Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis
Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 12; no. 13; p. 2221 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano12132221 |
Cover
Loading…
Abstract | Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications. |
---|---|
AbstractList | Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications.Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications. Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks to their remarkable mechanical, thermal, electrical, magnetic, and optical properties, they promise to revolutionize electronics. The unique properties of graphene-like 2D materials give them the potential to create completely new types of devices for functional electronics, nanophotonics, and quantum technologies. This paper considers epitaxially grown two-dimensional allotropic modifications of single elements: graphene (C) and its analogs (transgraphenes) borophene (B), aluminene (Al), gallenene (Ga), indiene (In), thallene (Tl), silicene (Si), germanene (Ge), stanene (Sn), plumbene (Pb), phosphorene (P), arsenene (As), antimonene (Sb), bismuthene (Bi), selenene (Se), and tellurene (Te). The emphasis is put on their structural parameters and technological modes in the method of molecular beam epitaxy, which ensure the production of high-quality defect-free single-element two-dimensional structures of a large area for promising device applications. |
Author | Izhnin, Ihor I. Kokhanenko, Andrey P. Dirko, Vladimir V. Voitsekhovskii, Alexander V. Lozovoy, Kirill A. Fitsych, Olena I. Akimenko, Nataliya Yu Vinarskiy, Vladimir P. |
AuthorAffiliation | 1 Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; kokh@mail.tsu.ru (A.P.K.); vovenmir@gmail.com (V.V.D.); vinarskiy2017@gmail.com (V.P.V.); vav43@mail.tsu.ru (A.V.V.) 2 Scientific Research Company “Electron-Carat”, Stryjska St. 202, 79031 Lviv, Ukraine; i.izhnin@carat.electron.ua 4 Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia; n_akimenko@inbox.ru 3 P. Sagaidachny National Army Academy, Gvardijska St. 32, 79012 Lviv, Ukraine; o.fitsych@ukr.net |
AuthorAffiliation_xml | – name: 3 P. Sagaidachny National Army Academy, Gvardijska St. 32, 79012 Lviv, Ukraine; o.fitsych@ukr.net – name: 4 Department of Engineering Systems and Technosphere Safety, Pacific National University, Tihookeanskaya St. 136, 680035 Khabarovsk, Russia; n_akimenko@inbox.ru – name: 2 Scientific Research Company “Electron-Carat”, Stryjska St. 202, 79031 Lviv, Ukraine; i.izhnin@carat.electron.ua – name: 1 Faculty of Radiophysics, National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia; kokh@mail.tsu.ru (A.P.K.); vovenmir@gmail.com (V.V.D.); vinarskiy2017@gmail.com (V.P.V.); vav43@mail.tsu.ru (A.V.V.) |
Author_xml | – sequence: 1 givenname: Kirill A. orcidid: 0000-0002-4029-8353 surname: Lozovoy fullname: Lozovoy, Kirill A. – sequence: 2 givenname: Ihor I. surname: Izhnin fullname: Izhnin, Ihor I. – sequence: 3 givenname: Andrey P. surname: Kokhanenko fullname: Kokhanenko, Andrey P. – sequence: 4 givenname: Vladimir V. surname: Dirko fullname: Dirko, Vladimir V. – sequence: 5 givenname: Vladimir P. surname: Vinarskiy fullname: Vinarskiy, Vladimir P. – sequence: 6 givenname: Alexander V. surname: Voitsekhovskii fullname: Voitsekhovskii, Alexander V. – sequence: 7 givenname: Olena I. surname: Fitsych fullname: Fitsych, Olena I. – sequence: 8 givenname: Nataliya Yu surname: Akimenko fullname: Akimenko, Nataliya Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35808055$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEQgFeoiJbSG2e0EhcOLPi5XnNAQiWUilYcCmfLj3HiaGOn9gaRf49DWpRW-GJr_M2n0cw8b45iitA0LzF6R6lE76OOCRNMCSH4SXNCkJAdkxIfHbyPm7NSlqgeienA6bPmmPIBDYjzk-bbTYjzEbrZCCuIU0s-t9d6ghz0WFoD2xRde5H1egERPrTXMC2SK23y7WwdJv27Yu3NNk4LKKG8aJ76mgZnd_dp8_PL7Mf51-7q-8Xl-aerznLGpo46b6jGSEtBPOuZQT0IbAExJ413RIK2RhiJjPNUeOSHHoxgghMKRktHT5vLvdclvVTrHFY6b1XSQf0NpDxXOk_BjqC8ZRhxibjzgoF0A3YDRwPzxPYcc15dH_eu9caswNnag6zHB9KHPzEs1Dz9UpL0A8e0Ct7cCXK63UCZ1CoUC-OoI6RNURUTAgsiREVfP0KXaZNjbdWO6rFEaNgJXx1W9K-U-5lVgOwBm1MpGbyydRRTSLsCw6gwUrvdUIe7UZPePkq69_4X_wNdsbn6 |
CitedBy_id | crossref_primary_10_1039_D4CS00999A crossref_primary_10_1007_s10948_024_06882_8 crossref_primary_10_1039_D3SU00445G crossref_primary_10_1016_j_micrna_2023_207731 crossref_primary_10_1007_s00214_023_02960_7 crossref_primary_10_3390_ma17215171 crossref_primary_10_3390_ijms25189931 crossref_primary_10_3390_ma15175900 crossref_primary_10_1016_j_mtcomm_2023_106513 crossref_primary_10_1039_D2ME00251E crossref_primary_10_3390_nano14090750 crossref_primary_10_1007_s00339_024_08171_6 crossref_primary_10_1063_5_0213542 crossref_primary_10_3390_nano13233078 crossref_primary_10_1142_S1793292024500759 crossref_primary_10_1002_adhm_202302604 crossref_primary_10_1063_5_0140027 crossref_primary_10_3390_c10020036 crossref_primary_10_3390_nano14191553 crossref_primary_10_1103_PhysRevMaterials_7_124002 crossref_primary_10_7498_aps_72_20221768 crossref_primary_10_1103_PhysRevB_111_125401 crossref_primary_10_1016_j_flatc_2023_100549 crossref_primary_10_1209_0295_5075_acbfda crossref_primary_10_3390_technologies11010017 crossref_primary_10_3390_nano13020231 crossref_primary_10_1016_j_physe_2024_116094 |
Cites_doi | 10.1038/s41563-021-01084-2 10.1039/C9CC03238J 10.1021/acs.nanolett.5b00085 10.1007/s11467-018-0757-3 10.1143/APEX.5.045802 10.1103/PhysRevLett.124.126401 10.1002/adma.201606046 10.1103/PhysRevB.50.14916 10.1063/1.5026745 10.1021/acs.nanolett.7b01029 10.1039/c0cp02580a 10.1088/2053-1583/ac0713 10.1515/nanoph-2020-0314 10.1039/C8NR01649F 10.1016/j.jpcs.2017.06.026 10.1007/s12274-015-0956-y 10.1103/PhysRevB.76.075131 10.1103/PhysRevLett.116.256804 10.1103/PhysRevLett.119.106101 10.1103/PhysRevB.97.035122 10.1021/jp505602c 10.1002/adfm.201910643 10.1039/D0NR05514J 10.1088/1361-6528/ac3f56 10.1039/C8TC04718A 10.1088/2053-1583/3/4/045005 10.1103/PhysRevMaterials.1.061002 10.1088/2053-1583/abc13d 10.1016/j.spmi.2021.106822 10.1039/D1NH00113B 10.1007/978-981-15-2373-1 10.1038/s41928-018-0058-4 10.1016/j.mattod.2020.11.023 10.1088/1367-2630/17/8/083014 10.1002/admi.201900752 10.1103/PhysRevLett.119.147401 10.1016/j.cocom.2018.01.006 10.1007/s11182-022-02495-7 10.1021/acsnano.6b06198 10.1002/andp.201600152 10.1039/C7CP07420D 10.1002/adfm.201807004 10.1039/D0NA00737D 10.1063/1.5113190 10.1007/s13204-020-01372-4 10.1039/C5RA25773E 10.1021/acsnano.9b09588 10.1021/nl3004754 10.7566/JPSJ.84.121003 10.1021/nn5028104 10.1088/2053-1583/aa8418 10.1016/j.electacta.2016.08.027 10.1103/PhysRevMaterials.1.054004 10.1021/acs.jpclett.6b01284 10.1039/C7CP06133A 10.1038/s41567-017-0031-6 10.1063/1.5127090 10.1063/1.3489993 10.1038/s41563-018-0203-5 10.35848/1347-4065/ab8410 10.1039/C8CP04069A 10.1021/acsnano.9b08296 10.1002/smll.201804066 10.1088/1674-4926/41/8/081002 10.1021/nl304347w 10.1038/nmat4384 10.1002/anie.201605298 10.1134/S1064226920090090 10.1021/acs.nanolett.7b02111 10.1038/nnano.2015.10 10.1103/PhysRevLett.108.245501 10.1002/adma.201400909 10.1080/14686996.2017.1422224 10.1016/j.mseb.2017.12.015 10.1002/adfm.202006997 10.1088/1742-6596/2140/1/012001 10.1039/C7NR00010C 10.1021/acsaem.8b00578 10.1088/1361-648X/abd3d9 10.1002/aelm.201800475 10.1039/C7CS00261K 10.1088/2053-1583/abaf35 10.1088/0953-8984/24/17/172001 10.1021/acs.jpcc.9b04343 10.1021/acsnano.8b01467 10.1016/j.scib.2018.02.006 10.1002/adma.201902606 10.1021/acs.nanolett.6b01459 10.1088/0953-8984/27/44/443002 10.1038/nnano.2014.325 10.1088/1361-6641/ab3c8a 10.1002/anie.201804886 10.1021/acsaem.8b00032 10.1016/j.progsolidstchem.2021.100326 10.1080/15376494.2021.1945172 10.1002/smll.201402041 10.1016/j.surfcoat.2019.125289 10.1103/PhysRevLett.114.107003 10.1039/C8CS00598B 10.1007/s13204-018-0685-0 10.1088/2053-1583/aaba3a 10.1103/PhysRevLett.102.236804 10.1063/1.4983646 10.1038/ncomms13352 10.1007/s13204-018-0709-9 10.1126/science.aad1080 10.1016/j.apsusc.2020.147364 10.1039/C8CS00338F 10.1088/2053-1583/1/2/025001 10.1088/0953-8984/28/4/045002 10.1088/0953-8984/27/25/253002 10.1038/nchem.2491 10.1088/0953-8984/23/22/225501 10.1049/mnl.2015.0108 10.1002/adma.201304783 10.1088/1367-2630/16/9/095002 10.1016/j.physe.2020.114095 10.1063/1.5046997 10.1126/science.1102896 10.1021/acsnano.8b02374 10.1039/D0CP03538F 10.1021/acs.nanolett.8b01305 10.1038/s41565-018-0317-6 10.1021/acsnano.7b04786 10.1103/PhysRevApplied.11.064047 10.1116/5.0009316 10.1103/PhysRevLett.112.176802 10.1021/acs.nanolett.8b00429 10.1038/s41467-018-04012-2 10.1103/PhysRevLett.108.155501 10.1021/acs.nanolett.6b00070 10.1126/sciadv.1701373 10.1088/2053-1583/ab33ba 10.1016/j.apsusc.2020.146224 10.1063/1.4939281 10.1002/pssr.201900439 10.1063/1.5135092 10.1103/PhysRevB.81.085423 10.1016/j.tsf.2020.138363 10.1002/adma.201605407 10.1002/aenm.201700447 10.1002/qua.26267 10.1038/srep20714 10.1021/nn302696v 10.1002/adma.201602128 10.1039/C7NR04085G 10.1038/s41598-019-53631-2 10.1038/nmat4802 10.1016/j.apsusc.2018.03.133 10.1021/acsnano.8b09339 10.1016/j.apsusc.2017.02.238 10.1016/j.cocom.2018.e00319 10.1039/C4NR02451F 10.1021/acs.nanolett.6b04804 10.1002/adma.201901017 10.1088/1361-6528/ac2d08 10.1088/2053-1583/aa9ea0 10.1038/s41467-022-29182-y 10.1126/science.aai8142 10.1038/s41598-017-15664-3 10.1002/advs.201800207 10.1039/D1TC03790K 10.1088/1742-6596/1954/1/012024 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano12132221 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_fc4105905df74e9d81d85084f2c65155 PMC9268513 35808055 10_3390_nano12132221 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Russian Science Foundation grantid: 21-72-10031 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c544t-3dfb3a10a972f464b06e71ce04d9bfd29eacb7b90bdf37f0f86eb747523eba9d3 |
IEDL.DBID | BENPR |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:08:50 EDT 2025 Thu Aug 21 18:43:18 EDT 2025 Thu Sep 04 18:36:58 EDT 2025 Fri Jul 25 12:06:28 EDT 2025 Thu Apr 03 07:04:37 EDT 2025 Tue Jul 01 00:51:17 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | molecular beam epitaxy bismuthene tellurene two-dimensional allotropes germanene 2D materials graphene analogs indiene stanene antimonene gallenene selenene thallene aluminene plumbene borophene silicene phosphorene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-3dfb3a10a972f464b06e71ce04d9bfd29eacb7b90bdf37f0f86eb747523eba9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4029-8353 |
OpenAccessLink | https://www.proquest.com/docview/2686190083?pq-origsite=%requestingapplication% |
PMID | 35808055 |
PQID | 2686190083 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc4105905df74e9d81d85084f2c65155 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9268513 proquest_miscellaneous_2687717277 proquest_journals_2686190083 pubmed_primary_35808055 crossref_citationtrail_10_3390_nano12132221 crossref_primary_10_3390_nano12132221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220628 |
PublicationDateYYYYMMDD | 2022-06-28 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220628 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhai (ref_143) 2019; 11 ref_139 Novoselov (ref_6) 2004; 306 Vinarskiy (ref_149) 2021; 2140 Wang (ref_119) 2014; 8 Lin (ref_86) 2018; 20 Petrov (ref_131) 2021; 8 Gou (ref_49) 2016; 3 Fleurence (ref_26) 2012; 108 Zhou (ref_108) 2020; 14 Tokmachev (ref_137) 2018; 9 Mannix (ref_59) 2015; 350 Huang (ref_29) 2017; 17 Li (ref_36) 2014; 26 Dirko (ref_145) 2022; 33 Grazianetti (ref_128) 2020; 14 Derivaz (ref_32) 2015; 15 Zhang (ref_100) 2015; 114 Gross (ref_39) 2014; 78 Qin (ref_97) 2011; 23 Zhu (ref_41) 2015; 14 Li (ref_92) 2018; 63 Li (ref_4) 2017; 4 Houssa (ref_9) 2016; 9 Lozovoy (ref_13) 2022; 64 Shi (ref_134) 2017; 9 Zhang (ref_159) 2021; 9 ref_22 ref_121 Torrengo (ref_37) 2016; 28 Khalil (ref_65) 2021; 33 Kiraly (ref_93) 2019; 13 Steenbergen (ref_101) 2019; 55 Lei (ref_81) 2019; 115 Tao (ref_8) 2015; 10 Penev (ref_98) 2012; 12 McCreary (ref_122) 2021; 8 Kumbhakar (ref_152) 2021; 45 Chiappe (ref_27) 2013; 26 Junquera (ref_158) 2020; 9 Gruznev (ref_73) 2020; 7 Golias (ref_106) 2018; 18 Zhang (ref_91) 2017; 46 ref_72 Liu (ref_87) 2020; 127 Chen (ref_89) 2017; 9 Houssa (ref_18) 2015; 27 Berbezier (ref_30) 2016; 10 Huang (ref_120) 2017; 17 ref_76 Wu (ref_94) 2019; 14 (ref_15) 2007; 76 Yuhara (ref_46) 2020; 59 Yuan (ref_67) 2017; 409 Choi (ref_164) 2022; 13 Koh (ref_165) 2010; 97 Wang (ref_85) 2018; 5 Vicarelli (ref_103) 2014; 1 Liao (ref_12) 2018; 14 Deng (ref_56) 2018; 17 Meng (ref_24) 2013; 13 Waller (ref_77) 2017; 17 Qin (ref_52) 2017; 29 Zhang (ref_104) 2016; 16 Qin (ref_118) 2017; 11 Mortazavi (ref_10) 2016; 213 Vogt (ref_20) 2012; 108 Pandey (ref_155) 2018; 16 Pinilla (ref_88) 2020; 120 Reis (ref_83) 2017; 357 Feng (ref_60) 2016; 8 Bampoulis (ref_54) 2018; 124 Ponomarenko (ref_3) 2020; 65 Izhnin (ref_161) 2020; 10 Niu (ref_82) 2019; 31 Balabai (ref_157) 2019; 9 Ji (ref_114) 2016; 7 Sharma (ref_124) 2018; 1 Tan (ref_166) 2014; 6 Kochat (ref_63) 2018; 4 Mukhopadhyay (ref_133) 2017; 7 Yao (ref_53) 2018; 112 Shubham (ref_136) 2018; 14 Takeda (ref_14) 1994; 50 Suehara (ref_96) 2010; 81 (ref_19) 2015; 10 Xian (ref_84) 2017; 4 Singh (ref_70) 2016; 6 Lin (ref_21) 2012; 5 Yeoh (ref_68) 2018; 445 Lambie (ref_102) 2021; 3 Nagarajan (ref_154) 2018; 229 Krukovskii (ref_144) 2021; 1954 Gou (ref_42) 2017; 1 Zhuang (ref_55) 2018; 5 Sun (ref_115) 2018; 12 Pang (ref_58) 2020; 517 Jose (ref_17) 2011; 13 Tao (ref_64) 2018; 5 Garg (ref_11) 2017; 19 Krawiec (ref_80) 2019; 6 Wu (ref_78) 2016; 29 Zhu (ref_90) 2017; 119 Vinogradov (ref_95) 2019; 13 Wang (ref_112) 2018; 57 Balendhran (ref_23) 2015; 11 Jamgotchian (ref_25) 2012; 24 Chen (ref_57) 2019; 34 Zhang (ref_107) 2018; 14 Mao (ref_116) 2018; 13 Acun (ref_7) 2015; 27 Lozovoy (ref_146) 2020; 384 (ref_34) 2016; 6 Gu (ref_111) 2017; 7 Persichetti (ref_50) 2016; 7 Xu (ref_105) 2017; 1 Dirko (ref_147) 2020; 22 Shahid (ref_153) 2018; 8 Pajtler (ref_69) 2019; 7 ref_66 ref_163 Penev (ref_61) 2016; 16 Wu (ref_99) 2012; 6 Xu (ref_75) 2017; 529 Shao (ref_79) 2018; 18 Zhang (ref_33) 2016; 116 Gibaja (ref_110) 2016; 55 Wu (ref_126) 2018; 47 Yu (ref_142) 2018; 20 Yuhara (ref_44) 2018; 5 Zhu (ref_135) 2018; 3 Lei (ref_113) 2016; 119 Cai (ref_127) 2020; 41 Ares (ref_109) 2016; 28 Nakano (ref_150) 2018; 19 ref_35 Pandey (ref_156) 2020; 531 Liu (ref_160) 2019; 11 Cheng (ref_138) 2020; 2 Molle (ref_5) 2017; 16 Kansara (ref_129) 2018; 1 Yuhara (ref_45) 2019; 31 Gao (ref_125) 2018; 10 Peng (ref_51) 2018; 12 Xu (ref_43) 2018; 97 Xenogiannopoulou (ref_117) 2022; 33 Bihlmayer (ref_47) 2020; 124 John (ref_132) 2017; 110 Jahangirov (ref_31) 2009; 102 Zhu (ref_74) 2014; 112 (ref_141) 2017; 119 Hu (ref_162) 2021; 13 Webb (ref_38) 2014; 224 Wang (ref_123) 2018; 1 Lozovoy (ref_148) 2020; 713 Liu (ref_62) 2021; 21 Khan (ref_1) 2021; 63 Krawiec (ref_48) 2019; 123 Aizawa (ref_28) 2014; 118 ref_2 Pandey (ref_140) 2019; 2115 Pang (ref_151) 2020; 120 Sahoo (ref_40) 2019; 6 Singh (ref_71) 2019; 9 Molle (ref_16) 2018; 47 Serifi (ref_130) 2021; 151 |
References_xml | – volume: 21 start-page: 35 year: 2021 ident: ref_62 article-title: Borophene synthesis beyond the single-atomic-layer limit publication-title: Nat. Mater. doi: 10.1038/s41563-021-01084-2 – volume: 55 start-page: 8872 year: 2019 ident: ref_101 article-title: Thickness dependent thermal stability of 2D gallenene publication-title: Chem. Commun. doi: 10.1039/C9CC03238J – volume: 15 start-page: 2510 year: 2015 ident: ref_32 article-title: Continuous Germanene Layer on Al(111) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00085 – volume: 13 start-page: 138106 year: 2018 ident: ref_116 article-title: Epitaxial growth of highly strained antimonene on Ag(111) publication-title: Front. Phys. doi: 10.1007/s11467-018-0757-3 – volume: 5 start-page: 045802 year: 2012 ident: ref_21 article-title: Structure of Silicene Grown on Ag(111) publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.045802 – volume: 124 start-page: 126401 year: 2020 ident: ref_47 article-title: Plumbene on a Magnetic Substrate: A Combined Scanning Tunneling Microscopy and Density Functional Theory Study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.126401 – volume: 29 start-page: 1606046 year: 2017 ident: ref_52 article-title: Direct Evidence of Dirac Signature in Bilayer Germanene Islands on Cu(111) publication-title: Adv. Mater. doi: 10.1002/adma.201606046 – volume: 50 start-page: 14916 year: 1994 ident: ref_14 article-title: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.14916 – volume: 112 start-page: 171607 year: 2018 ident: ref_53 article-title: Bandgap opening in hydrogenated germanene publication-title: Appl. Phys. Lett. doi: 10.1063/1.5026745 – volume: 17 start-page: 4619 year: 2017 ident: ref_120 article-title: Epitaxial Growth and Band Structure of Te Film on Graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01029 – volume: 13 start-page: 7304 year: 2011 ident: ref_17 article-title: Structures and electronic properties of silicene clusters: A promising material for FET and hydrogen storage publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02580a – volume: 8 start-page: 035056 year: 2021 ident: ref_131 article-title: Superconductivity in gallenene publication-title: 2D Mater. doi: 10.1088/2053-1583/ac0713 – volume: 9 start-page: 4233 year: 2020 ident: ref_158 article-title: Polymorphic gallium for active resonance tuning in photonic nanostructures: From bulk gallium to two-dimensional (2D) gallenene publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0314 – volume: 10 start-page: 12997 year: 2018 ident: ref_125 article-title: Unusually low thermal conductivity of atomically thin 2D tellurium publication-title: Nanoscale doi: 10.1039/C8NR01649F – volume: 110 start-page: 307 year: 2017 ident: ref_132 article-title: Optical properties of graphene, silicene, germanene, and stanene from IR to far UV A first principles study publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.06.026 – volume: 9 start-page: 774 year: 2016 ident: ref_9 article-title: Topological to trivial insulating phase transition in stanene publication-title: Nano Res. doi: 10.1007/s12274-015-0956-y – volume: 76 start-page: 075131 year: 2007 ident: ref_15 article-title: Electronic structure of silicon-based nanostructures publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.76.075131 – volume: 116 start-page: 256804 year: 2016 ident: ref_33 article-title: Structural and electronic properties of germanene on MoS2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.256804 – volume: 119 start-page: 106101 year: 2017 ident: ref_90 article-title: Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.106101 – volume: 97 start-page: 035122 year: 2018 ident: ref_43 article-title: Gapped electronic structure of epitaxial stanene on InSb(111) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035122 – volume: 118 start-page: 23049 year: 2014 ident: ref_28 article-title: Silicene on Zirconium Carbide (111) publication-title: J. Phys. Chem. C doi: 10.1021/jp505602c – ident: ref_139 doi: 10.1002/adfm.201910643 – volume: 13 start-page: 460 year: 2021 ident: ref_162 article-title: Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene publication-title: Nanoscale doi: 10.1039/D0NR05514J – volume: 33 start-page: 115603 year: 2022 ident: ref_145 article-title: High-resolution RHEED analysis of dynamics of low-temperature superstructure transitions in Ge/Si(001) epitaxial system publication-title: Nanotechnology doi: 10.1088/1361-6528/ac3f56 – volume: 7 start-page: 2666 year: 2019 ident: ref_69 article-title: Prospects for experimental realization of two-dimensional aluminium allotropes publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04718A – volume: 3 start-page: 045005 year: 2016 ident: ref_49 article-title: Strained monolayer germanene with 1 × 1 lattice on Sb(111) publication-title: 2D Mater. doi: 10.1088/2053-1583/3/4/045005 – volume: 1 start-page: 061002 year: 2017 ident: ref_105 article-title: One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au(111) by molecular-beam epitaxy publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.061002 – volume: 8 start-page: 013001 year: 2021 ident: ref_122 article-title: An outlook into the flat land of 2D materials beyond graphene: Synthesis, properties and device applications publication-title: 2D Mater. doi: 10.1088/2053-1583/abc13d – volume: 151 start-page: 106822 year: 2021 ident: ref_130 article-title: Electron-phonon contribution in aluminene: Superconductive and transport properties publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2021.106822 – ident: ref_121 doi: 10.1039/D1NH00113B – ident: ref_163 doi: 10.1007/978-981-15-2373-1 – volume: 1 start-page: 228 year: 2018 ident: ref_123 article-title: Field-effect transistors made from solution-grown two-dimensional tellurene publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 45 start-page: 142 year: 2021 ident: ref_152 article-title: Emerging 2D metal oxides and their applications publication-title: Mater. Today doi: 10.1016/j.mattod.2020.11.023 – ident: ref_66 doi: 10.1088/1367-2630/17/8/083014 – volume: 6 start-page: 1900752 year: 2019 ident: ref_40 article-title: A Perspective on Recent Advances in 2D Stanene Nanosheets publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900752 – volume: 119 start-page: 147401 year: 2017 ident: ref_141 article-title: Topological phase transitions in the photonic spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.147401 – volume: 14 start-page: 84 year: 2018 ident: ref_136 article-title: Electrochemical properties of stanene as an efficient anode material for Na-ion batteries publication-title: Comput. Condens. Matter doi: 10.1016/j.cocom.2018.01.006 – volume: 64 start-page: 1583 year: 2022 ident: ref_13 article-title: Two-dimensional materials of group IVA: Latest advances in epitaxial methods of growth publication-title: Russ. Phys. J. doi: 10.1007/s11182-022-02495-7 – volume: 10 start-page: 11163 year: 2016 ident: ref_30 article-title: Formation of Silicene Nanosheets on Graphite publication-title: ACS Nano doi: 10.1021/acsnano.6b06198 – volume: 529 start-page: 1600152 year: 2017 ident: ref_75 article-title: First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes publication-title: Ann. Phys. doi: 10.1002/andp.201600152 – volume: 20 start-page: 2296 year: 2018 ident: ref_142 article-title: Evolution of the topological properties of 2D group IVA materials and device design publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07420D – ident: ref_76 doi: 10.1002/adfm.201807004 – volume: 3 start-page: 499 year: 2021 ident: ref_102 article-title: Modulating the thermal and structural stability of gallenene via variation of atomistic thickness publication-title: Nanoscale Adv. doi: 10.1039/D0NA00737D – volume: 2115 start-page: 030351 year: 2019 ident: ref_140 article-title: Strain induced magnetism and half-metallicity in alkali metal substituted aluminene publication-title: AIP Conf. Proc. doi: 10.1063/1.5113190 – volume: 10 start-page: 4375 year: 2020 ident: ref_161 article-title: Epitaxial fabrication of 2D materials of group IV elements publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01372-4 – volume: 6 start-page: 8006 year: 2016 ident: ref_70 article-title: Indiene 2D monolayer: A new nanoelectronic material publication-title: RSC Adv. doi: 10.1039/C5RA25773E – volume: 224 start-page: 38 year: 2014 ident: ref_38 article-title: Future stuff: Stanene publication-title: New Sci. – volume: 14 start-page: 2385 year: 2020 ident: ref_108 article-title: Epitaxial Growth of Flat, Metallic Monolayer Phosphorene on Metal Oxide publication-title: ACS Nano doi: 10.1021/acsnano.9b09588 – volume: 12 start-page: 2441 year: 2012 ident: ref_98 article-title: Polymorphism of Two-Dimensional Boron publication-title: Nano Lett. doi: 10.1021/nl3004754 – ident: ref_22 doi: 10.7566/JPSJ.84.121003 – volume: 8 start-page: 7497 year: 2014 ident: ref_119 article-title: Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets publication-title: ACS Nano doi: 10.1021/nn5028104 – volume: 4 start-page: 041003 year: 2017 ident: ref_84 article-title: Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties publication-title: 2D Mater. doi: 10.1088/2053-1583/aa8418 – volume: 213 start-page: 865 year: 2016 ident: ref_10 article-title: Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.027 – volume: 1 start-page: 054004 year: 2017 ident: ref_42 article-title: Strain-induced band engineering in monolayer stanene on Sb(111) publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.054004 – volume: 7 start-page: 3246 year: 2016 ident: ref_50 article-title: van der Waals Heteroepitaxy of Germanene Islands on Graphite publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01284 – volume: 19 start-page: 31325 year: 2017 ident: ref_11 article-title: Stanene based gas sensors: Effect of spin–orbit coupling publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06133A – volume: 14 start-page: 344 year: 2018 ident: ref_12 article-title: Superconductivity in few-layer stanene publication-title: Nat. Phys. doi: 10.1038/s41567-017-0031-6 – volume: 78 start-page: 24 year: 2014 ident: ref_39 article-title: Stanene the next miracle material? publication-title: Chem. Ind. – volume: 115 start-page: 221602 year: 2019 ident: ref_81 article-title: Anisotropic electronic structure of antimonene publication-title: Appl. Phys. Lett. doi: 10.1063/1.5127090 – volume: 97 start-page: 114102 year: 2010 ident: ref_165 article-title: Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.3489993 – volume: 17 start-page: 1081 year: 2018 ident: ref_56 article-title: Epitaxial growth of ultraflat stanene with topological band inversion publication-title: Nat. Mater. doi: 10.1038/s41563-018-0203-5 – volume: 59 start-page: SN0801 year: 2020 ident: ref_46 article-title: Beyond silicene: Synthesis of germanene, stanene and plumbene publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ab8410 – volume: 20 start-page: 24250 year: 2018 ident: ref_86 article-title: Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04069A – volume: 13 start-page: 14511 year: 2019 ident: ref_95 article-title: Single-phase borophene on Ir(111): Formation, structure, and decoupling from the support publication-title: ACS Nano. doi: 10.1021/acsnano.9b08296 – volume: 14 start-page: 1804066 year: 2018 ident: ref_107 article-title: Epitaxial synthesis of blue phosphorene publication-title: Small doi: 10.1002/smll.201804066 – volume: 41 start-page: 081002 year: 2020 ident: ref_127 article-title: Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures publication-title: J. Semicond. doi: 10.1088/1674-4926/41/8/081002 – volume: 13 start-page: 685 year: 2013 ident: ref_24 article-title: Buckled Silicene Formation on Ir(111) publication-title: Nano Lett. doi: 10.1021/nl304347w – volume: 14 start-page: 1020 year: 2015 ident: ref_41 article-title: Epitaxial growth of two-dimensional stanene publication-title: Nat. Mater. doi: 10.1038/nmat4384 – volume: 55 start-page: 14345 year: 2016 ident: ref_110 article-title: Few-Layer Antimonene by Liquid-Phase Exfoliation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605298 – volume: 65 start-page: 1062 year: 2020 ident: ref_3 article-title: Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis publication-title: J. Commun. Technol. Electron. doi: 10.1134/S1064226920090090 – volume: 17 start-page: 4970 year: 2017 ident: ref_77 article-title: Synthesis of Antimonene on Germanium publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02111 – volume: 10 start-page: 202 year: 2015 ident: ref_19 article-title: Silicene transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.10 – volume: 108 start-page: 245501 year: 2012 ident: ref_26 article-title: Experimental Evidence for Epitaxial Silicene on Diboride Thin Films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.245501 – volume: 26 start-page: 4820 year: 2014 ident: ref_36 article-title: Buckled Germanene Formation on Pt(111) publication-title: Adv. Mater. doi: 10.1002/adma.201400909 – volume: 19 start-page: 76 year: 2018 ident: ref_150 article-title: Chemical modification of group IV graphene analogs publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2017.1422224 – volume: 229 start-page: 193 year: 2018 ident: ref_154 article-title: Investigation on adsorption properties of CO and NO gas molecules on aluminene nanosheet: A density functional application publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2017.12.015 – ident: ref_2 doi: 10.1002/adfm.202006997 – volume: 2140 start-page: 012001 year: 2021 ident: ref_149 article-title: Modelling of epitaxial growth of two-dimensional film publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2140/1/012001 – volume: 9 start-page: 7055 year: 2017 ident: ref_134 article-title: The ideal strength of two-dimensional stanene may reach or exceed the Griffith strength estimate publication-title: Nanoscale doi: 10.1039/C7NR00010C – volume: 1 start-page: 3428 year: 2018 ident: ref_129 article-title: Theoretical Investigation of Metallic Nanolayers For Charge-Storage Applications publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00578 – volume: 33 start-page: 125901 year: 2021 ident: ref_65 article-title: Two-dimensional aluminium, gallium, and indium metallic crystals by first-principles design publication-title: J. Phys. Condens. Matter. doi: 10.1088/1361-648X/abd3d9 – volume: 5 start-page: 1800475 year: 2018 ident: ref_85 article-title: High Bipolar Conductivity and Robust In-Plane Spontaneous Electric Polarization in Selenene publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800475 – volume: 46 start-page: 6746 year: 2017 ident: ref_91 article-title: Two-dimensional boron: Structures, properties and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00261K – volume: 7 start-page: 045026 year: 2020 ident: ref_73 article-title: Thallene: Graphene-like honeycomb lattice of Tl atoms frozen on single-layer NiSi2 publication-title: 2D Mater. doi: 10.1088/2053-1583/abaf35 – volume: 24 start-page: 172001 year: 2012 ident: ref_25 article-title: Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/17/172001 – volume: 123 start-page: 17019 year: 2019 ident: ref_48 article-title: Formation of silicene on ultrathin Pb(111) films publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04343 – volume: 12 start-page: 4754 year: 2018 ident: ref_51 article-title: Resolving the Controversial Existence of Silicene and Germanene Nanosheets Grown on Graphite publication-title: ACS Nano doi: 10.1021/acsnano.8b01467 – volume: 63 start-page: 282 year: 2018 ident: ref_92 article-title: Experimental realization of honeycomb borophene publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.02.006 – volume: 31 start-page: e1902606 year: 2019 ident: ref_82 article-title: Modulating Epitaxial Atomic Structure of Antimonene through Interface Design publication-title: Adv. Mater. doi: 10.1002/adma.201902606 – volume: 16 start-page: 4903 year: 2016 ident: ref_104 article-title: Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01459 – volume: 27 start-page: 443002 year: 2015 ident: ref_7 article-title: Germanene: The germanium analogue of graphene publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/27/44/443002 – volume: 10 start-page: 227 year: 2015 ident: ref_8 article-title: Silicene field-effect transistors operating at room temperature publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.325 – volume: 34 start-page: 105020 year: 2019 ident: ref_57 article-title: Multi-layer elemental 2D materials: Antimonene, germanene and stanene grown directly on molybdenum disulfides publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab3c8a – volume: 57 start-page: 8668 year: 2018 ident: ref_112 article-title: Bandgap-Tunable Preparation of Smooth and Large Two-Dimensional Antimonene publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804886 – volume: 1 start-page: 1950 year: 2018 ident: ref_124 article-title: Two-Dimensional Tellurene as Excellent Thermoelectric Material publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00032 – volume: 63 start-page: 100326 year: 2021 ident: ref_1 article-title: Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2021.100326 – ident: ref_72 doi: 10.1080/15376494.2021.1945172 – volume: 11 start-page: 640 year: 2015 ident: ref_23 article-title: Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene publication-title: Small doi: 10.1002/smll.201402041 – volume: 384 start-page: 125289 year: 2020 ident: ref_146 article-title: Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.125289 – volume: 114 start-page: 107003 year: 2015 ident: ref_100 article-title: Detection of a Superconducting Phase in a Two-Atom Layer of Hexagonal Ga Film Grown on Semiconducting GaN(0001) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.107003 – volume: 47 start-page: 7206 year: 2018 ident: ref_126 article-title: Tellurene: Its physical properties, scalable nanomanufacturing, and device applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00598B – volume: 8 start-page: 1001 year: 2018 ident: ref_153 article-title: Dual functional passivating layer of graphene/TiO2 for improved performance of dye-synthesized solar cells publication-title: Appl. Nanosci. doi: 10.1007/s13204-018-0685-0 – volume: 5 start-page: 035009 year: 2018 ident: ref_64 article-title: Gallenene epitaxially grown on Si(1 1 1) publication-title: 2D Mater. doi: 10.1088/2053-1583/aaba3a – volume: 102 start-page: 236804 year: 2009 ident: ref_31 article-title: Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.236804 – volume: 4 start-page: 021306 year: 2017 ident: ref_4 article-title: Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics publication-title: Appl. Phys. Rev. doi: 10.1063/1.4983646 – volume: 7 start-page: 13352 year: 2016 ident: ref_114 article-title: Two-dimensional antimonene single crystals grown by van der Waals epitaxy publication-title: Nat. Commun. doi: 10.1038/ncomms13352 – volume: 9 start-page: 1011 year: 2019 ident: ref_157 article-title: Flexible 2D layered material junctions publication-title: Appl. Nanosci. doi: 10.1007/s13204-018-0709-9 – volume: 350 start-page: 1513 year: 2015 ident: ref_59 article-title: Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs publication-title: Science doi: 10.1126/science.aad1080 – volume: 531 start-page: 147364 year: 2020 ident: ref_156 article-title: Improved gas adsorption on functionalized aluminene surface: A first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147364 – volume: 47 start-page: 6370 year: 2018 ident: ref_16 article-title: Silicene, silicene derivatives, and their device applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00338F – volume: 1 start-page: 025001 year: 2014 ident: ref_103 article-title: Isolation and characterization of few-layer black phosphorus publication-title: 2D Mater. doi: 10.1088/2053-1583/1/2/025001 – volume: 28 start-page: 045002 year: 2016 ident: ref_37 article-title: Evidence for germanene growth on epitaxial hexagonal (h)-AlN on Ag(111) publication-title: J. Phys. Condens. Matt. doi: 10.1088/0953-8984/28/4/045002 – volume: 27 start-page: 253002 year: 2015 ident: ref_18 article-title: Silicene: A review of recent experimental and theoretical investigations publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/27/25/253002 – volume: 8 start-page: 563 year: 2016 ident: ref_60 article-title: Experimental realization of two-dimensional boron sheets publication-title: Nat. Chem. doi: 10.1038/nchem.2491 – volume: 23 start-page: 225501 year: 2011 ident: ref_97 article-title: First-principles studies for the stability of a graphene-like boron layer on CrB2(0001) and MoB2(0001) publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/23/22/225501 – volume: 11 start-page: 1 year: 2019 ident: ref_160 article-title: Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials publication-title: Nano-Micro Lett. doi: 10.1049/mnl.2015.0108 – volume: 26 start-page: 2096 year: 2013 ident: ref_27 article-title: Two-Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface publication-title: Adv. Mater. doi: 10.1002/adma.201304783 – ident: ref_35 doi: 10.1088/1367-2630/16/9/095002 – volume: 120 start-page: 114095 year: 2020 ident: ref_151 article-title: Two-dimensional ligand-functionalized plumbene: A promising candidate for ferroelectric and topological order with a large bulk band gap publication-title: Phys. E Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2020.114095 – volume: 124 start-page: 125301 year: 2018 ident: ref_54 article-title: Ge2Pt hut clusters: A substrate for germanene publication-title: J. Appl. Phys. doi: 10.1063/1.5046997 – volume: 3 start-page: 040802 year: 2018 ident: ref_135 article-title: Silicene: Recent theoretical advances publication-title: Appl. Phys. Rev. – volume: 306 start-page: 666 year: 2004 ident: ref_6 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 12 start-page: 6100 year: 2018 ident: ref_115 article-title: van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene publication-title: ACS Nano doi: 10.1021/acsnano.8b02374 – volume: 22 start-page: 19318 year: 2020 ident: ref_147 article-title: Thickness-dependent elastic strain in Stranski–Krastanow growth publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP03538F – volume: 18 start-page: 6672 year: 2018 ident: ref_106 article-title: Band Renormalization of Blue Phosphorus on Au(111) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01305 – volume: 14 start-page: 44 year: 2019 ident: ref_94 article-title: Large-area single-crystal sheets of borophene on Cu(111) surfaces publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0317-6 – volume: 11 start-page: 10222 year: 2017 ident: ref_118 article-title: Controlled Growth of a Large-Size 2D Selenium Nanosheet and Its Electronic and Optoelectronic Applications publication-title: ACS Nano doi: 10.1021/acsnano.7b04786 – volume: 11 start-page: 064047 year: 2019 ident: ref_143 article-title: Valley-Mediated and Electrically Switched Bipolar-Unipolar Transition of the Spin-Diode Effect in Heavy Group-IV Monolayers publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064047 – volume: 2 start-page: 027101 year: 2020 ident: ref_138 article-title: First-principles study of magnetism and electric field effects in 2D systems publication-title: AVS Quantum Sci. doi: 10.1116/5.0009316 – volume: 112 start-page: 176802 year: 2014 ident: ref_74 article-title: Semiconducting Layered Blue Phosphorus: A Computational Study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.176802 – volume: 18 start-page: 2133 year: 2018 ident: ref_79 article-title: Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00429 – volume: 9 start-page: 1672 year: 2018 ident: ref_137 article-title: Emerging two-dimensional ferromagnetism in silicene materials publication-title: Nat. Commun. doi: 10.1038/s41467-018-04012-2 – volume: 108 start-page: 155501 year: 2012 ident: ref_20 article-title: Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.155501 – volume: 16 start-page: 2522 year: 2016 ident: ref_61 article-title: Can Two-Dimensional Boron Superconduct? publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00070 – volume: 4 start-page: e1701373 year: 2018 ident: ref_63 article-title: Atomically thin gallium layers from solid-melt exfoliation publication-title: Sci. Adv. doi: 10.1126/sciadv.1701373 – volume: 6 start-page: 045028 year: 2019 ident: ref_80 article-title: Antimonene on Pb quantum wells publication-title: 2D Mater. doi: 10.1088/2053-1583/ab33ba – volume: 517 start-page: 146224 year: 2020 ident: ref_58 article-title: Epitaxial growth of honeycomb-like stanene on Au(111) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146224 – volume: 119 start-page: 015302 year: 2016 ident: ref_113 article-title: Electronic structure of antimonene grown on Sb2Te3(111) and Bi2Te3 substrates publication-title: J. Appl. Phys. doi: 10.1063/1.4939281 – volume: 14 start-page: 1900439 year: 2020 ident: ref_128 article-title: The Xenes generations: A taxonomy of epitaxial single-element 2D materials publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900439 – volume: 127 start-page: 065103 year: 2020 ident: ref_87 article-title: Abnormally low thermal conductivity of 2D selenene: An ab initio study publication-title: J. Appl. Phys. doi: 10.1063/1.5135092 – volume: 81 start-page: 085423 year: 2010 ident: ref_96 article-title: Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.085423 – volume: 713 start-page: 138363 year: 2020 ident: ref_148 article-title: Thickness-dependent surface energy and formation of epitaxial quantum dots publication-title: Thin Solid Films doi: 10.1016/j.tsf.2020.138363 – volume: 29 start-page: 1605407 year: 2016 ident: ref_78 article-title: Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2 publication-title: Adv. Mater. doi: 10.1002/adma.201605407 – volume: 7 start-page: 1700447 year: 2017 ident: ref_111 article-title: Liquid-Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700447 – volume: 120 start-page: 26267 year: 2020 ident: ref_88 article-title: Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.26267 – volume: 6 start-page: 20714 year: 2016 ident: ref_34 article-title: Few layer epitaxial germanene: A novel two-dimensional Dirac material publication-title: Sci. Rep. doi: 10.1038/srep20714 – volume: 6 start-page: 7443 year: 2012 ident: ref_99 article-title: Two-Dimensional Boron Monolayer Sheets publication-title: ACS Nano doi: 10.1021/nn302696v – volume: 28 start-page: 6332 year: 2016 ident: ref_109 article-title: Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions publication-title: Adv. Mater. doi: 10.1002/adma.201602128 – volume: 9 start-page: 15945 year: 2017 ident: ref_89 article-title: Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy publication-title: Nanoscale doi: 10.1039/C7NR04085G – volume: 9 start-page: 17300 year: 2019 ident: ref_71 article-title: Effect of electric field on optoelectronic properties of indiene monolayer for photoelectric nanodevices publication-title: Sci. Rep. doi: 10.1038/s41598-019-53631-2 – volume: 16 start-page: 163 year: 2017 ident: ref_5 article-title: Buckled two-dimensional Xene sheets publication-title: Nat. Mater. doi: 10.1038/nmat4802 – volume: 445 start-page: 161 year: 2018 ident: ref_68 article-title: First-principles studies on the superconductivity of aluminene publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.133 – volume: 13 start-page: 3816 year: 2019 ident: ref_93 article-title: Borophene Synthesis on Au(111) publication-title: ACS Nano doi: 10.1021/acsnano.8b09339 – volume: 409 start-page: 85 year: 2017 ident: ref_67 article-title: Stability, electronic and thermodynamic properties of aluminene from first-principles calculations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.238 – volume: 16 start-page: e00319 year: 2018 ident: ref_155 article-title: First-principles study of adsorption of 3d and 4d transition metal atoms on aluminene publication-title: Comput. Condens. Matter doi: 10.1016/j.cocom.2018.e00319 – volume: 6 start-page: 10584 year: 2014 ident: ref_166 article-title: Atomic layer deposition of a MoS2 film publication-title: Nanoscale doi: 10.1039/C4NR02451F – volume: 17 start-page: 1161 year: 2017 ident: ref_29 article-title: Sequence of Silicon Monolayer Structures Grown on a Ru Surface: From a Herringbone Structure to Silicene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04804 – volume: 31 start-page: 1901017 year: 2019 ident: ref_45 article-title: Graphene’s latest cousin: Plumbene epitaxial growth on a “Nano WaterCube” publication-title: Adv. Mater. doi: 10.1002/adma.201901017 – volume: 33 start-page: 015701 year: 2022 ident: ref_117 article-title: Ultrathin epitaxial Bi film growth on 2D HfTe2 template publication-title: Nanotechnology doi: 10.1088/1361-6528/ac2d08 – volume: 5 start-page: 025002 year: 2018 ident: ref_44 article-title: Large area planar stanene epitaxially grown on Ag(1 1 1) publication-title: 2D Mater. doi: 10.1088/2053-1583/aa9ea0 – volume: 13 start-page: 1484 year: 2022 ident: ref_164 article-title: Large-scale synthesis of graphene and other 2D materials towards industrialization publication-title: Nat. Commun. doi: 10.1038/s41467-022-29182-y – volume: 357 start-page: 287 year: 2017 ident: ref_83 article-title: Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material publication-title: Science doi: 10.1126/science.aai8142 – volume: 7 start-page: 15818 year: 2017 ident: ref_133 article-title: Effective mechanical properties of multilayer nano-heterostructures publication-title: Sci. Rep. doi: 10.1038/s41598-017-15664-3 – volume: 5 start-page: 1800207 year: 2018 ident: ref_55 article-title: Dirac Signature in Germanene on Semiconducting Substrate publication-title: Adv. Sci. doi: 10.1002/advs.201800207 – volume: 9 start-page: 16645 year: 2021 ident: ref_159 article-title: Controllable sign reversal of Seeback coefficient and the large tenability of ZT value of plumbene: A first-principles study publication-title: J. Mater. Chem. C doi: 10.1039/D1TC03790K – volume: 1954 start-page: 012024 year: 2021 ident: ref_144 article-title: Microstructure and properties of a silicon coating deposited on a titanium nickelide substrate using molecular-beam epitaxy equipment publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1954/1/012024 |
SSID | ssj0000913853 |
Score | 2.3722022 |
SecondaryResourceType | review_article |
Snippet | Today, two-dimensional materials are one of the key research topics for scientists around the world. Interest in 2D materials is not surprising because, thanks... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2221 |
SubjectTerms | 2D materials aluminene Aluminum Antimony Arsenic Bismuth Boron Borophene Carbon Crystal lattices Crystal structure Electronics Epitaxial growth Germanium Graphene graphene analogs Lead Magnetic properties Molecular beam epitaxy Optical properties Phosphorene Review Silicene Silicon Tin Two dimensional materials two-dimensional allotropes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQkj7dpEWF9hREZD0sK7c-Ng0t20sayM3oSQLBG7obSP59ZmRn8YaWXnoySIOQRyPNN2j0DSEfAFVom7VmTZsTU8oE5oLzLNU2WZ2FTxLfDs9_Nsen6vuZPpuU-sKcsIEeeFDcQQ6YiGi5jtmoZCPgqxZAhcoiYBXvwl4KPm8STJUz2NYSHNGQ6S4hrj_oXb9A-jLwh_WGDypU_X_Clw_TJCd-52ibPB0BI_00THSHPEr9M_JkQiP4nPw4gc9lYrMhFZyKr3TuVoNpUV-eqNBvSEwN59ohnZea0Uu6yHSGJUNuQIye3PaABJcXyxfk9Gj268sxG4sksKCVWjEZs5eu5s4akVWjPG-SqUPiKlqfo7BwsnrjLfcxS5N5bpvkIYaAADR5Z6N8Sbb6RZ9eExpsyMJx42x2yinZtjl67ZogAERJHiuyf6-2LowM4ljI4rKDSAKV3E2VXJGPa-mrgTnjL3KfcQXWMsh3XRrACrrRCrp_WUFF9u7Xrxs34bITTQvhIYLMirxfd8P2wTsR16fFdZExBkGcqcirYbnXM8Eb4pbj4GbDEDamutnTX5wXim4L4-pavvkf_7ZLHgt8c8EbJto9srX6fZ3eAhJa-XfF6O8AXjMHYg priority: 102 providerName: Directory of Open Access Journals |
Title | Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35808055 https://www.proquest.com/docview/2686190083 https://www.proquest.com/docview/2687717277 https://pubmed.ncbi.nlm.nih.gov/PMC9268513 https://doaj.org/article/fc4105905df74e9d81d85084f2c65155 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA72-qIP4m9X6xFBnyQ0l002iS9i9a5FuSLWQt-WJJtooezW7hX0v3dmd2-9E_VpYTOEkEkm30wm3xDyAlCFskkpVpgUmZQ6MBecZ3Fmo1VJ-Jjj2-HlcXF0Kj-cqbMh4NYOaZVrm9gZ6qoJGCPfF4UBrI-I4c3ld4ZVo_B2dSihsUN2wQQbNSG7B_PjT5_HKAuyXsKB1Ge85-Df79eubpDGDM7F2dZZ1FH2_w1n_pkuuXH-LO6Q2wNwpG97Td8lN2J9j9zaoBO8Tz6ewOcisnmfEk7Fe7p0q36JUd89VaGHSFAN9u01XXa1o1vaJDrH0iE_QIye_KwBEbbn7QNyuph_eXfEhmIJLCgpVyyvks_djDurRZKF9LyIehYil5X1qRIWLKzX3nJfpVwnnkwRPfgS4IhG72yVPySTuqnjY0KDDUk4rp1NTjqZG5Mqr1wRBICpnFcZebWetjIMTOJY0OKiBI8CJ7ncnOSMvBylL3sGjX_IHaAGRhnkve5-NFdfy2EblSlgWqrlqkpaRlsB2jYAMWUSAWu6q4zsrfVXDpuxLX8vnYw8H5thG-HdiKtjc93JaI1gTmfkUa_ucSR4U2w4dq63FsLWULdb6vNvHVW3hX7VLH_y_2E9JTcFvqrgBRNmj0xWV9fxGWCdlZ-SHbM4nA7LetpFDH4BA2kDEA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiDeBAkaiJxTVcZw4RkKI0i1btrtCtJV6S23HhkpVUpqtoH-K38hMXuwi4NZTpHhkWZ7XZ3sehLwEVJEonyRhmnkXCiFtqK02oYuUU4nnxsWYOzydpeND8fEoOVohP_tcGAyr7G1iY6iLyuId-SZPM8D6iBjenn0LsWsUvq72LTRasZi4y-9wZKvf7G4Dfzc43xkdvB-HXVeB0CZCzMO48CbWEdNKci9SYVjqZGQdE4UyvuAKTJGRRjFT-Fh65rPUGQDdcGJzRqsihnmvkTWAGQq0aG1rNPv0ebjVwSqb4ADbCPs4Vmyz1GWFZdPAD0dLvq9pEfA3XPtneOaCv9u5TW51QJW-ayXrDllx5V1yc6F84T0y2YfPqQtHbQg65dt0quetSFPTpMbQD1gQG-zpazptelXXtPJ0hK1KfgAZ3b8sAYHWJ_V9cngl2_iArJZV6R4RapX1XDOplddCizjLfGESnVoO4C1mRUBe9duW265yOTbQOM3hBIObnC9uckA2BuqztmLHP-i2kAMDDdbZbn5U51_yTm1zbzEMVrGk8FI4VQC6zwDSCs8t9pBPArLe8y_vlL_Of4tqQF4Mw6C2-BajS1ddNDRSIniUAXnYsntYCb5MZwwnl0uCsLTU5ZHy5GtTGlzBvEkUP_7_sp6T6-OD6V6-tzubPCE3OGZ0sDTk2TpZnZ9fuKeAs-bmWSfclBxftT79ArHPQCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXGnMMBI7AlFdR0njpEQYrRlo7SaGJP2FmzHhklTMtZOsL_Gr-OcJC0tAt72FCk-siyf22f7XACeI6pIdEiSKM2Cj6RULjLO2Mj3tddJENbHlDs8maa7h_L9UXK0AT8XuTAUVrmwibWhLipHd-Q9kWaI9Qkx9EIbFrE_GL0-_RZRByl6aV2002hEZOwvvuPxbfZqb4C83hZiNPz0djdqOwxELpFyHsVFsLHpc6OVCDKVlqde9Z3nstA2FEKjWbLKam6LEKvAQ5Z6iwAcT2_eGl3EOO8V2FToFbMObO4Mp_sflzc8VHETnWETbR_HmvdKU1ZUQg19cn_ND9btAv6Gcf8M1VzxfaObcKMFrexNI2W3YMOXt-H6SinDOzA-wM-Jj4ZNODoTAzYx80a8ma3TZNg7Ko6NtvUlm9R9q2esCmxIbUt-IBk7uCgRjc6OZ3fh8FK28R50yqr0D4A57YIwXBkdjDQyzrJQ2MSkTiCQi3nRhReLbctdW8Wcmmmc5HiaoU3OVze5C9tL6tOmesc_6HaIA0saqrld_6jOvuStCufBUUis5kkRlPS6QKSfIbyVQTjqJ590YWvBv7w1BLP8t9h24dlyGFWY3mVM6avzmkYpApKqC_cbdi9XQq_UGafJ1ZogrC11faQ8_lqXCdc4b9KPH_5_WU_hKupR_mFvOn4E1wQld_A0EtkWdOZn5_4xQq65fdLKNoPPl61OvwApvERY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Element+2D+Materials+beyond+Graphene%3A+Methods+of+Epitaxial+Synthesis&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Lozovoy%2C+Kirill+A.&rft.au=Izhnin%2C+Ihor+I.&rft.au=Kokhanenko%2C+Andrey+P.&rft.au=Dirko%2C+Vladimir+V.&rft.date=2022-06-28&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=12&rft.issue=13&rft.spage=2221&rft_id=info:doi/10.3390%2Fnano12132221&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano12132221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |