Polymer Functionalized Nanoparticles in Blue Phase LC: Effect of Particle Shape
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 12; no. 1; p. 91 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. |
---|---|
AbstractList | Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔT ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n- -butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔT > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔT BP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n- trans -butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔT BP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects. |
Author | Zhang, Manlin Roohnikan, Mahdi Reven, Linda Toader, Violeta Lennox, Robert Bruce Lindner-D’Addario, Michael |
AuthorAffiliation | Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada; Manlin.Zhang@mail.mcgill.ca (M.Z.); michael.lindner-daddario@mail.mcgill.ca (M.L.-D.); Mahdi.Roohnikan@mail.mcgill.ca (M.R.); Violeta.Toader@mcgill.ca (V.T.); bruce.lennox@mcgill.ca (R.B.L.) |
AuthorAffiliation_xml | – name: Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada; Manlin.Zhang@mail.mcgill.ca (M.Z.); michael.lindner-daddario@mail.mcgill.ca (M.L.-D.); Mahdi.Roohnikan@mail.mcgill.ca (M.R.); Violeta.Toader@mcgill.ca (V.T.); bruce.lennox@mcgill.ca (R.B.L.) |
Author_xml | – sequence: 1 givenname: Manlin surname: Zhang fullname: Zhang, Manlin – sequence: 2 givenname: Michael surname: Lindner-D’Addario fullname: Lindner-D’Addario, Michael – sequence: 3 givenname: Mahdi surname: Roohnikan fullname: Roohnikan, Mahdi – sequence: 4 givenname: Violeta surname: Toader fullname: Toader, Violeta – sequence: 5 givenname: Robert Bruce surname: Lennox fullname: Lennox, Robert Bruce – sequence: 6 givenname: Linda orcidid: 0000-0002-6643-6371 surname: Reven fullname: Reven, Linda |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35010041$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQQC1UREvojTOyxIUDAX-t1-aABFELlSIaCThbXu-4cbSxU3sXqfx6dkmo0oqTR_ab57FnnqOTmCIg9JKSd5xr8j7amCgjlBBNn6AzRmo9F1rTk6P4FJ2XsiFkYriq-DN0yqspRdAzdL1K3d0WMr4coutDirYLv6HF30bxzuY-uA4KDhF_7gbAq7UtgJeLD_jCe3A9Th6vDhT-vrY7eIGeetsVOD-sM_Tz8uLH4ut8ef3lavFpOXeVEP2cC65d2yjh2rrxjionOVWWy8YqprmjYBmnsiJgdau1bjz3wKEG6YmVouUzdLX3tsluzC6Hrc13Jtlg_m6kfGMOdZmm5RqUZZ6qSjBbNVqONzSVk0IINcYz9HHv2g3NFloHsc-2eyB9eBLD2tykX0bVQnJJR8GbgyCn2wFKb7ahOOg6GyENxTBJlSa60mxEXz9CN2nI46_vKSarupqoV8cV3Zfyr28j8HYPuJxKyeDvEUrMNBnmeDJGnD3CXejt1O7xPaH7f9IfhRq6tg |
CitedBy_id | crossref_primary_10_3390_nano12091421 |
Cites_doi | 10.1039/C4NR01325E 10.1080/02678292.2015.1053001 10.1088/1468-6996/16/3/033501 10.1103/PhysRevLett.45.641 10.1103/PhysRevE.81.041703 10.1039/c3sm00065f 10.1021/acs.chemmater.7b05310 10.1103/PhysRevLett.104.017801 10.1039/c3tc31253d 10.1021/acsami.7b01502 10.1143/APEX.2.121501 10.1021/acsnano.5b07379 10.1021/nl204030t 10.1109/JDT.2010.2055039 10.1021/acs.langmuir.6b02256 10.1007/430_2007_075 10.1039/c3ra43546f 10.1039/C6NR00607H 10.1103/PhysRevE.59.763 10.1103/PhysRevLett.46.1216 10.1038/ncomms4954 10.1080/02678292.2010.519057 10.1039/B908676E 10.1039/b806375c 10.1007/b97374 10.1063/1.480628 10.1039/c2sm07155j 10.1103/PhysRevE.67.042701 10.1103/PhysRevE.89.052505 10.1080/02678292.2018.1555723 10.1002/smll.201200052 10.1103/PhysRevE.88.062507 10.1039/C5CC06146F 10.1021/la047193e 10.1039/c1sm05764b 10.1073/pnas.1015831108 10.1038/srep44575 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano12010091 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_bd39e8a2f18542a5b9693cb5c6444869 PMC8746361 35010041 10_3390_nano12010091 |
Genre | Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council grantid: Discovery Grant 220439 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c544t-3439cdb84cd7bfc18c6318a36ba8293c1ea231650ea9d999bf3fe3e7e6f0a64d3 |
IEDL.DBID | BENPR |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 17:41:21 EDT 2025 Fri Jul 11 02:33:28 EDT 2025 Fri Jul 25 12:16:09 EDT 2025 Wed Feb 19 02:28:29 EST 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 01:17:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | blue phase liquid crystals gold nanoparticles polymers |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-3439cdb84cd7bfc18c6318a36ba8293c1ea231650ea9d999bf3fe3e7e6f0a64d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6643-6371 |
OpenAccessLink | https://www.proquest.com/docview/2618265752?pq-origsite=%requestingapplication% |
PMID | 35010041 |
PQID | 2618265752 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd39e8a2f18542a5b9693cb5c6444869 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746361 proquest_miscellaneous_2618909592 proquest_journals_2618265752 pubmed_primary_35010041 crossref_primary_10_3390_nano12010091 crossref_citationtrail_10_3390_nano12010091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211229 |
PublicationDateYYYYMMDD | 2021-12-29 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211229 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yoshizawa (ref_8) 2013; 3 Wang (ref_35) 2013; 1 Roohnikan (ref_23) 2019; 46 Wang (ref_36) 2012; 8 Matsuyama (ref_31) 2000; 112 Rahman (ref_4) 2015; 16 Senyuk (ref_13) 2012; 12 Wang (ref_19) 2015; 51 Matsuyama (ref_30) 1999; 59 Ravnik (ref_20) 2011; 108 Meiboom (ref_2) 1981; 46 Gharbi (ref_22) 2016; 10 Gvozdovskyy (ref_24) 2015; 42 Matsuyama (ref_32) 2003; 67 Choudhary (ref_37) 2014; 6 Ravnik (ref_9) 2010; 144 Chen (ref_33) 2010; 6 Dierking (ref_10) 2012; 8 Corbierre (ref_28) 2005; 21 Oton (ref_39) 2017; 7 Senyuk (ref_16) 2013; 88 Stratford (ref_21) 2014; 5 Kikuchi (ref_7) 2007; Volume 128 Rucareanu (ref_26) 2008; 18 Schulz (ref_38) 2016; 8 Kitzerow (ref_3) 2009; 7232 Johnson (ref_1) 1980; 27 Kasch (ref_11) 2013; 9 Liu (ref_17) 2014; 89 Chang (ref_27) 2018; 30 ref_29 Karatairi (ref_14) 2010; 8 Yoshida (ref_15) 2009; 2 Roohnikan (ref_25) 2016; 32 Cordoyiannis (ref_34) 2010; 37 Wong (ref_18) 2011; 7 Fukuda (ref_5) 2010; 104 Jo (ref_12) 2017; 9 ref_6 |
References_xml | – volume: 6 start-page: 7743 year: 2014 ident: ref_37 article-title: Advances in gold nanoparticle–liquid crystal composites publication-title: Nanoscale doi: 10.1039/C4NR01325E – volume: 42 start-page: 1391 year: 2015 ident: ref_24 article-title: ‘Blue phases’ of highly chiral thermotropic liquid crystals with a wide range of near-room temperature publication-title: Liq. Cryst. doi: 10.1080/02678292.2015.1053001 – volume: 16 start-page: 033501 year: 2015 ident: ref_4 article-title: Blue phase liquid crystal: Strategies for phase stabilization and device development publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/16/3/033501 – volume: 27 start-page: 641 year: 1980 ident: ref_1 article-title: Structure and properties of the cholesteric blue phases publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.641 – volume: 8 start-page: 041703 year: 2010 ident: ref_14 article-title: Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.041703 – volume: 9 start-page: 4789 year: 2013 ident: ref_11 article-title: Stabilization of the liquid crystalline blue phase by the addition of short-chain polystyrene publication-title: Soft Matter doi: 10.1039/c3sm00065f – volume: 30 start-page: 1427 year: 2018 ident: ref_27 article-title: Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b05310 – volume: 104 start-page: 017801 year: 2010 ident: ref_5 article-title: Novel Defect Structures in a Strongly Confined Liquid-Crystalline Blue Phase publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.017801 – volume: 1 start-page: 6526 year: 2013 ident: ref_35 article-title: Polymer-stabilized nanoparticle-enriched blue phase liquid crystals publication-title: J. Mater. Chem. C doi: 10.1039/c3tc31253d – volume: 9 start-page: 8941 year: 2017 ident: ref_12 article-title: Polymer stabilization of liquid-crystal blue phase II toward photonic crystals publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01502 – volume: 2 start-page: 121501 year: 2009 ident: ref_15 article-title: Nanoparticle-stabilized cholesteric blue phases publication-title: Appl. Phys. Exp. doi: 10.1143/APEX.2.121501 – volume: 10 start-page: 3410 year: 2016 ident: ref_22 article-title: Reversible nanoparticle cubic lattices in blue phase liquid crystals publication-title: ACS Nano doi: 10.1021/acsnano.5b07379 – volume: 12 start-page: 955 year: 2012 ident: ref_13 article-title: Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals publication-title: Nano Lett. doi: 10.1021/nl204030t – volume: 6 start-page: 318 year: 2010 ident: ref_33 article-title: Hysteresis effects in blue-phase liquid crystals publication-title: J. Display Technol. doi: 10.1109/JDT.2010.2055039 – volume: 32 start-page: 8442 year: 2016 ident: ref_25 article-title: Hydrogen-bonded liquid crystal nanocomposites publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02256 – volume: Volume 128 start-page: 99 year: 2007 ident: ref_7 article-title: Liquid Crystalline Blue Phases publication-title: Liquid Crystalline Blue Phases in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures doi: 10.1007/430_2007_075 – volume: 3 start-page: 25475 year: 2013 ident: ref_8 article-title: Material design for blue phase liquid crystals and their electro-optical effects publication-title: RSC Adv. doi: 10.1039/c3ra43546f – volume: 8 start-page: 7296 year: 2016 ident: ref_38 article-title: Effective PEGylation of gold nanorods publication-title: Nanoscale doi: 10.1039/C6NR00607H – volume: 59 start-page: 763 year: 1999 ident: ref_30 article-title: Phase separations and orientational ordering of polymers in liquid crystal solvents publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.763 – volume: 46 start-page: 1216 year: 1981 ident: ref_2 article-title: Theory of the blue phase of cholesteric liquid crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.1216 – volume: 5 start-page: 3954 year: 2014 ident: ref_21 article-title: Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials publication-title: Nat. Commun. doi: 10.1038/ncomms4954 – volume: 37 start-page: 1419 year: 2010 ident: ref_34 article-title: Blue phase III widening in CE6-dispersed surface-functionalised CdSe nanoparticles publication-title: Liq. Cryst. doi: 10.1080/02678292.2010.519057 – ident: ref_29 – volume: 144 start-page: 159 year: 2010 ident: ref_9 article-title: Mesoscopic modelling of colloids in chiral nematics publication-title: Faraday Discuss. doi: 10.1039/B908676E – volume: 7232 start-page: 723205 year: 2009 ident: ref_3 article-title: Blue phases come of age: A review publication-title: Emerg. Liq. Cryst. Technol. IV – volume: 18 start-page: 5830 year: 2008 ident: ref_26 article-title: Polymer-capped gold nanoparticles by ligand-exchange reactions publication-title: J. Mater. Chem. doi: 10.1039/b806375c – ident: ref_6 doi: 10.1007/b97374 – volume: 112 start-page: 1046 year: 2000 ident: ref_31 article-title: Induced nematic phase in a polymer/liquid crystal mixture publication-title: J. Chem. Phys. doi: 10.1063/1.480628 – volume: 8 start-page: 4355 year: 2012 ident: ref_10 article-title: Stabilising liquid crystalline blue phases publication-title: Soft Matter doi: 10.1039/c2sm07155j – volume: 67 start-page: 042701 year: 2003 ident: ref_32 article-title: Conformational transitions of a semiflexible polymer in nematic solvents publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.042701 – volume: 89 start-page: 052505 year: 2014 ident: ref_17 article-title: Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.052505 – volume: 46 start-page: 1067 year: 2019 ident: ref_23 article-title: Hydrogen-bonded LC nanocomposites: Characterization of nanoparticle-LC interactions by solid-state NMR and FTIR spectroscopies publication-title: Liq. Cryst. doi: 10.1080/02678292.2018.1555723 – volume: 8 start-page: 2189 year: 2012 ident: ref_36 article-title: Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles publication-title: Small doi: 10.1002/smll.201200052 – volume: 88 start-page: 062507 year: 2013 ident: ref_16 article-title: Rotational and translational diffusion of anisotropic gold nanoparticles in liquid crystals controlled by varying surface anchoring publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.062507 – volume: 51 start-page: 15039 year: 2015 ident: ref_19 article-title: NIR Light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods publication-title: Chem. Commun. doi: 10.1039/C5CC06146F – volume: 21 start-page: 6063 year: 2005 ident: ref_28 article-title: Gold nanoparticle/polymer nanocomposites: Dispersion of nanoparticles as a function of capping agent molecular weight and grafting density publication-title: Langmuir doi: 10.1021/la047193e – volume: 7 start-page: 7956 year: 2011 ident: ref_18 article-title: Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase publication-title: Soft Matter doi: 10.1039/c1sm05764b – volume: 108 start-page: 5188 year: 2011 ident: ref_20 article-title: Three-dimensional colloidal crystals in liquid crystalline blue phases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1015831108 – volume: 7 start-page: 44575 year: 2017 ident: ref_39 article-title: Monodomain blue phase liquid crystal layers for phase modulation publication-title: Sci. Rep. doi: 10.1038/srep44575 |
SSID | ssj0000913853 |
Score | 2.1765065 |
Snippet | Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs)... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 91 |
SubjectTerms | Acids Asymmetry Benzoates Benzoic acid blue phase liquid crystals Crystal defects Crystals Defects Energy Ethylene oxide Gold gold nanoparticles Ligands Liquid crystals Molecular weight Nanoparticles Nanorods Nanospheres Oligomers Optics Particle shape Phase transitions Polyethylene glycol Polymers Shape effects Temperature |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmqQPNw9UaE_FJHpYtnJLliyh9LHQBnIzeozYha0dkt1D8uszsryLtyT00qs1h_Ho8X0jjT4R8klZ7YIAnnsLJpc8qNw4HXLwwDkSCl-W8aLw9x_q8kp-vS6uB099xZqwJA-cAndsvdBQGR4QWCQ3hdVKC2cLh0AuK9Vd3UPMGyRT3RqsmUAgSpXuAvP648Y0LYtHvyeabWBQJ9X_FL_8u0xygDvj1-RVTxjpWXJ0h7yAZpe8HMgI7pGfk3Z-_wdu6RhBKu3tzR7AU1w5MSXuK9_orKHn8yXQyRSBi34bndKkXEzbQCe9Ff01NTfwhlyNL36PLvP-oYTcFVIucoGswnlbSedLGxyrnMKpaoSypkI4dwwM0jjkYmC0R0ZogwggoAQVToySXrwlW03bwHtCTVn4qDAvrQKpvUF6iL4EZ5iroLIsI19WoatdryIeH7OY15hNxEDXw0Bn5PPa-iapZzxjdx57YW0TNa-7DzgS6j4C9b9GQkYOVn1Y9xPxrsYEERMo5KQ8Ix_XzTiF4rmIaaBdJhsd90PR5l3q8rUn8dw1apJlpNwYDBuubrY0s2kn012VUYyNffgf_7ZPtnkspmE85_qAbC1ul3CIbGhhj7qB_wjwswl6 priority: 102 providerName: Directory of Open Access Journals |
Title | Polymer Functionalized Nanoparticles in Blue Phase LC: Effect of Particle Shape |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35010041 https://www.proquest.com/docview/2618265752 https://www.proquest.com/docview/2618909592 https://pubmed.ncbi.nlm.nih.gov/PMC8746361 https://doaj.org/article/bd39e8a2f18542a5b9693cb5c6444869 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4k2gXRkJTihq4ziOzaXqVl0qBGUFVOot8mPcXWlJlu3uAX59x4k37CLgmsxhMmN7vnnkMyGvhVHW58BSZ0CnnHmRaqt8Cg4YQ0DhyjL8KPzpQpxf8g9XxVUsuN3Escr1mdge1K6xoUZ-iEgfkTCCC3Y8_5GGW6NCdzVeobFD9vAIlph87Q3PLsZf-ipLYL3EgNRNvOeY3x_Wum6y0AI-UtlWLGop-_-GM_8cl9yIP6MH5H4EjvSk8_RDcgfqR-TeBp3gY_J53Mx-focFHWGw6mp801_gKJ6gmBrHCTg6relwtgI6nmAAox9P39GOwZg2no6jFP060XN4Qi5HZ99Oz9N4YUJqC86XaY7owjojuXWl8TaTVuCW1bkwWmJYtxlohHOIyUArh8jQ-NxDDiUIf6QFd_lTsls3NTwnVJeFC0zz3AjgymmEiaiLtzqzEqTJEvJ2bbrKRjbxcKnFrMKsIhi62jR0Qt700vOOReMfcsPghV4mcF-3D5rFdRUtUBmXK5CaeYQanOnCKIHfZgqL0I5LoRKyv_ZhFTfkTfV7-STkVf8at1Loj-gamlUno0JdFGWedS7vNQn918BNlpByazFsqbr9pp5OWrpuWQZStuzF_9V6Se6yMC6TsZSpfbK7XKzgAPHO0gzIjhy9H8SlPWirBrfbugTA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEN8EBhiJPaFojeM4MRJCbFA61o1KbNLeMn-caaWSlK4VGn8UfyPnfNEi4G2v8Sm6nO98P9uX3xHyQmhpXAwstBpUyJkToTLShWCBMQQUNk39j8KHR2Jwwj-eJqcb5Gf7L4wvq2zXxGqhtqXxZ-Q7iPQRCSO4YG9m30LfNcrfrrYtNGq3OICL77hlO3-9_w7nd5ux_vvjvUHYdBUITcL5IowxBRurM25sqp2JMiPQr1UstMow95kIFGIeBC6gpEX4pF3sIIYUhOspwW2M771CrvI4lj6isv6H7kzHc2xi-qvr63G8t1Ooooz8hXNPRmuZr2oQ8DdU-2dx5kq2698iNxuYSt_WfnWbbEBxh9xYIS-8Sz6NyunFV5jTPqbG-kRx8gMsxfUaN-JNvR2dFHR3ugQ6GmO6pMO9V7TmS6alo6NGin4eqxncIyeXYsj7ZLMoC3hIqEoT63ntuRbApVUISlEXZ1RkMsh0FJCXrely03CX-xYa0xz3MN7Q-aqhA7LdSc9qzo5_yO36WehkPNN29aCcf8kbC-TaxhIyxRwCG85UoqXAb9OJQSDJMyEDstXOYd6E_3n-21kD8rwbxsD1tzGqgHJZy0h_CosyD-op7zTxt72eCS0g6ZozrKm6PlJMxhU5eJZ6Crjo0f_VekauDY4Ph_lw_-jgMbnOfKFOxEImt8jmYr6EJ4i0Fvpp5d6UnF12PP0Ck1Y_Yw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkekJW4vVzkRAibaOWlmABlXoz-5glkYId0kSo_DR-HbOxYxIE3Hq1R9Z4dnbm293ZbwCeJ0poGyL3jULpR9wmvtTC-miQcwIUJk3dReF3w-TwNHp7Fp9twc_VXRhXVrmKictAbSrt9si7hPQJCRO44F3blEXk-4PX02--6yDlTlpX7TRqFznGi--0fDt_dbRPY73L-eDg096h33QY8HUcRXM_pHSsjcoibVJldZDphHxchomSGeVBHaAk_EMgBqUwBKWUDS2GmGJiezKJTEjfvQLbKa2Keh3Y7h8M8w_tDo9j3KRkWFfbh6HodUtZVoE7fu6JYCMPLtsF_A3j_lmquZb7BjfhRgNa2Zvay27BFpa34foaleEdeJ9Xk4uvOGMDSpT1_uL4BxpG0ZuW5U31HRuXrD9ZIMtHlDzZyd5LVrMns8qyvJFiH0dyinfh9FJMeQ86ZVXiA2AyjY1juY9UgpEwkiAq6WK1DHSGmQo8eLEyXaEbJnPXUGNS0IrGGbpYN7QHu630tGbw-Idc341CK-N4t5cPqtmXorFAoUwoMJPcEsyJuIyVSOjfVKwJVkZZIjzYWY1h0QSD8-K363rwrH1N09idzcgSq0UtI9yeLMncr4e81cSd_TpeNA_SDWfYUHXzTTkeLanCs9QRwgUP_6_WU7hKc6k4ORoeP4Jr3FXtBNznYgc689kCHxPsmqsnjX8z-HzZU-oXh0hE9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer+Functionalized+Nanoparticles+in+Blue+Phase+LC%3A+Effect+of+Particle+Shape&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Manlin&rft.au=Michael+Lindner-D%E2%80%99Addario&rft.au=Roohnikan%2C+Mahdi&rft.au=Toader%2C+Violeta&rft.date=2021-12-29&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=12&rft.issue=1&rft.spage=91&rft_id=info:doi/10.3390%2Fnano12010091&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |