Polymer Functionalized Nanoparticles in Blue Phase LC: Effect of Particle Shape

Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 12; no. 1; p. 91
Main Authors Zhang, Manlin, Lindner-D’Addario, Michael, Roohnikan, Mahdi, Toader, Violeta, Lennox, Robert Bruce, Reven, Linda
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.12.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.
AbstractList Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔT ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n- -butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔT > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔT BP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n- trans -butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔT BP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.
Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.
Author Zhang, Manlin
Roohnikan, Mahdi
Reven, Linda
Toader, Violeta
Lennox, Robert Bruce
Lindner-D’Addario, Michael
AuthorAffiliation Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada; Manlin.Zhang@mail.mcgill.ca (M.Z.); michael.lindner-daddario@mail.mcgill.ca (M.L.-D.); Mahdi.Roohnikan@mail.mcgill.ca (M.R.); Violeta.Toader@mcgill.ca (V.T.); bruce.lennox@mcgill.ca (R.B.L.)
AuthorAffiliation_xml – name: Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada; Manlin.Zhang@mail.mcgill.ca (M.Z.); michael.lindner-daddario@mail.mcgill.ca (M.L.-D.); Mahdi.Roohnikan@mail.mcgill.ca (M.R.); Violeta.Toader@mcgill.ca (V.T.); bruce.lennox@mcgill.ca (R.B.L.)
Author_xml – sequence: 1
  givenname: Manlin
  surname: Zhang
  fullname: Zhang, Manlin
– sequence: 2
  givenname: Michael
  surname: Lindner-D’Addario
  fullname: Lindner-D’Addario, Michael
– sequence: 3
  givenname: Mahdi
  surname: Roohnikan
  fullname: Roohnikan, Mahdi
– sequence: 4
  givenname: Violeta
  surname: Toader
  fullname: Toader, Violeta
– sequence: 5
  givenname: Robert Bruce
  surname: Lennox
  fullname: Lennox, Robert Bruce
– sequence: 6
  givenname: Linda
  orcidid: 0000-0002-6643-6371
  surname: Reven
  fullname: Reven, Linda
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35010041$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQQC1UREvojTOyxIUDAX-t1-aABFELlSIaCThbXu-4cbSxU3sXqfx6dkmo0oqTR_ab57FnnqOTmCIg9JKSd5xr8j7amCgjlBBNn6AzRmo9F1rTk6P4FJ2XsiFkYriq-DN0yqspRdAzdL1K3d0WMr4coutDirYLv6HF30bxzuY-uA4KDhF_7gbAq7UtgJeLD_jCe3A9Th6vDhT-vrY7eIGeetsVOD-sM_Tz8uLH4ut8ef3lavFpOXeVEP2cC65d2yjh2rrxjionOVWWy8YqprmjYBmnsiJgdau1bjz3wKEG6YmVouUzdLX3tsluzC6Hrc13Jtlg_m6kfGMOdZmm5RqUZZ6qSjBbNVqONzSVk0IINcYz9HHv2g3NFloHsc-2eyB9eBLD2tykX0bVQnJJR8GbgyCn2wFKb7ahOOg6GyENxTBJlSa60mxEXz9CN2nI46_vKSarupqoV8cV3Zfyr28j8HYPuJxKyeDvEUrMNBnmeDJGnD3CXejt1O7xPaH7f9IfhRq6tg
CitedBy_id crossref_primary_10_3390_nano12091421
Cites_doi 10.1039/C4NR01325E
10.1080/02678292.2015.1053001
10.1088/1468-6996/16/3/033501
10.1103/PhysRevLett.45.641
10.1103/PhysRevE.81.041703
10.1039/c3sm00065f
10.1021/acs.chemmater.7b05310
10.1103/PhysRevLett.104.017801
10.1039/c3tc31253d
10.1021/acsami.7b01502
10.1143/APEX.2.121501
10.1021/acsnano.5b07379
10.1021/nl204030t
10.1109/JDT.2010.2055039
10.1021/acs.langmuir.6b02256
10.1007/430_2007_075
10.1039/c3ra43546f
10.1039/C6NR00607H
10.1103/PhysRevE.59.763
10.1103/PhysRevLett.46.1216
10.1038/ncomms4954
10.1080/02678292.2010.519057
10.1039/B908676E
10.1039/b806375c
10.1007/b97374
10.1063/1.480628
10.1039/c2sm07155j
10.1103/PhysRevE.67.042701
10.1103/PhysRevE.89.052505
10.1080/02678292.2018.1555723
10.1002/smll.201200052
10.1103/PhysRevE.88.062507
10.1039/C5CC06146F
10.1021/la047193e
10.1039/c1sm05764b
10.1073/pnas.1015831108
10.1038/srep44575
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano12010091
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_bd39e8a2f18542a5b9693cb5c6444869
PMC8746361
35010041
10_3390_nano12010091
Genre Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council
  grantid: Discovery Grant 220439
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c544t-3439cdb84cd7bfc18c6318a36ba8293c1ea231650ea9d999bf3fe3e7e6f0a64d3
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 17:41:21 EDT 2025
Fri Jul 11 02:33:28 EDT 2025
Fri Jul 25 12:16:09 EDT 2025
Wed Feb 19 02:28:29 EST 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 01:17:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords blue phase liquid crystals
gold nanoparticles
polymers
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-3439cdb84cd7bfc18c6318a36ba8293c1ea231650ea9d999bf3fe3e7e6f0a64d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6643-6371
OpenAccessLink https://www.proquest.com/docview/2618265752?pq-origsite=%requestingapplication%
PMID 35010041
PQID 2618265752
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_bd39e8a2f18542a5b9693cb5c6444869
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746361
proquest_miscellaneous_2618909592
proquest_journals_2618265752
pubmed_primary_35010041
crossref_primary_10_3390_nano12010091
crossref_citationtrail_10_3390_nano12010091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211229
PublicationDateYYYYMMDD 2021-12-29
PublicationDate_xml – month: 12
  year: 2021
  text: 20211229
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yoshizawa (ref_8) 2013; 3
Wang (ref_35) 2013; 1
Roohnikan (ref_23) 2019; 46
Wang (ref_36) 2012; 8
Matsuyama (ref_31) 2000; 112
Rahman (ref_4) 2015; 16
Senyuk (ref_13) 2012; 12
Wang (ref_19) 2015; 51
Matsuyama (ref_30) 1999; 59
Ravnik (ref_20) 2011; 108
Meiboom (ref_2) 1981; 46
Gharbi (ref_22) 2016; 10
Gvozdovskyy (ref_24) 2015; 42
Matsuyama (ref_32) 2003; 67
Choudhary (ref_37) 2014; 6
Ravnik (ref_9) 2010; 144
Chen (ref_33) 2010; 6
Dierking (ref_10) 2012; 8
Corbierre (ref_28) 2005; 21
Oton (ref_39) 2017; 7
Senyuk (ref_16) 2013; 88
Stratford (ref_21) 2014; 5
Kikuchi (ref_7) 2007; Volume 128
Rucareanu (ref_26) 2008; 18
Schulz (ref_38) 2016; 8
Kitzerow (ref_3) 2009; 7232
Johnson (ref_1) 1980; 27
Kasch (ref_11) 2013; 9
Liu (ref_17) 2014; 89
Chang (ref_27) 2018; 30
ref_29
Karatairi (ref_14) 2010; 8
Yoshida (ref_15) 2009; 2
Roohnikan (ref_25) 2016; 32
Cordoyiannis (ref_34) 2010; 37
Wong (ref_18) 2011; 7
Fukuda (ref_5) 2010; 104
Jo (ref_12) 2017; 9
ref_6
References_xml – volume: 6
  start-page: 7743
  year: 2014
  ident: ref_37
  article-title: Advances in gold nanoparticle–liquid crystal composites
  publication-title: Nanoscale
  doi: 10.1039/C4NR01325E
– volume: 42
  start-page: 1391
  year: 2015
  ident: ref_24
  article-title: ‘Blue phases’ of highly chiral thermotropic liquid crystals with a wide range of near-room temperature
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2015.1053001
– volume: 16
  start-page: 033501
  year: 2015
  ident: ref_4
  article-title: Blue phase liquid crystal: Strategies for phase stabilization and device development
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/16/3/033501
– volume: 27
  start-page: 641
  year: 1980
  ident: ref_1
  article-title: Structure and properties of the cholesteric blue phases
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.641
– volume: 8
  start-page: 041703
  year: 2010
  ident: ref_14
  article-title: Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.041703
– volume: 9
  start-page: 4789
  year: 2013
  ident: ref_11
  article-title: Stabilization of the liquid crystalline blue phase by the addition of short-chain polystyrene
  publication-title: Soft Matter
  doi: 10.1039/c3sm00065f
– volume: 30
  start-page: 1427
  year: 2018
  ident: ref_27
  article-title: Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05310
– volume: 104
  start-page: 017801
  year: 2010
  ident: ref_5
  article-title: Novel Defect Structures in a Strongly Confined Liquid-Crystalline Blue Phase
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.017801
– volume: 1
  start-page: 6526
  year: 2013
  ident: ref_35
  article-title: Polymer-stabilized nanoparticle-enriched blue phase liquid crystals
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc31253d
– volume: 9
  start-page: 8941
  year: 2017
  ident: ref_12
  article-title: Polymer stabilization of liquid-crystal blue phase II toward photonic crystals
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01502
– volume: 2
  start-page: 121501
  year: 2009
  ident: ref_15
  article-title: Nanoparticle-stabilized cholesteric blue phases
  publication-title: Appl. Phys. Exp.
  doi: 10.1143/APEX.2.121501
– volume: 10
  start-page: 3410
  year: 2016
  ident: ref_22
  article-title: Reversible nanoparticle cubic lattices in blue phase liquid crystals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07379
– volume: 12
  start-page: 955
  year: 2012
  ident: ref_13
  article-title: Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals
  publication-title: Nano Lett.
  doi: 10.1021/nl204030t
– volume: 6
  start-page: 318
  year: 2010
  ident: ref_33
  article-title: Hysteresis effects in blue-phase liquid crystals
  publication-title: J. Display Technol.
  doi: 10.1109/JDT.2010.2055039
– volume: 32
  start-page: 8442
  year: 2016
  ident: ref_25
  article-title: Hydrogen-bonded liquid crystal nanocomposites
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02256
– volume: Volume 128
  start-page: 99
  year: 2007
  ident: ref_7
  article-title: Liquid Crystalline Blue Phases
  publication-title: Liquid Crystalline Blue Phases in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures
  doi: 10.1007/430_2007_075
– volume: 3
  start-page: 25475
  year: 2013
  ident: ref_8
  article-title: Material design for blue phase liquid crystals and their electro-optical effects
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43546f
– volume: 8
  start-page: 7296
  year: 2016
  ident: ref_38
  article-title: Effective PEGylation of gold nanorods
  publication-title: Nanoscale
  doi: 10.1039/C6NR00607H
– volume: 59
  start-page: 763
  year: 1999
  ident: ref_30
  article-title: Phase separations and orientational ordering of polymers in liquid crystal solvents
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.763
– volume: 46
  start-page: 1216
  year: 1981
  ident: ref_2
  article-title: Theory of the blue phase of cholesteric liquid crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.1216
– volume: 5
  start-page: 3954
  year: 2014
  ident: ref_21
  article-title: Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4954
– volume: 37
  start-page: 1419
  year: 2010
  ident: ref_34
  article-title: Blue phase III widening in CE6-dispersed surface-functionalised CdSe nanoparticles
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2010.519057
– ident: ref_29
– volume: 144
  start-page: 159
  year: 2010
  ident: ref_9
  article-title: Mesoscopic modelling of colloids in chiral nematics
  publication-title: Faraday Discuss.
  doi: 10.1039/B908676E
– volume: 7232
  start-page: 723205
  year: 2009
  ident: ref_3
  article-title: Blue phases come of age: A review
  publication-title: Emerg. Liq. Cryst. Technol. IV
– volume: 18
  start-page: 5830
  year: 2008
  ident: ref_26
  article-title: Polymer-capped gold nanoparticles by ligand-exchange reactions
  publication-title: J. Mater. Chem.
  doi: 10.1039/b806375c
– ident: ref_6
  doi: 10.1007/b97374
– volume: 112
  start-page: 1046
  year: 2000
  ident: ref_31
  article-title: Induced nematic phase in a polymer/liquid crystal mixture
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480628
– volume: 8
  start-page: 4355
  year: 2012
  ident: ref_10
  article-title: Stabilising liquid crystalline blue phases
  publication-title: Soft Matter
  doi: 10.1039/c2sm07155j
– volume: 67
  start-page: 042701
  year: 2003
  ident: ref_32
  article-title: Conformational transitions of a semiflexible polymer in nematic solvents
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.042701
– volume: 89
  start-page: 052505
  year: 2014
  ident: ref_17
  article-title: Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.052505
– volume: 46
  start-page: 1067
  year: 2019
  ident: ref_23
  article-title: Hydrogen-bonded LC nanocomposites: Characterization of nanoparticle-LC interactions by solid-state NMR and FTIR spectroscopies
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2018.1555723
– volume: 8
  start-page: 2189
  year: 2012
  ident: ref_36
  article-title: Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles
  publication-title: Small
  doi: 10.1002/smll.201200052
– volume: 88
  start-page: 062507
  year: 2013
  ident: ref_16
  article-title: Rotational and translational diffusion of anisotropic gold nanoparticles in liquid crystals controlled by varying surface anchoring
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.062507
– volume: 51
  start-page: 15039
  year: 2015
  ident: ref_19
  article-title: NIR Light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06146F
– volume: 21
  start-page: 6063
  year: 2005
  ident: ref_28
  article-title: Gold nanoparticle/polymer nanocomposites: Dispersion of nanoparticles as a function of capping agent molecular weight and grafting density
  publication-title: Langmuir
  doi: 10.1021/la047193e
– volume: 7
  start-page: 7956
  year: 2011
  ident: ref_18
  article-title: Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase
  publication-title: Soft Matter
  doi: 10.1039/c1sm05764b
– volume: 108
  start-page: 5188
  year: 2011
  ident: ref_20
  article-title: Three-dimensional colloidal crystals in liquid crystalline blue phases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1015831108
– volume: 7
  start-page: 44575
  year: 2017
  ident: ref_39
  article-title: Monodomain blue phase liquid crystal layers for phase modulation
  publication-title: Sci. Rep.
  doi: 10.1038/srep44575
SSID ssj0000913853
Score 2.1765065
Snippet Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 91
SubjectTerms Acids
Asymmetry
Benzoates
Benzoic acid
blue phase liquid crystals
Crystal defects
Crystals
Defects
Energy
Ethylene oxide
Gold
gold nanoparticles
Ligands
Liquid crystals
Molecular weight
Nanoparticles
Nanorods
Nanospheres
Oligomers
Optics
Particle shape
Phase transitions
Polyethylene glycol
Polymers
Shape effects
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQmqQPNw9UaE_FJHpYtnJLliyh9LHQBnIzeozYha0dkt1D8uszsryLtyT00qs1h_Ho8X0jjT4R8klZ7YIAnnsLJpc8qNw4HXLwwDkSCl-W8aLw9x_q8kp-vS6uB099xZqwJA-cAndsvdBQGR4QWCQ3hdVKC2cLh0AuK9Vd3UPMGyRT3RqsmUAgSpXuAvP648Y0LYtHvyeabWBQJ9X_FL_8u0xygDvj1-RVTxjpWXJ0h7yAZpe8HMgI7pGfk3Z-_wdu6RhBKu3tzR7AU1w5MSXuK9_orKHn8yXQyRSBi34bndKkXEzbQCe9Ff01NTfwhlyNL36PLvP-oYTcFVIucoGswnlbSedLGxyrnMKpaoSypkI4dwwM0jjkYmC0R0ZogwggoAQVToySXrwlW03bwHtCTVn4qDAvrQKpvUF6iL4EZ5iroLIsI19WoatdryIeH7OY15hNxEDXw0Bn5PPa-iapZzxjdx57YW0TNa-7DzgS6j4C9b9GQkYOVn1Y9xPxrsYEERMo5KQ8Ix_XzTiF4rmIaaBdJhsd90PR5l3q8rUn8dw1apJlpNwYDBuubrY0s2kn012VUYyNffgf_7ZPtnkspmE85_qAbC1ul3CIbGhhj7qB_wjwswl6
  priority: 102
  providerName: Directory of Open Access Journals
Title Polymer Functionalized Nanoparticles in Blue Phase LC: Effect of Particle Shape
URI https://www.ncbi.nlm.nih.gov/pubmed/35010041
https://www.proquest.com/docview/2618265752
https://www.proquest.com/docview/2618909592
https://pubmed.ncbi.nlm.nih.gov/PMC8746361
https://doaj.org/article/bd39e8a2f18542a5b9693cb5c6444869
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe4ED4k2gXRkJTihq4ziOzaXqVl0qBGUFVOot8mPcXWlJlu3uAX59x4k37CLgmsxhMmN7vnnkMyGvhVHW58BSZ0CnnHmRaqt8Cg4YQ0DhyjL8KPzpQpxf8g9XxVUsuN3Escr1mdge1K6xoUZ-iEgfkTCCC3Y8_5GGW6NCdzVeobFD9vAIlph87Q3PLsZf-ipLYL3EgNRNvOeY3x_Wum6y0AI-UtlWLGop-_-GM_8cl9yIP6MH5H4EjvSk8_RDcgfqR-TeBp3gY_J53Mx-focFHWGw6mp801_gKJ6gmBrHCTg6relwtgI6nmAAox9P39GOwZg2no6jFP060XN4Qi5HZ99Oz9N4YUJqC86XaY7owjojuXWl8TaTVuCW1bkwWmJYtxlohHOIyUArh8jQ-NxDDiUIf6QFd_lTsls3NTwnVJeFC0zz3AjgymmEiaiLtzqzEqTJEvJ2bbrKRjbxcKnFrMKsIhi62jR0Qt700vOOReMfcsPghV4mcF-3D5rFdRUtUBmXK5CaeYQanOnCKIHfZgqL0I5LoRKyv_ZhFTfkTfV7-STkVf8at1Loj-gamlUno0JdFGWedS7vNQn918BNlpByazFsqbr9pp5OWrpuWQZStuzF_9V6Se6yMC6TsZSpfbK7XKzgAPHO0gzIjhy9H8SlPWirBrfbugTA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEN8EBhiJPaFojeM4MRJCbFA61o1KbNLeMn-caaWSlK4VGn8UfyPnfNEi4G2v8Sm6nO98P9uX3xHyQmhpXAwstBpUyJkToTLShWCBMQQUNk39j8KHR2Jwwj-eJqcb5Gf7L4wvq2zXxGqhtqXxZ-Q7iPQRCSO4YG9m30LfNcrfrrYtNGq3OICL77hlO3-9_w7nd5ux_vvjvUHYdBUITcL5IowxBRurM25sqp2JMiPQr1UstMow95kIFGIeBC6gpEX4pF3sIIYUhOspwW2M771CrvI4lj6isv6H7kzHc2xi-qvr63G8t1Ooooz8hXNPRmuZr2oQ8DdU-2dx5kq2698iNxuYSt_WfnWbbEBxh9xYIS-8Sz6NyunFV5jTPqbG-kRx8gMsxfUaN-JNvR2dFHR3ugQ6GmO6pMO9V7TmS6alo6NGin4eqxncIyeXYsj7ZLMoC3hIqEoT63ntuRbApVUISlEXZ1RkMsh0FJCXrely03CX-xYa0xz3MN7Q-aqhA7LdSc9qzo5_yO36WehkPNN29aCcf8kbC-TaxhIyxRwCG85UoqXAb9OJQSDJMyEDstXOYd6E_3n-21kD8rwbxsD1tzGqgHJZy0h_CosyD-op7zTxt72eCS0g6ZozrKm6PlJMxhU5eJZ6Crjo0f_VekauDY4Ph_lw_-jgMbnOfKFOxEImt8jmYr6EJ4i0Fvpp5d6UnF12PP0Ck1Y_Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkekJW4vVzkRAibaOWlmABlXoz-5glkYId0kSo_DR-HbOxYxIE3Hq1R9Z4dnbm293ZbwCeJ0poGyL3jULpR9wmvtTC-miQcwIUJk3dReF3w-TwNHp7Fp9twc_VXRhXVrmKictAbSrt9si7hPQJCRO44F3blEXk-4PX02--6yDlTlpX7TRqFznGi--0fDt_dbRPY73L-eDg096h33QY8HUcRXM_pHSsjcoibVJldZDphHxchomSGeVBHaAk_EMgBqUwBKWUDS2GmGJiezKJTEjfvQLbKa2Keh3Y7h8M8w_tDo9j3KRkWFfbh6HodUtZVoE7fu6JYCMPLtsF_A3j_lmquZb7BjfhRgNa2Zvay27BFpa34foaleEdeJ9Xk4uvOGMDSpT1_uL4BxpG0ZuW5U31HRuXrD9ZIMtHlDzZyd5LVrMns8qyvJFiH0dyinfh9FJMeQ86ZVXiA2AyjY1juY9UgpEwkiAq6WK1DHSGmQo8eLEyXaEbJnPXUGNS0IrGGbpYN7QHu630tGbw-Idc341CK-N4t5cPqtmXorFAoUwoMJPcEsyJuIyVSOjfVKwJVkZZIjzYWY1h0QSD8-K363rwrH1N09idzcgSq0UtI9yeLMncr4e81cSd_TpeNA_SDWfYUHXzTTkeLanCs9QRwgUP_6_WU7hKc6k4ORoeP4Jr3FXtBNznYgc689kCHxPsmqsnjX8z-HzZU-oXh0hE9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer+Functionalized+Nanoparticles+in+Blue+Phase+LC%3A+Effect+of+Particle+Shape&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Manlin&rft.au=Michael+Lindner-D%E2%80%99Addario&rft.au=Roohnikan%2C+Mahdi&rft.au=Toader%2C+Violeta&rft.date=2021-12-29&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=12&rft.issue=1&rft.spage=91&rft_id=info:doi/10.3390%2Fnano12010091&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon