Poly-ADP Ribose Polymerase Activates Nuclear Proteasome to Degrade Oxidatively Damaged Histones

The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidatio...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 96; no. 11; pp. 6223 - 6228
Main Authors Ullrich, Oliver, Reinheckel, Thomas, Sitte, Nicolle, Hass, Ralf, Grune, Tilman, Kelvin J. A. Davies
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 25.05.1999
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid upregulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
AbstractList The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14 C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14 C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid upregulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, 14C-ADP ribose incorporation assays, immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation-mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also subject to oxidation, and the nucleus of mammalian cells contains proteasome. In human beings, tumor cells frequently are subjected to oxidation as a consequence of antitumor chemotherapy, and K562 human myelogenous leukemia cells have a higher nuclear proteasome activity than do nonmalignant cells. Adaptation to oxidative stress appears to be one element in the development of long-term resistance to many chemotherapeutic drugs and the mechanisms of inducible tumor resistance to oxidation are of obvious importance. After hydrogen peroxide treatment of K562 cells, degradation of the model proteasome peptide substrate suc-LLVY-MCA and degradation of oxidized histones in nuclei increases significantly within minutes. Both increased proteolytic susceptibility of the histone substrates (caused by modification by oxidation) and activation of the proteasome enzyme complex occur independently during oxidative stress. This rapid up-regulation of 20S proteasome activity is accompanied by, and depends on, poly-ADP ribosylation of the proteasome, as shown by inhibitor experiments, super(14)C-ADP ribose incorporation assays immunoblotting, in vitro reconstitution experiments, and immunoprecipitation of (activated) proteasome with anti-poly-ADP ribose polymerase antibodies. The poly-ADP ribosylation- mediated activated nuclear 20S proteasome is able to remove oxidatively damaged histones more efficiently and therefore is proposed as an oxidant-stimulatable defense or repair system of the nucleus in K562 leukemia cells.
Author Ullrich, Oliver
Sitte, Nicolle
Grune, Tilman
Reinheckel, Thomas
Kelvin J. A. Davies
Hass, Ralf
AuthorAffiliation Clinics of Physical Medicine and Rehabilitation, and † Institute of Anatomy of the Medical Faculty (Charité), Humboldt University, Berlin, Germany; and ‡ Ethel Percy Andrus Gerontology Center, and Division of Molecular Biology, University of Southern California, Los Angeles, CA 90089-0191
AuthorAffiliation_xml – name: Clinics of Physical Medicine and Rehabilitation, and † Institute of Anatomy of the Medical Faculty (Charité), Humboldt University, Berlin, Germany; and ‡ Ethel Percy Andrus Gerontology Center, and Division of Molecular Biology, University of Southern California, Los Angeles, CA 90089-0191
Author_xml – sequence: 1
  givenname: Oliver
  surname: Ullrich
  fullname: Ullrich, Oliver
– sequence: 2
  givenname: Thomas
  surname: Reinheckel
  fullname: Reinheckel, Thomas
– sequence: 3
  givenname: Nicolle
  surname: Sitte
  fullname: Sitte, Nicolle
– sequence: 4
  givenname: Ralf
  surname: Hass
  fullname: Hass, Ralf
– sequence: 5
  givenname: Tilman
  surname: Grune
  fullname: Grune, Tilman
– sequence: 6
  fullname: Kelvin J. A. Davies
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10339569$$D View this record in MEDLINE/PubMed
BookMark eNqFks9v0zAUxy00xLrBGYkDijiwUzo_O7ETiUu1MoY0sQrB2XKcl5IqiYvtTOt_j6Ou07bDOPnH-3yfv7a_J-RosAMS8h7oHKjk59tB-3kp5gBzwRh_RWZAS0hFVtIjMqOUybTIWHZMTrzfUErLvKBvyDFQzstclDOiVrbbpYvlKvnZVtZjMq17dDpOFya0tzqgT36MpkPtkpWzAbW3PSbBJktcO11jcnPX1jqi2O2Spe71GuvkqvUhWvVvyetGdx7f3Y-n5Pfl118XV-n1zbfvF4vr1ORZFlIAasBAYwpdF5wigEAoDGcGTakbLmvNKhRUMtk0TJpa58LELVZJURXc8FPyZd93O1Y91gaH4HSntq7ttdspq1v1tDK0f9Ta3iomCsGj_PO93Nm_I_qg-tYb7Do9oB29EqWUAljxXxAkywWTU8dPz8CNHd0Q30AxClxIEBChj49dP9g9_E8EzveAcdZ7h80jRE0JUFMCVCkUgJoSEBX5M4VpQ_wdO1277V7QHaxMhcMpT4CzFwHVjF0X8C5E8sOe3MQMuAc0k0XO-D9OxdgG
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2018_08_037
crossref_primary_10_1016_S1357_2725_02_00386_2
crossref_primary_10_1134_S1990750818030022
crossref_primary_10_1096_fj_00_0540fje
crossref_primary_10_1083_jcb_200112074
crossref_primary_10_1074_jbc_M111_277145
crossref_primary_10_1159_000440982
crossref_primary_10_1073_pnas_2111404119
crossref_primary_10_1002_jnr_23517
crossref_primary_10_3389_fmolb_2019_00048
crossref_primary_10_3390_ijms18102036
crossref_primary_10_1515_BC_2008_029
crossref_primary_10_1002_1097_4547_20000815_61_4_436__AID_JNR10_3_0_CO_2_Z
crossref_primary_10_1006_abbi_2000_1717
crossref_primary_10_1016_j_freeradbiomed_2021_02_027
crossref_primary_10_1139_o06_083
crossref_primary_10_1111_j_1582_4934_2009_00825_x
crossref_primary_10_1016_j_exger_2005_09_004
crossref_primary_10_1586_epr_11_63
crossref_primary_10_1111_j_1749_6632_2000_tb06643_x
crossref_primary_10_1021_cr040410w
crossref_primary_10_1016_j_bbamem_2003_11_012
crossref_primary_10_1016_S0014_5793_03_00353_3
crossref_primary_10_1016_S1011_1344_01_00211_1
crossref_primary_10_1080_10715760600911154
crossref_primary_10_1111_j_1749_6632_2002_tb04067_x
crossref_primary_10_1016_j_freeradbiomed_2009_12_010
crossref_primary_10_1016_j_mam_2016_05_001
crossref_primary_10_1016_j_freeradbiomed_2004_11_030
crossref_primary_10_1016_S0891_5849_00_00317_8
crossref_primary_10_1016_j_redox_2015_07_003
crossref_primary_10_1016_S1047_8477_02_00527_0
crossref_primary_10_1038_nbt_4279
crossref_primary_10_1104_pp_106_092106
crossref_primary_10_1111_j_1398_9995_2011_02551_x
crossref_primary_10_1016_S0300_9084_01_01250_0
crossref_primary_10_1002_1873_3468_13778
crossref_primary_10_1002_anie_201305759
crossref_primary_10_1146_annurev_biochem_061516_044908
crossref_primary_10_1096_fj_02_0015com
crossref_primary_10_3389_fmicb_2020_02069
crossref_primary_10_1016_j_freeradbiomed_2012_01_022
crossref_primary_10_1515_bmc_2016_0016
crossref_primary_10_1016_j_abb_2012_04_018
crossref_primary_10_1016_j_mrgentox_2004_11_016
crossref_primary_10_1016_S0891_5849_02_00880_8
crossref_primary_10_1515_BC_2002_057
crossref_primary_10_1002_bies_10179
crossref_primary_10_1016_j_ejcb_2005_08_009
crossref_primary_10_1111_j_1742_4658_2006_05318_x
crossref_primary_10_1016_j_redox_2013_01_006
crossref_primary_10_1371_journal_pone_0088872
crossref_primary_10_1002_sita_200300021
crossref_primary_10_1016_j_freeradbiomed_2011_08_018
crossref_primary_10_1515_hsz_2017_0158
crossref_primary_10_1186_1477_7827_7_143
crossref_primary_10_1002_bies_1115
crossref_primary_10_1158_0008_5472_CAN_05_0506
crossref_primary_10_1099_jmm_0_022467_0
crossref_primary_10_1016_j_jprot_2013_05_006
crossref_primary_10_1016_j_bcp_2009_12_023
crossref_primary_10_1016_j_biopha_2019_108690
crossref_primary_10_1016_j_pneurobio_2012_01_003
crossref_primary_10_1016_j_phymed_2016_07_007
crossref_primary_10_1016_j_dnarep_2017_08_008
crossref_primary_10_1038_ncb1903
crossref_primary_10_1093_gerona_glx083
crossref_primary_10_1101_gad_183509_111
crossref_primary_10_1016_j_bcp_2004_04_023
crossref_primary_10_1016_j_jgg_2012_09_001
crossref_primary_10_1016_S0531_5565_00_00087_5
crossref_primary_10_1016_j_gde_2006_02_010
crossref_primary_10_1074_jbc_M113_537175
crossref_primary_10_1016_j_jasi_2013_12_005
crossref_primary_10_1016_j_redox_2013_12_029
crossref_primary_10_1515_BC_2006_169
crossref_primary_10_3390_biom4030862
crossref_primary_10_1016_j_freeradbiomed_2011_06_015
crossref_primary_10_18097_PBMC20186402134
crossref_primary_10_3390_biom9050190
crossref_primary_10_1002_jcp_25851
crossref_primary_10_1089_ars_2006_8_163
crossref_primary_10_1371_journal_pone_0032366
crossref_primary_10_1111_j_1471_4159_2004_02802_x
crossref_primary_10_1016_S0300_483X_03_00287_7
crossref_primary_10_1016_S0006_291X_03_00809_X
crossref_primary_10_1038_nm_4001
crossref_primary_10_1002_embj_201386906
crossref_primary_10_1104_pp_010612
crossref_primary_10_1038_ncb836
crossref_primary_10_1016_j_jprot_2015_11_016
crossref_primary_10_1111_j_1398_9995_2011_02549_x
crossref_primary_10_3934_molsci_2015_3_259
crossref_primary_10_1016_j_mam_2016_04_007
crossref_primary_10_1016_S0891_5849_01_00635_9
crossref_primary_10_3389_fncel_2024_1353542
crossref_primary_10_1093_nar_gkx635
crossref_primary_10_1096_fj_03_0177fje
crossref_primary_10_1074_jbc_M413007200
crossref_primary_10_1186_1750_9378_2_18
crossref_primary_10_1016_j_exger_2007_03_010
crossref_primary_10_1016_S0531_5565_00_00140_6
crossref_primary_10_1042_BJ20100878
crossref_primary_10_1016_S0006_2952_00_00455_X
crossref_primary_10_1007_s10545_012_9511_0
crossref_primary_10_1002_pmic_200800387
crossref_primary_10_1006_abbi_2001_2719
crossref_primary_10_1111_brv_12253
crossref_primary_10_1016_S1357_2725_02_00391_6
crossref_primary_10_1161_CIRCRESAHA_117_311401
crossref_primary_10_1016_j_freeradbiomed_2019_07_020
crossref_primary_10_1016_j_febslet_2007_02_065
crossref_primary_10_1089_ars_2016_6815
crossref_primary_10_1007_s00726_006_0428_5
crossref_primary_10_1016_j_freeradbiomed_2008_12_024
crossref_primary_10_1016_S0891_5849_00_00399_3
crossref_primary_10_3390_medicina56110626
crossref_primary_10_1074_jbc_M209282200
crossref_primary_10_1126_stke_112pt1
crossref_primary_10_1016_j_bbamcr_2013_08_012
crossref_primary_10_1074_jbc_M105170200
crossref_primary_10_1038_s41419_021_03441_0
crossref_primary_10_1016_j_biocel_2004_04_020
crossref_primary_10_1182_blood_V97_9_2830
crossref_primary_10_1152_ajpheart_00189_2012
crossref_primary_10_1016_j_gene_2022_147033
crossref_primary_10_1074_jbc_M206279200
crossref_primary_10_1021_acs_chemrestox_8b00256
crossref_primary_10_1016_j_freeradbiomed_2014_08_012
crossref_primary_10_1038_s12276_024_01385_x
crossref_primary_10_1515_hsz_2015_0305
crossref_primary_10_1016_j_freeradbiomed_2010_10_700
crossref_primary_10_1016_S0896_6273_03_00158_2
crossref_primary_10_1111_j_1365_2141_2006_06132_x
crossref_primary_10_1371_journal_pone_0101529
crossref_primary_10_1152_physrev_00033_2016
crossref_primary_10_3390_polym12122909
crossref_primary_10_7554_eLife_08467
crossref_primary_10_1007_s12975_017_0567_x
crossref_primary_10_1073_pnas_0406182101
crossref_primary_10_1089_ars_2006_8_2007
crossref_primary_10_1007_s10522_004_7379_6
crossref_primary_10_1111_febs_15625
crossref_primary_10_1515_BC_2003_066
crossref_primary_10_1016_j_dnarep_2021_103155
crossref_primary_10_1016_j_yjmcc_2013_10_008
crossref_primary_10_1002_ange_201305759
crossref_primary_10_1016_j_bbapap_2014_08_013
crossref_primary_10_1016_S0891_5849_01_00672_4
crossref_primary_10_1038_cr_2016_86
crossref_primary_10_1096_fj_00_0210com
crossref_primary_10_1016_S0891_5849_02_00958_9
crossref_primary_10_1016_S0003_9861_02_00003_6
crossref_primary_10_1002__SICI_1097_0215_20000420_90_2_59__AID_IJC1_3_0_CO_2_4
crossref_primary_10_1002_sita_200400054
crossref_primary_10_4155_fmc_11_175
crossref_primary_10_1016_j_cub_2014_03_033
crossref_primary_10_1007_s00018_012_0938_0
crossref_primary_10_1016_j_abb_2004_03_021
crossref_primary_10_1155_2012_892706
crossref_primary_10_1074_mcp_M110_006924
crossref_primary_10_1006_bbrc_1999_0824
crossref_primary_10_1038_ncb1201_1035
crossref_primary_10_1371_journal_pone_0020073
crossref_primary_10_1002_glia_10137
crossref_primary_10_1007_s11357_020_00295_w
crossref_primary_10_1016_j_freeradbiomed_2004_05_025
crossref_primary_10_1111_j_1471_4159_2008_05287_x
crossref_primary_10_1006_abbi_2001_2332
crossref_primary_10_1016_j_tins_2006_11_003
crossref_primary_10_1371_journal_pone_0228414
crossref_primary_10_1074_mcp_M110_006122
crossref_primary_10_1016_S0098_2997_03_00014_1
crossref_primary_10_1002__SICI_1097_4644_1999_75_32__149__AID_JCB18_3_0_CO_2
Cites_doi 10.1016/S0021-9258(18)48018-0
10.1126/science.2981433
10.1002/1097-0142(19880415)61:8<1501::AID-CNCR2820610805>3.0.CO;2-4
10.1006/abbi.1996.0303
10.1016/S0021-9258(18)77443-7
10.1146/annurev.bi.65.070196.004101
10.7164/antibiotics.44.113
10.1016/0921-8777(95)00030-5
10.1016/S0021-9258(18)89731-9
10.1016/S0021-9258(17)38913-5
10.1074/jbc.270.5.2344
10.1074/jbc.272.33.20313
10.1074/jbc.270.23.13787
10.1016/S0021-9258(17)35746-0
10.1038/356356a0
10.1093/carcin/13.5.799
10.1016/S0021-9258(18)45983-2
10.1016/0891-5849(90)90155-C
10.1002/j.1460-2075.1995.tb07103.x
10.1074/jbc.271.26.15504
10.1016/S0021-9258(19)37040-1
10.1016/S0021-9258(17)35747-2
10.1073/pnas.94.7.2969
10.1021/bi00211a026
10.1096/fasebj.11.7.9212076
10.1042/bj2590181
10.1016/S0021-9258(18)47564-3
10.1006/abbi.1998.1031
10.1073/pnas.87.18.7071
10.1016/S0021-9258(17)30016-9
ContentType Journal Article
Copyright Copyright 1993-1999 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 25, 1999
Copyright © 1999, The National Academy of Sciences 1999
Copyright_xml – notice: Copyright 1993-1999 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 25, 1999
– notice: Copyright © 1999, The National Academy of Sciences 1999
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.96.11.6223
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
MEDLINE
CrossRef

MEDLINE - Academic
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6228
ExternalDocumentID PMC26863
43626929
10339569
10_1073_pnas_96_11_6223
96_11_6223
47852
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R56 ES003598
– fundername: NIEHS NIH HHS
  grantid: ES 03598
– fundername: NIEHS NIH HHS
  grantid: R01 ES003598
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c544t-110c1c1fc8ad830e116e18c32cec9af37da2be60727ff27cda56ca2b2b76b83c3
ISSN 0027-8424
IngestDate Thu Aug 21 18:16:27 EDT 2025
Fri Jul 11 03:06:26 EDT 2025
Fri Jul 11 09:33:15 EDT 2025
Mon Jun 30 08:39:21 EDT 2025
Wed Feb 19 02:35:25 EST 2025
Tue Jul 01 00:46:32 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Nov 11 00:29:56 EST 2020
Thu May 30 08:52:11 EDT 2019
Thu May 29 08:40:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c544t-110c1c1fc8ad830e116e18c32cec9af37da2be60727ff27cda56ca2b2b76b83c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed at: Ethel Percy Andrus Gerontology Center, University of Southern California, 3715 McClintock Avenue, Room 306, Los Angeles, CA 90089-0191. e-mail: kelvin@usc.edu.
Communicated by E. R. Stadtman, National Institutes of Health, Bethesda, MD
PMID 10339569
PQID 201367161
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_96_11_6223
crossref_primary_10_1073_pnas_96_11_6223
proquest_journals_201367161
crossref_citationtrail_10_1073_pnas_96_11_6223
proquest_miscellaneous_17256273
pnas_primary_96_11_6223_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_26863
proquest_miscellaneous_69776128
pubmed_primary_10339569
jstor_primary_47852
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19990525
1999-05-25
1999-May-25
PublicationDateYYYYMMDD 1999-05-25
PublicationDate_xml – month: 5
  year: 1999
  text: 19990525
  day: 25
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 1999
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Publisher_xml – name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_11_2
  doi: 10.1016/S0021-9258(18)48018-0
– ident: e_1_3_3_26_2
  doi: 10.1126/science.2981433
– ident: e_1_3_3_28_2
  doi: 10.1002/1097-0142(19880415)61:8<1501::AID-CNCR2820610805>3.0.CO;2-4
– ident: e_1_3_3_15_2
  doi: 10.1006/abbi.1996.0303
– ident: e_1_3_3_23_2
  doi: 10.1016/S0021-9258(18)77443-7
– ident: e_1_3_3_18_2
  doi: 10.1146/annurev.bi.65.070196.004101
– ident: e_1_3_3_24_2
  doi: 10.7164/antibiotics.44.113
– ident: e_1_3_3_29_2
  doi: 10.1016/0921-8777(95)00030-5
– ident: e_1_3_3_9_2
  doi: 10.1016/S0021-9258(18)89731-9
– ident: e_1_3_3_10_2
  doi: 10.1016/S0021-9258(17)38913-5
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.270.5.2344
– ident: e_1_3_3_16_2
  doi: 10.1074/jbc.272.33.20313
– ident: e_1_3_3_20_2
  doi: 10.1074/jbc.270.23.13787
– ident: e_1_3_3_2_2
  doi: 10.1016/S0021-9258(17)35746-0
– ident: e_1_3_3_31_2
  doi: 10.1038/356356a0
– ident: e_1_3_3_6_2
  doi: 10.1093/carcin/13.5.799
– ident: e_1_3_3_27_2
  doi: 10.1016/S0021-9258(18)45983-2
– ident: e_1_3_3_7_2
  doi: 10.1016/0891-5849(90)90155-C
– ident: e_1_3_3_30_2
  doi: 10.1002/j.1460-2075.1995.tb07103.x
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.271.26.15504
– ident: e_1_3_3_8_2
  doi: 10.1016/S0021-9258(19)37040-1
– ident: e_1_3_3_3_2
  doi: 10.1016/S0021-9258(17)35747-2
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.94.7.2969
– ident: e_1_3_3_5_2
  doi: 10.1021/bi00211a026
– ident: e_1_3_3_1_2
  doi: 10.1016/0891-5849(90)90155-C
– ident: e_1_3_3_14_2
  doi: 10.1096/fasebj.11.7.9212076
– ident: e_1_3_3_4_2
  doi: 10.1042/bj2590181
– ident: e_1_3_3_21_2
  doi: 10.1016/S0021-9258(18)47564-3
– ident: e_1_3_3_25_2
  doi: 10.1006/abbi.1998.1031
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.87.18.7071
– ident: e_1_3_3_22_2
  doi: 10.1016/S0021-9258(17)30016-9
SSID ssj0009580
Score 2.078107
Snippet The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified proteins in the cytoplasm. Nuclear proteins are also...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6223
SubjectTerms Adenosine diphosphate
Adenosine Diphosphate Ribose - metabolism
Adenosine Triphosphatases - metabolism
Antibodies
Biological Sciences
Carbon Radioisotopes
Cell nucleus
Cell Nucleus - metabolism
Cells
Cellular biology
Chemotherapy
Coumarins - metabolism
Cysteine Endopeptidases - metabolism
DNA damage
Enzyme Activation
Fluorescent Dyes
Gels
Histones
Histones - drug effects
Histones - metabolism
Humans
Hydrogen
Hydrogen Peroxide - pharmacology
K562 Cells
Leukemia
Multienzyme Complexes - metabolism
Oligopeptides - metabolism
Oxidation
Oxidation-Reduction
Peroxides
Poly(ADP-ribose) Polymerases - metabolism
Proteasome Endopeptidase Complex
Proteins
Substrate Specificity
Tumors
Title Poly-ADP Ribose Polymerase Activates Nuclear Proteasome to Degrade Oxidatively Damaged Histones
URI https://www.jstor.org/stable/47852
http://www.pnas.org/content/96/11/6223.abstract
https://www.ncbi.nlm.nih.gov/pubmed/10339569
https://www.proquest.com/docview/201367161
https://www.proquest.com/docview/17256273
https://www.proquest.com/docview/69776128
https://pubmed.ncbi.nlm.nih.gov/PMC26863
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5MeumlNOnLTR976CHFyLW12tXqaJqWUKhjQgy5CWm0IgZFLpEMTX9Zf15nH3rY2ND2ImxpJaSdT_NYzXxDyIcgjECrPY9DBl7AmS5WTrnHRRYFMoAUhC5O_j4XF8vg2w2_GQx-97KWNnU6hl9760r-R6q4D-Wqq2T_QbLtRXEH_kb54hYljNu_kvFiXTx4s_PF6GqV6rxz_V8vMmmyETB9yxSqMc1YnNzrkgAUaLW-M80yzjVJRKZGlz9XmeH-Lh4QAXeoXTJLHVK65ELnuC5aQ1c1aQXzZh1x1lWlOFVRjbzRYt71OF4WBepbs4JzWehMkPY7j1qVtwo1SbGTraQXfVa17d1n0dohMLGN3q-SIu8WLSzRAfdsgXOf83v_DbqH2PK5jVtuP2H1tbmPFjawNdiNNrf9cRvUTnu6Wfi2stnZefwr99oQVHq68XGZVONIoEkZdyduEXMHoeRo_B_5GKD4xiT06Z6lLX5yd9iQSoXs086Ft_whmxKreXZx0L6YZzd1t-cLXT8lT1wQQ2cWkcdkoMoTctxMLT1zXOYfn5G4gSi1EKUdRGkLUeogSjuI0npNHURpD6LUQZQ2EH1Oll-_XH--8FxPDw94ENQeepswhWkOMskkm6jpVKipBOaDgijJWZglfqrEBN3qPPdDyBIuAHf5aShSyYC9IEclXv8VoTkIkSupa68hUBOeKJAyhUmucjYBFg3JuJnZGBzhve67UsQm8SJksZ7lOBIYBcdaFENy1p7ww3K9HB56YkTVjjNgGJKXZlyzsz-eHjgS5y7Ja0hOG3HHTsdUsW8oFTEqG5L37VE0APqrXlKq9aaKMQLBGCZkh0cIjPEwkJH69gx4ek_HWMQFThXfglU7QJPPbx8pV7eGhN4XUrDXe6fhlDzu3vk35Ki-36i36LrX6TvzlvwBomL1cg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly-ADP+Ribose+Polymerase+Activates+Nuclear+Proteasome+to+Degrade+Oxidatively+Damaged+Histones&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ullrich%2C+Oliver&rft.au=Reinheckel%2C+Thomas&rft.au=Sitte%2C+Nicolle&rft.au=Hass%2C+Ralf&rft.date=1999-05-25&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=96&rft.issue=11&rft.spage=6223&rft.epage=6228&rft_id=info:doi/10.1073%2Fpnas.96.11.6223&rft.externalDocID=47852
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F96%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F96%2F11.cover.gif