The noncanonical NF-κB pathway
The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in t...
Saved in:
Published in | Immunological reviews Vol. 246; no. 1; pp. 125 - 140 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF‐κB pathway. A central signaling component of the noncanonical NF‐κB pathway is NF‐κB‐inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF‐κB kinase α), to induce phosphorylation‐dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor‐associated factor‐3 (TRAF3)‐dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF‐κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF‐κB pathway. |
---|---|
AbstractList | The noncanonical nuclear factor- Kappa B (NF- Kappa B) signaling pathway mediates activation of the p52/RelB NF- Kappa B complex and, thereby, regulates specific immunological processes. This NF- Kappa B pathway relies on the inducible processing of NF- Kappa B2 precursor protein, p100, as opposed to the degradation of I Kappa B alpha in the canonical NF- Kappa B pathway. A central signaling component of the noncanonical NF- Kappa B pathway is NF- Kappa B-inducing kinase (NIK), which functions together with a downstream kinase, IKK alpha (inhibitor of NF- Kappa B kinase alpha ), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF- Kappa B. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF- Kappa B pathway. The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological processes. This NF‐κB pathway relies on the inducible processing of NF‐κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF‐κB pathway. A central signaling component of the noncanonical NF‐κB pathway is NF‐κB‐inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF‐κB kinase α), to induce phosphorylation‐dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor‐associated factor‐3 (TRAF3)‐dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF‐κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF‐κB pathway. The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, inhibitor of NF-κB kinase α (IKKα), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway. The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway. |
Author | Sun, Shao-Cong |
Author_xml | – sequence: 1 givenname: Shao-Cong surname: Sun fullname: Sun, Shao-Cong organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22435551$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9O2zAUxq2JaRTYK7DebTfJ_O848QWTWAcMDZg2geDuyEkc6i5NujiF9tX2EHumOSsUxsWEL2zL53w_fzrfFtmom9oSMmQ0ZmG9n8RMURpRBVcxp4zFlNE0jRcvyGBd2CCD8AoRT7XaJFveTyhlieDyFdnkXAoAYAPy5nxsh4Gem7C53FTDs8Po96-Pw5npxrdmuUNelqby9vXduU0uDg_OR5-jk69Hx6P9kygHKdMoY1bTkhcFcDBWgpYZSKW1tQkUWWFAlWlZ8ITarBS6gIQrW6pMaWOkpoUU2-TDijubZ1Nb5LbuWlPhrHVT0y6xMQ7_rdRujNfNDQrBhAQeAG_vAG3zc259h1Pnc1tVprbN3KOWNBWQqCR0vvtvJ6NhlkJqnobW3ceu1nbu5_dgO28b71tbYu4607mmN-mqwMI-MJxgnwv2uWAfGP4NDBcBkD4B3P_xDOneSnrrKrt8tg6PT7_3t6CPVnrnO7tY6037A8OUEsDLsyNkl-rTl-QboBR_AA5eu8I |
CitedBy_id | crossref_primary_10_1002_j_1532_2149_2012_00273_x crossref_primary_10_1016_j_ajhg_2013_09_009 crossref_primary_10_3390_pathogens9100814 crossref_primary_10_1074_jbc_M114_587808 crossref_primary_10_1186_s12929_015_0118_2 crossref_primary_10_1186_s13046_022_02298_1 crossref_primary_10_1186_s13578_018_0268_5 crossref_primary_10_3389_fimmu_2022_906311 crossref_primary_10_3389_fimmu_2019_00997 crossref_primary_10_3390_cancers14071671 crossref_primary_10_1002_ardp_201800374 crossref_primary_10_3389_fcell_2022_841646 crossref_primary_10_1016_j_envres_2023_115767 crossref_primary_10_1016_j_intimp_2021_107572 crossref_primary_10_3390_toxins10050199 crossref_primary_10_1128_JVI_02552_14 crossref_primary_10_3389_fimmu_2023_1125224 crossref_primary_10_4049_jimmunol_1301328 crossref_primary_10_1038_ncomms6360 crossref_primary_10_1038_s41419_019_2177_x crossref_primary_10_3109_03602532_2012_756011 crossref_primary_10_3390_cimb44120411 crossref_primary_10_1016_j_micpath_2021_104846 crossref_primary_10_1084_jem_20151048 crossref_primary_10_7554_eLife_05648 crossref_primary_10_1073_pnas_1410124111 crossref_primary_10_1158_0008_5472_CAN_19_3578 crossref_primary_10_1126_scisignal_adh1641 crossref_primary_10_1161_ATVBAHA_115_306931 crossref_primary_10_1016_j_bbrep_2015_11_007 crossref_primary_10_1038_s41401_018_0053_3 crossref_primary_10_3390_ijms23169365 crossref_primary_10_1016_j_cbi_2018_07_017 crossref_primary_10_1016_j_virol_2025_110484 crossref_primary_10_1074_jbc_M113_526269 crossref_primary_10_1021_acsami_3c18645 crossref_primary_10_1016_j_cub_2016_10_009 crossref_primary_10_1186_s12964_020_00613_x crossref_primary_10_1074_jbc_M114_635086 crossref_primary_10_1021_acsbiomedchemau_2c00048 crossref_primary_10_1128_jvi_00027_22 crossref_primary_10_3389_fimmu_2023_1160116 crossref_primary_10_3390_cancers10110426 crossref_primary_10_1049_iet_syb_2013_0020 crossref_primary_10_1007_s11262_015_1277_7 crossref_primary_10_1042_BCJ20180163 crossref_primary_10_1093_jamia_ocaf035 crossref_primary_10_1007_s11882_020_00938_0 crossref_primary_10_1111_j_1600_065X_2012_01099_x crossref_primary_10_1002_eji_201445416 crossref_primary_10_1016_j_biopha_2024_117367 crossref_primary_10_1016_j_semcdb_2014_12_004 crossref_primary_10_1111_jcmm_12752 crossref_primary_10_1016_j_ajpath_2015_03_012 crossref_primary_10_3390_biom5043087 crossref_primary_10_1016_j_celrep_2016_10_067 crossref_primary_10_1016_j_semcancer_2016_07_005 crossref_primary_10_3389_fimmu_2019_02700 crossref_primary_10_1152_ajpendo_00470_2014 crossref_primary_10_3389_fimmu_2018_02165 crossref_primary_10_3390_cells11101673 crossref_primary_10_1080_07357907_2020_1721523 crossref_primary_10_1016_j_ebiom_2024_105452 crossref_primary_10_3390_ijms21228470 crossref_primary_10_1016_j_apmt_2017_12_003 crossref_primary_10_3389_fgene_2019_00140 crossref_primary_10_1371_journal_pone_0135728 crossref_primary_10_3389_fimmu_2018_02161 crossref_primary_10_1053_j_jrn_2013_01_001 crossref_primary_10_1016_S1875_5364_23_60384_X crossref_primary_10_1038_gene_2015_3 crossref_primary_10_1016_j_biopha_2024_117058 crossref_primary_10_3389_fcell_2021_809952 crossref_primary_10_1017_erm_2023_20 crossref_primary_10_1007_s10787_018_0503_z crossref_primary_10_1084_jem_20141207 crossref_primary_10_1371_journal_pone_0199197 crossref_primary_10_3390_ijms252111473 crossref_primary_10_1053_j_seminhematol_2024_05_001 crossref_primary_10_1016_j_cell_2016_12_012 crossref_primary_10_1016_j_chom_2015_08_009 crossref_primary_10_1371_journal_pone_0189396 crossref_primary_10_1084_jem_20200476 crossref_primary_10_1371_journal_ppat_1006162 crossref_primary_10_1007_s11427_018_9339_0 crossref_primary_10_1074_jbc_M115_660761 crossref_primary_10_3389_fimmu_2017_01624 crossref_primary_10_1016_j_ajpath_2015_12_016 crossref_primary_10_1007_s00343_016_4393_x crossref_primary_10_1182_blood_2020010039 crossref_primary_10_2174_1568009620666200720011341 crossref_primary_10_1016_j_scitotenv_2019_06_387 crossref_primary_10_1007_s11010_020_03948_8 crossref_primary_10_1016_j_celrep_2017_12_055 crossref_primary_10_1038_s41598_017_16168_w crossref_primary_10_3109_10799893_2014_977450 crossref_primary_10_1038_s41467_017_00859_z crossref_primary_10_3390_biomedicines12061169 crossref_primary_10_1038_leu_2014_330 crossref_primary_10_1016_j_crphys_2024_100133 crossref_primary_10_2174_1568009623666230206154944 crossref_primary_10_1002_advs_201901261 crossref_primary_10_3390_immuno2040039 crossref_primary_10_3390_v15071566 crossref_primary_10_3390_cancers11070949 crossref_primary_10_1016_j_neuro_2020_11_003 crossref_primary_10_1530_JME_16_0183 crossref_primary_10_1038_s41467_017_02672_0 crossref_primary_10_1007_s13770_019_00194_y crossref_primary_10_1210_en_2016_1582 crossref_primary_10_7554_eLife_34152 crossref_primary_10_3390_ijms222313053 crossref_primary_10_1038_s41430_020_0585_8 crossref_primary_10_1111_j_1600_065X_2011_01092_x crossref_primary_10_3389_fvets_2020_547047 crossref_primary_10_1089_ars_2013_5467 crossref_primary_10_1016_j_ejphar_2023_176241 crossref_primary_10_1111_liv_70063 crossref_primary_10_1186_s12964_021_00705_2 crossref_primary_10_4049_jimmunol_1400389 crossref_primary_10_1111_ejh_13435 crossref_primary_10_1074_jbc_M114_574541 crossref_primary_10_1016_j_dci_2017_04_010 crossref_primary_10_1038_cmi_2017_167 crossref_primary_10_1016_j_tranon_2020_100912 crossref_primary_10_1038_s41423_023_00985_3 crossref_primary_10_1186_s12864_023_09313_5 crossref_primary_10_18632_oncotarget_13034 crossref_primary_10_1002_jcp_28249 crossref_primary_10_1021_acs_bioconjchem_2c00529 crossref_primary_10_1038_srep10758 crossref_primary_10_1016_j_celrep_2014_11_014 crossref_primary_10_1371_journal_pone_0126290 crossref_primary_10_1038_ni_2476 crossref_primary_10_1128_jvi_01699_21 crossref_primary_10_1016_j_biocel_2016_08_034 crossref_primary_10_1111_cas_13788 crossref_primary_10_1097_FPC_0000000000000471 crossref_primary_10_3390_ijms21207805 crossref_primary_10_1186_s12931_015_0214_6 crossref_primary_10_3389_fimmu_2023_1167924 crossref_primary_10_1016_j_molimm_2015_07_024 crossref_primary_10_3389_fonc_2021_641269 crossref_primary_10_3390_life11050427 crossref_primary_10_4103_1673_5374_237109 crossref_primary_10_3389_fimmu_2017_00045 crossref_primary_10_1172_jci_insight_129348 crossref_primary_10_1016_j_genrep_2023_101833 crossref_primary_10_1080_07357907_2022_2055050 crossref_primary_10_1128_mBio_00441_15 crossref_primary_10_4049_jimmunol_2100397 crossref_primary_10_1016_j_bbadis_2024_167066 crossref_primary_10_1038_s41392_024_01757_9 crossref_primary_10_1158_1078_0432_CCR_19_0475 crossref_primary_10_1254_fpj_23109 crossref_primary_10_1016_j_molmed_2019_02_005 crossref_primary_10_1007_s00125_015_3817_z crossref_primary_10_1038_s44321_024_00093_3 crossref_primary_10_3109_08830185_2015_1136306 crossref_primary_10_1016_j_jneuroim_2015_04_006 crossref_primary_10_1038_nri_2017_52 crossref_primary_10_1159_000357953 crossref_primary_10_1002_mc_22938 crossref_primary_10_1038_s41467_022_32575_8 crossref_primary_10_1038_onc_2016_309 crossref_primary_10_1016_j_atherosclerosis_2019_04_204 crossref_primary_10_1084_jem_20240843 crossref_primary_10_1681_ASN_2019111206 crossref_primary_10_1016_j_semcancer_2016_05_002 crossref_primary_10_1007_s11010_022_04385_5 crossref_primary_10_1007_s40620_015_0231_z crossref_primary_10_1111_jphp_13024 crossref_primary_10_3389_fimmu_2020_592949 crossref_primary_10_1016_j_canlet_2020_10_047 crossref_primary_10_1111_j_1600_065X_2012_01107_x crossref_primary_10_3389_fmicb_2016_01243 crossref_primary_10_1016_j_jep_2024_118081 crossref_primary_10_1002_jbmr_2584 crossref_primary_10_1007_s12011_019_01955_5 crossref_primary_10_1002_ame2_12436 crossref_primary_10_3892_ol_2024_14613 crossref_primary_10_1111_tra_12707 crossref_primary_10_1111_imm_13186 crossref_primary_10_4049_jimmunol_1103451 crossref_primary_10_3109_08830185_2015_1055331 crossref_primary_10_1016_j_jaci_2017_05_030 crossref_primary_10_1016_j_isci_2021_103649 crossref_primary_10_1016_j_semcancer_2015_03_002 crossref_primary_10_1016_j_biopha_2022_113513 crossref_primary_10_4161_cc_29216 crossref_primary_10_1155_2013_949513 crossref_primary_10_1016_j_canlet_2021_03_025 crossref_primary_10_1182_bloodadvances_2017009670 crossref_primary_10_1186_s13041_019_0532_6 crossref_primary_10_1016_j_semcancer_2023_05_009 crossref_primary_10_1111_imr_12311 crossref_primary_10_1016_j_omtn_2019_10_048 crossref_primary_10_1016_j_jhep_2017_02_025 crossref_primary_10_3390_biomedicines9080889 crossref_primary_10_4049_jimmunol_1800042 crossref_primary_10_1016_j_intimp_2021_108255 crossref_primary_10_37349_etat_2022_00086 crossref_primary_10_1016_j_intimp_2017_04_022 crossref_primary_10_3389_fimmu_2015_00460 crossref_primary_10_1016_j_cyto_2018_12_020 crossref_primary_10_1016_j_hbpd_2021_04_001 crossref_primary_10_1126_sciadv_abh0609 crossref_primary_10_1126_scisignal_aaf1129 crossref_primary_10_1038_s41467_024_54882_y crossref_primary_10_3389_fpubh_2020_558283 crossref_primary_10_1152_ajpgi_00037_2022 crossref_primary_10_1002_JLB_2MIR0817_339RR crossref_primary_10_3390_v6103925 crossref_primary_10_1371_journal_pone_0176500 crossref_primary_10_1155_2020_7532306 crossref_primary_10_3389_fphar_2014_00120 crossref_primary_10_3390_biomedicines11041060 crossref_primary_10_3390_biomedicines6020043 crossref_primary_10_3892_ol_2023_13865 crossref_primary_10_1111_j_1600_065X_2012_01094_x crossref_primary_10_1016_j_intimp_2024_113008 crossref_primary_10_1097_MCO_0b013e3283600e79 crossref_primary_10_1038_ki_2015_280 crossref_primary_10_3390_biomedicines6020059 crossref_primary_10_1002_JLB_3MIR0817_346RRR crossref_primary_10_1038_srep22115 crossref_primary_10_1016_j_cellsig_2014_02_024 crossref_primary_10_3892_ijo_2013_2210 crossref_primary_10_1111_j_1600_065X_2012_01105_x crossref_primary_10_3389_fphar_2022_916653 crossref_primary_10_1042_BSR20182292 crossref_primary_10_1111_nyas_12763 crossref_primary_10_1016_j_trsl_2015_07_001 crossref_primary_10_1038_s41467_023_35801_z crossref_primary_10_3389_fonc_2023_1169397 crossref_primary_10_1038_s41598_018_30621_4 crossref_primary_10_3389_fmicb_2016_01202 crossref_primary_10_1038_ncomms6930 crossref_primary_10_1016_j_it_2013_01_004 crossref_primary_10_2174_0929867325666181112093336 crossref_primary_10_1161_CIRCRESAHA_116_308559 crossref_primary_10_1038_s41420_021_00582_1 crossref_primary_10_1084_jem_20131019 crossref_primary_10_1038_ncomms15158 crossref_primary_10_1038_nature11831 crossref_primary_10_1093_femspd_ftaa045 crossref_primary_10_14785_lymphosign_2019_0015 crossref_primary_10_1111_imm_12186 crossref_primary_10_3390_v12020188 crossref_primary_10_1016_j_biopha_2023_115090 crossref_primary_10_3390_cells7080102 crossref_primary_10_1016_j_gendis_2023_02_021 crossref_primary_10_1016_j_heliyon_2022_e12141 crossref_primary_10_1038_s41598_018_35852_z crossref_primary_10_1007_s00011_020_01323_3 crossref_primary_10_3390_ijms20071599 crossref_primary_10_15252_embj_201796919 crossref_primary_10_32604_biocell_2024_054879 crossref_primary_10_1177_10732748221074734 crossref_primary_10_1016_j_str_2012_07_013 crossref_primary_10_1038_sigtrans_2017_23 crossref_primary_10_1016_j_clim_2019_108309 crossref_primary_10_3390_biomedicines6020038 crossref_primary_10_1007_s00438_015_1055_1 crossref_primary_10_3389_fimmu_2021_769167 crossref_primary_10_1111_ced_13784 crossref_primary_10_3390_v14010135 crossref_primary_10_1016_j_intimp_2022_109473 crossref_primary_10_1016_j_gene_2016_01_025 crossref_primary_10_1111_j_1600_065X_2012_01102_x crossref_primary_10_1002_ijc_32355 crossref_primary_10_3390_ijms24021772 crossref_primary_10_1681_ASN_2015080898 crossref_primary_10_3390_cells10102547 crossref_primary_10_4049_jimmunol_1400874 crossref_primary_10_4155_ppa_13_31 crossref_primary_10_1039_D1BM01299A crossref_primary_10_1016_j_bbadis_2024_167578 crossref_primary_10_1038_s41418_025_01468_w crossref_primary_10_1038_s41467_018_03530_3 crossref_primary_10_14218_JCTH_2020_00063 crossref_primary_10_1210_jc_2017_00341 crossref_primary_10_3892_ijo_2017_4089 crossref_primary_10_1080_03008207_2020_1797709 crossref_primary_10_1016_j_nefroe_2019_12_004 crossref_primary_10_3390_genes15040450 crossref_primary_10_1002_mco2_349 crossref_primary_10_3389_fped_2019_00303 crossref_primary_10_1002_mco2_104 crossref_primary_10_1080_15384101_2016_1241915 crossref_primary_10_1016_j_bbrc_2014_05_122 crossref_primary_10_26599_FSHW_2022_9250248 crossref_primary_10_3390_cells11223635 crossref_primary_10_3390_cells10113210 crossref_primary_10_1073_pnas_1816000116 crossref_primary_10_1016_j_ijporl_2023_111470 crossref_primary_10_1093_jb_mvv064 crossref_primary_10_1186_s13045_019_0713_x crossref_primary_10_1089_dna_2024_0211 crossref_primary_10_1371_journal_ppat_1004458 crossref_primary_10_3390_antiox12122027 crossref_primary_10_3390_biomedicines5020021 crossref_primary_10_1038_onc_2015_470 crossref_primary_10_1111_imr_12299 crossref_primary_10_3233_CBM_181505 crossref_primary_10_3390_cells5020022 crossref_primary_10_1002_hep4_1757 crossref_primary_10_3390_cells5020023 crossref_primary_10_1038_s41423_020_0404_0 crossref_primary_10_1007_s10741_018_9716_x crossref_primary_10_3390_biomedicines5020027 crossref_primary_10_1038_bjc_2013_593 crossref_primary_10_1111_imm_13003 crossref_primary_10_1016_j_immuni_2018_07_008 crossref_primary_10_1111_imm_13592 crossref_primary_10_1111_bju_12488 crossref_primary_10_1016_j_jaci_2019_03_016 crossref_primary_10_1126_scisignal_2004557 crossref_primary_10_1080_19490976_2020_1859812 crossref_primary_10_1016_j_intimp_2024_112069 crossref_primary_10_3390_ijms23116031 crossref_primary_10_1186_s13578_015_0056_4 crossref_primary_10_1186_1756_3305_5_229 crossref_primary_10_1016_j_bbamcr_2024_119676 crossref_primary_10_1093_nar_gkac491 crossref_primary_10_1002_ctm2_349 crossref_primary_10_1530_ERC_19_0087 crossref_primary_10_1158_1078_0432_CCR_13_0987 crossref_primary_10_1128_JVI_02030_18 crossref_primary_10_1038_s41467_022_35525_6 crossref_primary_10_1038_s41423_019_0202_8 crossref_primary_10_1038_s41698_024_00654_2 crossref_primary_10_3390_v13081560 crossref_primary_10_3389_fimmu_2020_01387 crossref_primary_10_3390_cells8020178 crossref_primary_10_3390_ijms24065364 crossref_primary_10_1111_jcmm_15108 crossref_primary_10_1111_jcmm_15105 crossref_primary_10_4161_cc_28895 crossref_primary_10_1002_wsbm_1646 crossref_primary_10_1038_s41423_020_00583_7 crossref_primary_10_1007_s10811_018_1443_0 crossref_primary_10_1126_sciadv_add7399 crossref_primary_10_1038_s42003_023_04821_2 crossref_primary_10_1371_journal_pone_0057489 crossref_primary_10_1016_j_fsi_2020_09_012 crossref_primary_10_1016_j_cyto_2016_09_003 crossref_primary_10_1016_j_jaci_2017_05_007 crossref_primary_10_3389_fimmu_2018_00613 crossref_primary_10_1002_cac2_12109 crossref_primary_10_1016_j_fsi_2018_12_014 crossref_primary_10_1007_s11033_024_09653_9 crossref_primary_10_1002_cam4_3832 crossref_primary_10_1038_s41405_024_00211_w crossref_primary_10_1016_j_fsi_2015_06_021 crossref_primary_10_1371_journal_pone_0235803 crossref_primary_10_1016_j_freeradbiomed_2017_02_045 crossref_primary_10_4049_jimmunol_1400833 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_1111_imm_12484 crossref_primary_10_4049_jimmunol_1501120 crossref_primary_10_1016_j_lfs_2021_120032 crossref_primary_10_1016_j_bbrc_2015_08_019 crossref_primary_10_1038_ni_2423 crossref_primary_10_26599_FSHW_2022_9250200 crossref_primary_10_1084_jem_20160659 crossref_primary_10_18632_oncotarget_11509 crossref_primary_10_1186_s12881_014_0139_9 crossref_primary_10_1111_j_1600_065X_2012_01111_x crossref_primary_10_18632_oncotarget_11507 crossref_primary_10_1007_s12282_016_0738_8 crossref_primary_10_1186_s13075_015_0527_3 crossref_primary_10_1371_journal_ppat_1003326 crossref_primary_10_1016_j_chom_2016_01_005 crossref_primary_10_1515_tnsci_2021_0003 crossref_primary_10_3389_fimmu_2020_01098 crossref_primary_10_1096_fj_14_269480 crossref_primary_10_3892_mmr_2019_10509 crossref_primary_10_1007_s11095_017_2246_8 crossref_primary_10_1016_j_pathog_2015_07_001 crossref_primary_10_1128_mbio_02222_23 crossref_primary_10_3390_cells10123309 crossref_primary_10_1016_j_jep_2023_116986 crossref_primary_10_1053_j_gastro_2018_11_018 crossref_primary_10_3390_ijms25021009 crossref_primary_10_1038_s41598_023_41101_9 crossref_primary_10_1155_2023_2264030 crossref_primary_10_3390_life11020103 crossref_primary_10_1038_s41467_022_35054_2 crossref_primary_10_3389_fimmu_2018_01849 crossref_primary_10_1002_eji_201646502 crossref_primary_10_1007_s00204_015_1496_7 crossref_primary_10_1038_cddis_2014_417 crossref_primary_10_1016_j_ejphar_2022_175412 crossref_primary_10_1097_MPG_0000000000002796 crossref_primary_10_1016_j_imbio_2016_05_007 crossref_primary_10_17844_jphpi_v27i9_54255 crossref_primary_10_1021_acs_jmedchem_6b01363 crossref_primary_10_1016_j_bbadis_2015_10_019 crossref_primary_10_3390_cells12192383 crossref_primary_10_1007_s00262_021_02867_x crossref_primary_10_1586_era_13_28 crossref_primary_10_1038_onc_2015_331 crossref_primary_10_1016_j_biosystems_2021_104564 crossref_primary_10_3390_cells10071609 crossref_primary_10_1016_j_molmet_2015_09_013 crossref_primary_10_1111_febs_13554 crossref_primary_10_3390_foods12122355 crossref_primary_10_1016_j_bbagrm_2013_04_007 crossref_primary_10_1007_s10238_012_0217_2 crossref_primary_10_1002_advs_202308698 crossref_primary_10_1038_nrm3644 crossref_primary_10_3389_fimmu_2019_03061 crossref_primary_10_1016_j_febslet_2015_11_011 crossref_primary_10_18632_oncotarget_18197 crossref_primary_10_1038_s41392_020_00421_2 crossref_primary_10_1016_j_jaci_2016_11_031 crossref_primary_10_1002_1878_0261_13134 crossref_primary_10_1021_acs_jmedchem_8b00678 crossref_primary_10_1016_j_jmccpl_2022_100018 crossref_primary_10_2147_IJGM_S347654 crossref_primary_10_3390_cells11010132 crossref_primary_10_1134_S1068162022050119 crossref_primary_10_3390_ijms25158123 crossref_primary_10_1016_j_dci_2021_104044 crossref_primary_10_1016_j_nefro_2019_03_004 crossref_primary_10_1016_j_virusres_2023_199138 crossref_primary_10_1124_pr_116_012518 crossref_primary_10_1016_j_fsi_2022_04_001 crossref_primary_10_1186_s12917_022_03373_7 crossref_primary_10_1007_s10555_023_10134_x crossref_primary_10_1007_s11515_012_1233_z crossref_primary_10_1016_j_biocel_2021_106052 crossref_primary_10_1080_09291016_2017_1323422 crossref_primary_10_1182_blood_2014_06_578542 crossref_primary_10_1371_journal_pone_0171406 crossref_primary_10_1097_MIB_0000000000000858 crossref_primary_10_1371_journal_pone_0059127 crossref_primary_10_1182_blood_2019001438 crossref_primary_10_1111_jnc_13526 crossref_primary_10_1016_j_freeradbiomed_2014_04_028 crossref_primary_10_1038_s41392_020_00312_6 crossref_primary_10_3390_molecules27113492 crossref_primary_10_3389_fimmu_2020_608976 crossref_primary_10_1038_s41590_018_0206_z crossref_primary_10_1155_2019_6313242 crossref_primary_10_3389_fimmu_2022_895636 crossref_primary_10_1038_s41392_022_00888_1 crossref_primary_10_1016_j_bcp_2016_03_009 crossref_primary_10_3390_microorganisms9081748 crossref_primary_10_1016_j_celrep_2017_06_073 crossref_primary_10_22159_ijpps_2024v16i6_49530 crossref_primary_10_3390_cells7100176 crossref_primary_10_4236_ojas_2019_91005 crossref_primary_10_1038_s41467_018_05168_7 crossref_primary_10_1073_pnas_1408552111 crossref_primary_10_3389_fimmu_2019_00815 crossref_primary_10_3389_fmicb_2019_02498 crossref_primary_10_1172_jci_insight_98278 crossref_primary_10_1186_1479_5876_10_252 crossref_primary_10_1038_cr_2016_40 crossref_primary_10_4049_jimmunol_1303237 crossref_primary_10_1007_s00018_015_2059_z crossref_primary_10_1016_j_celrep_2019_11_102 crossref_primary_10_1016_j_jff_2023_105747 crossref_primary_10_1016_j_jprot_2018_07_018 crossref_primary_10_1038_s41375_020_01088_y crossref_primary_10_1007_s10787_024_01635_4 crossref_primary_10_1126_scisignal_aad0848 crossref_primary_10_1155_2020_6673467 crossref_primary_10_1007_s00005_018_0522_x crossref_primary_10_1007_s11886_018_1067_7 crossref_primary_10_1007_s13277_016_4860_1 crossref_primary_10_1177_1010428317692248 crossref_primary_10_1126_scisignal_aad9413 crossref_primary_10_1126_scitranslmed_abh3351 crossref_primary_10_1073_pnas_1901056116 crossref_primary_10_1016_j_atherosclerosis_2019_10_023 crossref_primary_10_1371_journal_pone_0106903 crossref_primary_10_7314_APJCP_2013_14_5_3275 crossref_primary_10_1111_febs_14444 crossref_primary_10_1016_j_bbamcr_2018_01_006 crossref_primary_10_1038_cdd_2015_69 crossref_primary_10_3390_molecules27020502 crossref_primary_10_1016_j_foodres_2024_115079 crossref_primary_10_1182_bloodadvances_2020003597 crossref_primary_10_1016_j_lungcan_2015_06_006 crossref_primary_10_1016_j_immuni_2014_02_006 crossref_primary_10_1016_j_azn_2025_02_006 crossref_primary_10_1002_embr_201337983 crossref_primary_10_1016_j_bbrc_2017_11_160 crossref_primary_10_1016_j_bmcl_2023_129277 crossref_primary_10_14785_lymphosign_2023_0001 crossref_primary_10_3390_jcm10163735 crossref_primary_10_3389_fnmol_2015_00077 crossref_primary_10_3390_ijms22126210 crossref_primary_10_3390_ph16111588 crossref_primary_10_1016_j_semcancer_2016_08_002 crossref_primary_10_1093_cvr_cvz206 crossref_primary_10_1016_j_smim_2014_05_004 crossref_primary_10_1038_s41419_019_1524_2 crossref_primary_10_1007_s42764_020_00022_x crossref_primary_10_1093_abbs_gmy082 crossref_primary_10_1126_scisignal_aay8248 crossref_primary_10_1165_rcmb_2017_0242OC crossref_primary_10_1021_acs_jafc_9b03647 crossref_primary_10_1002_eji_202249915 crossref_primary_10_3892_ijmm_2018_3889 crossref_primary_10_3390_ijms21145164 crossref_primary_10_1155_2021_3206982 crossref_primary_10_1099_mic_0_069369_0 crossref_primary_10_1038_s41598_022_05904_6 crossref_primary_10_1080_2162402X_2015_1008791 crossref_primary_10_1080_01616412_2021_1939484 crossref_primary_10_3390_cells10040747 crossref_primary_10_1016_j_bcp_2024_116736 crossref_primary_10_1038_s41586_020_1951_3 crossref_primary_10_3390_v15030745 crossref_primary_10_1016_j_ccell_2015_10_001 crossref_primary_10_1515_biol_2022_0729 crossref_primary_10_1126_sciimmunol_abf6723 crossref_primary_10_1016_j_rvsc_2018_08_009 crossref_primary_10_18632_aging_101040 crossref_primary_10_1021_acs_jproteome_5b01004 crossref_primary_10_1002_jbt_23079 crossref_primary_10_1002_jcp_30720 crossref_primary_10_1016_j_micpath_2020_104415 crossref_primary_10_3389_fimmu_2019_02079 crossref_primary_10_3389_fncel_2021_633610 crossref_primary_10_4049_jimmunol_1900561 crossref_primary_10_1152_japplphysiol_00759_2014 crossref_primary_10_3390_plants12061241 crossref_primary_10_1038_s42003_024_06365_5 crossref_primary_10_3390_cells10071576 crossref_primary_10_3390_biom11010015 crossref_primary_10_1016_j_bcp_2018_05_017 crossref_primary_10_1152_ajplung_00125_2015 crossref_primary_10_1111_febs_14492 crossref_primary_10_3390_v14122798 crossref_primary_10_3389_fonc_2021_731441 crossref_primary_10_1038_s41598_018_24444_6 crossref_primary_10_1016_j_bbrc_2017_07_099 crossref_primary_10_1073_pnas_1503535112 crossref_primary_10_1186_s12951_025_03246_9 crossref_primary_10_3390_cancers16030523 crossref_primary_10_3390_molecules25102342 crossref_primary_10_1186_s12986_020_0433_9 crossref_primary_10_1053_j_gastro_2020_06_033 crossref_primary_10_1089_vim_2019_0188 crossref_primary_10_1016_j_jid_2017_08_042 crossref_primary_10_3390_v15122435 crossref_primary_10_4049_jimmunol_1401514 crossref_primary_10_1186_s43094_024_00730_1 crossref_primary_10_1016_j_molmed_2016_03_002 crossref_primary_10_4049_jimmunol_1600610 |
Cites_doi | 10.1074/jbc.M306708200 10.1038/sj.onc.1203221 10.1074/jbc.M401428200 10.1042/BJ20040544 10.1093/emboj/20.23.6805 10.1074/jbc.M410539200 10.1126/scisignal.3123pe18 10.1038/nri2832 10.1038/nri1669 10.1128/MCB.16.11.6363 10.1084/jem.20061166 10.1084/jem.20110128 10.1016/j.immuni.2004.09.011 10.1016/S1074-7613(02)00423-5 10.1371/journal.pbio.1000518 10.1074/jbc.M403286200 10.1016/j.molcel.2008.05.014 10.1016/S0092-8674(00)81409-9 10.1073/pnas.0609914104 10.1128/MCB.18.10.5899 10.1038/ni.1692 10.1073/pnas.0707959105 10.1093/intimm/dxp014 10.1074/jbc.C200151200 10.1084/jem.20091802 10.1074/jbc.M110.147207 10.1074/jbc.M110.216226 10.1128/MCB.21.6.2192-2202.2001 10.1074/jbc.M304266200 10.4049/jimmunol.0804324 10.1084/jem.20011885 10.1126/science.8096091 10.1038/sj.onc.1206761 10.1038/nri2295 10.4049/jimmunol.163.12.6575 10.1016/j.molcel.2010.03.009 10.1016/j.bcp.2006.08.007 10.1002/eji.1830240224 10.1038/ni.1918 10.1038/sj.onc.1207366 10.1016/j.immuni.2008.01.009 10.2217/fon.09.152 10.1038/cmi.2009.112 10.1182/blood-2008-12-192914 10.1016/S1074-7613(00)80588-9 10.1073/pnas.94.17.9302 10.1073/pnas.0507342102 10.1038/nri1054 10.1007/s00281-009-0194-z 10.1146/annurev.immunol.26.021607.090344 10.1073/pnas.95.7.3792 10.1073/pnas.0308016101 10.1084/jem.20030116 10.1016/j.immuni.2004.08.009 10.1242/jcs.075770 10.1016/j.molimm.2009.07.029 10.1093/emboj/19.22.6085 10.1182/blood-2008-12-192583 10.4049/jimmunol.155.4.1685 10.1038/cr.2010.159 10.1126/science.1062677 10.1093/emboj/cdf542 10.1038/sj.emboj.7600391 10.1146/annurev.immunol.021908.132641 10.1101/cshperspect.a000182 10.1038/8780 10.1371/journal.pone.0015383 10.1126/science.1058453 10.1074/jbc.M800806200 10.1126/science.8171322 10.1111/j.1432-1033.1992.tb16708.x 10.1101/gad.218702 10.1016/j.immuni.2011.02.019 10.1093/emboj/cdg004 10.4049/jimmunol.179.11.7514 10.1182/blood-2010-06-290437 10.1016/S1097-2765(01)00187-3 10.1002/eji.1830260324 10.1016/j.bbrc.2007.10.200 10.1016/j.immuni.2007.07.012 10.1038/sj.onc.1203519 10.1084/jem.193.5.631 10.1073/pnas.0711122105 10.1038/onc.2010.396 10.1074/jbc.M300106200 10.1007/82_2010_108 10.1002/jcp.21099 10.1073/pnas.1105774108 10.1182/blood-2009-09-243535 10.1038/sj.onc.1208969 10.1038/cdd.2009.80 10.1038/cr.2011.13 10.1016/j.cellsig.2005.10.011 10.1016/j.cell.2008.01.020 10.1016/j.cell.2007.10.030 10.4049/jimmunol.182.2.793 10.1038/ni.1678 10.1182/blood-2010-10-312793 10.1126/stke.11pe1 10.1038/sj.onc.1203022 10.1038/385540a0 10.1038/cr.2010.177 10.1034/j.1600-065X.2003.00064.x 10.1182/blood-2005-06-2452 10.1016/j.cell.2007.10.037 10.1182/blood-2010-08-303073 10.4049/jimmunol.173.4.2271 10.1182/blood-2006-11-056010 10.1038/ni842 10.1038/ni.1676 10.1073/pnas.0805186105 10.1126/scisignal.2000778 10.1074/jbc.M109.037341 10.1038/nri2886 10.1038/ni1351 10.1038/sj.onc.1209933 10.1016/j.yexcr.2010.05.004 10.1016/S1074-7613(00)80292-7 10.1074/jbc.M110.119438 10.1016/S1074-7613(02)00425-9 10.1080/08916930600833390 10.1074/jbc.M109619200 10.1053/gast.2002.33651 10.1016/j.coi.2010.01.001 10.1073/pnas.91.4.1346 10.1126/science.1198946 10.4049/jimmunol.169.3.1151 |
ContentType | Journal Article |
Copyright | 2012 John Wiley & Sons A/S 2012 John Wiley & Sons A/S. |
Copyright_xml | – notice: 2012 John Wiley & Sons A/S – notice: 2012 John Wiley & Sons A/S. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 5PM |
DOI | 10.1111/j.1600-065X.2011.01088.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1600-065X |
EndPage | 140 |
ExternalDocumentID | PMC3313452 22435551 10_1111_j_1600_065X_2011_01088_x IMR1088 ark_67375_WNG_1W6DK7Q5_4 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI064639 – fundername: NIAID NIH HHS grantid: AI057555 – fundername: NIAID NIH HHS grantid: R01 AI057555 – fundername: NIGMS NIH HHS grantid: GM84459 – fundername: NIAID NIH HHS grantid: R37 AI064639 – fundername: NIAID NIH HHS grantid: AI064639 – fundername: NIGMS NIH HHS grantid: GM84459-S1 – fundername: NIGMS NIH HHS grantid: R01 GM084459 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM084459-10 || GM – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM084459-08S1 || GM – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: R01 AI064639-07 || AI |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 5PM |
ID | FETCH-LOGICAL-c5448-b1e90f2dd525ae4594b54699ee75dbda56f8fd270ebf39d5726ef6b69aa490d43 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 1600-065X |
IngestDate | Thu Aug 21 13:49:16 EDT 2025 Fri Jul 11 02:11:45 EDT 2025 Fri Jul 11 05:39:24 EDT 2025 Mon Jul 21 05:16:38 EDT 2025 Thu Apr 24 22:58:15 EDT 2025 Tue Jul 01 00:20:57 EDT 2025 Wed Jan 22 17:12:28 EST 2025 Wed Oct 30 09:51:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 John Wiley & Sons A/S. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5448-b1e90f2dd525ae4594b54699ee75dbda56f8fd270ebf39d5726ef6b69aa490d43 |
Notes | ark:/67375/WNG-1W6DK7Q5-4 istex:397A088E3E1663A9F58378AA7236C3A454848B82 ArticleID:IMR1088 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3313452 |
PMID | 22435551 |
PQID | 1008834928 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3313452 proquest_miscellaneous_940835767 proquest_miscellaneous_1008834928 pubmed_primary_22435551 crossref_citationtrail_10_1111_j_1600_065X_2011_01088_x crossref_primary_10_1111_j_1600_065X_2011_01088_x wiley_primary_10_1111_j_1600_065X_2011_01088_x_IMR1088 istex_primary_ark_67375_WNG_1W6DK7Q5_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03 March 2012 2012-03-00 2012-Mar 20120301 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282. Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biol 2010;8:e1000518. Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A. CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 2009;21:467-476. Ling L, Cao Z, Goeddel DV. NF-kB-inducing kinase activates IKK-a by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998;95:3792-3797. Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008;105:11778-11783. Powolny-Budnicka I, Riemann M, Tänzer S, Schmid RM, Hehlgans T, Weih F. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 2011;34:364-74. Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59-70. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733. Fu J, et al. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2011;117:1652-1661. Lo JC, et al. Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Blood 2006;107:1048-1055. Yang C, et al. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 2010;5:e15383. Munroe ME, Bishop GA. Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation. J Biol Chem 2004;279:53222-53231. Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-310. Britanova LV, Makeev VJ, Kuprash DV. In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 2008;365:583-588. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-α and lymphotoxin-β receptor activation: critical roles for p100. J Biol Chem 2003;278:23278-23284. Matsushima A, et al. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001;193:631-636. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005;5:606-616. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378. Shinkura R, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 1999;22:74-77. Liang C, Zhang M, Sun SC. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870 Cell Signal 2006;18:1309-1317. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409. Li Z, et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158-4168. Koike R, et al. The splenic marginal zone is absent in alymphoplastic aly mutant mice. Eur J Immunol 1996;26:669-675. Sun S-C, Faye I. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear factor kB. Eur J Biochem 1992;204:885-892. Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051. Xiao G, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001;20:6805-6815. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b-deficient mice. Immunity 1997;6:491-500. Senftleben U, et al. Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway. Science 2001;293:1495-1499. Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 2010;22:326-332. Kuprash DV, Alimzhanov MB, Tumanov AV, Anderson AO, Pfeffer K, Nedospasov SA. TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J Immunol 1999;163:6575-6580. Lassot I, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001;21:2192-2202. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008;8:337-348. Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012. Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Sigal 2008;1:pe1. Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390. Sun S-C, Ganchi PA, Beraud C, Ballard DW, Greene WC. Autoregulation of the NF-kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci U S A 1994;91:1346-1350. Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693. Sun SC, Yamaoka S. Activation of NF-kB by HTLV-I and implications for cell transformation. Oncogene 2005;24:5952-5964. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706-6716. Banks TA, et al. Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995;155:1685-1693. Alimzhanov MB, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A 1997;94:9302-9307. Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010;10:813-825. Linterman MA, Vinuesa CG. Signals that influence T follicular helper cell differentiation and function. Semin Immunopathol 2010;32:183-196. Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 2009;10:203-213. Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453. Fong A, Sun S-C. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kB2/p100. J Biol Chem 2002;277:22111-22114. Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A 2008;105:10883-10888. De Togni P, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994;264:703-707. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362. Kayagaki N, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17:515-524. Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700. Paxian S, et al. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology 2002;122:1853-1868. Pham LV, et al. Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood 2011;117:200-210. Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 'super repressor'. J Immunol 2007;179:7514-7522. Tusche MW, et al. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671-2683. Carragher D, et al. A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 2004;173:2271-2279. Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A 2008;105:3503-3508. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010;11:799-805. Betts JC, Nabel GJ. Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996;16:6363-6371. Geronda 2004; 21 2002; 16 2002; 17 2007; 104 2010; 11 2010; 10 2002; 15 2011; 117 2006; 39 2004; 23 2002; 277 1999; 163 2009; 113 2008; 105 2008; 30 1997; 6 2003; 278 2009; 114 2010; 22 1998; 18 1994; 264 2007; 212 2011; 124 2007; 179 2009; 10 2005; 102 1997; 385 2010; 115 2004; 173 2006; 25 2008; 28 2008; 26 1998; 92 2010; 3 1998; 95 2006; 203 2010; 2 1993; 259 2010; 5 2009; 16 2010; 7 2010; 6 2010; 8 2010; 32 2010; 38 2009; 182 2004; 382 1999; 22 2002; 3 2010; 285 1995; 155 2008; 365 1996; 16 2011; 6 2001; 20 2001; 21 2004; 279 2002; 122 2005; 5 2009; 183 1994; 91 2008; 132 2006; 107 2003; 22 1998; 9 2009; 46 2006; 72 2002; 195 1992; 204 2008; 9 2003; 195 1994; 24 2008; 8 2008; 1 2003; 198 2005; 24 2011; 208 2001; 293 1997; 94 2010; 316 2001; 291 1999; 18 2007; 131 2001; 19 2003; 3 2011; 21 2009; 206 1996; 26 2011; 286 2007; 27 2004; 101 2009; 21 2006; 7 2006; 18 2011; 34 2009; 27 2008; 283 2011; 331 2011; 108 2011; 349 2001; 7 2001; 193 2007; 110 2002; 169 e_1_2_12_2_2 e_1_2_12_17_2 e_1_2_12_111_2 e_1_2_12_59_2 e_1_2_12_115_2 e_1_2_12_108_2 e_1_2_12_20_2 e_1_2_12_43_2 e_1_2_12_62_2 e_1_2_12_85_2 e_1_2_12_127_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_66_2 e_1_2_12_89_2 e_1_2_12_81_2 e_1_2_12_100_2 e_1_2_12_28_2 e_1_2_12_104_2 e_1_2_12_123_2 e_1_2_12_31_2 e_1_2_12_54_2 e_1_2_12_73_2 e_1_2_12_96_2 e_1_2_12_116_2 e_1_2_12_35_2 e_1_2_12_58_2 e_1_2_12_77_2 e_1_2_12_12_2 e_1_2_12_6_2 e_1_2_12_50_2 e_1_2_12_92_2 e_1_2_12_3_2 e_1_2_12_18_2 e_1_2_12_37_2 e_1_2_12_110_2 e_1_2_12_114_2 e_1_2_12_107_2 e_1_2_12_40_2 e_1_2_12_86_2 e_1_2_12_21_2 e_1_2_12_63_2 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_67_2 e_1_2_12_82_2 e_1_2_12_122_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_126_2 e_1_2_12_119_2 e_1_2_12_51_2 e_1_2_12_97_2 e_1_2_12_32_2 e_1_2_12_74_2 e_1_2_12_55_2 e_1_2_12_36_2 e_1_2_12_78_2 e_1_2_12_13_2 e_1_2_12_7_2 e_1_2_12_93_2 e_1_2_12_70_2 e_1_2_12_4_2 e_1_2_12_19_2 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_113_2 e_1_2_12_41_2 e_1_2_12_64_2 e_1_2_12_87_2 e_1_2_12_106_2 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_68_2 e_1_2_12_60_2 e_1_2_12_83_2 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_121_2 e_1_2_12_125_2 e_1_2_12_102_2 e_1_2_12_52_2 e_1_2_12_75_2 e_1_2_12_98_2 e_1_2_12_118_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_79_2 e_1_2_12_14_2 e_1_2_12_90_2 e_1_2_12_10_2 e_1_2_12_71_2 e_1_2_12_94_2 e_1_2_12_8_2 e_1_2_12_5_2 e_1_2_12_16_2 e_1_2_12_39_2 e_1_2_12_112_2 e_1_2_12_65_2 e_1_2_12_105_2 e_1_2_12_128_2 e_1_2_12_42_2 e_1_2_12_84_2 e_1_2_12_23_2 e_1_2_12_69_2 e_1_2_12_109_2 e_1_2_12_46_2 e_1_2_12_88_2 e_1_2_12_61_2 e_1_2_12_80_2 e_1_2_12_27_2 e_1_2_12_120_2 e_1_2_12_101_2 e_1_2_12_124_2 e_1_2_12_30_2 e_1_2_12_76_2 e_1_2_12_117_2 e_1_2_12_53_2 e_1_2_12_95_2 Kuprash DV (e_1_2_12_103_2) 1999; 163 e_1_2_12_34_2 e_1_2_12_57_2 e_1_2_12_99_2 e_1_2_12_11_2 e_1_2_12_72_2 e_1_2_12_9_2 e_1_2_12_91_2 |
References_xml | – reference: Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res 2011;21:223-244. – reference: Lo JC, et al. Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Blood 2006;107:1048-1055. – reference: Linterman MA, Vinuesa CG. Signals that influence T follicular helper cell differentiation and function. Semin Immunopathol 2010;32:183-196. – reference: Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008;105:11778-11783. – reference: He JQ, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006;203:2413-2418. – reference: Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-α and lymphotoxin-β receptor activation: critical roles for p100. J Biol Chem 2003;278:23278-23284. – reference: Jin W, Zhou XF, Yu J, Cheng X, Sun SC. Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK. Blood 2009;113:6603-6610. – reference: Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132:344-362. – reference: Liao G, Sun SC. Regulation of NF-kappaB2/p100 processing by its nuclear shuttling. Oncogene 2003;22:4868-4874. – reference: Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938-6947. – reference: Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004;279:30099-30105. – reference: Xiao G, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001;20:6805-6815. – reference: Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279:26243-26250. – reference: Hofmann J, Mair F, Greeter M, Schmidt-Supprian M, Becher B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 2011;208:1917-1929. – reference: Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700. – reference: Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010;6:249-259. – reference: Sun S-C, Faye I. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear factor kB. Eur J Biochem 1992;204:885-892. – reference: Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005;5:606-616. – reference: Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 2004;21:477-489. – reference: Rosebeck S, et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011;331:468-472. – reference: Alcamo E, Hacohen N, Schulte LC, Rennert PD, Hynes RO, Baltimore D. Requirement for the NF-kappaB family member RelA in the development of secondary lymphoid organs. J Exp Med 2002;195:233-244. – reference: Fu J, et al. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2011;117:1652-1661. – reference: Wang Z, Zhang B, Yang L, Ding J, Ding HF. Constitutive production of NF-kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression. J Biol Chem 2008;283:10698-10706. – reference: Bonizzi G, et al. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 2004;23:4202-4210. – reference: Kim JY, et al. TNFα induced noncanonical NF-κB activation is attenuated by RIP1 through stabilization of TRAF2. J Cell Sci 2011;124:647-656. – reference: Wicovsky A, et al. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Dffer 2009;16:1445-1459. – reference: Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693. – reference: Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol 2003;3:292-303. – reference: Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 'super repressor'. J Immunol 2007;179:7514-7522. – reference: Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998;92:819-828. – reference: Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A. CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 2009;21:467-476. – reference: Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378. – reference: Senftleben U, et al. Activation of IKKa of a second, evolutionary conserved, NF-kB signaling pathway. Science 2001;293:1495-1499. – reference: Matsumoto M, et al. Essential role of NF-kappa B-inducing kinase in T cell activation through the TCR/CD3 pathway. J Immunol 2002;169:1151-1158. – reference: Lassot I, et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 2001;21:2192-2202. – reference: Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Sigal 2008;1:pe1. – reference: Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010;10:813-825. – reference: Li Z, et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009;114:4158-4168. – reference: Neely RJ, et al. The RET/PTC3 oncogene activates classical NF-κB by stabilizing NIK. Oncogene 2011;6:87-96. – reference: Sun S-C, Ganchi PA, Ballard DW, Greene WC. NF-kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway Science 1993;259:1912-1915. – reference: Madge LA, May MJ. Classical NF-kappaB activation negatively regulates noncanonical NF-kappaB-dependent CXCL12 expression. J Biol Chem 2010;285:38069-38077. – reference: Alimzhanov MB, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A 1997;94:9302-9307. – reference: Pham LV, et al. Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-κB-inducing kinase while activating both canonical and alternative nuclear factor-κB pathways. Blood 2011;117:200-210. – reference: Ishimaru N, Kishimoto H, Hayashi Y, Sprent J. Regulation of naive T cell function by the NF-kappaB2 pathway. Nat Immunol 2006;7:763-772. – reference: Sasaki CY, Ghosh P, Longo DL. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J Biol Chem 2011;286:1093-1120. – reference: Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 2010;22:326-332. – reference: Carragher D, et al. A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 2004;173:2271-2279. – reference: Banks TA, et al. Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995;155:1685-1693. – reference: Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733. – reference: Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol 2009;183:2205-2212. – reference: Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59-70. – reference: Coope HJ, et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002;15:5375-5385. – reference: Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b-deficient mice. Immunity 1997;6:491-500. – reference: Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453. – reference: Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401. – reference: Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010;11:799-805. – reference: Britanova LV, Makeev VJ, Kuprash DV. In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 2008;365:583-588. – reference: Fong A, Sun S-C. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kB2/p100. J Biol Chem 2002;277:22111-22114. – reference: Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biol 2010;8:e1000518. – reference: Zhu M, Fu Y. The complicated role of NF-kappaB in T-cell selection. Cell Mol Immunol 2010;7:89-93. – reference: Novack DV, et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003;198:771-781. – reference: Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 1997;385:540-544. – reference: Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253-267. – reference: Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze'ev A. Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system Oncogene 2001;19:1992-2001. – reference: Aqeilan RI, Croce CM. WWOX in biological control and tumorigenesis. J Cell Physiol 2007;212:307-310. – reference: Razani B, et al. Negative feedback in non-canonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci Sig 2010;3:ra41. – reference: Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051. – reference: Qing G, Qu Z, Xiao G. Endoproteolytic processing of C-terminally truncated NF-kappaB2 precursors at kappaB-containing promoters. Proc Natl Acad Sci U S A 2007;104:5324-5329. – reference: Koike R, et al. The splenic marginal zone is absent in alymphoplastic aly mutant mice. Eur J Immunol 1996;26:669-675. – reference: Miyawaki S, et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 1994;24:429-434. – reference: Heusch M, Lin L, Geleziunas R, Greene WC. The generation of nfkb2 p52: mechanism and efficiency. Oncogene 1999;18:6201-6208. – reference: Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629-642. – reference: Yilmaz ZB, Weih DS, Sivakumar V, Weih F. RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 2003;22:121-130. – reference: Walters S, et al. Increased CD4+Foxp3+ T cells in BAFF-transgenic mice suppress T cell effector responses. J Immunol 2009;182:793-801. – reference: Vallabhapurapu S, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-1370. – reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. – reference: Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008;8:337-348. – reference: Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390. – reference: De Togni P, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994;264:703-707. – reference: Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK. Lipopolysaccharide-induced activation of NF-kappaB non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations. Exp Cell Res 2010;316:3317-3327. – reference: Amir RE, Haecker H, Karin M, Ciechanover A. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene 2004;23:2540-2547. – reference: Gentle IE, et al. In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8. J Biol Chem 2011;286:13282-13291. – reference: Paxian S, et al. Abnormal organogenesis of Peyer's patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology 2002;122:1853-1868. – reference: Sun SC. Non-canonical NF-κB signaling pathway. Cell Res 2011;21:71-85. – reference: Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 2009;10:203-213. – reference: Ling L, Cao Z, Goeddel DV. NF-kB-inducing kinase activates IKK-a by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998;95:3792-3797. – reference: Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A 2008;105:10883-10888. – reference: Kuprash DV, Alimzhanov MB, Tumanov AV, Anderson AO, Pfeffer K, Nedospasov SA. TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes. J Immunol 1999;163:6575-6580. – reference: Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010;115:3541-3552. – reference: Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012. – reference: Solan NJ, Miyoshi H, Carmona EM, Bren GD, Paya CV. RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2002;277:1405-1418. – reference: Sun SC, Yamaoka S. Activation of NF-kB by HTLV-I and implications for cell transformation. Oncogene 2005;24:5952-5964. – reference: Sun SC. Controlling the fate of NIK: a central stage in noncanonical NF-kappaB signaling. Sci Signal 2010;3:pe18. – reference: Dejardin E, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002;17:525-535. – reference: Novack DV. Role of NF-κB in the skeleton. Cell Res 2011;21:169-182. – reference: Tas SW, et al. Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 2007;110:1540-1549. – reference: Shinkura R, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 1999;22:74-77. – reference: Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72:1161-1179. – reference: Tusche MW, et al. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009;206:2671-2683. – reference: Matsushima A, et al. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001;193:631-636. – reference: Sun SC, Cesarman E. NF-κB as a target for oncogenic viruses. Curr Top Microbiol Immunol 2011;349:197-244. – reference: Lin X, Mu Y, Cunningham ETJ, Marcu KB, Geleziunas R, Greene WC. Molecular determinants of NF-kappaB-inducing kinase action. Mol Cell Biol 1998;18:5899-5907. – reference: Powolny-Budnicka I, Riemann M, Tänzer S, Schmid RM, Hehlgans T, Weih F. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 2011;34:364-74. – reference: Yin L, et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 2001;291:2162-2165. – reference: Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409. – reference: Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A 2008;105:3503-3508. – reference: Munroe ME, Bishop GA. Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation. J Biol Chem 2004;279:53222-53231. – reference: Blondel M, et al. Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J 2001;19:6085-6097. – reference: Rauert H, et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 2010;285:7394-7404. – reference: Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282. – reference: Jacque E, Tchenio T, Piton G, Romeo PH, Baud V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci U S A 2005;102:14635-14640. – reference: Hu H, Wu X, Jin W, Chang M, Cheng X, Sun SC. Noncanonical NF-κB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 2011;108:12827-12832. – reference: Yang C, et al. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 2010;5:e15383. – reference: Van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010;10:664-674. – reference: Kayagaki N, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17:515-524. – reference: Matta H, Chaudhary PM. Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci U S A 2004;101:9399-9404. – reference: Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3:958-965. – reference: Liang C, Zhang M, Sun SC. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870 Cell Signal 2006;18:1309-1317. – reference: Gerondakis S, Siebenlist U. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb Perspect Biol 2010;2:a000182. – reference: Davis M, et al. Pseudosubstrate regulation of the SCF(b-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002;16:439-451. – reference: Sun S-C, Ganchi PA, Beraud C, Ballard DW, Greene WC. Autoregulation of the NF-kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci U S A 1994;91:1346-1350. – reference: Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706-6716. – reference: Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004;382:393-409. – reference: King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 2008;26:741-766. – reference: Betts JC, Nabel GJ. Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996;16:6363-6371. – reference: Weih F, Caamaño J. Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev 2003;195:91-105. – reference: Varfolomeev E, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007;131:669-681. – volume: 349 start-page: 197 year: 2011 end-page: 244 article-title: NF‐κB as a target for oncogenic viruses publication-title: Curr Top Microbiol Immunol – volume: 115 start-page: 3541 year: 2010 end-page: 3552 article-title: Classical and/or alternative NF‐kappaB pathway activation in multiple myeloma publication-title: Blood – volume: 117 start-page: 1652 year: 2011 end-page: 1661 article-title: The tumor suppressor gene WWOX links the canonical and noncanonical NF‐κB pathways in HTLV‐I Tax‐mediated tumorigenesis publication-title: Blood – volume: 23 start-page: 2540 year: 2004 end-page: 2547 article-title: Mechanism of processing of the NF‐kappa B2 p100 precursor: identification of the specific polyubiquitin chain‐anchoring lysine residue and analysis of the role of NEDD8‐modification on the SCF(beta‐TrCP) ubiquitin ligase publication-title: Oncogene – volume: 72 start-page: 1161 year: 2006 end-page: 1179 article-title: The alternative NF‐kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development publication-title: Biochem Pharmacol – volume: 27 start-page: 693 year: 2009 end-page: 733 article-title: Regulation and function of NF‐kappaB transcription factors in the immune system publication-title: Annu Rev Immunol – volume: 6 start-page: 491 year: 1997 end-page: 500 article-title: Distinct roles in lymphoid organogenesis for lymphotoxins a and b revealed in lymphotoxin b‐deficient mice publication-title: Immunity – volume: 105 start-page: 3503 year: 2008 end-page: 3508 article-title: Control of canonical NF‐kappaB activation through the NIK‐IKK complex pathway publication-title: Proc Natl Acad Sci U S A – volume: 102 start-page: 14635 year: 2005 end-page: 14640 article-title: RelA repression of RelB activity induces selective gene activation downstream of TNF receptors publication-title: Proc Natl Acad Sci U S A – volume: 285 start-page: 7394 year: 2010 end-page: 7404 article-title: Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor‐2 (TNFR2) publication-title: J Biol Chem – volume: 18 start-page: 1309 year: 2006 end-page: 1317 article-title: beta‐TrCP binding and processing of NF‐kappaB2/p100 involve its phosphorylation at serines 866 and 870 publication-title: Cell Signal – volume: 277 start-page: 22111 year: 2002 end-page: 22114 article-title: Genetic evidence for the essential role of beta‐transducin repeat‐containing protein in the inducible processing of NF‐kB2/p100 publication-title: J Biol Chem – volume: 32 start-page: 183 year: 2010 end-page: 196 article-title: Signals that influence T follicular helper cell differentiation and function publication-title: Semin Immunopathol – volume: 46 start-page: 3278 year: 2009 end-page: 3282 article-title: TNF receptor‐associated factor 1 is a positive regulator of the NF‐kappaB alternative pathway publication-title: Mol Immunol – volume: 25 start-page: 6706 year: 2006 end-page: 6716 article-title: Transcriptional regulation via the NF‐kappaB signaling module publication-title: Oncogene – volume: 173 start-page: 2271 year: 2004 end-page: 2279 article-title: A stroma‐derived defect in NF‐kappaB2 mice causes impaired lymph node development and lymphocyte recruitment publication-title: J Immunol – volume: 26 start-page: 741 year: 2008 end-page: 766 article-title: T follicular helper (TFH) cells in normal and dysregulated immune responses publication-title: Annu Rev Immunol – volume: 38 start-page: 101 year: 2010 end-page: 113 article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation publication-title: Mol Cell – volume: 10 start-page: 813 year: 2010 end-page: 825 article-title: The stromal and haematopoietic antigen‐presenting cells that reside in secondary lymphoid organs publication-title: Nat Rev Immunol – volume: 163 start-page: 6575 year: 1999 end-page: 6580 article-title: TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes publication-title: J Immunol – volume: 131 start-page: 682 year: 2007 end-page: 693 article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis publication-title: Cell – volume: 206 start-page: 2671 year: 2009 end-page: 2683 article-title: Differential requirement of MALT1 for BAFF‐induced outcomes in B cell subsets publication-title: J Exp Med – volume: 204 start-page: 885 year: 1992 end-page: 892 article-title: Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA‐binding properties similar to nuclear factor kB publication-title: Eur J Biochem – volume: 105 start-page: 10883 year: 2008 end-page: 10888 article-title: NIK overexpression amplifies, whereas ablation of its TRAF3‐binding domain replaces BAFF:BAFF‐R‐mediated survival signals in B cells publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: 1364 year: 2008 end-page: 1370 article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK‐dependent alternative NF‐kappaB signaling publication-title: Nat Immunol – volume: 15 start-page: 5375 year: 2002 end-page: 5385 article-title: CD40 regulates the processing of NF‐kappaB2 p100 to p52 publication-title: EMBO J – volume: 18 start-page: 6938 year: 1999 end-page: 6947 article-title: Aberrant rel/nfkb genes and activity in human cancer publication-title: Oncogene – volume: 195 start-page: 233 year: 2002 end-page: 244 article-title: Requirement for the NF‐kappaB family member RelA in the development of secondary lymphoid organs publication-title: J Exp Med – volume: 365 start-page: 583 year: 2008 end-page: 588 article-title: In vitro selection of optimal RelB/p52 DNA‐binding motifs publication-title: Biochem Biophys Res Commun – volume: 132 start-page: 344 year: 2008 end-page: 362 article-title: Shared principles in NF‐kappaB signaling publication-title: Cell – volume: 279 start-page: 26243 year: 2004 end-page: 26250 article-title: Regulation of the NF‐kappaB‐inducing kinase by tumor necrosis factor receptor‐associated factor 3‐induced degradation publication-title: J Biol Chem – volume: 22 start-page: 326 year: 2010 end-page: 332 article-title: Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS) publication-title: Curr Opin Immunol – volume: 19 start-page: 6085 year: 2001 end-page: 6097 article-title: Nuclear‐specific degradation of Far1 is controlled by the localization of the F‐box protein Cdc4 publication-title: EMBO J – volume: 182 start-page: 793 year: 2009 end-page: 801 article-title: Increased CD4 Foxp3 T cells in BAFF‐transgenic mice suppress T cell effector responses publication-title: J Immunol – volume: 7 start-page: 401 year: 2001 end-page: 409 article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100 publication-title: Mol Cell – volume: 21 start-page: 477 year: 2004 end-page: 489 article-title: Receptor‐specific signaling for both the alternative and the canonical NF‐kappaB activation pathways by NF‐kappaB‐inducing kinase publication-title: Immunity – volume: 3 start-page: pe18 year: 2010 article-title: Controlling the fate of NIK: a central stage in noncanonical NF‐kappaB signaling publication-title: Sci Signal – volume: 155 start-page: 1685 year: 1995 end-page: 1693 article-title: Lymphotoxin‐alpha‐deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness publication-title: J Immunol – volume: 21 start-page: 223 year: 2011 end-page: 244 article-title: NF‐κB in immunobiology publication-title: Cell Res – volume: 19 start-page: 1992 year: 2001 end-page: 2001 article-title: Differential interaction of plakoglobin and beta‐catenin with the ubiquitin‐proteasome system publication-title: Oncogene – volume: 283 start-page: 10698 year: 2008 end-page: 10706 article-title: Constitutive production of NF‐kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression publication-title: J Biol Chem – volume: 94 start-page: 9302 year: 1997 end-page: 9307 article-title: Abnormal development of secondary lymphoid tissues in lymphotoxin beta‐deficient mice publication-title: Proc Natl Acad Sci U S A – volume: 279 start-page: 53222 year: 2004 end-page: 53231 article-title: Role of tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b‐mediated B lymphocyte activation publication-title: J Biol Chem – volume: 24 start-page: 5952 year: 2005 end-page: 5964 article-title: Activation of NF‐kB by HTLV‐I and implications for cell transformation publication-title: Oncogene – volume: 195 start-page: 91 year: 2003 end-page: 105 article-title: Regulation of secondary lymphoid organ development by the nuclear factor‐kappaB signal transduction pathway publication-title: Immunol Rev – volume: 18 start-page: 6201 year: 1999 end-page: 6208 article-title: The generation of nfkb2 p52: mechanism and efficiency publication-title: Oncogene – volume: 20 start-page: 6805 year: 2001 end-page: 6815 article-title: Retroviral oncoprotein Tax induces processing of NF‐kappaB2/p100 in T cells: evidence for the involvement of IKKalpha publication-title: EMBO J – volume: 17 start-page: 525 year: 2002 end-page: 535 article-title: The lymphotoxin‐beta receptor induces different patterns of gene expression via two NF‐kappaB pathways publication-title: Immunity – volume: 117 start-page: 200 year: 2011 end-page: 210 article-title: Constitutive BR3 receptor signaling in diffuse, large B‐cell lymphomas stabilizes nuclear factor‐κB‐inducing kinase while activating both canonical and alternative nuclear factor‐κB pathways publication-title: Blood – volume: 203 start-page: 2413 year: 2006 end-page: 2418 article-title: Rescue of TRAF3‐null mice by p100 NF‐kappa B deficiency publication-title: J Exp Med – volume: 183 start-page: 2205 year: 2009 end-page: 2212 article-title: Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response publication-title: J Immunol – volume: 291 start-page: 2162 year: 2001 end-page: 2165 article-title: Defective lymphotoxin‐beta receptor‐induced NF‐kappaB transcriptional activity in NIK‐deficient mice publication-title: Science – volume: 104 start-page: 5324 year: 2007 end-page: 5329 article-title: Endoproteolytic processing of C‐terminally truncated NF‐kappaB2 precursors at kappaB‐containing promoters publication-title: Proc Natl Acad Sci U S A – volume: 279 start-page: 30099 year: 2004 end-page: 30105 article-title: Induction of p100 processing by NF‐kappaB‐inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha‐mediated phosphorylation publication-title: J Biol Chem – volume: 95 start-page: 3792 year: 1998 end-page: 3797 article-title: NF‐kB‐inducing kinase activates IKK‐a by phosphorylation of Ser‐176 publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 664 year: 2010 end-page: 674 article-title: New insights into the development of lymphoid tissues publication-title: Nat Rev Immunol – volume: 21 start-page: 629 year: 2004 end-page: 642 article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF‐kappaB activation in mature B cells publication-title: Immunity – volume: 108 start-page: 12827 year: 2011 end-page: 12832 article-title: Noncanonical NF‐κB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development publication-title: Proc Natl Acad Sci U S A – volume: 30 start-page: 689 year: 2008 end-page: 700 article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination publication-title: Mol Cell – volume: 22 start-page: 74 year: 1999 end-page: 77 article-title: Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf‐kappa b‐inducing kinase publication-title: Nat Genet – volume: 382 start-page: 393 year: 2004 end-page: 409 article-title: Functions of NF‐kappaB1 and NF‐kappaB2 in immune cell biology publication-title: Biochem J – volume: 2 start-page: a000182 year: 2010 article-title: Roles of the NF‐kappaB pathway in lymphocyte development and function publication-title: Cold Spring Harb Perspect Biol – volume: 27 start-page: 253 year: 2007 end-page: 267 article-title: Tumor necrosis factor receptor‐associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs publication-title: Immunity – volume: 21 start-page: 2192 year: 2001 end-page: 2202 article-title: ATF4 degradation relies on a phosphorylation‐dependent interaction with the SCF(betaTrCP) ubiquitin ligase publication-title: Mol Cell Biol – volume: 24 start-page: 429 year: 1994 end-page: 434 article-title: A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice publication-title: Eur J Immunol – volume: 16 start-page: 439 year: 2002 end-page: 451 article-title: Pseudosubstrate regulation of the SCF(b‐TrCP) ubiquitin ligase by hnRNP‐U publication-title: Genes Dev – volume: 23 start-page: 4202 year: 2004 end-page: 4210 article-title: Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers publication-title: EMBO J – volume: 264 start-page: 703 year: 1994 end-page: 707 article-title: Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin publication-title: Science – volume: 117 start-page: 4041 year: 2011 end-page: 4051 article-title: Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response publication-title: Blood – volume: 22 start-page: 4868 year: 2003 end-page: 4874 article-title: Regulation of NF‐kappaB2/p100 processing by its nuclear shuttling publication-title: Oncogene – volume: 7 start-page: 763 year: 2006 end-page: 772 article-title: Regulation of naive T cell function by the NF‐kappaB2 pathway publication-title: Nat Immunol – volume: 16 start-page: 1445 year: 2009 end-page: 1459 article-title: TNF‐like weak inducer of apoptosis inhibits proinflammatory TNF receptor‐1 signaling publication-title: Cell Death Dffer – volume: 278 start-page: 36005 year: 2003 end-page: 36012 article-title: TWEAK induces NF‐kappaB2 p100 processing and long lasting NF‐kappaB activation publication-title: J Biol Chem – volume: 7 start-page: 89 year: 2010 end-page: 93 article-title: The complicated role of NF‐kappaB in T‐cell selection publication-title: Cell Mol Immunol – volume: 10 start-page: 203 year: 2009 end-page: 213 article-title: Dectin‐1 directs T helper cell differentiation by controlling noncanonical NF‐kappaB activation through Raf‐1 and Syk publication-title: Nat Immunol – volume: 9 start-page: 1371 year: 2008 end-page: 1378 article-title: Noncanonical NF‐kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK publication-title: Nat Immunol – volume: 3 start-page: 292 year: 2003 end-page: 303 article-title: Organogenesis of lymphoid tissues publication-title: Nat Rev Immunol – volume: 259 start-page: 1912 year: 1993 end-page: 1915 article-title: NF‐kB controls expression of inhibitor IkBa: evidence for an inducible autoregulatory pathway publication-title: Science – volume: 91 start-page: 1346 year: 1994 end-page: 1350 article-title: Autoregulation of the NF‐kB transactivator Rel A (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs publication-title: Proc Natl Acad Sci U S A – volume: 316 start-page: 3317 year: 2010 end-page: 3327 article-title: Lipopolysaccharide‐induced activation of NF‐kappaB non‐canonical pathway requires BCL10 serine 138 and NIK phosphorylations publication-title: Exp Cell Res – volume: 28 start-page: 391 year: 2008 end-page: 401 article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor publication-title: Immunity – volume: 198 start-page: 771 year: 2003 end-page: 781 article-title: The IkappaB function of NF‐kappaB2 p100 controls stimulated osteoclastogenesis publication-title: J Exp Med – volume: 101 start-page: 9399 year: 2004 end-page: 9404 article-title: Activation of alternative NF‐kappa B pathway by human herpes virus 8‐encoded Fas‐associated death domain‐like IL‐1 beta‐converting enzyme inhibitory protein (vFLIP) publication-title: Proc Natl Acad Sci U S A – volume: 17 start-page: 515 year: 2002 end-page: 524 article-title: BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF‐kappaB2 publication-title: Immunity – volume: 6 start-page: 249 year: 2010 end-page: 259 article-title: WWOX gene and gene product: tumor suppression through specific protein interactions publication-title: Future Oncol – volume: 193 start-page: 631 year: 2001 end-page: 636 article-title: Essential role of nuclear factor (NF)‐kappaB‐inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF‐kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I publication-title: J Exp Med – volume: 21 start-page: 467 year: 2009 end-page: 476 article-title: CXCL13 production by an established lymph node stromal cell line via lymphotoxin‐beta receptor engagement involves the cooperation of multiple signaling pathways publication-title: Int Immunol – volume: 131 start-page: 669 year: 2007 end-page: 681 article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis publication-title: Cell – volume: 9 start-page: 59 year: 1998 end-page: 70 article-title: The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues publication-title: Immunity – volume: 22 start-page: 121 year: 2003 end-page: 130 article-title: RelB is required for Peyer’s patch development: differential regulation of p52‐RelB by lymphotoxin and TNF publication-title: EMBO J – volume: 105 start-page: 11778 year: 2008 end-page: 11783 article-title: Both cIAP1 and cIAP2 regulate TNFalpha‐mediated NF‐kappaB activation publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 169 year: 2011 end-page: 182 article-title: Role of NF‐κB in the skeleton publication-title: Cell Res – volume: 110 start-page: 1540 year: 2007 end-page: 1549 article-title: Noncanonical NF‐kappaB signaling in dendritic cells is required for indoleamine 2,3‐dioxygenase (IDO) induction and immune regulation publication-title: Blood – volume: 113 start-page: 6603 year: 2009 end-page: 6610 article-title: Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK publication-title: Blood – volume: 11 start-page: 799 year: 2010 end-page: 805 article-title: MicroRNAs modulate the noncanonical transcription factor NF‐kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation publication-title: Nat Immunol – volume: 179 start-page: 7514 year: 2007 end-page: 7522 article-title: A novel mutation in the Nfkb2 gene generates an NF‐kappa B2 ‘super repressor’ publication-title: J Immunol – volume: 278 start-page: 23278 year: 2003 end-page: 23284 article-title: RelB/p50 dimers are differentially regulated by tumor necrosis factor‐α and lymphotoxin‐β receptor activation: critical roles for p100 publication-title: J Biol Chem – volume: 8 start-page: 337 year: 2008 end-page: 348 article-title: TH17 cells in development: an updated view of their molecular identity and genetic programming publication-title: Nat Rev Immunol – volume: 278 start-page: 45382 year: 2003 end-page: 45390 article-title: Tumor necrosis factor receptor‐associated factor 2 (TRAF2)‐deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling publication-title: J Biol Chem – volume: 208 start-page: 1917 year: 2011 end-page: 1929 article-title: NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell‐mediated immune responses publication-title: J Exp Med – volume: 169 start-page: 1151 year: 2002 end-page: 1158 article-title: Essential role of NF‐kappa B‐inducing kinase in T cell activation through the TCR/CD3 pathway publication-title: J Immunol – volume: 6 start-page: 87 year: 2011 end-page: 96 article-title: The RET/PTC3 oncogene activates classical NF‐κB by stabilizing NIK publication-title: Oncogene – volume: 107 start-page: 1048 year: 2006 end-page: 1055 article-title: Coordination between NF‐kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues publication-title: Blood – volume: 3 start-page: 958 year: 2002 end-page: 965 article-title: BAFF‐induced NEMO‐independent processing of NF‐kappaB2 in maturing B cells publication-title: Nat Immunol – volume: 1 start-page: pe1 year: 2008 article-title: Nuclear ubiquitin ligases, NF‐kappaB degradation, and the control of inflammation publication-title: Sci Sigal – volume: 3 start-page: ra41 year: 2010 article-title: Negative feedback in non‐canonical NF‐κB signaling modulates NIK stability through IKKα‐mediated phosphorylation publication-title: Sci Sig – volume: 286 start-page: 13282 year: 2011 end-page: 13291 article-title: In TNF‐stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non‐canonical NF‐kappaB and activation of caspase‐8 publication-title: J Biol Chem – volume: 5 start-page: 606 year: 2005 end-page: 616 article-title: Structure and function of the spleen publication-title: Nat Rev Immunol – volume: 5 start-page: e15383 year: 2010 article-title: NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis publication-title: PLoS ONE – volume: 39 start-page: 445 year: 2006 end-page: 453 article-title: Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25 CD4 regulatory T cells publication-title: Autoimmunity – volume: 385 start-page: 540 year: 1997 end-page: 544 article-title: MAP3K‐related kinase involved in NF‐kB induction by TNF, CD95 and IL‐1 publication-title: Nature – volume: 212 start-page: 307 year: 2007 end-page: 310 article-title: WWOX in biological control and tumorigenesis publication-title: J Cell Physiol – volume: 21 start-page: 71 year: 2011 end-page: 85 article-title: Non‐canonical NF‐κB signaling pathway publication-title: Cell Res – volume: 293 start-page: 1495 year: 2001 end-page: 1499 article-title: Activation of IKKa of a second, evolutionary conserved, NF‐kB signaling pathway publication-title: Science – volume: 26 start-page: 669 year: 1996 end-page: 675 article-title: The splenic marginal zone is absent in alymphoplastic aly mutant mice publication-title: Eur J Immunol – volume: 8 start-page: e1000518 year: 2010 article-title: Non‐canonical NF‐κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase‐inactive c‐IAP2 publication-title: PLoS Biol – volume: 18 start-page: 5899 year: 1998 end-page: 5907 article-title: Molecular determinants of NF‐kappaB‐inducing kinase action publication-title: Mol Cell Biol – volume: 286 start-page: 1093 year: 2011 end-page: 1120 article-title: Recruitment of RelB to the Csf2 promoter enhances RelA‐mediated transcription of granulocyte‐macrophage colony‐stimulating factor publication-title: J Biol Chem – volume: 122 start-page: 1853 year: 2002 end-page: 1868 article-title: Abnormal organogenesis of Peyer’s patches in mice deficient for NF‐kappaB1, NF‐kappaB2, and Bcl‐3 publication-title: Gastroenterology – volume: 277 start-page: 1405 year: 2002 end-page: 1418 article-title: RelB cellular regulation and transcriptional activity are regulated by p100 publication-title: J Biol Chem – volume: 16 start-page: 6363 year: 1996 end-page: 6371 article-title: Differential regulation of NF‐kappaB2(p100) processing and control by amino‐terminal sequences publication-title: Mol Cell Biol – volume: 92 start-page: 819 year: 1998 end-page: 828 article-title: Cotranslational biogenesis of NF‐kappaB p50 by the 26S proteasome publication-title: Cell – volume: 114 start-page: 4158 year: 2009 end-page: 4168 article-title: Emu‐BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF‐kappaB pathways generating marginal zone (MZ) B‐cell expansion as a precursor to splenic MZ lymphoma publication-title: Blood – volume: 285 start-page: 38069 year: 2010 end-page: 38077 article-title: Classical NF‐kappaB activation negatively regulates noncanonical NF‐kappaB‐dependent CXCL12 expression publication-title: J Biol Chem – volume: 124 start-page: 647 year: 2011 end-page: 656 article-title: TNFα induced noncanonical NF‐κB activation is attenuated by RIP1 through stabilization of TRAF2 publication-title: J Cell Sci – volume: 331 start-page: 468 year: 2011 end-page: 472 article-title: Cleavage of NIK by the API2‐MALT1 fusion oncoprotein leads to noncanonical NF‐kappaB activation publication-title: Science – volume: 34 start-page: 364 year: 2011 end-page: 74 article-title: RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin‐dependent interleukin‐17 production in γδ T cells publication-title: Immunity – ident: e_1_2_12_66_2 doi: 10.1074/jbc.M306708200 – ident: e_1_2_12_44_2 doi: 10.1038/sj.onc.1203221 – ident: e_1_2_12_46_2 doi: 10.1074/jbc.M401428200 – ident: e_1_2_12_5_2 doi: 10.1042/BJ20040544 – ident: e_1_2_12_19_2 doi: 10.1093/emboj/20.23.6805 – ident: e_1_2_12_25_2 doi: 10.1074/jbc.M410539200 – ident: e_1_2_12_62_2 doi: 10.1126/scisignal.3123pe18 – ident: e_1_2_12_96_2 doi: 10.1038/nri2832 – ident: e_1_2_12_114_2 doi: 10.1038/nri1669 – ident: e_1_2_12_35_2 doi: 10.1128/MCB.16.11.6363 – ident: e_1_2_12_55_2 doi: 10.1084/jem.20061166 – ident: e_1_2_12_126_2 doi: 10.1084/jem.20110128 – ident: e_1_2_12_56_2 doi: 10.1016/j.immuni.2004.09.011 – ident: e_1_2_12_20_2 doi: 10.1016/S1074-7613(02)00423-5 – ident: e_1_2_12_60_2 doi: 10.1371/journal.pbio.1000518 – ident: e_1_2_12_30_2 doi: 10.1074/jbc.M403286200 – ident: e_1_2_12_65_2 doi: 10.1016/j.molcel.2008.05.014 – ident: e_1_2_12_7_2 doi: 10.1016/S0092-8674(00)81409-9 – ident: e_1_2_12_43_2 doi: 10.1073/pnas.0609914104 – ident: e_1_2_12_63_2 doi: 10.1128/MCB.18.10.5899 – ident: e_1_2_12_82_2 doi: 10.1038/ni.1692 – ident: e_1_2_12_87_2 doi: 10.1073/pnas.0707959105 – ident: e_1_2_12_84_2 doi: 10.1093/intimm/dxp014 – ident: e_1_2_12_16_2 doi: 10.1074/jbc.C200151200 – ident: e_1_2_12_69_2 doi: 10.1084/jem.20091802 – ident: e_1_2_12_74_2 doi: 10.1074/jbc.M110.147207 – ident: e_1_2_12_86_2 doi: 10.1074/jbc.M110.216226 – ident: e_1_2_12_39_2 doi: 10.1128/MCB.21.6.2192-2202.2001 – ident: e_1_2_12_28_2 doi: 10.1074/jbc.M304266200 – ident: e_1_2_12_97_2 doi: 10.4049/jimmunol.0804324 – ident: e_1_2_12_113_2 doi: 10.1084/jem.20011885 – ident: e_1_2_12_11_2 doi: 10.1126/science.8096091 – ident: e_1_2_12_37_2 doi: 10.1038/sj.onc.1206761 – ident: e_1_2_12_118_2 doi: 10.1038/nri2295 – volume: 163 start-page: 6575 year: 1999 ident: e_1_2_12_103_2 article-title: TNF and lymphotoxin beta cooperate in the maintenance of secondary lymphoid tissue microarchitecture but not in the development of lymph nodes publication-title: J Immunol doi: 10.4049/jimmunol.163.12.6575 – ident: e_1_2_12_68_2 doi: 10.1016/j.molcel.2010.03.009 – ident: e_1_2_12_91_2 doi: 10.1016/j.bcp.2006.08.007 – ident: e_1_2_12_105_2 doi: 10.1002/eji.1830240224 – ident: e_1_2_12_75_2 doi: 10.1038/ni.1918 – ident: e_1_2_12_47_2 doi: 10.1038/sj.onc.1207366 – ident: e_1_2_12_58_2 doi: 10.1016/j.immuni.2008.01.009 – ident: e_1_2_12_78_2 doi: 10.2217/fon.09.152 – ident: e_1_2_12_92_2 doi: 10.1038/cmi.2009.112 – ident: e_1_2_12_117_2 doi: 10.1182/blood-2008-12-192914 – ident: e_1_2_12_102_2 doi: 10.1016/S1074-7613(00)80588-9 – ident: e_1_2_12_100_2 doi: 10.1073/pnas.94.17.9302 – ident: e_1_2_12_81_2 doi: 10.1073/pnas.0507342102 – ident: e_1_2_12_94_2 doi: 10.1038/nri1054 – ident: e_1_2_12_122_2 doi: 10.1007/s00281-009-0194-z – ident: e_1_2_12_121_2 doi: 10.1146/annurev.immunol.26.021607.090344 – ident: e_1_2_12_49_2 doi: 10.1073/pnas.95.7.3792 – ident: e_1_2_12_51_2 doi: 10.1073/pnas.0308016101 – ident: e_1_2_12_24_2 doi: 10.1084/jem.20030116 – ident: e_1_2_12_26_2 doi: 10.1016/j.immuni.2004.08.009 – ident: e_1_2_12_85_2 doi: 10.1242/jcs.075770 – ident: e_1_2_12_67_2 doi: 10.1016/j.molimm.2009.07.029 – ident: e_1_2_12_38_2 doi: 10.1093/emboj/19.22.6085 – ident: e_1_2_12_70_2 doi: 10.1182/blood-2008-12-192583 – ident: e_1_2_12_99_2 doi: 10.4049/jimmunol.155.4.1685 – ident: e_1_2_12_93_2 doi: 10.1038/cr.2010.159 – ident: e_1_2_12_18_2 doi: 10.1126/science.1062677 – ident: e_1_2_12_22_2 doi: 10.1093/emboj/cdf542 – ident: e_1_2_12_107_2 doi: 10.1038/sj.emboj.7600391 – ident: e_1_2_12_2_2 doi: 10.1146/annurev.immunol.021908.132641 – ident: e_1_2_12_80_2 doi: 10.1101/cshperspect.a000182 – ident: e_1_2_12_14_2 doi: 10.1038/8780 – ident: e_1_2_12_53_2 doi: 10.1371/journal.pone.0015383 – ident: e_1_2_12_15_2 doi: 10.1126/science.1058453 – ident: e_1_2_12_45_2 doi: 10.1074/jbc.M800806200 – ident: e_1_2_12_98_2 doi: 10.1126/science.8171322 – ident: e_1_2_12_10_2 doi: 10.1111/j.1432-1033.1992.tb16708.x – ident: e_1_2_12_41_2 doi: 10.1101/gad.218702 – ident: e_1_2_12_127_2 doi: 10.1016/j.immuni.2011.02.019 – ident: e_1_2_12_73_2 doi: 10.1093/emboj/cdg004 – ident: e_1_2_12_112_2 doi: 10.4049/jimmunol.179.11.7514 – ident: e_1_2_12_89_2 doi: 10.1182/blood-2010-06-290437 – ident: e_1_2_12_8_2 doi: 10.1016/S1097-2765(01)00187-3 – ident: e_1_2_12_106_2 doi: 10.1002/eji.1830260324 – ident: e_1_2_12_128_2 doi: 10.1016/j.bbrc.2007.10.200 – ident: e_1_2_12_57_2 doi: 10.1016/j.immuni.2007.07.012 – ident: e_1_2_12_40_2 doi: 10.1038/sj.onc.1203519 – ident: e_1_2_12_108_2 doi: 10.1084/jem.193.5.631 – ident: e_1_2_12_64_2 doi: 10.1073/pnas.0711122105 – ident: e_1_2_12_90_2 doi: 10.1038/onc.2010.396 – ident: e_1_2_12_72_2 doi: 10.1074/jbc.M300106200 – ident: e_1_2_12_48_2 doi: 10.1007/82_2010_108 – ident: e_1_2_12_77_2 doi: 10.1002/jcp.21099 – ident: e_1_2_12_119_2 doi: 10.1073/pnas.1105774108 – ident: e_1_2_12_88_2 doi: 10.1182/blood-2009-09-243535 – ident: e_1_2_12_50_2 doi: 10.1038/sj.onc.1208969 – ident: e_1_2_12_29_2 doi: 10.1038/cdd.2009.80 – ident: e_1_2_12_3_2 doi: 10.1038/cr.2011.13 – ident: e_1_2_12_17_2 doi: 10.1016/j.cellsig.2005.10.011 – ident: e_1_2_12_4_2 doi: 10.1016/j.cell.2008.01.020 – ident: e_1_2_12_32_2 doi: 10.1016/j.cell.2007.10.030 – ident: e_1_2_12_123_2 doi: 10.4049/jimmunol.182.2.793 – ident: e_1_2_12_31_2 doi: 10.1038/ni.1678 – ident: e_1_2_12_59_2 doi: 10.1182/blood-2010-10-312793 – ident: e_1_2_12_42_2 doi: 10.1126/stke.11pe1 – ident: e_1_2_12_36_2 doi: 10.1038/sj.onc.1203022 – ident: e_1_2_12_13_2 doi: 10.1038/385540a0 – ident: e_1_2_12_6_2 doi: 10.1038/cr.2010.177 – ident: e_1_2_12_104_2 doi: 10.1034/j.1600-065X.2003.00064.x – ident: e_1_2_12_111_2 doi: 10.1182/blood-2005-06-2452 – ident: e_1_2_12_33_2 doi: 10.1016/j.cell.2007.10.037 – ident: e_1_2_12_76_2 doi: 10.1182/blood-2010-08-303073 – ident: e_1_2_12_110_2 doi: 10.4049/jimmunol.173.4.2271 – ident: e_1_2_12_125_2 doi: 10.1182/blood-2006-11-056010 – ident: e_1_2_12_21_2 doi: 10.1038/ni842 – ident: e_1_2_12_34_2 doi: 10.1038/ni.1676 – ident: e_1_2_12_52_2 doi: 10.1073/pnas.0805186105 – ident: e_1_2_12_61_2 doi: 10.1126/scisignal.2000778 – ident: e_1_2_12_27_2 doi: 10.1074/jbc.M109.037341 – ident: e_1_2_12_95_2 doi: 10.1038/nri2886 – ident: e_1_2_12_116_2 doi: 10.1038/ni1351 – ident: e_1_2_12_79_2 doi: 10.1038/sj.onc.1209933 – ident: e_1_2_12_71_2 doi: 10.1016/j.yexcr.2010.05.004 – ident: e_1_2_12_101_2 doi: 10.1016/S1074-7613(00)80292-7 – ident: e_1_2_12_83_2 doi: 10.1074/jbc.M110.119438 – ident: e_1_2_12_23_2 doi: 10.1016/S1074-7613(02)00425-9 – ident: e_1_2_12_124_2 doi: 10.1080/08916930600833390 – ident: e_1_2_12_9_2 doi: 10.1074/jbc.M109619200 – ident: e_1_2_12_109_2 doi: 10.1053/gast.2002.33651 – ident: e_1_2_12_120_2 doi: 10.1016/j.coi.2010.01.001 – ident: e_1_2_12_12_2 doi: 10.1073/pnas.91.4.1346 – ident: e_1_2_12_54_2 doi: 10.1126/science.1198946 – ident: e_1_2_12_115_2 doi: 10.4049/jimmunol.169.3.1151 |
SSID | ssj0017324 |
Score | 2.5719085 |
SecondaryResourceType | review_article |
Snippet | The noncanonical nuclear factor‐κB (NF‐κB) signaling pathway mediates activation of the p52/RelB NF‐κB complex and, thereby, regulates specific immunological... The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological... The noncanonical nuclear factor- Kappa B (NF- Kappa B) signaling pathway mediates activation of the p52/RelB NF- Kappa B complex and, thereby, regulates... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Animals cIAP Humans NF- Kappa B protein NF- Kappa B-inducing kinase NF-kappa B - metabolism NF-kappa B p52 Subunit - metabolism NF-kappaB-Inducing Kinase NIK noncanonical NF-κB p100 processing Protein Serine-Threonine Kinases - metabolism RelB protein Signal Transduction TRAF2 TRAF3 Tumor necrosis factor Tumor necrosis factor receptors Ubiquitin-protein ligase ubiquitination |
Title | The noncanonical NF-κB pathway |
URI | https://api.istex.fr/ark:/67375/WNG-1W6DK7Q5-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01088.x https://www.ncbi.nlm.nih.gov/pubmed/22435551 https://www.proquest.com/docview/1008834928 https://www.proquest.com/docview/940835767 https://pubmed.ncbi.nlm.nih.gov/PMC3313452 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwEB2hIiReuF_CTamEeMsqF4-dPHJbCoiVqKi6b5YdOwItyqJ2V7Q88Ql8Dx_BR_AlzDjZqIEiVYi3KPEk8ngmPpMcHwM8VCZ1SDg-8dKIRDhfJMbnZVLKMvN16pywgeU7kzt74tUc5z3_idfCdPoQwwc3zozwvuYEN_ZwnOSSV0VLnPdKnBllzITxJFO3GB_tDkpSmSryTuY7xYRqDDkm9Zx6o9FMdZ6dfnQaDP2TTXkS5YZpanoZFpsOduyUxWS9spP6y2_aj__HA1fgUo9m48dd-F2Fc769Bhe6_S2Pr8M2BWHcLlsavmVYfxnPpj-_fvvx_UnMOyF_Nsc3YG_6_N3TnaTfkyGpkSq5xGa-SpvcOczReIEVjSVV2JX3Cp11BmVTNi5XqbdNUTlUufSNtLIyRlSpE8VN2KJH-tsQW0Xm1lmLISKYIGprpIhCparMYgRq439d94LlvG_GR32icCEHaHaAZgfo4AB9FEE2WH7qRDvOYPMoDPFgYA4WTHpTqPdnL3S2L5-9Vm9Riwi2NzGgKRX5_4pp_XJ9yPLPZclqj2UE8V_aVIIxr5Iqgltd2AwPJDBF4A8z6vcooIYGrAQ-vtJ-eB8UwYsiKwTmEcgQL2futH75ZpeP7vyr4V24SKfzjpR3D7ZWB2t_n1Dayj4I-fcLJuUtzg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVggu_P-E31QCblkljn-SAwdgWXbZdiWqVt2biWNHrYqyqN1VdznxCDwPvANPwIknYexkowaKVCH1wC1SPIk9_saZccbfADwRWagZ-vGB4RkNqDZxkBmSBAlPIpOHWlPlsnxHvL9D347ZeAW-Lc_CVPwQzYabtQy3XlsDtxvSbSvn9lg0Z-OaijNCk-nM6wzLoVkcY_x29HzQxcl-Skjv9farflCXGAhyhoFJoCKThgXRmhGWGcpS7BoGjKkxgmmlM8aLpNBEhEYVcaqZINwUXPE0y2gaahrjcy_Ami0obon7u1sNd1UkYlIRi4cswKiGt9OITu1569u4Zqd5fprj-2f-5km_2n0Ye1fhx1KlVT7MQWc2VZ38029sk_-pzq_Bldph919UFnYdVkx5Ay5WJTwXN2Ed7cwvJyUidOKOmPqj3s_PX75_fenbYs_H2eIW7JxL_27DKr7S3AVfCRRXWinmQG9zYFXO0GiYEGmkmAdiOeEyrznZbWmQD_JEbIYKl1bh0ipcOoXLuQdRI_mx4iU5g8wzh6lGIDs8sHl9gsnd0RsZ7fLuULxjknqwvgSdxNXG_kLKSjOZHVmG6ySxhJaJB_5f2qTUuvWCCw_uVDhtXoj-Ivq3LMJxtxDcNLBk5-075f6eIz2P4yimjHjAHUDPPGg52NyyV_f-VfAxXOpvb27IjcFoeB8uYxNS5SA-gNXp4cw8RKd0qh454_fh_Xkj_xf2940k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VViAu_P-E31QCblkljn-SAwdgWbosrKCi6t5cO3YEKspW7a66y4lH4Hn6ELwAN56EsbMbNVCkCqkHbpHiie3xjDOTfP4G4JFQsWEYx0eWKxpRY9NIWZJFGc8SW8TGUO1RvkO-sUVfj9hoBY6WZ2Fqfojmg5vzDL9fOwffM2Xbybk7Fc3ZaMHEmaDHdGYLgOXAzg8xfTt42u_iWj8mpPfyw4uNaFFhICoY5iWRTmwel8QYRpiylOU4MswXc2sFM9ooxsusNETEVpdpbpgg3JZc81wpmseGpvjcc7BGeZy7shHdzYa6KhEpqXnFYxZhUsPbKKITR956Na65VZ6dFPf-Cd88Hlb792LvMvxYarSGw-x2phPdKb78Rjb5f6r8ClxahOvhs9q_rsKKra7B-bqA5_w6rKOXhdW4Qvsc-wOm4bD38-u370fPQ1fq-VDNb8DWmYzvJqxil_Y2hFqguDZaM2_yDgGrC4Yuw4TIE80CEMv1lsWCkd0VBvksj2VmqHDpFC6dwqVXuJwFkDSSezUrySlknniTagTU_q5D9Qkmt4evZLLNuwPxnkkawPrS5iTuNe4HkqrseHrg-K2zzNFZZgGEf2mTUxfUCy4CuFWbadMhRosY3bIE590y4KaBozpv36k-ffSU52mapJSRALi3z1NPWvbfbrqrO_8q-BAuvOv25Jv-cHAXLmILUgMQ78HqZH9q72NEOtEPvOuHsHPWhv8LpCmL0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+noncanonical+NF-%CE%BAB+pathway&rft.jtitle=Immunological+reviews&rft.au=Sun%2C+Shao-Cong&rft.date=2012-03-01&rft.issn=0105-2896&rft.eissn=1600-065X&rft.volume=246&rft.issue=1&rft.spage=125&rft.epage=140&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01088.x&rft_id=info%3Apmid%2F22435551&rft.externalDocID=PMC3313452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |