The noncanonical NF-κB pathway

The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in t...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 246; no. 1; pp. 125 - 140
Main Author Sun, Shao-Cong
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF‐κB pathway. A central signaling component of the noncanonical NF‐κB pathway is NF‐κB‐inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF‐κB kinase α), to induce phosphorylation‐dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor‐associated factor‐3 (TRAF3)‐dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF‐κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF‐κB pathway.
AbstractList The noncanonical nuclear factor- Kappa B (NF- Kappa B) signaling pathway mediates activation of the p52/RelB NF- Kappa B complex and, thereby, regulates specific immunological processes. This NF- Kappa B pathway relies on the inducible processing of NF- Kappa B2 precursor protein, p100, as opposed to the degradation of I Kappa B alpha in the canonical NF- Kappa B pathway. A central signaling component of the noncanonical NF- Kappa B pathway is NF- Kappa B-inducing kinase (NIK), which functions together with a downstream kinase, IKK alpha (inhibitor of NF- Kappa B kinase alpha ), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF- Kappa B. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF- Kappa B pathway.
The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF‐κB pathway. A central signaling component of the noncanonical NF‐κB pathway is NF‐κB‐inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF‐κB kinase α), to induce phosphorylation‐dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor‐associated factor‐3 (TRAF3)‐dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF‐κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF‐κB pathway.
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, inhibitor of NF-κB kinase α (IKKα), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.
Author Sun, Shao-Cong
Author_xml – sequence: 1
  givenname: Shao-Cong
  surname: Sun
  fullname: Sun, Shao-Cong
  organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22435551$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9O2zAUxq2JaRTYK7DebTfJ_O848QWTWAcMDZg2geDuyEkc6i5NujiF9tX2EHumOSsUxsWEL2zL53w_fzrfFtmom9oSMmQ0ZmG9n8RMURpRBVcxp4zFlNE0jRcvyGBd2CCD8AoRT7XaJFveTyhlieDyFdnkXAoAYAPy5nxsh4Gem7C53FTDs8Po96-Pw5npxrdmuUNelqby9vXduU0uDg_OR5-jk69Hx6P9kygHKdMoY1bTkhcFcDBWgpYZSKW1tQkUWWFAlWlZ8ITarBS6gIQrW6pMaWOkpoUU2-TDijubZ1Nb5LbuWlPhrHVT0y6xMQ7_rdRujNfNDQrBhAQeAG_vAG3zc259h1Pnc1tVprbN3KOWNBWQqCR0vvtvJ6NhlkJqnobW3ceu1nbu5_dgO28b71tbYu4607mmN-mqwMI-MJxgnwv2uWAfGP4NDBcBkD4B3P_xDOneSnrrKrt8tg6PT7_3t6CPVnrnO7tY6037A8OUEsDLsyNkl-rTl-QboBR_AA5eu8I
CitedBy_id crossref_primary_10_1002_j_1532_2149_2012_00273_x
crossref_primary_10_1016_j_ajhg_2013_09_009
crossref_primary_10_3390_pathogens9100814
crossref_primary_10_1074_jbc_M114_587808
crossref_primary_10_1186_s12929_015_0118_2
crossref_primary_10_1186_s13046_022_02298_1
crossref_primary_10_1186_s13578_018_0268_5
crossref_primary_10_3389_fimmu_2022_906311
crossref_primary_10_3389_fimmu_2019_00997
crossref_primary_10_3390_cancers14071671
crossref_primary_10_1002_ardp_201800374
crossref_primary_10_3389_fcell_2022_841646
crossref_primary_10_1016_j_envres_2023_115767
crossref_primary_10_1016_j_intimp_2021_107572
crossref_primary_10_3390_toxins10050199
crossref_primary_10_1128_JVI_02552_14
crossref_primary_10_3389_fimmu_2023_1125224
crossref_primary_10_4049_jimmunol_1301328
crossref_primary_10_1038_ncomms6360
crossref_primary_10_1038_s41419_019_2177_x
crossref_primary_10_3109_03602532_2012_756011
crossref_primary_10_3390_cimb44120411
crossref_primary_10_1016_j_micpath_2021_104846
crossref_primary_10_1084_jem_20151048
crossref_primary_10_7554_eLife_05648
crossref_primary_10_1073_pnas_1410124111
crossref_primary_10_1158_0008_5472_CAN_19_3578
crossref_primary_10_1126_scisignal_adh1641
crossref_primary_10_1161_ATVBAHA_115_306931
crossref_primary_10_1016_j_bbrep_2015_11_007
crossref_primary_10_1038_s41401_018_0053_3
crossref_primary_10_3390_ijms23169365
crossref_primary_10_1016_j_cbi_2018_07_017
crossref_primary_10_1016_j_virol_2025_110484
crossref_primary_10_1074_jbc_M113_526269
crossref_primary_10_1021_acsami_3c18645
crossref_primary_10_1016_j_cub_2016_10_009
crossref_primary_10_1186_s12964_020_00613_x
crossref_primary_10_1074_jbc_M114_635086
crossref_primary_10_1021_acsbiomedchemau_2c00048
crossref_primary_10_1128_jvi_00027_22
crossref_primary_10_3389_fimmu_2023_1160116
crossref_primary_10_3390_cancers10110426
crossref_primary_10_1049_iet_syb_2013_0020
crossref_primary_10_1007_s11262_015_1277_7
crossref_primary_10_1042_BCJ20180163
crossref_primary_10_1093_jamia_ocaf035
crossref_primary_10_1007_s11882_020_00938_0
crossref_primary_10_1111_j_1600_065X_2012_01099_x
crossref_primary_10_1002_eji_201445416
crossref_primary_10_1016_j_biopha_2024_117367
crossref_primary_10_1016_j_semcdb_2014_12_004
crossref_primary_10_1111_jcmm_12752
crossref_primary_10_1016_j_ajpath_2015_03_012
crossref_primary_10_3390_biom5043087
crossref_primary_10_1016_j_celrep_2016_10_067
crossref_primary_10_1016_j_semcancer_2016_07_005
crossref_primary_10_3389_fimmu_2019_02700
crossref_primary_10_1152_ajpendo_00470_2014
crossref_primary_10_3389_fimmu_2018_02165
crossref_primary_10_3390_cells11101673
crossref_primary_10_1080_07357907_2020_1721523
crossref_primary_10_1016_j_ebiom_2024_105452
crossref_primary_10_3390_ijms21228470
crossref_primary_10_1016_j_apmt_2017_12_003
crossref_primary_10_3389_fgene_2019_00140
crossref_primary_10_1371_journal_pone_0135728
crossref_primary_10_3389_fimmu_2018_02161
crossref_primary_10_1053_j_jrn_2013_01_001
crossref_primary_10_1016_S1875_5364_23_60384_X
crossref_primary_10_1038_gene_2015_3
crossref_primary_10_1016_j_biopha_2024_117058
crossref_primary_10_3389_fcell_2021_809952
crossref_primary_10_1017_erm_2023_20
crossref_primary_10_1007_s10787_018_0503_z
crossref_primary_10_1084_jem_20141207
crossref_primary_10_1371_journal_pone_0199197
crossref_primary_10_3390_ijms252111473
crossref_primary_10_1053_j_seminhematol_2024_05_001
crossref_primary_10_1016_j_cell_2016_12_012
crossref_primary_10_1016_j_chom_2015_08_009
crossref_primary_10_1371_journal_pone_0189396
crossref_primary_10_1084_jem_20200476
crossref_primary_10_1371_journal_ppat_1006162
crossref_primary_10_1007_s11427_018_9339_0
crossref_primary_10_1074_jbc_M115_660761
crossref_primary_10_3389_fimmu_2017_01624
crossref_primary_10_1016_j_ajpath_2015_12_016
crossref_primary_10_1007_s00343_016_4393_x
crossref_primary_10_1182_blood_2020010039
crossref_primary_10_2174_1568009620666200720011341
crossref_primary_10_1016_j_scitotenv_2019_06_387
crossref_primary_10_1007_s11010_020_03948_8
crossref_primary_10_1016_j_celrep_2017_12_055
crossref_primary_10_1038_s41598_017_16168_w
crossref_primary_10_3109_10799893_2014_977450
crossref_primary_10_1038_s41467_017_00859_z
crossref_primary_10_3390_biomedicines12061169
crossref_primary_10_1038_leu_2014_330
crossref_primary_10_1016_j_crphys_2024_100133
crossref_primary_10_2174_1568009623666230206154944
crossref_primary_10_1002_advs_201901261
crossref_primary_10_3390_immuno2040039
crossref_primary_10_3390_v15071566
crossref_primary_10_3390_cancers11070949
crossref_primary_10_1016_j_neuro_2020_11_003
crossref_primary_10_1530_JME_16_0183
crossref_primary_10_1038_s41467_017_02672_0
crossref_primary_10_1007_s13770_019_00194_y
crossref_primary_10_1210_en_2016_1582
crossref_primary_10_7554_eLife_34152
crossref_primary_10_3390_ijms222313053
crossref_primary_10_1038_s41430_020_0585_8
crossref_primary_10_1111_j_1600_065X_2011_01092_x
crossref_primary_10_3389_fvets_2020_547047
crossref_primary_10_1089_ars_2013_5467
crossref_primary_10_1016_j_ejphar_2023_176241
crossref_primary_10_1111_liv_70063
crossref_primary_10_1186_s12964_021_00705_2
crossref_primary_10_4049_jimmunol_1400389
crossref_primary_10_1111_ejh_13435
crossref_primary_10_1074_jbc_M114_574541
crossref_primary_10_1016_j_dci_2017_04_010
crossref_primary_10_1038_cmi_2017_167
crossref_primary_10_1016_j_tranon_2020_100912
crossref_primary_10_1038_s41423_023_00985_3
crossref_primary_10_1186_s12864_023_09313_5
crossref_primary_10_18632_oncotarget_13034
crossref_primary_10_1002_jcp_28249
crossref_primary_10_1021_acs_bioconjchem_2c00529
crossref_primary_10_1038_srep10758
crossref_primary_10_1016_j_celrep_2014_11_014
crossref_primary_10_1371_journal_pone_0126290
crossref_primary_10_1038_ni_2476
crossref_primary_10_1128_jvi_01699_21
crossref_primary_10_1016_j_biocel_2016_08_034
crossref_primary_10_1111_cas_13788
crossref_primary_10_1097_FPC_0000000000000471
crossref_primary_10_3390_ijms21207805
crossref_primary_10_1186_s12931_015_0214_6
crossref_primary_10_3389_fimmu_2023_1167924
crossref_primary_10_1016_j_molimm_2015_07_024
crossref_primary_10_3389_fonc_2021_641269
crossref_primary_10_3390_life11050427
crossref_primary_10_4103_1673_5374_237109
crossref_primary_10_3389_fimmu_2017_00045
crossref_primary_10_1172_jci_insight_129348
crossref_primary_10_1016_j_genrep_2023_101833
crossref_primary_10_1080_07357907_2022_2055050
crossref_primary_10_1128_mBio_00441_15
crossref_primary_10_4049_jimmunol_2100397
crossref_primary_10_1016_j_bbadis_2024_167066
crossref_primary_10_1038_s41392_024_01757_9
crossref_primary_10_1158_1078_0432_CCR_19_0475
crossref_primary_10_1254_fpj_23109
crossref_primary_10_1016_j_molmed_2019_02_005
crossref_primary_10_1007_s00125_015_3817_z
crossref_primary_10_1038_s44321_024_00093_3
crossref_primary_10_3109_08830185_2015_1136306
crossref_primary_10_1016_j_jneuroim_2015_04_006
crossref_primary_10_1038_nri_2017_52
crossref_primary_10_1159_000357953
crossref_primary_10_1002_mc_22938
crossref_primary_10_1038_s41467_022_32575_8
crossref_primary_10_1038_onc_2016_309
crossref_primary_10_1016_j_atherosclerosis_2019_04_204
crossref_primary_10_1084_jem_20240843
crossref_primary_10_1681_ASN_2019111206
crossref_primary_10_1016_j_semcancer_2016_05_002
crossref_primary_10_1007_s11010_022_04385_5
crossref_primary_10_1007_s40620_015_0231_z
crossref_primary_10_1111_jphp_13024
crossref_primary_10_3389_fimmu_2020_592949
crossref_primary_10_1016_j_canlet_2020_10_047
crossref_primary_10_1111_j_1600_065X_2012_01107_x
crossref_primary_10_3389_fmicb_2016_01243
crossref_primary_10_1016_j_jep_2024_118081
crossref_primary_10_1002_jbmr_2584
crossref_primary_10_1007_s12011_019_01955_5
crossref_primary_10_1002_ame2_12436
crossref_primary_10_3892_ol_2024_14613
crossref_primary_10_1111_tra_12707
crossref_primary_10_1111_imm_13186
crossref_primary_10_4049_jimmunol_1103451
crossref_primary_10_3109_08830185_2015_1055331
crossref_primary_10_1016_j_jaci_2017_05_030
crossref_primary_10_1016_j_isci_2021_103649
crossref_primary_10_1016_j_semcancer_2015_03_002
crossref_primary_10_1016_j_biopha_2022_113513
crossref_primary_10_4161_cc_29216
crossref_primary_10_1155_2013_949513
crossref_primary_10_1016_j_canlet_2021_03_025
crossref_primary_10_1182_bloodadvances_2017009670
crossref_primary_10_1186_s13041_019_0532_6
crossref_primary_10_1016_j_semcancer_2023_05_009
crossref_primary_10_1111_imr_12311
crossref_primary_10_1016_j_omtn_2019_10_048
crossref_primary_10_1016_j_jhep_2017_02_025
crossref_primary_10_3390_biomedicines9080889
crossref_primary_10_4049_jimmunol_1800042
crossref_primary_10_1016_j_intimp_2021_108255
crossref_primary_10_37349_etat_2022_00086
crossref_primary_10_1016_j_intimp_2017_04_022
crossref_primary_10_3389_fimmu_2015_00460
crossref_primary_10_1016_j_cyto_2018_12_020
crossref_primary_10_1016_j_hbpd_2021_04_001
crossref_primary_10_1126_sciadv_abh0609
crossref_primary_10_1126_scisignal_aaf1129
crossref_primary_10_1038_s41467_024_54882_y
crossref_primary_10_3389_fpubh_2020_558283
crossref_primary_10_1152_ajpgi_00037_2022
crossref_primary_10_1002_JLB_2MIR0817_339RR
crossref_primary_10_3390_v6103925
crossref_primary_10_1371_journal_pone_0176500
crossref_primary_10_1155_2020_7532306
crossref_primary_10_3389_fphar_2014_00120
crossref_primary_10_3390_biomedicines11041060
crossref_primary_10_3390_biomedicines6020043
crossref_primary_10_3892_ol_2023_13865
crossref_primary_10_1111_j_1600_065X_2012_01094_x
crossref_primary_10_1016_j_intimp_2024_113008
crossref_primary_10_1097_MCO_0b013e3283600e79
crossref_primary_10_1038_ki_2015_280
crossref_primary_10_3390_biomedicines6020059
crossref_primary_10_1002_JLB_3MIR0817_346RRR
crossref_primary_10_1038_srep22115
crossref_primary_10_1016_j_cellsig_2014_02_024
crossref_primary_10_3892_ijo_2013_2210
crossref_primary_10_1111_j_1600_065X_2012_01105_x
crossref_primary_10_3389_fphar_2022_916653
crossref_primary_10_1042_BSR20182292
crossref_primary_10_1111_nyas_12763
crossref_primary_10_1016_j_trsl_2015_07_001
crossref_primary_10_1038_s41467_023_35801_z
crossref_primary_10_3389_fonc_2023_1169397
crossref_primary_10_1038_s41598_018_30621_4
crossref_primary_10_3389_fmicb_2016_01202
crossref_primary_10_1038_ncomms6930
crossref_primary_10_1016_j_it_2013_01_004
crossref_primary_10_2174_0929867325666181112093336
crossref_primary_10_1161_CIRCRESAHA_116_308559
crossref_primary_10_1038_s41420_021_00582_1
crossref_primary_10_1084_jem_20131019
crossref_primary_10_1038_ncomms15158
crossref_primary_10_1038_nature11831
crossref_primary_10_1093_femspd_ftaa045
crossref_primary_10_14785_lymphosign_2019_0015
crossref_primary_10_1111_imm_12186
crossref_primary_10_3390_v12020188
crossref_primary_10_1016_j_biopha_2023_115090
crossref_primary_10_3390_cells7080102
crossref_primary_10_1016_j_gendis_2023_02_021
crossref_primary_10_1016_j_heliyon_2022_e12141
crossref_primary_10_1038_s41598_018_35852_z
crossref_primary_10_1007_s00011_020_01323_3
crossref_primary_10_3390_ijms20071599
crossref_primary_10_15252_embj_201796919
crossref_primary_10_32604_biocell_2024_054879
crossref_primary_10_1177_10732748221074734
crossref_primary_10_1016_j_str_2012_07_013
crossref_primary_10_1038_sigtrans_2017_23
crossref_primary_10_1016_j_clim_2019_108309
crossref_primary_10_3390_biomedicines6020038
crossref_primary_10_1007_s00438_015_1055_1
crossref_primary_10_3389_fimmu_2021_769167
crossref_primary_10_1111_ced_13784
crossref_primary_10_3390_v14010135
crossref_primary_10_1016_j_intimp_2022_109473
crossref_primary_10_1016_j_gene_2016_01_025
crossref_primary_10_1111_j_1600_065X_2012_01102_x
crossref_primary_10_1002_ijc_32355
crossref_primary_10_3390_ijms24021772
crossref_primary_10_1681_ASN_2015080898
crossref_primary_10_3390_cells10102547
crossref_primary_10_4049_jimmunol_1400874
crossref_primary_10_4155_ppa_13_31
crossref_primary_10_1039_D1BM01299A
crossref_primary_10_1016_j_bbadis_2024_167578
crossref_primary_10_1038_s41418_025_01468_w
crossref_primary_10_1038_s41467_018_03530_3
crossref_primary_10_14218_JCTH_2020_00063
crossref_primary_10_1210_jc_2017_00341
crossref_primary_10_3892_ijo_2017_4089
crossref_primary_10_1080_03008207_2020_1797709
crossref_primary_10_1016_j_nefroe_2019_12_004
crossref_primary_10_3390_genes15040450
crossref_primary_10_1002_mco2_349
crossref_primary_10_3389_fped_2019_00303
crossref_primary_10_1002_mco2_104
crossref_primary_10_1080_15384101_2016_1241915
crossref_primary_10_1016_j_bbrc_2014_05_122
crossref_primary_10_26599_FSHW_2022_9250248
crossref_primary_10_3390_cells11223635
crossref_primary_10_3390_cells10113210
crossref_primary_10_1073_pnas_1816000116
crossref_primary_10_1016_j_ijporl_2023_111470
crossref_primary_10_1093_jb_mvv064
crossref_primary_10_1186_s13045_019_0713_x
crossref_primary_10_1089_dna_2024_0211
crossref_primary_10_1371_journal_ppat_1004458
crossref_primary_10_3390_antiox12122027
crossref_primary_10_3390_biomedicines5020021
crossref_primary_10_1038_onc_2015_470
crossref_primary_10_1111_imr_12299
crossref_primary_10_3233_CBM_181505
crossref_primary_10_3390_cells5020022
crossref_primary_10_1002_hep4_1757
crossref_primary_10_3390_cells5020023
crossref_primary_10_1038_s41423_020_0404_0
crossref_primary_10_1007_s10741_018_9716_x
crossref_primary_10_3390_biomedicines5020027
crossref_primary_10_1038_bjc_2013_593
crossref_primary_10_1111_imm_13003
crossref_primary_10_1016_j_immuni_2018_07_008
crossref_primary_10_1111_imm_13592
crossref_primary_10_1111_bju_12488
crossref_primary_10_1016_j_jaci_2019_03_016
crossref_primary_10_1126_scisignal_2004557
crossref_primary_10_1080_19490976_2020_1859812
crossref_primary_10_1016_j_intimp_2024_112069
crossref_primary_10_3390_ijms23116031
crossref_primary_10_1186_s13578_015_0056_4
crossref_primary_10_1186_1756_3305_5_229
crossref_primary_10_1016_j_bbamcr_2024_119676
crossref_primary_10_1093_nar_gkac491
crossref_primary_10_1002_ctm2_349
crossref_primary_10_1530_ERC_19_0087
crossref_primary_10_1158_1078_0432_CCR_13_0987
crossref_primary_10_1128_JVI_02030_18
crossref_primary_10_1038_s41467_022_35525_6
crossref_primary_10_1038_s41423_019_0202_8
crossref_primary_10_1038_s41698_024_00654_2
crossref_primary_10_3390_v13081560
crossref_primary_10_3389_fimmu_2020_01387
crossref_primary_10_3390_cells8020178
crossref_primary_10_3390_ijms24065364
crossref_primary_10_1111_jcmm_15108
crossref_primary_10_1111_jcmm_15105
crossref_primary_10_4161_cc_28895
crossref_primary_10_1002_wsbm_1646
crossref_primary_10_1038_s41423_020_00583_7
crossref_primary_10_1007_s10811_018_1443_0
crossref_primary_10_1126_sciadv_add7399
crossref_primary_10_1038_s42003_023_04821_2
crossref_primary_10_1371_journal_pone_0057489
crossref_primary_10_1016_j_fsi_2020_09_012
crossref_primary_10_1016_j_cyto_2016_09_003
crossref_primary_10_1016_j_jaci_2017_05_007
crossref_primary_10_3389_fimmu_2018_00613
crossref_primary_10_1002_cac2_12109
crossref_primary_10_1016_j_fsi_2018_12_014
crossref_primary_10_1007_s11033_024_09653_9
crossref_primary_10_1002_cam4_3832
crossref_primary_10_1038_s41405_024_00211_w
crossref_primary_10_1016_j_fsi_2015_06_021
crossref_primary_10_1371_journal_pone_0235803
crossref_primary_10_1016_j_freeradbiomed_2017_02_045
crossref_primary_10_4049_jimmunol_1400833
crossref_primary_10_3389_fimmu_2023_1305933
crossref_primary_10_1111_imm_12484
crossref_primary_10_4049_jimmunol_1501120
crossref_primary_10_1016_j_lfs_2021_120032
crossref_primary_10_1016_j_bbrc_2015_08_019
crossref_primary_10_1038_ni_2423
crossref_primary_10_26599_FSHW_2022_9250200
crossref_primary_10_1084_jem_20160659
crossref_primary_10_18632_oncotarget_11509
crossref_primary_10_1186_s12881_014_0139_9
crossref_primary_10_1111_j_1600_065X_2012_01111_x
crossref_primary_10_18632_oncotarget_11507
crossref_primary_10_1007_s12282_016_0738_8
crossref_primary_10_1186_s13075_015_0527_3
crossref_primary_10_1371_journal_ppat_1003326
crossref_primary_10_1016_j_chom_2016_01_005
crossref_primary_10_1515_tnsci_2021_0003
crossref_primary_10_3389_fimmu_2020_01098
crossref_primary_10_1096_fj_14_269480
crossref_primary_10_3892_mmr_2019_10509
crossref_primary_10_1007_s11095_017_2246_8
crossref_primary_10_1016_j_pathog_2015_07_001
crossref_primary_10_1128_mbio_02222_23
crossref_primary_10_3390_cells10123309
crossref_primary_10_1016_j_jep_2023_116986
crossref_primary_10_1053_j_gastro_2018_11_018
crossref_primary_10_3390_ijms25021009
crossref_primary_10_1038_s41598_023_41101_9
crossref_primary_10_1155_2023_2264030
crossref_primary_10_3390_life11020103
crossref_primary_10_1038_s41467_022_35054_2
crossref_primary_10_3389_fimmu_2018_01849
crossref_primary_10_1002_eji_201646502
crossref_primary_10_1007_s00204_015_1496_7
crossref_primary_10_1038_cddis_2014_417
crossref_primary_10_1016_j_ejphar_2022_175412
crossref_primary_10_1097_MPG_0000000000002796
crossref_primary_10_1016_j_imbio_2016_05_007
crossref_primary_10_17844_jphpi_v27i9_54255
crossref_primary_10_1021_acs_jmedchem_6b01363
crossref_primary_10_1016_j_bbadis_2015_10_019
crossref_primary_10_3390_cells12192383
crossref_primary_10_1007_s00262_021_02867_x
crossref_primary_10_1586_era_13_28
crossref_primary_10_1038_onc_2015_331
crossref_primary_10_1016_j_biosystems_2021_104564
crossref_primary_10_3390_cells10071609
crossref_primary_10_1016_j_molmet_2015_09_013
crossref_primary_10_1111_febs_13554
crossref_primary_10_3390_foods12122355
crossref_primary_10_1016_j_bbagrm_2013_04_007
crossref_primary_10_1007_s10238_012_0217_2
crossref_primary_10_1002_advs_202308698
crossref_primary_10_1038_nrm3644
crossref_primary_10_3389_fimmu_2019_03061
crossref_primary_10_1016_j_febslet_2015_11_011
crossref_primary_10_18632_oncotarget_18197
crossref_primary_10_1038_s41392_020_00421_2
crossref_primary_10_1016_j_jaci_2016_11_031
crossref_primary_10_1002_1878_0261_13134
crossref_primary_10_1021_acs_jmedchem_8b00678
crossref_primary_10_1016_j_jmccpl_2022_100018
crossref_primary_10_2147_IJGM_S347654
crossref_primary_10_3390_cells11010132
crossref_primary_10_1134_S1068162022050119
crossref_primary_10_3390_ijms25158123
crossref_primary_10_1016_j_dci_2021_104044
crossref_primary_10_1016_j_nefro_2019_03_004
crossref_primary_10_1016_j_virusres_2023_199138
crossref_primary_10_1124_pr_116_012518
crossref_primary_10_1016_j_fsi_2022_04_001
crossref_primary_10_1186_s12917_022_03373_7
crossref_primary_10_1007_s10555_023_10134_x
crossref_primary_10_1007_s11515_012_1233_z
crossref_primary_10_1016_j_biocel_2021_106052
crossref_primary_10_1080_09291016_2017_1323422
crossref_primary_10_1182_blood_2014_06_578542
crossref_primary_10_1371_journal_pone_0171406
crossref_primary_10_1097_MIB_0000000000000858
crossref_primary_10_1371_journal_pone_0059127
crossref_primary_10_1182_blood_2019001438
crossref_primary_10_1111_jnc_13526
crossref_primary_10_1016_j_freeradbiomed_2014_04_028
crossref_primary_10_1038_s41392_020_00312_6
crossref_primary_10_3390_molecules27113492
crossref_primary_10_3389_fimmu_2020_608976
crossref_primary_10_1038_s41590_018_0206_z
crossref_primary_10_1155_2019_6313242
crossref_primary_10_3389_fimmu_2022_895636
crossref_primary_10_1038_s41392_022_00888_1
crossref_primary_10_1016_j_bcp_2016_03_009
crossref_primary_10_3390_microorganisms9081748
crossref_primary_10_1016_j_celrep_2017_06_073
crossref_primary_10_22159_ijpps_2024v16i6_49530
crossref_primary_10_3390_cells7100176
crossref_primary_10_4236_ojas_2019_91005
crossref_primary_10_1038_s41467_018_05168_7
crossref_primary_10_1073_pnas_1408552111
crossref_primary_10_3389_fimmu_2019_00815
crossref_primary_10_3389_fmicb_2019_02498
crossref_primary_10_1172_jci_insight_98278
crossref_primary_10_1186_1479_5876_10_252
crossref_primary_10_1038_cr_2016_40
crossref_primary_10_4049_jimmunol_1303237
crossref_primary_10_1007_s00018_015_2059_z
crossref_primary_10_1016_j_celrep_2019_11_102
crossref_primary_10_1016_j_jff_2023_105747
crossref_primary_10_1016_j_jprot_2018_07_018
crossref_primary_10_1038_s41375_020_01088_y
crossref_primary_10_1007_s10787_024_01635_4
crossref_primary_10_1126_scisignal_aad0848
crossref_primary_10_1155_2020_6673467
crossref_primary_10_1007_s00005_018_0522_x
crossref_primary_10_1007_s11886_018_1067_7
crossref_primary_10_1007_s13277_016_4860_1
crossref_primary_10_1177_1010428317692248
crossref_primary_10_1126_scisignal_aad9413
crossref_primary_10_1126_scitranslmed_abh3351
crossref_primary_10_1073_pnas_1901056116
crossref_primary_10_1016_j_atherosclerosis_2019_10_023
crossref_primary_10_1371_journal_pone_0106903
crossref_primary_10_7314_APJCP_2013_14_5_3275
crossref_primary_10_1111_febs_14444
crossref_primary_10_1016_j_bbamcr_2018_01_006
crossref_primary_10_1038_cdd_2015_69
crossref_primary_10_3390_molecules27020502
crossref_primary_10_1016_j_foodres_2024_115079
crossref_primary_10_1182_bloodadvances_2020003597
crossref_primary_10_1016_j_lungcan_2015_06_006
crossref_primary_10_1016_j_immuni_2014_02_006
crossref_primary_10_1016_j_azn_2025_02_006
crossref_primary_10_1002_embr_201337983
crossref_primary_10_1016_j_bbrc_2017_11_160
crossref_primary_10_1016_j_bmcl_2023_129277
crossref_primary_10_14785_lymphosign_2023_0001
crossref_primary_10_3390_jcm10163735
crossref_primary_10_3389_fnmol_2015_00077
crossref_primary_10_3390_ijms22126210
crossref_primary_10_3390_ph16111588
crossref_primary_10_1016_j_semcancer_2016_08_002
crossref_primary_10_1093_cvr_cvz206
crossref_primary_10_1016_j_smim_2014_05_004
crossref_primary_10_1038_s41419_019_1524_2
crossref_primary_10_1007_s42764_020_00022_x
crossref_primary_10_1093_abbs_gmy082
crossref_primary_10_1126_scisignal_aay8248
crossref_primary_10_1165_rcmb_2017_0242OC
crossref_primary_10_1021_acs_jafc_9b03647
crossref_primary_10_1002_eji_202249915
crossref_primary_10_3892_ijmm_2018_3889
crossref_primary_10_3390_ijms21145164
crossref_primary_10_1155_2021_3206982
crossref_primary_10_1099_mic_0_069369_0
crossref_primary_10_1038_s41598_022_05904_6
crossref_primary_10_1080_2162402X_2015_1008791
crossref_primary_10_1080_01616412_2021_1939484
crossref_primary_10_3390_cells10040747
crossref_primary_10_1016_j_bcp_2024_116736
crossref_primary_10_1038_s41586_020_1951_3
crossref_primary_10_3390_v15030745
crossref_primary_10_1016_j_ccell_2015_10_001
crossref_primary_10_1515_biol_2022_0729
crossref_primary_10_1126_sciimmunol_abf6723
crossref_primary_10_1016_j_rvsc_2018_08_009
crossref_primary_10_18632_aging_101040
crossref_primary_10_1021_acs_jproteome_5b01004
crossref_primary_10_1002_jbt_23079
crossref_primary_10_1002_jcp_30720
crossref_primary_10_1016_j_micpath_2020_104415
crossref_primary_10_3389_fimmu_2019_02079
crossref_primary_10_3389_fncel_2021_633610
crossref_primary_10_4049_jimmunol_1900561
crossref_primary_10_1152_japplphysiol_00759_2014
crossref_primary_10_3390_plants12061241
crossref_primary_10_1038_s42003_024_06365_5
crossref_primary_10_3390_cells10071576
crossref_primary_10_3390_biom11010015
crossref_primary_10_1016_j_bcp_2018_05_017
crossref_primary_10_1152_ajplung_00125_2015
crossref_primary_10_1111_febs_14492
crossref_primary_10_3390_v14122798
crossref_primary_10_3389_fonc_2021_731441
crossref_primary_10_1038_s41598_018_24444_6
crossref_primary_10_1016_j_bbrc_2017_07_099
crossref_primary_10_1073_pnas_1503535112
crossref_primary_10_1186_s12951_025_03246_9
crossref_primary_10_3390_cancers16030523
crossref_primary_10_3390_molecules25102342
crossref_primary_10_1186_s12986_020_0433_9
crossref_primary_10_1053_j_gastro_2020_06_033
crossref_primary_10_1089_vim_2019_0188
crossref_primary_10_1016_j_jid_2017_08_042
crossref_primary_10_3390_v15122435
crossref_primary_10_4049_jimmunol_1401514
crossref_primary_10_1186_s43094_024_00730_1
crossref_primary_10_1016_j_molmed_2016_03_002
crossref_primary_10_4049_jimmunol_1600610
Cites_doi 10.1074/jbc.M306708200
10.1038/sj.onc.1203221
10.1074/jbc.M401428200
10.1042/BJ20040544
10.1093/emboj/20.23.6805
10.1074/jbc.M410539200
10.1126/scisignal.3123pe18
10.1038/nri2832
10.1038/nri1669
10.1128/MCB.16.11.6363
10.1084/jem.20061166
10.1084/jem.20110128
10.1016/j.immuni.2004.09.011
10.1016/S1074-7613(02)00423-5
10.1371/journal.pbio.1000518
10.1074/jbc.M403286200
10.1016/j.molcel.2008.05.014
10.1016/S0092-8674(00)81409-9
10.1073/pnas.0609914104
10.1128/MCB.18.10.5899
10.1038/ni.1692
10.1073/pnas.0707959105
10.1093/intimm/dxp014
10.1074/jbc.C200151200
10.1084/jem.20091802
10.1074/jbc.M110.147207
10.1074/jbc.M110.216226
10.1128/MCB.21.6.2192-2202.2001
10.1074/jbc.M304266200
10.4049/jimmunol.0804324
10.1084/jem.20011885
10.1126/science.8096091
10.1038/sj.onc.1206761
10.1038/nri2295
10.4049/jimmunol.163.12.6575
10.1016/j.molcel.2010.03.009
10.1016/j.bcp.2006.08.007
10.1002/eji.1830240224
10.1038/ni.1918
10.1038/sj.onc.1207366
10.1016/j.immuni.2008.01.009
10.2217/fon.09.152
10.1038/cmi.2009.112
10.1182/blood-2008-12-192914
10.1016/S1074-7613(00)80588-9
10.1073/pnas.94.17.9302
10.1073/pnas.0507342102
10.1038/nri1054
10.1007/s00281-009-0194-z
10.1146/annurev.immunol.26.021607.090344
10.1073/pnas.95.7.3792
10.1073/pnas.0308016101
10.1084/jem.20030116
10.1016/j.immuni.2004.08.009
10.1242/jcs.075770
10.1016/j.molimm.2009.07.029
10.1093/emboj/19.22.6085
10.1182/blood-2008-12-192583
10.4049/jimmunol.155.4.1685
10.1038/cr.2010.159
10.1126/science.1062677
10.1093/emboj/cdf542
10.1038/sj.emboj.7600391
10.1146/annurev.immunol.021908.132641
10.1101/cshperspect.a000182
10.1038/8780
10.1371/journal.pone.0015383
10.1126/science.1058453
10.1074/jbc.M800806200
10.1126/science.8171322
10.1111/j.1432-1033.1992.tb16708.x
10.1101/gad.218702
10.1016/j.immuni.2011.02.019
10.1093/emboj/cdg004
10.4049/jimmunol.179.11.7514
10.1182/blood-2010-06-290437
10.1016/S1097-2765(01)00187-3
10.1002/eji.1830260324
10.1016/j.bbrc.2007.10.200
10.1016/j.immuni.2007.07.012
10.1038/sj.onc.1203519
10.1084/jem.193.5.631
10.1073/pnas.0711122105
10.1038/onc.2010.396
10.1074/jbc.M300106200
10.1007/82_2010_108
10.1002/jcp.21099
10.1073/pnas.1105774108
10.1182/blood-2009-09-243535
10.1038/sj.onc.1208969
10.1038/cdd.2009.80
10.1038/cr.2011.13
10.1016/j.cellsig.2005.10.011
10.1016/j.cell.2008.01.020
10.1016/j.cell.2007.10.030
10.4049/jimmunol.182.2.793
10.1038/ni.1678
10.1182/blood-2010-10-312793
10.1126/stke.11pe1
10.1038/sj.onc.1203022
10.1038/385540a0
10.1038/cr.2010.177
10.1034/j.1600-065X.2003.00064.x
10.1182/blood-2005-06-2452
10.1016/j.cell.2007.10.037
10.1182/blood-2010-08-303073
10.4049/jimmunol.173.4.2271
10.1182/blood-2006-11-056010
10.1038/ni842
10.1038/ni.1676
10.1073/pnas.0805186105
10.1126/scisignal.2000778
10.1074/jbc.M109.037341
10.1038/nri2886
10.1038/ni1351
10.1038/sj.onc.1209933
10.1016/j.yexcr.2010.05.004
10.1016/S1074-7613(00)80292-7
10.1074/jbc.M110.119438
10.1016/S1074-7613(02)00425-9
10.1080/08916930600833390
10.1074/jbc.M109619200
10.1053/gast.2002.33651
10.1016/j.coi.2010.01.001
10.1073/pnas.91.4.1346
10.1126/science.1198946
10.4049/jimmunol.169.3.1151
ContentType Journal Article
Copyright 2012 John Wiley & Sons A/S
2012 John Wiley & Sons A/S.
Copyright_xml – notice: 2012 John Wiley & Sons A/S
– notice: 2012 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
7X8
5PM
DOI 10.1111/j.1600-065X.2011.01088.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 140
