An individual-specific gait pattern prediction model based on generalized regression neural networks
•An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking s...
Saved in:
Published in | Gait & posture Vol. 39; no. 1; pp. 443 - 448 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking speeds.•The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore.
Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms. |
---|---|
AbstractList | Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms. Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms. •An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector.•The proposed model is able to plan different gait patterns at different walking speeds.•The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore. Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms. Highlights • An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented. • We found that the lower limb joint angle waveform can be represented by a Fourier coefficient vector. • The proposed model is able to plan different gait patterns at different walking speeds. • The model has been verified on stroke patient using an over-ground gait trainer developed in NTU, Singapore. |
Author | Low, K.H. Qu, Xingda Lim, H.B. Luu, Trieu Phat Hoon, K.H. |
Author_xml | – sequence: 1 givenname: Trieu Phat surname: Luu fullname: Luu, Trieu Phat email: luut0004@e.ntu.edu.sg, phatct2207@yahoo.com – sequence: 2 givenname: K.H. surname: Low fullname: Low, K.H. – sequence: 3 givenname: Xingda surname: Qu fullname: Qu, Xingda – sequence: 4 givenname: H.B. surname: Lim fullname: Lim, H.B. – sequence: 5 givenname: K.H. surname: Hoon fullname: Hoon, K.H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24071020$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1DlyCVh_CeOIyFEVdGCVIkDcLa89uzK26wTbKeofHocbcuhBxZfRrZ_72k0b87ISRgDEnJBoaFA5btdszU-T2PKDQPKG1ANMPWCrKjq-pox2p-QFfRS1pJLdkrOUtoBgOCKvSKnTEBHgcGKuMtQ-eD8vXezGeo0ofUbb6vFvZpMzhhDNUV03mY_hmo_OhyqtUnoqnLdYsBoBv-7XCNuI6a0UAHn8lpK_jXGu_SavNyYIeGbx3pOflx_-n71ub79evPl6vK2tq0QuRastYw5Qe1aqa6FjWV96dKuO8Ce9q20TKGRvFt3vBWsV61wbfmXXacYRcnPyduD7xTHnzOmrPc-WRwGE3Cck6aSCs656ulxtAXopOgEHEeFZFSVwwt68YjO6z06PUW_N_FBP827APIA2DimFHHzF6Ggl2D1Tj8Fq5dgNShdgi3C98-E1mezRJKj8cNx-ceDHMv47z1GnazHYEuuEW3WbvTHLT48s7CDD96a4Q4fMO3GOYYSrqY6MQ3627J8y-5RDtAq2f_b4H86-AMd2-y9 |
CitedBy_id | crossref_primary_10_1038_s41598_023_31906_z crossref_primary_10_1115_1_4067821 crossref_primary_10_1109_JSEN_2024_3523941 crossref_primary_10_1115_1_4064550 crossref_primary_10_1007_s11042_023_14733_2 crossref_primary_10_1088_1748_3190_ac245f crossref_primary_10_3389_fbioe_2024_1372669 crossref_primary_10_1109_TASE_2018_2841358 crossref_primary_10_1109_TASE_2024_3445886 crossref_primary_10_1088_1741_2560_13_3_036006 crossref_primary_10_1017_S0263574721001600 crossref_primary_10_1109_JTEHM_2014_2303807 crossref_primary_10_1007_s12204_022_2452_3 crossref_primary_10_3390_app13106258 crossref_primary_10_1007_s11370_024_00576_9 crossref_primary_10_3390_biomimetics9060352 crossref_primary_10_1007_s00521_018_3458_5 crossref_primary_10_1088_1361_6501_acd5f0 crossref_primary_10_1109_TNSRE_2020_3045425 crossref_primary_10_3389_fnhum_2017_00320 crossref_primary_10_1016_j_measurement_2015_06_014 crossref_primary_10_3389_frobt_2024_1341580 crossref_primary_10_1016_j_neucom_2014_03_038 crossref_primary_10_1115_1_4046937 crossref_primary_10_32604_cmc_2024_051551 crossref_primary_10_1080_15397734_2020_1858868 crossref_primary_10_1016_j_jbiomech_2019_01_001 crossref_primary_10_1016_j_energy_2016_08_090 crossref_primary_10_1016_j_cmpb_2021_106104 crossref_primary_10_1016_j_jbiomech_2020_110052 crossref_primary_10_1109_TNSRE_2022_3217448 crossref_primary_10_1109_LRA_2020_3006818 crossref_primary_10_3389_fbioe_2020_00362 crossref_primary_10_3390_s20010130 crossref_primary_10_1016_j_sna_2016_06_010 crossref_primary_10_1242_bio_047332 crossref_primary_10_1109_ACCESS_2024_3414345 crossref_primary_10_1016_j_gaitpost_2020_01_021 crossref_primary_10_1109_JSEN_2022_3222412 crossref_primary_10_1109_JSEN_2023_3317366 crossref_primary_10_1016_j_compbiomed_2024_109390 crossref_primary_10_1038_s41598_017_09187_0 crossref_primary_10_1007_s11432_018_9816_4 |
Cites_doi | 10.1260/2040-2295.1.2.197 10.1093/ptj/69.1.18 10.1523/JNEUROSCI.2266-06.2006 10.1016/S0966-6362(00)00095-3 10.1016/0966-6362(95)01057-2 10.1016/j.jbiomech.2008.03.015 10.1177/0888439002250442 10.1016/0021-9290(85)90043-0 10.1016/j.gaitpost.2007.11.001 10.1016/S0966-6362(02)00060-7 10.1016/0141-5425(85)90055-X 10.1109/TNSRE.2008.2008288 10.1109/TNSRE.2009.2033061 10.1161/01.STR.0000035734.61539.F6 10.1145/1060581.1060589 10.1109/TNSRE.2008.2008280 10.1016/j.gaitpost.2005.10.007 10.1161/01.STR.26.6.982 10.1310/tsr1502-131 10.1310/6GL4-UM7X-519H-9JYD 10.1109/TMECH.2006.871087 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS |
DOI | 10.1016/j.gaitpost.2013.08.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Physical Education Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Physical Education Index |
DatabaseTitleList | MEDLINE - Academic MEDLINE Physical Education Index |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-2219 |
EndPage | 448 |
ExternalDocumentID | 24071020 10_1016_j_gaitpost_2013_08_028 S0966636213005869 1_s2_0_S0966636213005869 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS |
ID | FETCH-LOGICAL-c544t-425c22d41cb88750fc29102cb70e91956c28ea637b735429854d502c677821e63 |
IEDL.DBID | .~1 |
ISSN | 0966-6362 1879-2219 |
IngestDate | Fri Jul 11 07:43:48 EDT 2025 Fri Jul 11 09:03:18 EDT 2025 Thu Aug 07 14:58:55 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Tue Jul 01 03:47:23 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri Feb 23 02:33:12 EST 2024 Sun Feb 23 10:19:01 EST 2025 Tue Aug 26 16:33:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lower limb angular kinematics Gait pattern planning Robotic gait rehabilitation |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-425c22d41cb88750fc29102cb70e91956c28ea637b735429854d502c677821e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24071020 |
PQID | 1462188883 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1614333891 proquest_miscellaneous_1500764740 proquest_miscellaneous_1462188883 pubmed_primary_24071020 crossref_primary_10_1016_j_gaitpost_2013_08_028 crossref_citationtrail_10_1016_j_gaitpost_2013_08_028 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2013_08_028 elsevier_clinicalkeyesjournals_1_s2_0_S0966636213005869 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2013_08_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Gait & posture |
PublicationTitleAlternate | Gait Posture |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lelas (bib0070) 2003; 17 Stauffer, Allemand, Bouri, Fournier, Clavel, Metrailler (bib0015) 2009; 17 Shuxia, Dan, Fengqiu, Xiushu (bib0120) 2010 Perry, Garrett, Gronley, Mulroy (bib0150) 1995; 26 Riener, Lünenburger, Maier, Colombo, Dietz (bib0010) 2010; 1 Rustagi, Kumar, Pillai (bib0125) 2009 Antonsson, Mann (bib0085) 1985; 18 Winter (bib0045) 2004 Beale, Hagan, Demuth (bib0090) 2010; vol. 8 Kirtley C. Clinical gait analysis; 2011. Hasan, Park, Seo, Sohn, Hwang, Khang (bib0040) 2009 Vaughan, Davis, O’Connor (bib0075) 1999 Schwartz, Rozumalski, Trost (bib0065) 2008; 41 Lelas, Merriman, Riley, Kerrigan (bib0105) 2003; 17 Schmidt, Hesse, Bernhardt, Kruger (bib0020) 2005; 2 Findlow, Goulermas, Nester, Howard, Kenney (bib0130) 2008; 28 Cai, Fong, Otoshi, Liang, Burdick, Roy (bib0005) 2006; 26 Zoss, Kazerooni, Chu (bib0060) 2006; 11 Hof (bib0115) 1996; 4 . Ferris, Sawicki, Domingo (bib0160) 2005; 11 Banala, Kim, Agrawal, Scholz (bib0025) 2009; 17 Patton, Brown, Peshkin, Santos-Munn, Makhlin, Lewis (bib0030) 2008; 15 Hanlon, Anderson (bib0110) 2006; 24 Chau (bib0080) 2001; 13 Luu, Lim, Hoon, Xingda, Low (bib0145) 2011 Duschau-Wicke, Von Zitzewitz, Caprez, Lunenburger, Riener (bib0050) 2010; 18 Kirtley, Whittle, Jefferson (bib0095) 1985; 7 Colombo, Joerg, Schreier, Dietz (bib0055) 2000; 37 Oberg, Karsznia, Oberg (bib0100) 1994; 31 Werner, Frankenberg, Treig, Konrad, Hesse (bib0155) 2002; 33 Luu, Low, Xingda, Lim, Hoon (bib0140) 2012 Barbeau (bib0035) 2003; 17 Trueblood, Walker, Perry, Gronley (bib0165) 1989; 69 Trueblood (10.1016/j.gaitpost.2013.08.028_bib0165) 1989; 69 Riener (10.1016/j.gaitpost.2013.08.028_bib0010) 2010; 1 Chau (10.1016/j.gaitpost.2013.08.028_bib0080) 2001; 13 Hasan (10.1016/j.gaitpost.2013.08.028_bib0040) 2009 Winter (10.1016/j.gaitpost.2013.08.028_bib0045) 2004 Ferris (10.1016/j.gaitpost.2013.08.028_bib0160) 2005; 11 Stauffer (10.1016/j.gaitpost.2013.08.028_bib0015) 2009; 17 Schwartz (10.1016/j.gaitpost.2013.08.028_bib0065) 2008; 41 Duschau-Wicke (10.1016/j.gaitpost.2013.08.028_bib0050) 2010; 18 Patton (10.1016/j.gaitpost.2013.08.028_bib0030) 2008; 15 Lelas (10.1016/j.gaitpost.2013.08.028_bib0105) 2003; 17 Findlow (10.1016/j.gaitpost.2013.08.028_bib0130) 2008; 28 Luu (10.1016/j.gaitpost.2013.08.028_bib0140) 2012 Banala (10.1016/j.gaitpost.2013.08.028_bib0025) 2009; 17 Hanlon (10.1016/j.gaitpost.2013.08.028_bib0110) 2006; 24 Luu (10.1016/j.gaitpost.2013.08.028_bib0145) 2011 Antonsson (10.1016/j.gaitpost.2013.08.028_bib0085) 1985; 18 Cai (10.1016/j.gaitpost.2013.08.028_bib0005) 2006; 26 Werner (10.1016/j.gaitpost.2013.08.028_bib0155) 2002; 33 Zoss (10.1016/j.gaitpost.2013.08.028_bib0060) 2006; 11 Lelas (10.1016/j.gaitpost.2013.08.028_bib0070) 2003; 17 Vaughan (10.1016/j.gaitpost.2013.08.028_bib0075) 1999 Oberg (10.1016/j.gaitpost.2013.08.028_bib0100) 1994; 31 10.1016/j.gaitpost.2013.08.028_bib0135 Beale (10.1016/j.gaitpost.2013.08.028_bib0090) 2010; vol. 8 Barbeau (10.1016/j.gaitpost.2013.08.028_bib0035) 2003; 17 Hof (10.1016/j.gaitpost.2013.08.028_bib0115) 1996; 4 Schmidt (10.1016/j.gaitpost.2013.08.028_bib0020) 2005; 2 Rustagi (10.1016/j.gaitpost.2013.08.028_bib0125) 2009 Colombo (10.1016/j.gaitpost.2013.08.028_bib0055) 2000; 37 Perry (10.1016/j.gaitpost.2013.08.028_bib0150) 1995; 26 Kirtley (10.1016/j.gaitpost.2013.08.028_bib0095) 1985; 7 Shuxia (10.1016/j.gaitpost.2013.08.028_bib0120) 2010 |
References_xml | – volume: 1 start-page: 197 year: 2010 end-page: 216 ident: bib0010 article-title: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat publication-title: J Healthc Eng – volume: 17 start-page: 38 year: 2009 end-page: 45 ident: bib0015 article-title: The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 2 start-page: 166 year: 2005 end-page: 180 ident: bib0020 article-title: HapticWalker—a novel haptic foot device publication-title: ACM Trans Appl Percept – volume: 26 start-page: 10564 year: 2006 end-page: 10568 ident: bib0005 article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning publication-title: J Neurosci – volume: 17 start-page: 3 year: 2003 end-page: 11 ident: bib0035 article-title: Locomotor training in neurorehabilitation: emerging rehabilitation concepts publication-title: Neurorehabil Neural Repair – volume: 13 start-page: 102 year: 2001 end-page: 120 ident: bib0080 article-title: A review of analytical techniques for gait data. Part 2. Neural network and wavelet methods publication-title: Gait Posture – volume: 41 start-page: 1639 year: 2008 end-page: 1650 ident: bib0065 article-title: The effect of walking speed on the gait of typically developing children publication-title: J Biomech – volume: 17 start-page: 106 year: 2003 end-page: 112 ident: bib0070 article-title: Predicting peak kinematic and kinetic parameters from gait speed publication-title: Gait Posture – volume: 33 start-page: 2895 year: 2002 end-page: 2901 ident: bib0155 article-title: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study publication-title: Stroke – year: 2010 ident: bib0120 article-title: Application of generalized regression neural network in prediction of cement properties publication-title: ICCDA June – volume: 18 start-page: 39 year: 1985 end-page: 47 ident: bib0085 article-title: The frequency content of gait publication-title: J Biomech – volume: 31 start-page: 199 year: 1994 end-page: 213 ident: bib0100 article-title: Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age publication-title: J Rehabil Res Dev – start-page: 64 year: 2009 end-page: 68 ident: bib0125 article-title: Human gait recognition based on dynamic and static features using generalized regression neural network publication-title: ICMV – year: 2012 ident: bib0140 article-title: On the development of an overground gait rehabilitation system: publication-title: IEEE HIC November – volume: 17 start-page: 2 year: 2009 end-page: 8 ident: bib0025 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Trans Neural Syst Rehabil Eng – start-page: 914 year: 2011 end-page: 919 ident: bib0145 article-title: Subject-specific gait parameters prediction for robotic gait rehabilitation via generalized regression neural network publication-title: ROBIO – volume: 18 start-page: 38 year: 2010 end-page: 48 ident: bib0050 article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: vol. 8 start-page: 12 year: 2010 end-page: 14 ident: bib0090 publication-title: Neural network toolbox user's guide – volume: 4 start-page: 222 year: 1996 end-page: 223 ident: bib0115 article-title: Scaling gait data to body size publication-title: Gait Posture – volume: 37 start-page: 693 year: 2000 end-page: 700 ident: bib0055 article-title: Treadmill training of paraplegic patients using a robotic orthosis publication-title: J Rehabil Res Dev – volume: 11 start-page: 128 year: 2006 end-page: 138 ident: bib0060 article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) publication-title: IEEE/ASME Trans Mechatron – volume: 11 start-page: 34 year: 2005 end-page: 49 ident: bib0160 article-title: Powered lower limb orthoses for gait rehabilitation publication-title: Top Spinal Cord Inj Rehabil – start-page: 1 year: 2009 end-page: 4 ident: bib0040 article-title: A gait rehabilitation and training system based on task specific repetitive approach publication-title: IEEE ICBBE – reference: Kirtley C. Clinical gait analysis; 2011. – volume: 7 start-page: 282 year: 1985 end-page: 288 ident: bib0095 article-title: Influence of walking speed on gait parameters publication-title: J Biomed Eng – volume: 17 start-page: 106 year: 2003 end-page: 112 ident: bib0105 article-title: Predicting peak kinematic and kinetic parameters from gait speed publication-title: Gait Posture – reference: . – volume: 69 start-page: 18 year: 1989 end-page: 26 ident: bib0165 article-title: Pelvic exercise and gait in hemiplegia publication-title: Phys Ther – volume: 15 start-page: 131 year: 2008 end-page: 139 ident: bib0030 article-title: KineAssist. Design and development of a robotic overground gait and balance therapy device publication-title: Top Stroke Rehabil – volume: 28 start-page: 120 year: 2008 end-page: 126 ident: bib0130 article-title: Predicting lower limb joint kinematics using wearable motion sensors publication-title: Gait Posture – start-page: 25 year: 1999 end-page: 27 ident: bib0075 article-title: Dynamics of human gait – volume: 24 start-page: 280 year: 2006 end-page: 287 ident: bib0110 article-title: Prediction methods to account for the effect of gait speed on lower limb angular kinematics publication-title: Gait Posture – volume: 26 start-page: 982 year: 1995 end-page: 989 ident: bib0150 article-title: Classification of walking handicap in the stroke population publication-title: Stroke – start-page: 296 year: 2004 end-page: 356 ident: bib0045 article-title: Biomechanics and motor control of human movement – volume: 1 start-page: 197 issue: 2 year: 2010 ident: 10.1016/j.gaitpost.2013.08.028_bib0010 article-title: Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat publication-title: J Healthc Eng doi: 10.1260/2040-2295.1.2.197 – start-page: 1 year: 2009 ident: 10.1016/j.gaitpost.2013.08.028_bib0040 article-title: A gait rehabilitation and training system based on task specific repetitive approach publication-title: IEEE ICBBE – volume: 69 start-page: 18 issue: 1 year: 1989 ident: 10.1016/j.gaitpost.2013.08.028_bib0165 article-title: Pelvic exercise and gait in hemiplegia publication-title: Phys Ther doi: 10.1093/ptj/69.1.18 – volume: vol. 8 start-page: 12 year: 2010 ident: 10.1016/j.gaitpost.2013.08.028_bib0090 – volume: 26 start-page: 10564 issue: 41 year: 2006 ident: 10.1016/j.gaitpost.2013.08.028_bib0005 article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2266-06.2006 – volume: 13 start-page: 102 issue: 2 year: 2001 ident: 10.1016/j.gaitpost.2013.08.028_bib0080 article-title: A review of analytical techniques for gait data. Part 2. Neural network and wavelet methods publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00095-3 – volume: 4 start-page: 222 issue: 3 year: 1996 ident: 10.1016/j.gaitpost.2013.08.028_bib0115 article-title: Scaling gait data to body size publication-title: Gait Posture doi: 10.1016/0966-6362(95)01057-2 – volume: 41 start-page: 1639 issue: 8 year: 2008 ident: 10.1016/j.gaitpost.2013.08.028_bib0065 article-title: The effect of walking speed on the gait of typically developing children publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.03.015 – volume: 17 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.gaitpost.2013.08.028_bib0035 article-title: Locomotor training in neurorehabilitation: emerging rehabilitation concepts publication-title: Neurorehabil Neural Repair doi: 10.1177/0888439002250442 – start-page: 296 year: 2004 ident: 10.1016/j.gaitpost.2013.08.028_bib0045 – volume: 18 start-page: 39 issue: 1 year: 1985 ident: 10.1016/j.gaitpost.2013.08.028_bib0085 article-title: The frequency content of gait publication-title: J Biomech doi: 10.1016/0021-9290(85)90043-0 – volume: 28 start-page: 120 issue: 1 year: 2008 ident: 10.1016/j.gaitpost.2013.08.028_bib0130 article-title: Predicting lower limb joint kinematics using wearable motion sensors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.11.001 – volume: 31 start-page: 199 issue: 3 year: 1994 ident: 10.1016/j.gaitpost.2013.08.028_bib0100 article-title: Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age publication-title: J Rehabil Res Dev – volume: 17 start-page: 106 issue: 2 year: 2003 ident: 10.1016/j.gaitpost.2013.08.028_bib0070 article-title: Predicting peak kinematic and kinetic parameters from gait speed publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00060-7 – volume: 7 start-page: 282 issue: 4 year: 1985 ident: 10.1016/j.gaitpost.2013.08.028_bib0095 article-title: Influence of walking speed on gait parameters publication-title: J Biomed Eng doi: 10.1016/0141-5425(85)90055-X – volume: 17 start-page: 38 issue: 1 year: 2009 ident: 10.1016/j.gaitpost.2013.08.028_bib0015 article-title: The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2008.2008288 – volume: 18 start-page: 38 issue: 1 year: 2010 ident: 10.1016/j.gaitpost.2013.08.028_bib0050 article-title: Path control: a method for patient-cooperative robot-aided gait rehabilitation publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2009.2033061 – volume: 33 start-page: 2895 year: 2002 ident: 10.1016/j.gaitpost.2013.08.028_bib0155 article-title: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study publication-title: Stroke doi: 10.1161/01.STR.0000035734.61539.F6 – volume: 2 start-page: 166 issue: 2 year: 2005 ident: 10.1016/j.gaitpost.2013.08.028_bib0020 article-title: HapticWalker—a novel haptic foot device publication-title: ACM Trans Appl Percept doi: 10.1145/1060581.1060589 – year: 2010 ident: 10.1016/j.gaitpost.2013.08.028_bib0120 article-title: Application of generalized regression neural network in prediction of cement properties – volume: 17 start-page: 2 issue: 1 year: 2009 ident: 10.1016/j.gaitpost.2013.08.028_bib0025 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2008.2008280 – volume: 17 start-page: 106 issue: 2 year: 2003 ident: 10.1016/j.gaitpost.2013.08.028_bib0105 article-title: Predicting peak kinematic and kinetic parameters from gait speed publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00060-7 – volume: 24 start-page: 280 issue: 3 year: 2006 ident: 10.1016/j.gaitpost.2013.08.028_bib0110 article-title: Prediction methods to account for the effect of gait speed on lower limb angular kinematics publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.10.007 – year: 2012 ident: 10.1016/j.gaitpost.2013.08.028_bib0140 article-title: On the development of an overground gait rehabilitation system: NaTUre-gaits – volume: 26 start-page: 982 issue: 6 year: 1995 ident: 10.1016/j.gaitpost.2013.08.028_bib0150 article-title: Classification of walking handicap in the stroke population publication-title: Stroke doi: 10.1161/01.STR.26.6.982 – start-page: 914 year: 2011 ident: 10.1016/j.gaitpost.2013.08.028_bib0145 article-title: Subject-specific gait parameters prediction for robotic gait rehabilitation via generalized regression neural network – volume: 15 start-page: 131 issue: 2 year: 2008 ident: 10.1016/j.gaitpost.2013.08.028_bib0030 article-title: KineAssist. Design and development of a robotic overground gait and balance therapy device publication-title: Top Stroke Rehabil doi: 10.1310/tsr1502-131 – ident: 10.1016/j.gaitpost.2013.08.028_bib0135 – volume: 11 start-page: 34 year: 2005 ident: 10.1016/j.gaitpost.2013.08.028_bib0160 article-title: Powered lower limb orthoses for gait rehabilitation publication-title: Top Spinal Cord Inj Rehabil doi: 10.1310/6GL4-UM7X-519H-9JYD – start-page: 25 year: 1999 ident: 10.1016/j.gaitpost.2013.08.028_bib0075 – volume: 37 start-page: 693 issue: 6 year: 2000 ident: 10.1016/j.gaitpost.2013.08.028_bib0055 article-title: Treadmill training of paraplegic patients using a robotic orthosis publication-title: J Rehabil Res Dev – start-page: 64 year: 2009 ident: 10.1016/j.gaitpost.2013.08.028_bib0125 article-title: Human gait recognition based on dynamic and static features using generalized regression neural network – volume: 11 start-page: 128 issue: 2 year: 2006 ident: 10.1016/j.gaitpost.2013.08.028_bib0060 article-title: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2006.871087 |
SSID | ssj0004382 |
Score | 2.3387494 |
Snippet | •An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented.•We found that the lower limb joint angle... Highlights • An individual-specific gait pattern prediction model for generating lower limb joint angle waveforms was presented. • We found that the lower limb... Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 443 |
SubjectTerms | Adolescent Adult Analysis Biomechanical Phenomena Female Gait - physiology Gait Disorders, Neurologic - rehabilitation Gait pattern planning Humans Joints - physiology Leg - physiology Lower limb angular kinematics Male Models, Biological Neural Networks (Computer) Orthopedics Regression Analysis Robotic gait rehabilitation Robotics - methods Young Adult |
Title | An individual-specific gait pattern prediction model based on generalized regression neural networks |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636213005869 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636213005869 https://dx.doi.org/10.1016/j.gaitpost.2013.08.028 https://www.ncbi.nlm.nih.gov/pubmed/24071020 https://www.proquest.com/docview/1462188883 https://www.proquest.com/docview/1500764740 https://www.proquest.com/docview/1614333891 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KqKhLggaHkshcpIiJu7ieNHclytqJZHKwRU6s1yYmeVCrzRZnsoB76dGSdZQEBBkEvkxFYcz3genhchz8rCcZDkHasLZ5lQQrECGAMr89oltbZ5kWKA88mpWpyJV-fyfIfMx1gYdKscaH9P0yO1Hp5Mh9Wctk0zfQ_CN7BLxdEgI3OFQXxCaMTyoy_f3DzQ0BXz7SnFsPd3UcIXR0vbbNpVhz6VaRZTeWJV9l8zqN8JoJERHd8htwcJks76Sd4lOz7skf1ZAO350xV9TqNPZzws3yM3TwbT-T5xs0CbbfQVwwhL9BKiODnaxiybgbZr7I-worFEDkUm5yg0l3166uYzNNd-2XvPBorpMGEyoXcm7-6Rs-MXH-YLNpRYYJUUYsNgx1acO5FWJVAbmdQVB_mBV6VOfIGhhBXPvVWZLnWGla1yKZyE95h2jqdeZffJblgF_5BQVQqZKV2L2ubCOpvX3ElbptZqmdZJMiFyXFdTDfnHsQzGRzM6ml2YER4G4WGwPibPJ2S6Hdf2GTj-OEKPYDNjfClQRANM4t9G-m7Y2J1JTcdNYn5CvgkptiN_wN-_-urTEbcMbG602NjgV5cd6mUggsGVXdNHojVVaJFc0weEsCxDk_SEPOiRd7uWUaUHpeHRf_zBAbkFLdEfTT0mu5v1pX8CwtqmPIy78ZDcmM3fvXmL95evF6dfAfCnQQk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFS2EnBB0PJYnkZC3MImfuRxXFVUW9rdC63Um-XEzipVyUab7aH9emacZAEBBUFujj2K4xnPjD0vgHd5Zjlq8jYoM2sCGcs4yFAwBHla2rBMTJpFFOA8X8SzM_npXJ3vwMEQC0NulT3v73i659b9m0m_mpOmqiafUflGcRlzMsioNM7uwC5lp1Ij2J0eHc8W38Ijha8ZReMDAvguUPjiw9JUm2bVkltlJHw2TyrM_msZ9Tsd1Muiw4fwoFci2bSb5yPYcfUe7E9rPEB_uWbvmXfr9Pfle3B33lvP98FOa1ZtA7ACCrIkRyFGk2ONT7RZs2ZN4wldzFfJYSTnLMPmsstQXd1gc-2WnQNtzSgjJk6m7vzJ28dwdvjx9GAW9FUWgkJJuQlw0xacWxkVOTIcFZYFRxWCF3kSuoyiCQueOhOLJE8EFbdKlbQK-ynzHI9cLJ7AqF7V7hmwOJdKxEkpS5NKY01acqtMHhmTqKgMwzGoYV110acgp0oYl3rwNbvQAz404UNTiUyejmGyhWu6JBx_hEgGtOkhxBSZokY58W-Qru33dqsj3XId6p_obwzZFvIHEv6rr74daEvj_iajjand6qqloxlqYfiIW8YoMqjKRIa3jEE9TAiySo_haUe827X0p3o8Nzz_jz94A_dmp_MTfXK0OH4B97FHdjdVL2G0WV-5V6i7bfLX_d78Cr1-QiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+individual-specific+gait+pattern+prediction+model+based+on+generalized+regression+neural+networks&rft.jtitle=Gait+%26+posture&rft.au=Luu%2C+Trieu&rft.au=Low%2C+KH&rft.au=Qu%2C+Xingda&rft.au=Lim%2C+H+B&rft.date=2014-01-01&rft.issn=0966-6362&rft.volume=39&rft.issue=1&rft.spage=443&rft.epage=448&rft_id=info:doi/10.1016%2Fj.gaitpost.2013.08.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636213X00116%2Fcov150h.gif |