An individual-specific gait pattern prediction model based on generalized regression neural networks

•An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking s...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 39; no. 1; pp. 443 - 448
Main Authors Luu, Trieu Phat, Low, K.H., Qu, Xingda, Lim, H.B., Hoon, K.H.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking speeds.•The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore. Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.
AbstractList Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.
Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.
•An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking speeds.•The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore. Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.
Highlights • An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented. • We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector. • The proposed model is able to plan different gait patterns at different walking speeds. • The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore.
Author Low, K.H.
Qu, Xingda
Lim, H.B.
Luu, Trieu Phat
Hoon, K.H.
Author_xml – sequence: 1
  givenname: Trieu Phat
  surname: Luu
  fullname: Luu, Trieu Phat
  email: luut0004@e.ntu.edu.sg, phatct2207@yahoo.com
– sequence: 2
  givenname: K.H.
  surname: Low
  fullname: Low, K.H.
– sequence: 3
  givenname: Xingda
  surname: Qu
  fullname: Qu, Xingda
– sequence: 4
  givenname: H.B.
  surname: Lim
  fullname: Lim, H.B.
– sequence: 5
  givenname: K.H.
  surname: Hoon
  fullname: Hoon, K.H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24071020$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr1DlyCVh_CeOIyFEVdGCVIkDcLa89uzK26wTbKeofHocbcuhBxZfRrZ_72k0b87ISRgDEnJBoaFA5btdszU-T2PKDQPKG1ANMPWCrKjq-pox2p-QFfRS1pJLdkrOUtoBgOCKvSKnTEBHgcGKuMtQ-eD8vXezGeo0ofUbb6vFvZpMzhhDNUV03mY_hmo_OhyqtUnoqnLdYsBoBv-7XCNuI6a0UAHn8lpK_jXGu_SavNyYIeGbx3pOflx_-n71ub79evPl6vK2tq0QuRastYw5Qe1aqa6FjWV96dKuO8Ce9q20TKGRvFt3vBWsV61wbfmXXacYRcnPyduD7xTHnzOmrPc-WRwGE3Cck6aSCs656ulxtAXopOgEHEeFZFSVwwt68YjO6z06PUW_N_FBP827APIA2DimFHHzF6Ggl2D1Tj8Fq5dgNShdgi3C98-E1mezRJKj8cNx-ceDHMv47z1GnazHYEuuEW3WbvTHLT48s7CDD96a4Q4fMO3GOYYSrqY6MQ3627J8y-5RDtAq2f_b4H86-AMd2-y9
CitedBy_id crossref_primary_10_1038_s41598_023_31906_z
crossref_primary_10_1115_1_4067821
crossref_primary_10_1109_JSEN_2024_3523941
crossref_primary_10_1115_1_4064550
crossref_primary_10_1007_s11042_023_14733_2
crossref_primary_10_1088_1748_3190_ac245f
crossref_primary_10_3389_fbioe_2024_1372669
crossref_primary_10_1109_TASE_2018_2841358
crossref_primary_10_1109_TASE_2024_3445886
crossref_primary_10_1088_1741_2560_13_3_036006
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1109_JTEHM_2014_2303807
crossref_primary_10_1007_s12204_022_2452_3
crossref_primary_10_3390_app13106258
crossref_primary_10_1007_s11370_024_00576_9
crossref_primary_10_3390_biomimetics9060352
crossref_primary_10_1007_s00521_018_3458_5
crossref_primary_10_1088_1361_6501_acd5f0
crossref_primary_10_1109_TNSRE_2020_3045425
crossref_primary_10_3389_fnhum_2017_00320
crossref_primary_10_1016_j_measurement_2015_06_014
crossref_primary_10_3389_frobt_2024_1341580
crossref_primary_10_1016_j_neucom_2014_03_038
crossref_primary_10_1115_1_4046937
crossref_primary_10_32604_cmc_2024_051551
crossref_primary_10_1080_15397734_2020_1858868
crossref_primary_10_1016_j_jbiomech_2019_01_001
crossref_primary_10_1016_j_energy_2016_08_090
crossref_primary_10_1016_j_cmpb_2021_106104
crossref_primary_10_1016_j_jbiomech_2020_110052
crossref_primary_10_1109_TNSRE_2022_3217448
crossref_primary_10_1109_LRA_2020_3006818
crossref_primary_10_3389_fbioe_2020_00362
crossref_primary_10_3390_s20010130
crossref_primary_10_1016_j_sna_2016_06_010
crossref_primary_10_1242_bio_047332
crossref_primary_10_1109_ACCESS_2024_3414345
crossref_primary_10_1016_j_gaitpost_2020_01_021
crossref_primary_10_1109_JSEN_2022_3222412
crossref_primary_10_1109_JSEN_2023_3317366
crossref_primary_10_1016_j_compbiomed_2024_109390
crossref_primary_10_1038_s41598_017_09187_0
crossref_primary_10_1007_s11432_018_9816_4
Cites_doi 10.1260/2040-2295.1.2.197
10.1093/ptj/69.1.18
10.1523/JNEUROSCI.2266-06.2006
10.1016/S0966-6362(00)00095-3
10.1016/0966-6362(95)01057-2
10.1016/j.jbiomech.2008.03.015
10.1177/0888439002250442
10.1016/0021-9290(85)90043-0
10.1016/j.gaitpost.2007.11.001
10.1016/S0966-6362(02)00060-7
10.1016/0141-5425(85)90055-X
10.1109/TNSRE.2008.2008288
10.1109/TNSRE.2009.2033061
10.1161/01.STR.0000035734.61539.F6
10.1145/1060581.1060589
10.1109/TNSRE.2008.2008280
10.1016/j.gaitpost.2005.10.007
10.1161/01.STR.26.6.982
10.1310/tsr1502-131
10.1310/6GL4-UM7X-519H-9JYD
10.1109/TMECH.2006.871087
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
DOI 10.1016/j.gaitpost.2013.08.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList MEDLINE - Academic
MEDLINE

Physical Education Index


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 448
ExternalDocumentID 24071020
10_1016_j_gaitpost_2013_08_028
S0966636213005869
1_s2_0_S0966636213005869
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
ID FETCH-LOGICAL-c544t-425c22d41cb88750fc29102cb70e91956c28ea637b735429854d502c677821e63
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Fri Jul 11 07:43:48 EDT 2025
Fri Jul 11 09:03:18 EDT 2025
Thu Aug 07 14:58:55 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 03:47:23 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri Feb 23 02:33:12 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 16:33:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lower limb angular kinematics
Gait pattern planning
Robotic gait rehabilitation
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-425c22d41cb88750fc29102cb70e91956c28ea637b735429854d502c677821e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24071020
PQID 1462188883
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1614333891
proquest_miscellaneous_1500764740
proquest_miscellaneous_1462188883
pubmed_primary_24071020
crossref_primary_10_1016_j_gaitpost_2013_08_028
crossref_citationtrail_10_1016_j_gaitpost_2013_08_028
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2013_08_028
elsevier_clinicalkeyesjournals_1_s2_0_S0966636213005869
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2013_08_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lelas (bib0070) 2003; 17
Stauffer, Allemand, Bouri, Fournier, Clavel, Metrailler (bib0015) 2009; 17
Shuxia, Dan, Fengqiu, Xiushu (bib0120) 2010
Perry, Garrett, Gronley, Mulroy (bib0150) 1995; 26
Riener, Lünenburger, Maier, Colombo, Dietz (bib0010) 2010; 1
Rustagi, Kumar, Pillai (bib0125) 2009
Antonsson, Mann (bib0085) 1985; 18
Winter (bib0045) 2004
Beale, Hagan, Demuth (bib0090) 2010; vol. 8
Kirtley C. Clinical gait analysis; 2011.
Hasan, Park, Seo, Sohn, Hwang, Khang (bib0040) 2009
Vaughan, Davis, O’Connor (bib0075) 1999
Schwartz, Rozumalski, Trost (bib0065) 2008; 41
Lelas, Merriman, Riley, Kerrigan (bib0105) 2003; 17
Schmidt, Hesse, Bernhardt, Kruger (bib0020) 2005; 2
Findlow, Goulermas, Nester, Howard, Kenney (bib0130) 2008; 28
Cai, Fong, Otoshi, Liang, Burdick, Roy (bib0005) 2006; 26
Zoss, Kazerooni, Chu (bib0060) 2006; 11
Hof (bib0115) 1996; 4
.
Ferris, Sawicki, Domingo (bib0160) 2005; 11
Banala, Kim, Agrawal, Scholz (bib0025) 2009; 17
Patton, Brown, Peshkin, Santos-Munn, Makhlin, Lewis (bib0030) 2008; 15
Hanlon, Anderson (bib0110) 2006; 24
Chau (bib0080) 2001; 13
Luu, Lim, Hoon, Xingda, Low (bib0145) 2011
Duschau-Wicke, Von Zitzewitz, Caprez, Lunenburger, Riener (bib0050) 2010; 18
Kirtley, Whittle, Jefferson (bib0095) 1985; 7
Colombo, Joerg, Schreier, Dietz (bib0055) 2000; 37
Oberg, Karsznia, Oberg (bib0100) 1994; 31
Werner, Frankenberg, Treig, Konrad, Hesse (bib0155) 2002; 33
Luu, Low, Xingda, Lim, Hoon (bib0140) 2012
Barbeau (bib0035) 2003; 17
Trueblood, Walker, Perry, Gronley (bib0165) 1989; 69
Trueblood (10.1016/j.gaitpost.2013.08.028_bib0165) 1989; 69
Riener (10.1016/j.gaitpost.2013.08.028_bib0010) 2010; 1
Chau (10.1016/j.gaitpost.2013.08.028_bib0080) 2001; 13
Hasan (10.1016/j.gaitpost.2013.08.028_bib0040) 2009
Winter (10.1016/j.gaitpost.2013.08.028_bib0045) 2004
Ferris (10.1016/j.gaitpost.2013.08.028_bib0160) 2005; 11
Stauffer (10.1016/j.gaitpost.2013.08.028_bib0015) 2009; 17
Schwartz (10.1016/j.gaitpost.2013.08.028_bib0065) 2008; 41
Duschau-Wicke (10.1016/j.gaitpost.2013.08.028_bib0050) 2010; 18
Patton (10.1016/j.gaitpost.2013.08.028_bib0030) 2008; 15
Lelas (10.1016/j.gaitpost.2013.08.028_bib0105) 2003; 17
Findlow (10.1016/j.gaitpost.2013.08.028_bib0130) 2008; 28
Luu (10.1016/j.gaitpost.2013.08.028_bib0140) 2012
Banala (10.1016/j.gaitpost.2013.08.028_bib0025) 2009; 17
Hanlon (10.1016/j.gaitpost.2013.08.028_bib0110) 2006; 24
Luu (10.1016/j.gaitpost.2013.08.028_bib0145) 2011
Antonsson (10.1016/j.gaitpost.2013.08.028_bib0085) 1985; 18
Cai (10.1016/j.gaitpost.2013.08.028_bib0005) 2006; 26
Werner (10.1016/j.gaitpost.2013.08.028_bib0155) 2002; 33
Zoss (10.1016/j.gaitpost.2013.08.028_bib0060) 2006; 11
Lelas (10.1016/j.gaitpost.2013.08.028_bib0070) 2003; 17
Vaughan (10.1016/j.gaitpost.2013.08.028_bib0075) 1999
Oberg (10.1016/j.gaitpost.2013.08.028_bib0100) 1994; 31
10.1016/j.gaitpost.2013.08.028_bib0135
Beale (10.1016/j.gaitpost.2013.08.028_bib0090) 2010; vol. 8
Barbeau (10.1016/j.gaitpost.2013.08.028_bib0035) 2003; 17
Hof (10.1016/j.gaitpost.2013.08.028_bib0115) 1996; 4
Schmidt (10.1016/j.gaitpost.2013.08.028_bib0020) 2005; 2
Rustagi (10.1016/j.gaitpost.2013.08.028_bib0125) 2009
Colombo (10.1016/j.gaitpost.2013.08.028_bib0055) 2000; 37
Perry (10.1016/j.gaitpost.2013.08.028_bib0150) 1995; 26
Kirtley (10.1016/j.gaitpost.2013.08.028_bib0095) 1985; 7
Shuxia (10.1016/j.gaitpost.2013.08.028_bib0120) 2010
References_xml – volume: 1
  start-page: 197
  year: 2010
  end-page: 216
  ident: bib0010
  article-title: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat
  publication-title: J Healthc Eng
– volume: 17
  start-page: 38
  year: 2009
  end-page: 45
  ident: bib0015
  article-title: The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 2
  start-page: 166
  year: 2005
  end-page: 180
  ident: bib0020
  article-title: HapticWalker—a novel haptic foot device
  publication-title: ACM Trans Appl Percept
– volume: 26
  start-page: 10564
  year: 2006
  end-page: 10568
  ident: bib0005
  article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
  publication-title: J Neurosci
– volume: 17
  start-page: 3
  year: 2003
  end-page: 11
  ident: bib0035
  article-title: Locomotor training in neurorehabilitation: emerging rehabilitation concepts
  publication-title: Neurorehabil Neural Repair
– volume: 13
  start-page: 102
  year: 2001
  end-page: 120
  ident: bib0080
  article-title: A review of analytical techniques for gait data. Part 2. Neural network and wavelet methods
  publication-title: Gait Posture
– volume: 41
  start-page: 1639
  year: 2008
  end-page: 1650
  ident: bib0065
  article-title: The effect of walking speed on the gait of typically developing children
  publication-title: J Biomech
– volume: 17
  start-page: 106
  year: 2003
  end-page: 112
  ident: bib0070
  article-title: Predicting peak kinematic and kinetic parameters from gait speed
  publication-title: Gait Posture
– volume: 33
  start-page: 2895
  year: 2002
  end-page: 2901
  ident: bib0155
  article-title: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study
  publication-title: Stroke
– year: 2010
  ident: bib0120
  article-title: Application of generalized regression neural network in prediction of cement properties
  publication-title: ICCDA June
– volume: 18
  start-page: 39
  year: 1985
  end-page: 47
  ident: bib0085
  article-title: The frequency content of gait
  publication-title: J Biomech
– volume: 31
  start-page: 199
  year: 1994
  end-page: 213
  ident: bib0100
  article-title: Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age
  publication-title: J Rehabil Res Dev
– start-page: 64
  year: 2009
  end-page: 68
  ident: bib0125
  article-title: Human gait recognition based on dynamic and static features using generalized regression neural network
  publication-title: ICMV
– year: 2012
  ident: bib0140
  article-title: On the development of an overground gait rehabilitation system:
  publication-title: IEEE HIC November
– volume: 17
  start-page: 2
  year: 2009
  end-page: 8
  ident: bib0025
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– start-page: 914
  year: 2011
  end-page: 919
  ident: bib0145
  article-title: Subject-specific gait parameters prediction for robotic gait rehabilitation via generalized regression neural network
  publication-title: ROBIO
– volume: 18
  start-page: 38
  year: 2010
  end-page: 48
  ident: bib0050
  article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: vol. 8
  start-page: 12
  year: 2010
  end-page: 14
  ident: bib0090
  publication-title: Neural network toolbox user's guide
– volume: 4
  start-page: 222
  year: 1996
  end-page: 223
  ident: bib0115
  article-title: Scaling gait data to body size
  publication-title: Gait Posture
– volume: 37
  start-page: 693
  year: 2000
  end-page: 700
  ident: bib0055
  article-title: Treadmill training of paraplegic patients using a robotic orthosis
  publication-title: J Rehabil Res Dev
– volume: 11
  start-page: 128
  year: 2006
  end-page: 138
  ident: bib0060
  article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
  publication-title: IEEE/ASME Trans Mechatron
– volume: 11
  start-page: 34
  year: 2005
  end-page: 49
  ident: bib0160
  article-title: Powered lower limb orthoses for gait rehabilitation
  publication-title: Top Spinal Cord Inj Rehabil
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0040
  article-title: A gait rehabilitation and training system based on task specific repetitive approach
  publication-title: IEEE ICBBE
– reference: Kirtley C. Clinical gait analysis; 2011.
– volume: 7
  start-page: 282
  year: 1985
  end-page: 288
  ident: bib0095
  article-title: Influence of walking speed on gait parameters
  publication-title: J Biomed Eng
– volume: 17
  start-page: 106
  year: 2003
  end-page: 112
  ident: bib0105
  article-title: Predicting peak kinematic and kinetic parameters from gait speed
  publication-title: Gait Posture
– reference: .
– volume: 69
  start-page: 18
  year: 1989
  end-page: 26
  ident: bib0165
  article-title: Pelvic exercise and gait in hemiplegia
  publication-title: Phys Ther
– volume: 15
  start-page: 131
  year: 2008
  end-page: 139
  ident: bib0030
  article-title: KineAssist. Design and development of a robotic overground gait and balance therapy device
  publication-title: Top Stroke Rehabil
– volume: 28
  start-page: 120
  year: 2008
  end-page: 126
  ident: bib0130
  article-title: Predicting lower limb joint kinematics using wearable motion sensors
  publication-title: Gait Posture
– start-page: 25
  year: 1999
  end-page: 27
  ident: bib0075
  article-title: Dynamics of human gait
– volume: 24
  start-page: 280
  year: 2006
  end-page: 287
  ident: bib0110
  article-title: Prediction methods to account for the effect of gait speed on lower limb angular kinematics
  publication-title: Gait Posture
– volume: 26
  start-page: 982
  year: 1995
  end-page: 989
  ident: bib0150
  article-title: Classification of walking handicap in the stroke population
  publication-title: Stroke
– start-page: 296
  year: 2004
  end-page: 356
  ident: bib0045
  article-title: Biomechanics and motor control of human movement
– volume: 1
  start-page: 197
  issue: 2
  year: 2010
  ident: 10.1016/j.gaitpost.2013.08.028_bib0010
  article-title: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat
  publication-title: J Healthc Eng
  doi: 10.1260/2040-2295.1.2.197
– start-page: 1
  year: 2009
  ident: 10.1016/j.gaitpost.2013.08.028_bib0040
  article-title: A gait rehabilitation and training system based on task specific repetitive approach
  publication-title: IEEE ICBBE
– volume: 69
  start-page: 18
  issue: 1
  year: 1989
  ident: 10.1016/j.gaitpost.2013.08.028_bib0165
  article-title: Pelvic exercise and gait in hemiplegia
  publication-title: Phys Ther
  doi: 10.1093/ptj/69.1.18
– volume: vol. 8
  start-page: 12
  year: 2010
  ident: 10.1016/j.gaitpost.2013.08.028_bib0090
– volume: 26
  start-page: 10564
  issue: 41
  year: 2006
  ident: 10.1016/j.gaitpost.2013.08.028_bib0005
  article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2266-06.2006
– volume: 13
  start-page: 102
  issue: 2
  year: 2001
  ident: 10.1016/j.gaitpost.2013.08.028_bib0080
  article-title: A review of analytical techniques for gait data. Part 2. Neural network and wavelet methods
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00095-3
– volume: 4
  start-page: 222
  issue: 3
  year: 1996
  ident: 10.1016/j.gaitpost.2013.08.028_bib0115
  article-title: Scaling gait data to body size
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(95)01057-2
– volume: 41
  start-page: 1639
  issue: 8
  year: 2008
  ident: 10.1016/j.gaitpost.2013.08.028_bib0065
  article-title: The effect of walking speed on the gait of typically developing children
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.03.015
– volume: 17
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.gaitpost.2013.08.028_bib0035
  article-title: Locomotor training in neurorehabilitation: emerging rehabilitation concepts
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/0888439002250442
– start-page: 296
  year: 2004
  ident: 10.1016/j.gaitpost.2013.08.028_bib0045
– volume: 18
  start-page: 39
  issue: 1
  year: 1985
  ident: 10.1016/j.gaitpost.2013.08.028_bib0085
  article-title: The frequency content of gait
  publication-title: J Biomech
  doi: 10.1016/0021-9290(85)90043-0
– volume: 28
  start-page: 120
  issue: 1
  year: 2008
  ident: 10.1016/j.gaitpost.2013.08.028_bib0130
  article-title: Predicting lower limb joint kinematics using wearable motion sensors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.11.001
– volume: 31
  start-page: 199
  issue: 3
  year: 1994
  ident: 10.1016/j.gaitpost.2013.08.028_bib0100
  article-title: Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age
  publication-title: J Rehabil Res Dev
– volume: 17
  start-page: 106
  issue: 2
  year: 2003
  ident: 10.1016/j.gaitpost.2013.08.028_bib0070
  article-title: Predicting peak kinematic and kinetic parameters from gait speed
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00060-7
– volume: 7
  start-page: 282
  issue: 4
  year: 1985
  ident: 10.1016/j.gaitpost.2013.08.028_bib0095
  article-title: Influence of walking speed on gait parameters
  publication-title: J Biomed Eng
  doi: 10.1016/0141-5425(85)90055-X
– volume: 17
  start-page: 38
  issue: 1
  year: 2009
  ident: 10.1016/j.gaitpost.2013.08.028_bib0015
  article-title: The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2008.2008288
– volume: 18
  start-page: 38
  issue: 1
  year: 2010
  ident: 10.1016/j.gaitpost.2013.08.028_bib0050
  article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2009.2033061
– volume: 33
  start-page: 2895
  year: 2002
  ident: 10.1016/j.gaitpost.2013.08.028_bib0155
  article-title: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study
  publication-title: Stroke
  doi: 10.1161/01.STR.0000035734.61539.F6
– volume: 2
  start-page: 166
  issue: 2
  year: 2005
  ident: 10.1016/j.gaitpost.2013.08.028_bib0020
  article-title: HapticWalker—a novel haptic foot device
  publication-title: ACM Trans Appl Percept
  doi: 10.1145/1060581.1060589
– year: 2010
  ident: 10.1016/j.gaitpost.2013.08.028_bib0120
  article-title: Application of generalized regression neural network in prediction of cement properties
– volume: 17
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.gaitpost.2013.08.028_bib0025
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2008.2008280
– volume: 17
  start-page: 106
  issue: 2
  year: 2003
  ident: 10.1016/j.gaitpost.2013.08.028_bib0105
  article-title: Predicting peak kinematic and kinetic parameters from gait speed
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00060-7
– volume: 24
  start-page: 280
  issue: 3
  year: 2006
  ident: 10.1016/j.gaitpost.2013.08.028_bib0110
  article-title: Prediction methods to account for the effect of gait speed on lower limb angular kinematics
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.10.007
– year: 2012
  ident: 10.1016/j.gaitpost.2013.08.028_bib0140
  article-title: On the development of an overground gait rehabilitation system: NaTUre-gaits
– volume: 26
  start-page: 982
  issue: 6
  year: 1995
  ident: 10.1016/j.gaitpost.2013.08.028_bib0150
  article-title: Classification of walking handicap in the stroke population
  publication-title: Stroke
  doi: 10.1161/01.STR.26.6.982
– start-page: 914
  year: 2011
  ident: 10.1016/j.gaitpost.2013.08.028_bib0145
  article-title: Subject-specific gait parameters prediction for robotic gait rehabilitation via generalized regression neural network
– volume: 15
  start-page: 131
  issue: 2
  year: 2008
  ident: 10.1016/j.gaitpost.2013.08.028_bib0030
  article-title: KineAssist. Design and development of a robotic overground gait and balance therapy device
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1502-131
– ident: 10.1016/j.gaitpost.2013.08.028_bib0135
– volume: 11
  start-page: 34
  year: 2005
  ident: 10.1016/j.gaitpost.2013.08.028_bib0160
  article-title: Powered lower limb orthoses for gait rehabilitation
  publication-title: Top Spinal Cord Inj Rehabil
  doi: 10.1310/6GL4-UM7X-519H-9JYD
– start-page: 25
  year: 1999
  ident: 10.1016/j.gaitpost.2013.08.028_bib0075
– volume: 37
  start-page: 693
  issue: 6
  year: 2000
  ident: 10.1016/j.gaitpost.2013.08.028_bib0055
  article-title: Treadmill training of paraplegic patients using a robotic orthosis
  publication-title: J Rehabil Res Dev
– start-page: 64
  year: 2009
  ident: 10.1016/j.gaitpost.2013.08.028_bib0125
  article-title: Human gait recognition based on dynamic and static features using generalized regression neural network
– volume: 11
  start-page: 128
  issue: 2
  year: 2006
  ident: 10.1016/j.gaitpost.2013.08.028_bib0060
  article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2006.871087
SSID ssj0004382
Score 2.3387494
Snippet •An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle...
Highlights • An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented. • We found that the lower limb...
Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 443
SubjectTerms Adolescent
Adult
Analysis
Biomechanical Phenomena
Female
Gait - physiology
Gait Disorders, Neurologic - rehabilitation
Gait pattern planning
Humans
Joints - physiology
Leg - physiology
Lower limb angular kinematics
Male
Models, Biological
Neural Networks (Computer)
Orthopedics
Regression Analysis
Robotic gait rehabilitation
Robotics - methods
Young Adult
Title An individual-specific gait pattern prediction model based on generalized regression neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636213005869
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636213005869
https://dx.doi.org/10.1016/j.gaitpost.2013.08.028
https://www.ncbi.nlm.nih.gov/pubmed/24071020
https://www.proquest.com/docview/1462188883
https://www.proquest.com/docview/1500764740
https://www.proquest.com/docview/1614333891
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KqKhLggaHkshcpIiJu7ieNHclytqJZHKwRU6s1yYmeVCrzRZnsoB76dGSdZQEBBkEvkxFYcz3genhchz8rCcZDkHasLZ5lQQrECGAMr89oltbZ5kWKA88mpWpyJV-fyfIfMx1gYdKscaH9P0yO1Hp5Mh9Wctk0zfQ_CN7BLxdEgI3OFQXxCaMTyoy_f3DzQ0BXz7SnFsPd3UcIXR0vbbNpVhz6VaRZTeWJV9l8zqN8JoJERHd8htwcJks76Sd4lOz7skf1ZAO350xV9TqNPZzws3yM3TwbT-T5xs0CbbfQVwwhL9BKiODnaxiybgbZr7I-worFEDkUm5yg0l3166uYzNNd-2XvPBorpMGEyoXcm7-6Rs-MXH-YLNpRYYJUUYsNgx1acO5FWJVAbmdQVB_mBV6VOfIGhhBXPvVWZLnWGla1yKZyE95h2jqdeZffJblgF_5BQVQqZKV2L2ubCOpvX3ElbptZqmdZJMiFyXFdTDfnHsQzGRzM6ml2YER4G4WGwPibPJ2S6Hdf2GTj-OEKPYDNjfClQRANM4t9G-m7Y2J1JTcdNYn5CvgkptiN_wN-_-urTEbcMbG602NjgV5cd6mUggsGVXdNHojVVaJFc0weEsCxDk_SEPOiRd7uWUaUHpeHRf_zBAbkFLdEfTT0mu5v1pX8CwtqmPIy78ZDcmM3fvXmL95evF6dfAfCnQQk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFS2EnBB0PJYnkZC3MImfuRxXFVUW9rdC63Um-XEzipVyUab7aH9emacZAEBBUFujj2K4xnPjD0vgHd5Zjlq8jYoM2sCGcs4yFAwBHla2rBMTJpFFOA8X8SzM_npXJ3vwMEQC0NulT3v73i659b9m0m_mpOmqiafUflGcRlzMsioNM7uwC5lp1Ij2J0eHc8W38Ijha8ZReMDAvguUPjiw9JUm2bVkltlJHw2TyrM_msZ9Tsd1Muiw4fwoFci2bSb5yPYcfUe7E9rPEB_uWbvmXfr9Pfle3B33lvP98FOa1ZtA7ACCrIkRyFGk2ONT7RZs2ZN4wldzFfJYSTnLMPmsstQXd1gc-2WnQNtzSgjJk6m7vzJ28dwdvjx9GAW9FUWgkJJuQlw0xacWxkVOTIcFZYFRxWCF3kSuoyiCQueOhOLJE8EFbdKlbQK-ynzHI9cLJ7AqF7V7hmwOJdKxEkpS5NKY01acqtMHhmTqKgMwzGoYV110acgp0oYl3rwNbvQAz404UNTiUyejmGyhWu6JBx_hEgGtOkhxBSZokY58W-Qru33dqsj3XId6p_obwzZFvIHEv6rr74daEvj_iajjand6qqloxlqYfiIW8YoMqjKRIa3jEE9TAiySo_haUe827X0p3o8Nzz_jz94A_dmp_MTfXK0OH4B97FHdjdVL2G0WV-5V6i7bfLX_d78Cr1-QiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+individual-specific+gait+pattern+prediction+model+based+on+generalized+regression+neural+networks&rft.jtitle=Gait+%26+posture&rft.au=Luu%2C+Trieu&rft.au=Low%2C+KH&rft.au=Qu%2C+Xingda&rft.au=Lim%2C+H+B&rft.date=2014-01-01&rft.issn=0966-6362&rft.volume=39&rft.issue=1&rft.spage=443&rft.epage=448&rft_id=info:doi/10.1016%2Fj.gaitpost.2013.08.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636213X00116%2Fcov150h.gif