ExternalDocumentID PMC3313452
22435551
10_1111_j_1600_065X_2011_01088_x
IMR1088
ark_67375_WNG_1W6DK7Q5_4
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI064639
– fundername: NIAID NIH HHS
  grantid: AI057555
– fundername: NIAID NIH HHS
  grantid: R01 AI057555
– fundername: NIGMS NIH HHS
  grantid: GM84459
– fundername: NIAID NIH HHS
  grantid: R37 AI064639
– fundername: NIAID NIH HHS
  grantid: AI064639
– fundername: NIGMS NIH HHS
  grantid: GM84459-S1
– fundername: NIGMS NIH HHS
  grantid: R01 GM084459
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM084459-10 || GM
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM084459-08S1 || GM
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI064639-07 || AI
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
7X8
5PM
ID FETCH-LOGICAL-c5448-b1e90f2dd525ae4594b54699ee75dbda56f8fd270ebf39d5726ef6b69aa490d43
IEDL.DBID DR2
ISSN 0105-2896
1600-065X
IngestDate Thu Aug 21 13:49:16 EDT 2025
Fri Jul 11 02:11:45 EDT 2025
Fri Jul 11 05:39:24 EDT 2025
Mon Jul 21 05:16:38 EDT 2025
Thu Apr 24 22:58:15 EDT 2025
Tue Jul 01 00:20:57 EDT 2025
Wed Jan 22 17:12:28 EST 2025
Wed Oct 30 09:51:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5448-b1e90f2dd525ae4594b54699ee75dbda56f8fd270ebf39d5726ef6b69aa490d43
Notes ark:/67375/WNG-1W6DK7Q5-4
istex:397A088E3E1663A9F58378AA7236C3A454848B82
ArticleID:IMR1088
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3313452
PMID 22435551
PQID 1008834928
PQPubID 23462
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3313452
proquest_miscellaneous_940835767
proquest_miscellaneous_1008834928
pubmed_primary_22435551
crossref_citationtrail_10_1111_j_1600_065X_2011_01088_x
crossref_primary_10_1111_j_1600_065X_2011_01088_x
wiley_primary_10_1111_j_1600_065X_2011_01088_x_IMR1088
istex_primary_ark_67375_WNG_1W6DK7Q5_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03
March 2012
2012-03-00
2012-Mar
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282.
Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biol 2010;8:e1000518.
Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A. CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 2009;21:467-476.
Ling L, Cao Z, Goeddel DV. NF-kB-inducing kinase activates IKK-a by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998;95:3792-3797.
Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008;105:11778-11783.
Powolny-Budnicka I, Riemann M, Tänzer S, Schmid RM, Hehlgans T, Weih F. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 2011;34:364-74.
Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59-70.
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733.
Fu J, et al. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2011;117:1652-1661.
Lo JC, et al. Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Blood 2006;107:1048-1055.
Yang C, et al. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 2010;5:e15383.
Munroe ME, Bishop GA. Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation. J Biol Chem 2004;279:53222-53231.
Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-310.
Britanova LV, Makeev VJ, Kuprash DV. In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 2008;365:583-588.
Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-α and lymphotoxin-β receptor activation: critical roles for p100. J Biol Chem 2003;278:23278-23284.
Matsushima A, et al. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001;193:631-636.
Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005;5:606-616.
Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378.
Shinkura R, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 1999;22:74-77.
Liang C, Zhang M, Sun SC. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870 Cell Signal 2006;18:1309-1317.
Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409.
Li Z, et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158-4168.
Koike R, et al. The splenic marginal zone is absent in alymphoplastic aly mutant mice. Eur J Immunol 1996;26:669-675.
Sun S-C, Faye I. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear factor kB. Eur J Biochem 1992;204:885-892.
Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051.
Xiao G, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001;20:6805-6815.
Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b-deficient mice. Immunity 1997;6:491-500.
Senftleben U, et al. Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway. Science 2001;293:1495-1499.
Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 2010;22:326-332.
Kuprash DV, Alimzhanov MB, Tumanov AV, Anderson AO, Pfeffer K, Nedospasov SA. TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J Immunol 1999;163:6575-6580.
Lassot I, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001;21:2192-2202.
Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008;8:337-348.
Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012.
Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Sigal 2008;1:pe1.
Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390.
Sun S-C, Ganchi PA, Beraud C, Ballard DW, Greene WC. Autoregulation of the NF-kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci U S A 1994;91:1346-1350.
Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693.
Sun SC, Yamaoka S. Activation of NF-kB by HTLV-I and implications for cell transformation. Oncogene 2005;24:5952-5964.
Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706-6716.
Banks TA, et al. Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995;155:1685-1693.
Alimzhanov MB, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A 1997;94:9302-9307.
Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010;10:813-825.
Linterman MA, Vinuesa CG. Signals that influence T follicular helper cell differentiation and function. Semin Immunopathol 2010;32:183-196.
Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 2009;10:203-213.
Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453.
Fong A, Sun S-C. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kB2/p100. J Biol Chem 2002;277:22111-22114.
Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A 2008;105:10883-10888.
De Togni P, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994;264:703-707.
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362.
Kayagaki N, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17:515-524.
Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700.
Paxian S, et al. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology 2002;122:1853-1868.
Pham LV, et al. Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood 2011;117:200-210.
Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 'super repressor'. J Immunol 2007;179:7514-7522.
Tusche MW, et al. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671-2683.
Carragher D, et al. A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 2004;173:2271-2279.
Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A 2008;105:3503-3508.
Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010;11:799-805.
Betts JC, Nabel GJ. Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996;16:6363-6371.
Geronda
2004; 21
2002; 16
2002; 17
2007; 104
2010; 11
2010; 10
2002; 15
2011; 117
2006; 39
2004; 23
2002; 277
1999; 163
2009; 113
2008; 105
2008; 30
1997; 6
2003; 278
2009; 114
2010; 22
1998; 18
1994; 264
2007; 212
2011; 124
2007; 179
2009; 10
2005; 102
1997; 385
2010; 115
2004; 173
2006; 25
2008; 28
2008; 26
1998; 92
2010; 3
1998; 95
2006; 203
2010; 2
1993; 259
2010; 5
2009; 16
2010; 7
2010; 6
2010; 8
2010; 32
2010; 38
2009; 182
2004; 382
1999; 22
2002; 3
2010; 285
1995; 155
2008; 365
1996; 16
2011; 6
2001; 20
2001; 21
2004; 279
2002; 122
2005; 5
2009; 183
1994; 91
2008; 132
2006; 107
2003; 22
1998; 9
2009; 46
2006; 72
2002; 195
1992; 204
2008; 9
2003; 195
1994; 24
2008; 8
2008; 1
2003; 198
2005; 24
2011; 208
2001; 293
1997; 94
2010; 316
2001; 291
1999; 18
2007; 131
2001; 19
2003; 3
2011; 21
2009; 206
1996; 26
2011; 286
2007; 27
2004; 101
2009; 21
2006; 7
2006; 18
2011; 34
2009; 27
2008; 283
2011; 331
2011; 108
2011; 349
2001; 7
2001; 193
2007; 110
2002; 169
e_1_2_12_2_2
e_1_2_12_17_2
e_1_2_12_111_2
e_1_2_12_59_2
e_1_2_12_115_2
e_1_2_12_108_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_62_2
e_1_2_12_85_2
e_1_2_12_127_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_66_2
e_1_2_12_89_2
e_1_2_12_81_2
e_1_2_12_100_2
e_1_2_12_28_2
e_1_2_12_104_2
e_1_2_12_123_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_73_2
e_1_2_12_96_2
e_1_2_12_116_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_77_2
e_1_2_12_12_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_92_2
e_1_2_12_3_2
e_1_2_12_18_2
e_1_2_12_37_2
e_1_2_12_110_2
e_1_2_12_114_2
e_1_2_12_107_2
e_1_2_12_40_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_63_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
e_1_2_12_82_2
e_1_2_12_122_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_126_2
e_1_2_12_119_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_78_2
e_1_2_12_13_2
e_1_2_12_7_2
e_1_2_12_93_2
e_1_2_12_70_2
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_113_2
e_1_2_12_41_2
e_1_2_12_64_2
e_1_2_12_87_2
e_1_2_12_106_2
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_68_2
e_1_2_12_60_2
e_1_2_12_83_2
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_121_2
e_1_2_12_125_2
e_1_2_12_102_2
e_1_2_12_52_2
e_1_2_12_75_2
e_1_2_12_98_2
e_1_2_12_118_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_14_2
e_1_2_12_90_2
e_1_2_12_10_2
e_1_2_12_71_2
e_1_2_12_94_2
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_16_2
e_1_2_12_39_2
e_1_2_12_112_2
e_1_2_12_65_2
e_1_2_12_105_2
e_1_2_12_128_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_23_2
e_1_2_12_69_2
e_1_2_12_109_2
e_1_2_12_46_2
e_1_2_12_88_2
e_1_2_12_61_2
e_1_2_12_80_2
e_1_2_12_27_2
e_1_2_12_120_2
e_1_2_12_101_2
e_1_2_12_124_2
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_117_2
e_1_2_12_53_2
e_1_2_12_95_2
Kuprash DV (e_1_2_12_103_2) 1999; 163
e_1_2_12_34_2
e_1_2_12_57_2
e_1_2_12_99_2
e_1_2_12_11_2
e_1_2_12_72_2
e_1_2_12_9_2
e_1_2_12_91_2
References_xml – reference: Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res 2011;21:223-244.
– reference: Lo JC, et al. Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Blood 2006;107:1048-1055.
– reference: Linterman MA, Vinuesa CG. Signals that influence T follicular helper cell differentiation and function. Semin Immunopathol 2010;32:183-196.
– reference: Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008;105:11778-11783.
– reference: He JQ, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006;203:2413-2418.
– reference: Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-α and lymphotoxin-β receptor activation: critical roles for p100. J Biol Chem 2003;278:23278-23284.
– reference: Jin W, Zhou XF, Yu J, Cheng X, Sun SC. Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK. Blood 2009;113:6603-6610.
– reference: Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362.
– reference: Liao G, Sun SC. Regulation of NF-kappaB2/p100 processing by its nuclear shuttling. Oncogene 2003;22:4868-4874.
– reference: Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938-6947.
– reference: Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004;279:30099-30105.
– reference: Xiao G, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001;20:6805-6815.
– reference: Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279:26243-26250.
– reference: Hofmann J, Mair F, Greeter M, Schmidt-Supprian M, Becher B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 2011;208:1917-1929.
– reference: Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700.
– reference: Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010;6:249-259.
– reference: Sun S-C, Faye I. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear factor kB. Eur J Biochem 1992;204:885-892.
– reference: Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005;5:606-616.
– reference: Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 2004;21:477-489.
– reference: Rosebeck S, et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011;331:468-472.
– reference: Alcamo E, Hacohen N, Schulte LC, Rennert PD, Hynes RO, Baltimore D. Requirement for the NF-kappaB family member RelA in the development of secondary lymphoid organs. J Exp Med 2002;195:233-244.
– reference: Fu J, et al. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2011;117:1652-1661.
– reference: Wang Z, Zhang B, Yang L, Ding J, Ding HF. Constitutive production of NF-kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression. J Biol Chem 2008;283:10698-10706.
– reference: Bonizzi G, et al. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 2004;23:4202-4210.
– reference: Kim JY, et al. TNFα induced noncanonical NF-κB activation is attenuated by RIP1 through stabilization of TRAF2. J Cell Sci 2011;124:647-656.
– reference: Wicovsky A, et al. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Dffer 2009;16:1445-1459.
– reference: Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693.
– reference: Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol 2003;3:292-303.
– reference: Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 'super repressor'. J Immunol 2007;179:7514-7522.
– reference: Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998;92:819-828.
– reference: Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A. CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 2009;21:467-476.
– reference: Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378.
– reference: Senftleben U, et al. Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway. Science 2001;293:1495-1499.
– reference: Matsumoto M, et al. Essential role of NF-kappa B-inducing kinase in T cell activation through the TCR/CD3 pathway. J Immunol 2002;169:1151-1158.
– reference: Lassot I, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001;21:2192-2202.
– reference: Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Sigal 2008;1:pe1.
– reference: Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010;10:813-825.
– reference: Li Z, et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158-4168.
– reference: Neely RJ, et al. The RET/PTC3 oncogene activates classical NF-κB by stabilizing NIK. Oncogene 2011;6:87-96.
– reference: Sun S-C, Ganchi PA, Ballard DW, Greene WC. NF-kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway Science 1993;259:1912-1915.
– reference: Madge LA, May MJ. Classical NF-kappaB activation negatively regulates noncanonical NF-kappaB-dependent CXCL12 expression. J Biol Chem 2010;285:38069-38077.
– reference: Alimzhanov MB, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A 1997;94:9302-9307.
– reference: Pham LV, et al. Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood 2011;117:200-210.
– reference: Ishimaru N, Kishimoto H, Hayashi Y, Sprent J. Regulation of naive T cell function by the NF-kappaB2 pathway. Nat Immunol 2006;7:763-772.
– reference: Sasaki CY, Ghosh P, Longo DL. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J Biol Chem 2011;286:1093-1120.
– reference: Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 2010;22:326-332.
– reference: Carragher D, et al. A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 2004;173:2271-2279.
– reference: Banks TA, et al. Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995;155:1685-1693.
– reference: Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733.
– reference: Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol 2009;183:2205-2212.
– reference: Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59-70.
– reference: Coope HJ, et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002;15:5375-5385.
– reference: Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b-deficient mice. Immunity 1997;6:491-500.
– reference: Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453.
– reference: Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401.
– reference: Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010;11:799-805.
– reference: Britanova LV, Makeev VJ, Kuprash DV. In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 2008;365:583-588.
– reference: Fong A, Sun S-C. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kB2/p100. J Biol Chem 2002;277:22111-22114.
– reference: Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biol 2010;8:e1000518.
– reference: Zhu M, Fu Y. The complicated role of NF-kappaB in T-cell selection. Cell Mol Immunol 2010;7:89-93.
– reference: Novack DV, et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003;198:771-781.
– reference: Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 1997;385:540-544.
– reference: Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253-267.
– reference: Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze'ev A. Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system Oncogene 2001;19:1992-2001.
– reference: Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-310.
– reference: Razani B, et al. Negative feedback in non-canonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci Sig 2010;3:ra41.
– reference: Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051.
– reference: Qing G, Qu Z, Xiao G. Endoproteolytic processing of C-terminally truncated NF-kappaB2 precursors at kappaB-containing promoters. Proc Natl Acad Sci U S A 2007;104:5324-5329.
– reference: Koike R, et al. The splenic marginal zone is absent in alymphoplastic aly mutant mice. Eur J Immunol 1996;26:669-675.
– reference: Miyawaki S, et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 1994;24:429-434.
– reference: Heusch M, Lin L, Geleziunas R, Greene WC. The generation of nfkb2 p52: mechanism and efficiency. Oncogene 1999;18:6201-6208.
– reference: Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629-642.
– reference: Yilmaz ZB, Weih DS, Sivakumar V, Weih F. RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 2003;22:121-130.
– reference: Walters S, et al. Increased CD4+Foxp3+ T cells in BAFF-transgenic mice suppress T cell effector responses. J Immunol 2009;182:793-801.
– reference: Vallabhapurapu S, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-1370.
– reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
– reference: Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008;8:337-348.
– reference: Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390.
– reference: De Togni P, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994;264:703-707.
– reference: Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK. Lipopolysaccharide-induced activation of NF-kappaB non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations. Exp Cell Res 2010;316:3317-3327.
– reference: Amir RE, Haecker H, Karin M, Ciechanover A. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene 2004;23:2540-2547.
– reference: Gentle IE, et al. In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8. J Biol Chem 2011;286:13282-13291.
– reference: Paxian S, et al. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology 2002;122:1853-1868.
– reference: Sun SC. Non-canonical NF-κB signaling pathway. Cell Res 2011;21:71-85.
– reference: Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 2009;10:203-213.
– reference: Ling L, Cao Z, Goeddel DV. NF-kB-inducing kinase activates IKK-a by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998;95:3792-3797.
– reference: Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A 2008;105:10883-10888.
– reference: Kuprash DV, Alimzhanov MB, Tumanov AV, Anderson AO, Pfeffer K, Nedospasov SA. TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J Immunol 1999;163:6575-6580.
– reference: Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010;115:3541-3552.
– reference: Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012.
– reference: Solan NJ, Miyoshi H, Carmona EM, Bren GD, Paya CV. RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2002;277:1405-1418.
– reference: Sun SC, Yamaoka S. Activation of NF-kB by HTLV-I and implications for cell transformation. Oncogene 2005;24:5952-5964.
– reference: Sun SC. Controlling the fate of NIK: a central stage in noncanonical NF-kappaB signaling. Sci Signal 2010;3:pe18.
– reference: Dejardin E, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002;17:525-535.
– reference: Novack DV. Role of NF-κB in the skeleton. Cell Res 2011;21:169-182.
– reference: Tas SW, et al. Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 2007;110:1540-1549.
– reference: Shinkura R, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 1999;22:74-77.
– reference: Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72:1161-1179.
– reference: Tusche MW, et al. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671-2683.
– reference: Matsushima A, et al. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001;193:631-636.
– reference: Sun SC, Cesarman E. NF-κB as a target for oncogenic viruses. Curr Top Microbiol Immunol 2011;349:197-244.
– reference: Lin X, Mu Y, Cunningham ETJ, Marcu KB, Geleziunas R, Greene WC. Molecular determinants of NF-kappaB-inducing kinase action. Mol Cell Biol 1998;18:5899-5907.
– reference: Powolny-Budnicka I, Riemann M, Tänzer S, Schmid RM, Hehlgans T, Weih F. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 2011;34:364-74.
– reference: Yin L, et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 2001;291:2162-2165.
– reference: Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409.
– reference: Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A 2008;105:3503-3508.
– reference: Munroe ME, Bishop GA. Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation. J Biol Chem 2004;279:53222-53231.
– reference: Blondel M, et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J 2001;19:6085-6097.
– reference: Rauert H, et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 2010;285:7394-7404.
– reference: Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282.
– reference: Jacque E, Tchenio T, Piton G, Romeo PH, Baud V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci U S A 2005;102:14635-14640.
– reference: Hu H, Wu X, Jin W, Chang M, Cheng X, Sun SC. Noncanonical NF-κB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 2011;108:12827-12832.
– reference: Yang C, et al. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 2010;5:e15383.
– reference: Van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010;10:664-674.
– reference: Kayagaki N, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17:515-524.
– reference: Matta H, Chaudhary PM. Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci U S A 2004;101:9399-9404.
– reference: Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3:958-965.
– reference: Liang C, Zhang M, Sun SC. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870 Cell Signal 2006;18:1309-1317.
– reference: Gerondakis S, Siebenlist U. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb Perspect Biol 2010;2:a000182.
– reference: Davis M, et al. Pseudosubstrate regulation of the SCF(b-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002;16:439-451.
– reference: Sun S-C, Ganchi PA, Beraud C, Ballard DW, Greene WC. Autoregulation of the NF-kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci U S A 1994;91:1346-1350.
– reference: Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706-6716.
– reference: Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004;382:393-409.
– reference: King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 2008;26:741-766.
– reference: Betts JC, Nabel GJ. Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996;16:6363-6371.
– reference: Weih F, Caamaño J. Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev 2003;195:91-105.
– reference: Varfolomeev E, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007;131:669-681.
– volume: 349
  start-page: 197
  year: 2011
  end-page: 244
  article-title: NF‐κB as a target for oncogenic viruses
  publication-title: Curr Top Microbiol Immunol
– volume: 115
  start-page: 3541
  year: 2010
  end-page: 3552
  article-title: Classical and/or alternative NF‐kappaB pathway activation in multiple myeloma
  publication-title: Blood
– volume: 117
  start-page: 1652
  year: 2011
  end-page: 1661
  article-title: The tumor suppressor gene WWOX links the canonical and noncanonical NF‐κB pathways in HTLV‐I Tax‐mediated tumorigenesis
  publication-title: Blood
– volume: 23
  start-page: 2540
  year: 2004
  end-page: 2547
  article-title: Mechanism of processing of the NF‐kappa B2 p100 precursor: identification of the specific polyubiquitin chain‐anchoring lysine residue and analysis of the role of NEDD8‐modification on the SCF(beta‐TrCP) ubiquitin ligase
  publication-title: Oncogene
– volume: 72
  start-page: 1161
  year: 2006
  end-page: 1179
  article-title: The alternative NF‐kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development
  publication-title: Biochem Pharmacol
– volume: 27
  start-page: 693
  year: 2009
  end-page: 733
  article-title: Regulation and function of NF‐kappaB transcription factors in the immune system
  publication-title: Annu Rev Immunol
– volume: 6
  start-page: 491
  year: 1997
  end-page: 500
  article-title: Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b‐deficient mice
  publication-title: Immunity
– volume: 105
  start-page: 3503
  year: 2008
  end-page: 3508
  article-title: Control of canonical NF‐kappaB activation through the NIK‐IKK complex pathway
  publication-title: Proc Natl Acad Sci U S A
– volume: 102
  start-page: 14635
  year: 2005
  end-page: 14640
  article-title: RelA repression of RelB activity induces selective gene activation downstream of TNF receptors
  publication-title: Proc Natl Acad Sci U S A
– volume: 285
  start-page: 7394
  year: 2010
  end-page: 7404
  article-title: Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor‐2 (TNFR2)
  publication-title: J Biol Chem
– volume: 18
  start-page: 1309
  year: 2006
  end-page: 1317
  article-title: beta‐TrCP binding and processing of NF‐kappaB2/p100 involve its phosphorylation at serines 866 and 870
  publication-title: Cell Signal
– volume: 277
  start-page: 22111
  year: 2002
  end-page: 22114
  article-title: Genetic evidence for the essential role of beta‐transducin repeat‐containing protein in the inducible processing of NF‐kB2/p100
  publication-title: J Biol Chem
– volume: 32
  start-page: 183
  year: 2010
  end-page: 196
  article-title: Signals that influence T follicular helper cell differentiation and function
  publication-title: Semin Immunopathol
– volume: 46
  start-page: 3278
  year: 2009
  end-page: 3282
  article-title: TNF receptor‐associated factor 1 is a positive regulator of the NF‐kappaB alternative pathway
  publication-title: Mol Immunol
– volume: 25
  start-page: 6706
  year: 2006
  end-page: 6716
  article-title: Transcriptional regulation via the NF‐kappaB signaling module
  publication-title: Oncogene
– volume: 173
  start-page: 2271
  year: 2004
  end-page: 2279
  article-title: A stroma‐derived defect in NF‐kappaB2 mice causes impaired lymph node development and lymphocyte recruitment
  publication-title: J Immunol
– volume: 26
  start-page: 741
  year: 2008
  end-page: 766
  article-title: T follicular helper (TFH) cells in normal and dysregulated immune responses
  publication-title: Annu Rev Immunol
– volume: 38
  start-page: 101
  year: 2010
  end-page: 113
  article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation
  publication-title: Mol Cell
– volume: 10
  start-page: 813
  year: 2010
  end-page: 825
  article-title: The stromal and haematopoietic antigen‐presenting cells that reside in secondary lymphoid organs
  publication-title: Nat Rev Immunol
– volume: 163
  start-page: 6575
  year: 1999
  end-page: 6580
  article-title: TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes
  publication-title: J Immunol
– volume: 131
  start-page: 682
  year: 2007
  end-page: 693
  article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 206
  start-page: 2671
  year: 2009
  end-page: 2683
  article-title: Differential requirement of MALT1 for BAFF‐induced outcomes in B cell subsets
  publication-title: J Exp Med
– volume: 204
  start-page: 885
  year: 1992
  end-page: 892
  article-title: Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA‐binding properties similar to nuclear factor kB
  publication-title: Eur J Biochem
– volume: 105
  start-page: 10883
  year: 2008
  end-page: 10888
  article-title: NIK overexpression amplifies, whereas ablation of its TRAF3‐binding domain replaces BAFF:BAFF‐R‐mediated survival signals in B cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 1364
  year: 2008
  end-page: 1370
  article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK‐dependent alternative NF‐kappaB signaling
  publication-title: Nat Immunol
– volume: 15
  start-page: 5375
  year: 2002
  end-page: 5385
  article-title: CD40 regulates the processing of NF‐kappaB2 p100 to p52
  publication-title: EMBO J
– volume: 18
  start-page: 6938
  year: 1999
  end-page: 6947
  article-title: Aberrant rel/nfkb genes and activity in human cancer
  publication-title: Oncogene
– volume: 195
  start-page: 233
  year: 2002
  end-page: 244
  article-title: Requirement for the NF‐kappaB family member RelA in the development of secondary lymphoid organs
  publication-title: J Exp Med
– volume: 365
  start-page: 583
  year: 2008
  end-page: 588
  article-title: In vitro selection of optimal RelB/p52 DNA‐binding motifs
  publication-title: Biochem Biophys Res Commun
– volume: 132
  start-page: 344
  year: 2008
  end-page: 362
  article-title: Shared principles in NF‐kappaB signaling
  publication-title: Cell
– volume: 279
  start-page: 26243
  year: 2004
  end-page: 26250
  article-title: Regulation of the NF‐kappaB‐inducing kinase by tumor necrosis factor receptor‐associated factor 3‐induced degradation
  publication-title: J Biol Chem
– volume: 22
  start-page: 326
  year: 2010
  end-page: 332
  article-title: Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS)
  publication-title: Curr Opin Immunol
– volume: 19
  start-page: 6085
  year: 2001
  end-page: 6097
  article-title: Nuclear‐specific degradation of Far1 is controlled by the localization of the F‐box protein Cdc4
  publication-title: EMBO J
– volume: 182
  start-page: 793
  year: 2009
  end-page: 801
  article-title: Increased CD4 Foxp3 T cells in BAFF‐transgenic mice suppress T cell effector responses
  publication-title: J Immunol
– volume: 7
  start-page: 401
  year: 2001
  end-page: 409
  article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100
  publication-title: Mol Cell
– volume: 21
  start-page: 477
  year: 2004
  end-page: 489
  article-title: Receptor‐specific signaling for both the alternative and the canonical NF‐kappaB activation pathways by NF‐kappaB‐inducing kinase
  publication-title: Immunity
– volume: 3
  start-page: pe18
  year: 2010
  article-title: Controlling the fate of NIK: a central stage in noncanonical NF‐kappaB signaling
  publication-title: Sci Signal
– volume: 155
  start-page: 1685
  year: 1995
  end-page: 1693
  article-title: Lymphotoxin‐alpha‐deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness
  publication-title: J Immunol
– volume: 21
  start-page: 223
  year: 2011
  end-page: 244
  article-title: NF‐κB in immunobiology
  publication-title: Cell Res
– volume: 19
  start-page: 1992
  year: 2001
  end-page: 2001
  article-title: Differential interaction of plakoglobin and beta‐catenin with the ubiquitin‐proteasome system
  publication-title: Oncogene
– volume: 283
  start-page: 10698
  year: 2008
  end-page: 10706
  article-title: Constitutive production of NF‐kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression
  publication-title: J Biol Chem
– volume: 94
  start-page: 9302
  year: 1997
  end-page: 9307
  article-title: Abnormal development of secondary lymphoid tissues in lymphotoxin beta‐deficient mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 279
  start-page: 53222
  year: 2004
  end-page: 53231
  article-title: Role of tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b‐mediated B lymphocyte activation
  publication-title: J Biol Chem
– volume: 24
  start-page: 5952
  year: 2005
  end-page: 5964
  article-title: Activation of NF‐kB by HTLV‐I and implications for cell transformation
  publication-title: Oncogene
– volume: 195
  start-page: 91
  year: 2003
  end-page: 105
  article-title: Regulation of secondary lymphoid organ development by the nuclear factor‐kappaB signal transduction pathway
  publication-title: Immunol Rev
– volume: 18
  start-page: 6201
  year: 1999
  end-page: 6208
  article-title: The generation of nfkb2 p52: mechanism and efficiency
  publication-title: Oncogene
– volume: 20
  start-page: 6805
  year: 2001
  end-page: 6815
  article-title: Retroviral oncoprotein Tax induces processing of NF‐kappaB2/p100 in T cells: evidence for the involvement of IKKalpha
  publication-title: EMBO J
– volume: 17
  start-page: 525
  year: 2002
  end-page: 535
  article-title: The lymphotoxin‐beta receptor induces different patterns of gene expression via two NF‐kappaB pathways
  publication-title: Immunity
– volume: 117
  start-page: 200
  year: 2011
  end-page: 210
  article-title: Constitutive BR3 receptor signaling in diffuse, large B‐cell lymphomas stabilizes nuclear factor‐κB‐inducing kinase while activating both canonical and alternative nuclear factor‐κB pathways
  publication-title: Blood
– volume: 203
  start-page: 2413
  year: 2006
  end-page: 2418
  article-title: Rescue of TRAF3‐null mice by p100 NF‐kappa B deficiency
  publication-title: J Exp Med
– volume: 183
  start-page: 2205
  year: 2009
  end-page: 2212
  article-title: Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response
  publication-title: J Immunol
– volume: 291
  start-page: 2162
  year: 2001
  end-page: 2165
  article-title: Defective lymphotoxin‐beta receptor‐induced NF‐kappaB transcriptional activity in NIK‐deficient mice
  publication-title: Science
– volume: 104
  start-page: 5324
  year: 2007
  end-page: 5329
  article-title: Endoproteolytic processing of C‐terminally truncated NF‐kappaB2 precursors at kappaB‐containing promoters
  publication-title: Proc Natl Acad Sci U S A
– volume: 279
  start-page: 30099
  year: 2004
  end-page: 30105
  article-title: Induction of p100 processing by NF‐kappaB‐inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha‐mediated phosphorylation
  publication-title: J Biol Chem
– volume: 95
  start-page: 3792
  year: 1998
  end-page: 3797
  article-title: NF‐kB‐inducing kinase activates IKK‐a by phosphorylation of Ser‐176
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 664
  year: 2010
  end-page: 674
  article-title: New insights into the development of lymphoid tissues
  publication-title: Nat Rev Immunol
– volume: 21
  start-page: 629
  year: 2004
  end-page: 642
  article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF‐kappaB activation in mature B cells
  publication-title: Immunity
– volume: 108
  start-page: 12827
  year: 2011
  end-page: 12832
  article-title: Noncanonical NF‐κB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development
  publication-title: Proc Natl Acad Sci U S A
– volume: 30
  start-page: 689
  year: 2008
  end-page: 700
  article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
  publication-title: Mol Cell
– volume: 22
  start-page: 74
  year: 1999
  end-page: 77
  article-title: Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf‐kappa b‐inducing kinase
  publication-title: Nat Genet
– volume: 382
  start-page: 393
  year: 2004
  end-page: 409
  article-title: Functions of NF‐kappaB1 and NF‐kappaB2 in immune cell biology
  publication-title: Biochem J
– volume: 2
  start-page: a000182
  year: 2010
  article-title: Roles of the NF‐kappaB pathway in lymphocyte development and function
  publication-title: Cold Spring Harb Perspect Biol
– volume: 27
  start-page: 253
  year: 2007
  end-page: 267
  article-title: Tumor necrosis factor receptor‐associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs
  publication-title: Immunity
– volume: 21
  start-page: 2192
  year: 2001
  end-page: 2202
  article-title: ATF4 degradation relies on a phosphorylation‐dependent interaction with the SCF(betaTrCP) ubiquitin ligase
  publication-title: Mol Cell Biol
– volume: 24
  start-page: 429
  year: 1994
  end-page: 434
  article-title: A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice
  publication-title: Eur J Immunol
– volume: 16
  start-page: 439
  year: 2002
  end-page: 451
  article-title: Pseudosubstrate regulation of the SCF(b‐TrCP) ubiquitin ligase by hnRNP‐U
  publication-title: Genes Dev
– volume: 23
  start-page: 4202
  year: 2004
  end-page: 4210
  article-title: Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers
  publication-title: EMBO J
– volume: 264
  start-page: 703
  year: 1994
  end-page: 707
  article-title: Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin
  publication-title: Science
– volume: 117
  start-page: 4041
  year: 2011
  end-page: 4051
  article-title: Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response
  publication-title: Blood
– volume: 22
  start-page: 4868
  year: 2003
  end-page: 4874
  article-title: Regulation of NF‐kappaB2/p100 processing by its nuclear shuttling
  publication-title: Oncogene
– volume: 7
  start-page: 763
  year: 2006
  end-page: 772
  article-title: Regulation of naive T cell function by the NF‐kappaB2 pathway
  publication-title: Nat Immunol
– volume: 16
  start-page: 1445
  year: 2009
  end-page: 1459
  article-title: TNF‐like weak inducer of apoptosis inhibits proinflammatory TNF receptor‐1 signaling
  publication-title: Cell Death Dffer
– volume: 278
  start-page: 36005
  year: 2003
  end-page: 36012
  article-title: TWEAK induces NF‐kappaB2 p100 processing and long lasting NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 7
  start-page: 89
  year: 2010
  end-page: 93
  article-title: The complicated role of NF‐kappaB in T‐cell selection
  publication-title: Cell Mol Immunol
– volume: 10
  start-page: 203
  year: 2009
  end-page: 213
  article-title: Dectin‐1 directs T helper cell differentiation by controlling noncanonical NF‐kappaB activation through Raf‐1 and Syk
  publication-title: Nat Immunol
– volume: 9
  start-page: 1371
  year: 2008
  end-page: 1378
  article-title: Noncanonical NF‐kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
  publication-title: Nat Immunol
– volume: 3
  start-page: 292
  year: 2003
  end-page: 303
  article-title: Organogenesis of lymphoid tissues
  publication-title: Nat Rev Immunol
– volume: 259
  start-page: 1912
  year: 1993
  end-page: 1915
  article-title: NF‐kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway
  publication-title: Science
– volume: 91
  start-page: 1346
  year: 1994
  end-page: 1350
  article-title: Autoregulation of the NF‐kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs
  publication-title: Proc Natl Acad Sci U S A
– volume: 316
  start-page: 3317
  year: 2010
  end-page: 3327
  article-title: Lipopolysaccharide‐induced activation of NF‐kappaB non‐canonical pathway requires BCL10 serine 138 and NIK phosphorylations
  publication-title: Exp Cell Res
– volume: 28
  start-page: 391
  year: 2008
  end-page: 401
  article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor
  publication-title: Immunity
– volume: 198
  start-page: 771
  year: 2003
  end-page: 781
  article-title: The IkappaB function of NF‐kappaB2 p100 controls stimulated osteoclastogenesis
  publication-title: J Exp Med
– volume: 101
  start-page: 9399
  year: 2004
  end-page: 9404
  article-title: Activation of alternative NF‐kappa B pathway by human herpes virus 8‐encoded Fas‐associated death domain‐like IL‐1 beta‐converting enzyme inhibitory protein (vFLIP)
  publication-title: Proc Natl Acad Sci U S A
– volume: 17
  start-page: 515
  year: 2002
  end-page: 524
  article-title: BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF‐kappaB2
  publication-title: Immunity
– volume: 6
  start-page: 249
  year: 2010
  end-page: 259
  article-title: WWOX gene and gene product: tumor suppression through specific protein interactions
  publication-title: Future Oncol
– volume: 193
  start-page: 631
  year: 2001
  end-page: 636
  article-title: Essential role of nuclear factor (NF)‐kappaB‐inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF‐kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I
  publication-title: J Exp Med
– volume: 21
  start-page: 467
  year: 2009
  end-page: 476
  article-title: CXCL13 production by an established lymph node stromal cell line via lymphotoxin‐beta receptor engagement involves the cooperation of multiple signaling pathways
  publication-title: Int Immunol
– volume: 131
  start-page: 669
  year: 2007
  end-page: 681
  article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 9
  start-page: 59
  year: 1998
  end-page: 70
  article-title: The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues
  publication-title: Immunity
– volume: 22
  start-page: 121
  year: 2003
  end-page: 130
  article-title: RelB is required for Peyer’s patch development: differential regulation of p52‐RelB by lymphotoxin and TNF
  publication-title: EMBO J
– volume: 105
  start-page: 11778
  year: 2008
  end-page: 11783
  article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 169
  year: 2011
  end-page: 182
  article-title: Role of NF‐κB in the skeleton
  publication-title: Cell Res
– volume: 110
  start-page: 1540
  year: 2007
  end-page: 1549
  article-title: Noncanonical NF‐kappaB signaling in dendritic cells is required for indoleamine 2,3‐dioxygenase (IDO) induction and immune regulation
  publication-title: Blood
– volume: 113
  start-page: 6603
  year: 2009
  end-page: 6610
  article-title: Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK
  publication-title: Blood
– volume: 11
  start-page: 799
  year: 2010
  end-page: 805
  article-title: MicroRNAs modulate the noncanonical transcription factor NF‐kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation
  publication-title: Nat Immunol
– volume: 179
  start-page: 7514
  year: 2007
  end-page: 7522
  article-title: A novel mutation in the Nfkb2 gene generates an NF‐kappa B2 ‘super repressor’
  publication-title: J Immunol
– volume: 278
  start-page: 23278
  year: 2003
  end-page: 23284
  article-title: RelB/p50 dimers are differentially regulated by tumor necrosis factor‐α and lymphotoxin‐β receptor activation: critical roles for p100
  publication-title: J Biol Chem
– volume: 8
  start-page: 337
  year: 2008
  end-page: 348
  article-title: TH17 cells in development: an updated view of their molecular identity and genetic programming
  publication-title: Nat Rev Immunol
– volume: 278
  start-page: 45382
  year: 2003
  end-page: 45390
  article-title: Tumor necrosis factor receptor‐associated factor 2 (TRAF2)‐deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling
  publication-title: J Biol Chem
– volume: 208
  start-page: 1917
  year: 2011
  end-page: 1929
  article-title: NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell‐mediated immune responses
  publication-title: J Exp Med
– volume: 169
  start-page: 1151
  year: 2002
  end-page: 1158
  article-title: Essential role of NF‐kappa B‐inducing kinase in T cell activation through the TCR/CD3 pathway
  publication-title: J Immunol
– volume: 6
  start-page: 87
  year: 2011
  end-page: 96
  article-title: The RET/PTC3 oncogene activates classical NF‐κB by stabilizing NIK
  publication-title: Oncogene
– volume: 107
  start-page: 1048
  year: 2006
  end-page: 1055
  article-title: Coordination between NF‐kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues
  publication-title: Blood
– volume: 3
  start-page: 958
  year: 2002
  end-page: 965
  article-title: BAFF‐induced NEMO‐independent processing of NF‐kappaB2 in maturing B cells
  publication-title: Nat Immunol
– volume: 1
  start-page: pe1
  year: 2008
  article-title: Nuclear ubiquitin ligases, NF‐kappaB degradation, and the control of inflammation
  publication-title: Sci Sigal
– volume: 3
  start-page: ra41
  year: 2010
  article-title: Negative feedback in non‐canonical NF‐κB signaling modulates NIK stability through IKKα‐mediated phosphorylation
  publication-title: Sci Sig
– volume: 286
  start-page: 13282
  year: 2011
  end-page: 13291
  article-title: In TNF‐stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non‐canonical NF‐kappaB and activation of caspase‐8
  publication-title: J Biol Chem
– volume: 5
  start-page: 606
  year: 2005
  end-page: 616
  article-title: Structure and function of the spleen
  publication-title: Nat Rev Immunol
– volume: 5
  start-page: e15383
  year: 2010
  article-title: NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis
  publication-title: PLoS ONE
– volume: 39
  start-page: 445
  year: 2006
  end-page: 453
  article-title: Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25 CD4 regulatory T cells
  publication-title: Autoimmunity
– volume: 385
  start-page: 540
  year: 1997
  end-page: 544
  article-title: MAP3K‐related kinase involved in NF‐kB induction by TNF, CD95 and IL‐1
  publication-title: Nature
– volume: 212
  start-page: 307
  year: 2007
  end-page: 310
  article-title: WWOX in biological control and tumorigenesis
  publication-title: J Cell Physiol
– volume: 21
  start-page: 71
  year: 2011
  end-page: 85
  article-title: Non‐canonical NF‐κB signaling pathway
  publication-title: Cell Res
– volume: 293
  start-page: 1495
  year: 2001
  end-page: 1499
  article-title: Activation of IKKa of a second, evolutionary conserved, NF‐kB signaling pathway
  publication-title: Science
– volume: 26
  start-page: 669
  year: 1996
  end-page: 675
  article-title: The splenic marginal zone is absent in alymphoplastic aly mutant mice
  publication-title: Eur J Immunol
– volume: 8
  start-page: e1000518
  year: 2010
  article-title: Non‐canonical NF‐κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase‐inactive c‐IAP2
  publication-title: PLoS Biol
– volume: 18
  start-page: 5899
  year: 1998
  end-page: 5907
  article-title: Molecular determinants of NF‐kappaB‐inducing kinase action
  publication-title: Mol Cell Biol
– volume: 286
  start-page: 1093
  year: 2011
  end-page: 1120
  article-title: Recruitment of RelB to the Csf2 promoter enhances RelA‐mediated transcription of granulocyte‐macrophage colony‐stimulating factor
  publication-title: J Biol Chem
– volume: 122
  start-page: 1853
  year: 2002
  end-page: 1868
  article-title: Abnormal organogenesis of Peyer’s patches in mice deficient for NF‐kappaB1, NF‐kappaB2, and Bcl‐3
  publication-title: Gastroenterology
– volume: 277
  start-page: 1405
  year: 2002
  end-page: 1418
  article-title: RelB cellular regulation and transcriptional activity are regulated by p100
  publication-title: J Biol Chem
– volume: 16
  start-page: 6363
  year: 1996
  end-page: 6371
  article-title: Differential regulation of NF‐kappaB2(p100) processing and control by amino‐terminal sequences
  publication-title: Mol Cell Biol
– volume: 92
  start-page: 819
  year: 1998
  end-page: 828
  article-title: Cotranslational biogenesis of NF‐kappaB p50 by the 26S proteasome
  publication-title: Cell
– volume: 114
  start-page: 4158
  year: 2009
  end-page: 4168
  article-title: Emu‐BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF‐kappaB pathways generating marginal zone (MZ) B‐cell expansion as a precursor to splenic MZ lymphoma
  publication-title: Blood
– volume: 285
  start-page: 38069
  year: 2010
  end-page: 38077
  article-title: Classical NF‐kappaB activation negatively regulates noncanonical NF‐kappaB‐dependent CXCL12 expression
  publication-title: J Biol Chem
– volume: 124
  start-page: 647
  year: 2011
  end-page: 656
  article-title: TNFα induced noncanonical NF‐κB activation is attenuated by RIP1 through stabilization of TRAF2
  publication-title: J Cell Sci
– volume: 331
  start-page: 468
  year: 2011
  end-page: 472
  article-title: Cleavage of NIK by the API2‐MALT1 fusion oncoprotein leads to noncanonical NF‐kappaB activation
  publication-title: Science
– volume: 34
  start-page: 364
  year: 2011
  end-page: 74
  article-title: RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin‐dependent interleukin‐17 production in γδ T cells
  publication-title: Immunity
– ident: e_1_2_12_66_2
  doi: 10.1074/jbc.M306708200
– ident: e_1_2_12_44_2
  doi: 10.1038/sj.onc.1203221
– ident: e_1_2_12_46_2
  doi: 10.1074/jbc.M401428200
– ident: e_1_2_12_5_2
  doi: 10.1042/BJ20040544
– ident: e_1_2_12_19_2
  doi: 10.1093/emboj/20.23.6805
– ident: e_1_2_12_25_2
  doi: 10.1074/jbc.M410539200
– ident: e_1_2_12_62_2
  doi: 10.1126/scisignal.3123pe18
– ident: e_1_2_12_96_2
  doi: 10.1038/nri2832
– ident: e_1_2_12_114_2
  doi: 10.1038/nri1669
– ident: e_1_2_12_35_2
  doi: 10.1128/MCB.16.11.6363
– ident: e_1_2_12_55_2
  doi: 10.1084/jem.20061166
– ident: e_1_2_12_126_2
  doi: 10.1084/jem.20110128
– ident: e_1_2_12_56_2
  doi: 10.1016/j.immuni.2004.09.011
– ident: e_1_2_12_20_2
  doi: 10.1016/S1074-7613(02)00423-5
– ident: e_1_2_12_60_2
  doi: 10.1371/journal.pbio.1000518
– ident: e_1_2_12_30_2
  doi: 10.1074/jbc.M403286200
– ident: e_1_2_12_65_2
  doi: 10.1016/j.molcel.2008.05.014
– ident: e_1_2_12_7_2
  doi: 10.1016/S0092-8674(00)81409-9
– ident: e_1_2_12_43_2
  doi: 10.1073/pnas.0609914104
– ident: e_1_2_12_63_2
  doi: 10.1128/MCB.18.10.5899
– ident: e_1_2_12_82_2
  doi: 10.1038/ni.1692
– ident: e_1_2_12_87_2
  doi: 10.1073/pnas.0707959105
– ident: e_1_2_12_84_2
  doi: 10.1093/intimm/dxp014
– ident: e_1_2_12_16_2
  doi: 10.1074/jbc.C200151200
– ident: e_1_2_12_69_2
  doi: 10.1084/jem.20091802
– ident: e_1_2_12_74_2
  doi: 10.1074/jbc.M110.147207
– ident: e_1_2_12_86_2
  doi: 10.1074/jbc.M110.216226
– ident: e_1_2_12_39_2
  doi: 10.1128/MCB.21.6.2192-2202.2001
– ident: e_1_2_12_28_2
  doi: 10.1074/jbc.M304266200
– ident: e_1_2_12_97_2
  doi: 10.4049/jimmunol.0804324
– ident: e_1_2_12_113_2
  doi: 10.1084/jem.20011885
– ident: e_1_2_12_11_2
  doi: 10.1126/science.8096091
– ident: e_1_2_12_37_2
  doi: 10.1038/sj.onc.1206761
– ident: e_1_2_12_118_2
  doi: 10.1038/nri2295
– volume: 163
  start-page: 6575
  year: 1999
  ident: e_1_2_12_103_2
  article-title: TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.12.6575
– ident: e_1_2_12_68_2
  doi: 10.1016/j.molcel.2010.03.009
– ident: e_1_2_12_91_2
  doi: 10.1016/j.bcp.2006.08.007
– ident: e_1_2_12_105_2
  doi: 10.1002/eji.1830240224
– ident: e_1_2_12_75_2
  doi: 10.1038/ni.1918
– ident: e_1_2_12_47_2
  doi: 10.1038/sj.onc.1207366
– ident: e_1_2_12_58_2
  doi: 10.1016/j.immuni.2008.01.009
– ident: e_1_2_12_78_2
  doi: 10.2217/fon.09.152
– ident: e_1_2_12_92_2
  doi: 10.1038/cmi.2009.112
– ident: e_1_2_12_117_2
  doi: 10.1182/blood-2008-12-192914
– ident: e_1_2_12_102_2
  doi: 10.1016/S1074-7613(00)80588-9
– ident: e_1_2_12_100_2
  doi: 10.1073/pnas.94.17.9302
– ident: e_1_2_12_81_2
  doi: 10.1073/pnas.0507342102
– ident: e_1_2_12_94_2
  doi: 10.1038/nri1054
– ident: e_1_2_12_122_2
  doi: 10.1007/s00281-009-0194-z
– ident: e_1_2_12_121_2
  doi: 10.1146/annurev.immunol.26.021607.090344
– ident: e_1_2_12_49_2
  doi: 10.1073/pnas.95.7.3792
– ident: e_1_2_12_51_2
  doi: 10.1073/pnas.0308016101
– ident: e_1_2_12_24_2
  doi: 10.1084/jem.20030116
– ident: e_1_2_12_26_2
  doi: 10.1016/j.immuni.2004.08.009
– ident: e_1_2_12_85_2
  doi: 10.1242/jcs.075770
– ident: e_1_2_12_67_2
  doi: 10.1016/j.molimm.2009.07.029
– ident: e_1_2_12_38_2
  doi: 10.1093/emboj/19.22.6085
– ident: e_1_2_12_70_2
  doi: 10.1182/blood-2008-12-192583
– ident: e_1_2_12_99_2
  doi: 10.4049/jimmunol.155.4.1685
– ident: e_1_2_12_93_2
  doi: 10.1038/cr.2010.159
– ident: e_1_2_12_18_2
  doi: 10.1126/science.1062677
– ident: e_1_2_12_22_2
  doi: 10.1093/emboj/cdf542
– ident: e_1_2_12_107_2
  doi: 10.1038/sj.emboj.7600391
– ident: e_1_2_12_2_2
  doi: 10.1146/annurev.immunol.021908.132641
– ident: e_1_2_12_80_2
  doi: 10.1101/cshperspect.a000182
– ident: e_1_2_12_14_2
  doi: 10.1038/8780
– ident: e_1_2_12_53_2
  doi: 10.1371/journal.pone.0015383
– ident: e_1_2_12_15_2
  doi: 10.1126/science.1058453
– ident: e_1_2_12_45_2
  doi: 10.1074/jbc.M800806200
– ident: e_1_2_12_98_2
  doi: 10.1126/science.8171322
– ident: e_1_2_12_10_2
  doi: 10.1111/j.1432-1033.1992.tb16708.x
– ident: e_1_2_12_41_2
  doi: 10.1101/gad.218702
– ident: e_1_2_12_127_2
  doi: 10.1016/j.immuni.2011.02.019
– ident: e_1_2_12_73_2
  doi: 10.1093/emboj/cdg004
– ident: e_1_2_12_112_2
  doi: 10.4049/jimmunol.179.11.7514
– ident: e_1_2_12_89_2
  doi: 10.1182/blood-2010-06-290437
– ident: e_1_2_12_8_2
  doi: 10.1016/S1097-2765(01)00187-3
– ident: e_1_2_12_106_2
  doi: 10.1002/eji.1830260324
– ident: e_1_2_12_128_2
  doi: 10.1016/j.bbrc.2007.10.200
– ident: e_1_2_12_57_2
  doi: 10.1016/j.immuni.2007.07.012
– ident: e_1_2_12_40_2
  doi: 10.1038/sj.onc.1203519
– ident: e_1_2_12_108_2
  doi: 10.1084/jem.193.5.631
– ident: e_1_2_12_64_2
  doi: 10.1073/pnas.0711122105
– ident: e_1_2_12_90_2
  doi: 10.1038/onc.2010.396
– ident: e_1_2_12_72_2
  doi: 10.1074/jbc.M300106200
– ident: e_1_2_12_48_2
  doi: 10.1007/82_2010_108
– ident: e_1_2_12_77_2
  doi: 10.1002/jcp.21099
– ident: e_1_2_12_119_2
  doi: 10.1073/pnas.1105774108
– ident: e_1_2_12_88_2
  doi: 10.1182/blood-2009-09-243535
– ident: e_1_2_12_50_2
  doi: 10.1038/sj.onc.1208969
– ident: e_1_2_12_29_2
  doi: 10.1038/cdd.2009.80
– ident: e_1_2_12_3_2
  doi: 10.1038/cr.2011.13
– ident: e_1_2_12_17_2
  doi: 10.1016/j.cellsig.2005.10.011
– ident: e_1_2_12_4_2
  doi: 10.1016/j.cell.2008.01.020
– ident: e_1_2_12_32_2
  doi: 10.1016/j.cell.2007.10.030
– ident: e_1_2_12_123_2
  doi: 10.4049/jimmunol.182.2.793
– ident: e_1_2_12_31_2
  doi: 10.1038/ni.1678
– ident: e_1_2_12_59_2
  doi: 10.1182/blood-2010-10-312793
– ident: e_1_2_12_42_2
  doi: 10.1126/stke.11pe1
– ident: e_1_2_12_36_2
  doi: 10.1038/sj.onc.1203022
– ident: e_1_2_12_13_2
  doi: 10.1038/385540a0
– ident: e_1_2_12_6_2
  doi: 10.1038/cr.2010.177
– ident: e_1_2_12_104_2
  doi: 10.1034/j.1600-065X.2003.00064.x
– ident: e_1_2_12_111_2
  doi: 10.1182/blood-2005-06-2452
– ident: e_1_2_12_33_2
  doi: 10.1016/j.cell.2007.10.037
– ident: e_1_2_12_76_2
  doi: 10.1182/blood-2010-08-303073
– ident: e_1_2_12_110_2
  doi: 10.4049/jimmunol.173.4.2271
– ident: e_1_2_12_125_2
  doi: 10.1182/blood-2006-11-056010
– ident: e_1_2_12_21_2
  doi: 10.1038/ni842
– ident: e_1_2_12_34_2
  doi: 10.1038/ni.1676
– ident: e_1_2_12_52_2
  doi: 10.1073/pnas.0805186105
– ident: e_1_2_12_61_2
  doi: 10.1126/scisignal.2000778
– ident: e_1_2_12_27_2
  doi: 10.1074/jbc.M109.037341
– ident: e_1_2_12_95_2
  doi: 10.1038/nri2886
– ident: e_1_2_12_116_2
  doi: 10.1038/ni1351
– ident: e_1_2_12_79_2
  doi: 10.1038/sj.onc.1209933
– ident: e_1_2_12_71_2
  doi: 10.1016/j.yexcr.2010.05.004
– ident: e_1_2_12_101_2
  doi: 10.1016/S1074-7613(00)80292-7
– ident: e_1_2_12_83_2
  doi: 10.1074/jbc.M110.119438
– ident: e_1_2_12_23_2
  doi: 10.1016/S1074-7613(02)00425-9
– ident: e_1_2_12_124_2
  doi: 10.1080/08916930600833390
– ident: e_1_2_12_9_2
  doi: 10.1074/jbc.M109619200
– ident: e_1_2_12_109_2
  doi: 10.1053/gast.2002.33651
– ident: e_1_2_12_120_2
  doi: 10.1016/j.coi.2010.01.001
– ident: e_1_2_12_12_2
  doi: 10.1073/pnas.91.4.1346
– ident: e_1_2_12_54_2
  doi: 10.1126/science.1198946
– ident: e_1_2_12_115_2
  doi: 10.4049/jimmunol.169.3.1151
SSID ssj0017324
Score 2.5719085
SecondaryResourceType review_article
Snippet The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological...
The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological...
The noncanonical nuclear factor- Kappa B (NF- Kappa B) signaling pathway mediates activation of the p52/RelB NF- Kappa B complex and, thereby, regulates...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Animals
cIAP
Humans
NF- Kappa B protein
NF- Kappa B-inducing kinase
NF-kappa B - metabolism
NF-kappa B p52 Subunit - metabolism
NF-kappaB-Inducing Kinase
NIK
noncanonical NF-κB
p100 processing
Protein Serine-Threonine Kinases - metabolism
RelB protein
Signal Transduction
TRAF2
TRAF3
Tumor necrosis factor
Tumor necrosis factor receptors
Ubiquitin-protein ligase
ubiquitination
Title The noncanonical NF-κB pathway
URI https://api.istex.fr/ark:/67375/WNG-1W6DK7Q5-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01088.x
https://www.ncbi.nlm.nih.gov/pubmed/22435551
https://www.proquest.com/docview/1008834928
https://www.proquest.com/docview/940835767
https://pubmed.ncbi.nlm.nih.gov/PMC3313452
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwEB2hIiReuF_CTamEeMsqF4-dPHJbCoiVqKi6b5YdOwItyqJ2V7Q88Ql8Dx_BR_AlzDjZqIEiVYi3KPEk8ngmPpMcHwM8VCZ1SDg-8dKIRDhfJMbnZVLKMvN16pywgeU7kzt74tUc5z3_idfCdPoQwwc3zozwvuYEN_ZwnOSSV0VLnPdKnBllzITxJFO3GB_tDkpSmSryTuY7xYRqDDkm9Zx6o9FMdZ6dfnQaDP2TTXkS5YZpanoZFpsOduyUxWS9spP6y2_aj__HA1fgUo9m48dd-F2Fc769Bhe6_S2Pr8M2BWHcLlsavmVYfxnPpj-_fvvx_UnMOyF_Nsc3YG_6_N3TnaTfkyGpkSq5xGa-SpvcOczReIEVjSVV2JX3Cp11BmVTNi5XqbdNUTlUufSNtLIyRlSpE8VN2KJH-tsQW0Xm1lmLISKYIGprpIhCparMYgRq439d94LlvG_GR32icCEHaHaAZgfo4AB9FEE2WH7qRDvOYPMoDPFgYA4WTHpTqPdnL3S2L5-9Vm9Riwi2NzGgKRX5_4pp_XJ9yPLPZclqj2UE8V_aVIIxr5Iqgltd2AwPJDBF4A8z6vcooIYGrAQ-vtJ-eB8UwYsiKwTmEcgQL2futH75ZpeP7vyr4V24SKfzjpR3D7ZWB2t_n1Dayj4I-fcLJuUtzg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVggu_P-E31QCblkljn-SAwdgWXbZdiWqVt2biWNHrYqyqN1VdznxCDwPvANPwIknYexkowaKVCH1wC1SPIk9_saZccbfADwRWagZ-vGB4RkNqDZxkBmSBAlPIpOHWlPlsnxHvL9D347ZeAW-Lc_CVPwQzYabtQy3XlsDtxvSbSvn9lg0Z-OaijNCk-nM6wzLoVkcY_x29HzQxcl-Skjv9farflCXGAhyhoFJoCKThgXRmhGWGcpS7BoGjKkxgmmlM8aLpNBEhEYVcaqZINwUXPE0y2gaahrjcy_Ami0obon7u1sNd1UkYlIRi4cswKiGt9OITu1569u4Zqd5fprj-2f-5km_2n0Ye1fhx1KlVT7MQWc2VZ38029sk_-pzq_Bldph919UFnYdVkx5Ay5WJTwXN2Ed7cwvJyUidOKOmPqj3s_PX75_fenbYs_H2eIW7JxL_27DKr7S3AVfCRRXWinmQG9zYFXO0GiYEGmkmAdiOeEyrznZbWmQD_JEbIYKl1bh0ipcOoXLuQdRI_mx4iU5g8wzh6lGIDs8sHl9gsnd0RsZ7fLuULxjknqwvgSdxNXG_kLKSjOZHVmG6ySxhJaJB_5f2qTUuvWCCw_uVDhtXoj-Ivq3LMJxtxDcNLBk5-075f6eIz2P4yimjHjAHUDPPGg52NyyV_f-VfAxXOpvb27IjcFoeB8uYxNS5SA-gNXp4cw8RKd0qh454_fh_Xkj_xf2940k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VViAu_P-E31QCblkljn-SAwdgWbosrKCi6t5cO3YEKspW7a66y4lH4Hn6ELwAN56EsbMbNVCkCqkHbpHiie3xjDOTfP4G4JFQsWEYx0eWKxpRY9NIWZJFGc8SW8TGUO1RvkO-sUVfj9hoBY6WZ2Fqfojmg5vzDL9fOwffM2Xbybk7Fc3ZaMHEmaDHdGYLgOXAzg8xfTt42u_iWj8mpPfyw4uNaFFhICoY5iWRTmwel8QYRpiylOU4MswXc2sFM9ooxsusNETEVpdpbpgg3JZc81wpmseGpvjcc7BGeZy7shHdzYa6KhEpqXnFYxZhUsPbKKITR956Na65VZ6dFPf-Cd88Hlb792LvMvxYarSGw-x2phPdKb78Rjb5f6r8ClxahOvhs9q_rsKKra7B-bqA5_w6rKOXhdW4Qvsc-wOm4bD38-u370fPQ1fq-VDNb8DWmYzvJqxil_Y2hFqguDZaM2_yDgGrC4Yuw4TIE80CEMv1lsWCkd0VBvksj2VmqHDpFC6dwqVXuJwFkDSSezUrySlknniTagTU_q5D9Qkmt4evZLLNuwPxnkkawPrS5iTuNe4HkqrseHrg-K2zzNFZZgGEf2mTUxfUCy4CuFWbadMhRosY3bIE590y4KaBozpv36k-ffSU52mapJSRALi3z1NPWvbfbrqrO_8q-BAuvOv25Jv-cHAXLmILUgMQ78HqZH9q72NEOtEPvOuHsHPWhv8LpCmL0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+noncanonical+NF-%CE%BAB+pathway&rft.jtitle=Immunological+reviews&rft.au=Sun%2C+Shao-Cong&rft.date=2012-03-01&rft.issn=0105-2896&rft.eissn=1600-065X&rft.volume=246&rft.issue=1&rft.spage=125&rft.epage=140&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01088.x&rft_id=info%3Apmid%2F22435551&rft.externalDocID=PMC3313452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon