8IJvZMCz7Pan025_MruTmuyqxjGmRpuIM54Nt1N4wL3xcovo7aldDI8yvhEZsSRhMMp4u5izVvRft4vrGNKIjGtP2ZLqcJ8hqyryC6NXEXesE3WAhR-B2ggu-x8BXYU2y1zsenh-XBoFvyMDtaGwFZ5FmeLOLP1lITZDy5DZHaDeft2IgnT0mj4xnQ3sapk9IQ-VPyYO-yd14Rn4CWqkVBzVopTXo0BKttEArnedUo5UWaKWIVmrQSgGtVKOVAlppDa3UopVqtD4no8-fzg4OXbP3h5vyMFyD1vBC1UX9EoGBKwQPmBQMLDrOs4wnMkzAlM3SLEyFSJTgSmZhVyaCJx6Xni-DF6SZz3P1ilDwiGHe8kTiIy2JH8rMY5nfHY_R9M6ypEUC-77j1BDj4_4ss9hmQE5jLaUYpRTjtq1B2CJu2WqhiWHueJ5bUca26Bmm6Rggd0e7TtnOGMXa2L1Hy31EDLZCPugUE-egmYVri7y3SIphSsF1Qpmr-WYVsxBJN4MgEi3yUiOr_IsB6wpwCjowrBrmygeQrr5-J59cFrT1nU4A7iB__fdhvSEPt5_yPmmulxv1Fuz-dfLOfFe_AQfvDL4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRG+Oncology+Updated+International+Consensus+Atlas+on+Pelvic+Lymph+Node+Volumes+for+Intact+and+Postoperative+Prostate+Cancer&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Hall%2C+William+A.&rft.au=Medical+College+of+Wisconsin%2C+Department+of+Radiation+Oncology%2C+Milwaukee&rft.au=Paulson%2C+Eric&rft.au=Davis%2C+Brian+J.&rft.date=2021-01-01&rft.issn=0360-3016&rft.volume=109&rft.issue=1&rft_id=info:doi/10.1016%2Fj.ijrobp.2020.08.034&rft.externalDocID=23198711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon |