Competitive Bond Rupture in the Photodissociation of Bromoacetyl Chloride and 2- and 3-Bromopropionyl Chloride: Adiabatic versus Diabatic Dissociation

Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) t...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 14; no. 5; pp. 936 - 945
Main Authors Hsu, Ming-Yi, Tsai, Po-Yu, Wei, Zheng-Rong, Chao, Meng-Hsuan, Zhang, Bing, Kasai, Toshio, Lin, King-Chuen
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 02.04.2013
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1439-4235
1439-7641
1439-7641
DOI10.1002/cphc.201200957

Cover

Loading…
Abstract Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing CCl and CBr bond fission of bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride by following the 1[n(O)→π*(CO)] transition is obtained. The figure shows the center‐of‐mass translational energy distributions of ground‐state Br formation through a diabatic pathway for the dissociation of 2‐bromopropionyl chloride.
AbstractList Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O)[arrow right]π*(CO)] transition at 234-235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. [PUBLICATION ABSTRACT]
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1 [n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and n p (Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and n p (Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing CCl and CBr bond fission of bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride by following the 1[n(O)→π*(CO)] transition is obtained. The figure shows the center‐of‐mass translational energy distributions of ground‐state Br formation through a diabatic pathway for the dissociation of 2‐bromopropionyl chloride.
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.
Author Lin, King-Chuen
Zhang, Bing
Tsai, Po-Yu
Wei, Zheng-Rong
Kasai, Toshio
Chao, Meng-Hsuan
Hsu, Ming-Yi
Author_xml – sequence: 1
  givenname: Ming-Yi
  surname: Hsu
  fullname: Hsu, Ming-Yi
  organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
– sequence: 2
  givenname: Po-Yu
  surname: Tsai
  fullname: Tsai, Po-Yu
  organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
– sequence: 3
  givenname: Zheng-Rong
  surname: Wei
  fullname: Wei, Zheng-Rong
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (People's Republic of China)
– sequence: 4
  givenname: Meng-Hsuan
  surname: Chao
  fullname: Chao, Meng-Hsuan
  organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
– sequence: 5
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (People's Republic of China)
– sequence: 6
  givenname: Toshio
  surname: Kasai
  fullname: Kasai, Toshio
  organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
– sequence: 7
  givenname: King-Chuen
  surname: Lin
  fullname: Lin, King-Chuen
  email: kclin@ntu.edu.tw
  organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan)
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27232610$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23400968$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhFZQpW4ZPFX7IRbm5YuqIKqKiBxsRxnonXJxsF2WvaP8HvJfnRZVUKcxpaeZ2Y072Gy17kOkuQlwROCMX1r-pmZUEwoxkUmnyQHhLMilYKTvc2bU5btJ4ch3GKMcyzJs2SfMj7yIj9Ifpdu3kO00d4BOnVdja6HPg4ekO1QnAG6mrnoahuCM1ZH6zrkGnTq3dxpA3HRonLWOm9rQHqUaboqLF0RvXf9aOxA79BJbXU1NjLoDnwYAjp7-J_tDHmePG10G-DFph4lX96f35TT9PLzxYfy5DI1Gecy1YYVleQCeCZYUYjKEJ7LRuSVBgqC1QbLKmcV4zLTjICuKWhR6LyhXOYFY0fJm3XfcdWfA4So5jYYaFvdgRuCIowUJKfZCn39CL11g-_G7ZZUngnCeT5SrzbUUM2hVr23c-0X6uHiI3C8AXQwum287owNfzlJGRUEj9xkzRnvQvDQbBGC1TJ6tYxebaMfBf5IMDaujhm9tu2_tWKt3dsWFv8ZosqrabnrpmvXhgi_tq72P5SQTGbq26cLxSWZfv94_VXdsD9u-9KB
CitedBy_id crossref_primary_10_1080_00268976_2021_1985643
crossref_primary_10_1016_j_saa_2022_120899
crossref_primary_10_1002_jccs_202300116
crossref_primary_10_1039_D1CP05788J
crossref_primary_10_1021_acs_jpca_0c02800
crossref_primary_10_1080_0144235X_2020_1822590
Cites_doi 10.1063/1.1500734
10.1063/1.474624
10.1016/S0009-2614(00)00467-X
10.1063/1.463580
10.1063/1.460786
10.1063/1.1451250
10.1016/0009-2614(85)85272-6
10.1063/1.1633759
10.1063/1.466047
10.1039/c2fd20015e
10.1016/S0009-2614(03)00606-7
10.1016/S0009-2614(01)00574-7
10.1063/1.479874
10.1063/1.1148310
10.1063/1.467245
10.1063/1.2363991
10.1063/1.467877
10.1063/1.1333702
10.1063/1.465408
10.1063/1.1515318
10.1063/1.1812757
10.1063/1.1540622
10.1063/1.2435341
10.1063/1.466389
10.1063/1.3012353
10.1109/PROC.1963.1676
10.1063/1.2371044
10.1063/1.1412879
10.1063/1.469057
10.1021/j100338a038
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 INIST-CNRS
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
K9.
7X8
DOI 10.1002/cphc.201200957
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1439-7641
EndPage 945
ExternalDocumentID 2923097971
23400968
27232610
10_1002_cphc_201200957
CPHC201200957
ark_67375_WNG_471HZJRV_T
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Council of Taiwan
  funderid: NSC 97‐2113‐M‐002‐010‐MY2
– fundername: National Science Council, Taiwan
– fundername: Ministry of Education
– fundername: National Taiwan University
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
.GJ
31~
53G
AAMMB
AEFGJ
AGHNM
AGXDD
AI.
AIDQK
AIDYY
FEDTE
HF~
HVGLF
IQODW
VH1
XSW
ZGI
NPM
K9.
7X8
ID FETCH-LOGICAL-c5447-ac39b746e4563996bc1487f68bae2e63dc07b83b3475a31ead2ea69a8f2478933
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Fri Jul 11 06:02:09 EDT 2025
Fri Jul 25 12:30:39 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Mon Jul 21 09:16:05 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Tue Jul 01 03:17:00 EDT 2025
Wed Jan 22 16:22:51 EST 2025
Wed Oct 30 09:52:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords bond energy
Imaging
Reaction mechanism
reaction mechanisms
Ions
Dissociation
Photodissociation
velocity ion imaging
Velocity
diabatic effects
cleavage reactions
Organic compounds
Language English
License CC BY 4.0
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5447-ac39b746e4563996bc1487f68bae2e63dc07b83b3475a31ead2ea69a8f2478933
Notes Ministry of Education
National Taiwan University
National Science Council of Taiwan - No. NSC 97-2113-M-002-010-MY2
National Science Council, Taiwan
istex:D5CA7F92BE5779567461383CCE2FC10C7B56777F
ArticleID:CPHC201200957
ark:/67375/WNG-471HZJRV-T
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23400968
PQID 1318561448
PQPubID 986334
PageCount 10
ParticipantIDs proquest_miscellaneous_1319182593
proquest_journals_1318561448
pubmed_primary_23400968
pascalfrancis_primary_27232610
crossref_primary_10_1002_cphc_201200957
crossref_citationtrail_10_1002_cphc_201200957
wiley_primary_10_1002_cphc_201200957_CPHC201200957
istex_primary_ark_67375_WNG_471HZJRV_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2, 2013
PublicationDateYYYYMMDD 2013-04-02
PublicationDate_xml – month: 04
  year: 2013
  text: April 2, 2013
  day: 02
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemphyschem
PublicationTitleAlternate ChemPhysChem
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
– name: Wiley Subscription Services, Inc
References J. T. Muckerman, J. Phys. Chem. 1989, 93, 179-184.
P. W. Kash, G. C. G. Waschewsky, R. E. Morse, L. J. Butler, M. M. Francl, J. Chem. Phys. 1994, 100, 3463-3475.
R. N. Zare, Mol. Photochem. 1972, 4, 1-37.
F. Zhang, W.-J. Ding, W.-H. Fang, J. Chem. Phys. 2006, 125, 184305.
Y. Tang, W. B. Lee, Z. F. Hu, B. Zhang, K. C. Lin, J. Chem. Phys. 2007, 126, 064302.
K. W. Lee, Y.-J. Jee, K.-H. Jung, J. Chem. Phys. 2002, 116, 4490-4496.
C. Zhu, H. Nakamura, J. Chem. Phys. 1995, 102, 7448-7461.
A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 1997, 68, 3477-3484.
D. H. Parker, A. T. J. B. Eppink, J. Chem. Phys. 1997, 107, 2357-2362.
W.-J. Ding, W.-H. Fang, R.-Z. Liu, D.-C. Fang, J. Chem. Phys. 2002, 117, 8745-8753.
H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2001, 115, 10353-10372.
S. Arepalli, N. Presser, D. Robie, R. J. Gordon, Chem. Phys. Lett. 1985, 118, 88-92.
M.-C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, M. Desouter-Lecomte, Chem. Phys. Lett. 2003, 374, 307-313.
M. Hunter, S. A. Reid, D. C. Robie, H. Reisler, J. Chem. Phys. 1993, 99, 1093-1108.
B. Lasorne, M.-C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, J. Chem. Phys. 2004, 120, 1271-1278.
H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2002, 117, 5576-5593.
H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2003, 118, 6816-6829.
P. W. Kash, G. C. G. Waschewsky, L. J. Butler, J. Chem. Phys. 1994, 100, 4017-4018.
Z.-R. Wei, X.-P. Zhang, W.-B. Lee, B. Zhang, K.-C. Lin, J. Chem. Phys. 2009, 130, 014307.
P. W. Kash, G. C. G. Waschewsky, L. J. Butler, M. M. Francl, J. Chem. Phys. 1993, 99, 4479-4494.
A. J. Marks, J. Chem. Phys. 2001, 114, 1700-1708.
C. Zhu, H. Nakamura, J. Chem. Phys. 1994, 101, 10630-10647.
M. D. Person, P. W. Kash, S. A. Schofield, L. J. Butler, J. Chem. Phys. 1991, 95, 3843-3846.
R. Valero, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194305.
G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, S. H. Kable, Faraday Discuss. 2012, 157, 227-241.
W. S. McGivern, R. Li, P. Zou, S. W. North, J. Chem. Phys. 1999, 111, 5771-5779.
M. D. Person, P. W. Kash, L. J. Butler, J. Chem. Phys. 1992, 97, 355-373.
Y. Liu, L. J. Butler, J. Chem. Phys. 2004, 121, 11016-11022.
R. N. Zare, D. R. Herschbach, Proc. IEEE 1963, 51, 173-182.
T. P. Rakitzis, Chem. Phys. Lett. 2001, 342, 121-126.
M.-S. Park, Y.-J. Jung, S.-H. Lee, D.-C. Kim, K.-H. Jung, Chem. Phys. Lett. 2000, 322, 429-438.
2001; 342
2007; 126
2004; 121
2004; 120
2003; 118
1997; 68
1991; 95
2002; 117
2002; 116
2009; 130
1992; 97
1972; 4
2003; 374
1994; 101
1989; 93
1994; 100
1997; 107
2012; 157
2000; 322
1963; 51
1993; 99
1995; 102
1985; 118
1999; 111
2001; 115
2001; 114
2006; 125
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
Zare R. N. (e_1_2_7_22_2) 1972; 4
References_xml – reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2001, 115, 10353-10372.
– reference: A. J. Marks, J. Chem. Phys. 2001, 114, 1700-1708.
– reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2003, 118, 6816-6829.
– reference: A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 1997, 68, 3477-3484.
– reference: T. P. Rakitzis, Chem. Phys. Lett. 2001, 342, 121-126.
– reference: M.-S. Park, Y.-J. Jung, S.-H. Lee, D.-C. Kim, K.-H. Jung, Chem. Phys. Lett. 2000, 322, 429-438.
– reference: J. T. Muckerman, J. Phys. Chem. 1989, 93, 179-184.
– reference: Y. Tang, W. B. Lee, Z. F. Hu, B. Zhang, K. C. Lin, J. Chem. Phys. 2007, 126, 064302.
– reference: S. Arepalli, N. Presser, D. Robie, R. J. Gordon, Chem. Phys. Lett. 1985, 118, 88-92.
– reference: W. S. McGivern, R. Li, P. Zou, S. W. North, J. Chem. Phys. 1999, 111, 5771-5779.
– reference: P. W. Kash, G. C. G. Waschewsky, L. J. Butler, J. Chem. Phys. 1994, 100, 4017-4018.
– reference: F. Zhang, W.-J. Ding, W.-H. Fang, J. Chem. Phys. 2006, 125, 184305.
– reference: B. Lasorne, M.-C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, J. Chem. Phys. 2004, 120, 1271-1278.
– reference: Y. Liu, L. J. Butler, J. Chem. Phys. 2004, 121, 11016-11022.
– reference: M. D. Person, P. W. Kash, L. J. Butler, J. Chem. Phys. 1992, 97, 355-373.
– reference: W.-J. Ding, W.-H. Fang, R.-Z. Liu, D.-C. Fang, J. Chem. Phys. 2002, 117, 8745-8753.
– reference: P. W. Kash, G. C. G. Waschewsky, L. J. Butler, M. M. Francl, J. Chem. Phys. 1993, 99, 4479-4494.
– reference: C. Zhu, H. Nakamura, J. Chem. Phys. 1995, 102, 7448-7461.
– reference: K. W. Lee, Y.-J. Jee, K.-H. Jung, J. Chem. Phys. 2002, 116, 4490-4496.
– reference: M. Hunter, S. A. Reid, D. C. Robie, H. Reisler, J. Chem. Phys. 1993, 99, 1093-1108.
– reference: D. H. Parker, A. T. J. B. Eppink, J. Chem. Phys. 1997, 107, 2357-2362.
– reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2002, 117, 5576-5593.
– reference: M.-C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, M. Desouter-Lecomte, Chem. Phys. Lett. 2003, 374, 307-313.
– reference: C. Zhu, H. Nakamura, J. Chem. Phys. 1994, 101, 10630-10647.
– reference: G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, S. H. Kable, Faraday Discuss. 2012, 157, 227-241.
– reference: M. D. Person, P. W. Kash, S. A. Schofield, L. J. Butler, J. Chem. Phys. 1991, 95, 3843-3846.
– reference: R. N. Zare, D. R. Herschbach, Proc. IEEE 1963, 51, 173-182.
– reference: P. W. Kash, G. C. G. Waschewsky, R. E. Morse, L. J. Butler, M. M. Francl, J. Chem. Phys. 1994, 100, 3463-3475.
– reference: R. Valero, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194305.
– reference: Z.-R. Wei, X.-P. Zhang, W.-B. Lee, B. Zhang, K.-C. Lin, J. Chem. Phys. 2009, 130, 014307.
– reference: R. N. Zare, Mol. Photochem. 1972, 4, 1-37.
– volume: 342
  start-page: 121
  year: 2001
  end-page: 126
  publication-title: Chem. Phys. Lett.
– volume: 102
  start-page: 7448
  year: 1995
  end-page: 7461
  publication-title: J. Chem. Phys.
– volume: 157
  start-page: 227
  year: 2012
  end-page: 241
  publication-title: Faraday Discuss.
– volume: 97
  start-page: 355
  year: 1992
  end-page: 373
  publication-title: J. Chem. Phys.
– volume: 322
  start-page: 429
  year: 2000
  end-page: 438
  publication-title: Chem. Phys. Lett.
– volume: 100
  start-page: 3463
  year: 1994
  end-page: 3475
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 194305
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 2357
  year: 1997
  end-page: 2362
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 1
  year: 1972
  end-page: 37
  publication-title: Mol. Photochem.
– volume: 130
  start-page: 014307
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 4017
  year: 1994
  end-page: 4018
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 5576
  year: 2002
  end-page: 5593
  publication-title: J. Chem. Phys.
– volume: 68
  start-page: 3477
  year: 1997
  end-page: 3484
  publication-title: Rev. Sci. Instrum.
– volume: 118
  start-page: 88
  year: 1985
  end-page: 92
  publication-title: Chem. Phys. Lett.
– volume: 99
  start-page: 4479
  year: 1993
  end-page: 4494
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 4490
  year: 2002
  end-page: 4496
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 10630
  year: 1994
  end-page: 10647
  publication-title: J. Chem. Phys.
– volume: 93
  start-page: 179
  year: 1989
  end-page: 184
  publication-title: J. Phys. Chem.
– volume: 99
  start-page: 1093
  year: 1993
  end-page: 1108
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 8745
  year: 2002
  end-page: 8753
  publication-title: J. Chem. Phys.
– volume: 51
  start-page: 173
  year: 1963
  end-page: 182
  publication-title: Proc. IEEE
– volume: 111
  start-page: 5771
  year: 1999
  end-page: 5779
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 6816
  year: 2003
  end-page: 6829
  publication-title: J. Chem. Phys.
– volume: 374
  start-page: 307
  year: 2003
  end-page: 313
  publication-title: Chem. Phys. Lett.
– volume: 114
  start-page: 1700
  year: 2001
  end-page: 1708
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 1271
  year: 2004
  end-page: 1278
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 11016
  year: 2004
  end-page: 11022
  publication-title: J. Chem. Phys.
– volume: 95
  start-page: 3843
  year: 1991
  end-page: 3846
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 184305
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 064302
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 10353
  year: 2001
  end-page: 10372
  publication-title: J. Chem. Phys.
– ident: e_1_2_7_15_2
  doi: 10.1063/1.1500734
– ident: e_1_2_7_18_2
  doi: 10.1063/1.474624
– ident: e_1_2_7_31_2
  doi: 10.1016/S0009-2614(00)00467-X
– ident: e_1_2_7_2_2
  doi: 10.1063/1.463580
– ident: e_1_2_7_1_2
  doi: 10.1063/1.460786
– ident: e_1_2_7_33_2
  doi: 10.1063/1.1451250
– ident: e_1_2_7_30_2
  doi: 10.1016/0009-2614(85)85272-6
– ident: e_1_2_7_10_2
  doi: 10.1063/1.1633759
– ident: e_1_2_7_3_2
  doi: 10.1063/1.466047
– ident: e_1_2_7_28_2
  doi: 10.1039/c2fd20015e
– ident: e_1_2_7_9_2
  doi: 10.1016/S0009-2614(03)00606-7
– ident: e_1_2_7_23_2
  doi: 10.1016/S0009-2614(01)00574-7
– ident: e_1_2_7_32_2
  doi: 10.1063/1.479874
– ident: e_1_2_7_17_2
  doi: 10.1063/1.1148310
– ident: e_1_2_7_26_2
– ident: e_1_2_7_5_2
  doi: 10.1063/1.467245
– ident: e_1_2_7_11_2
  doi: 10.1063/1.2363991
– ident: e_1_2_7_12_2
  doi: 10.1063/1.467877
– ident: e_1_2_7_8_2
  doi: 10.1063/1.1333702
– ident: e_1_2_7_27_2
  doi: 10.1063/1.465408
– ident: e_1_2_7_7_2
  doi: 10.1063/1.1515318
– ident: e_1_2_7_24_2
  doi: 10.1063/1.1812757
– ident: e_1_2_7_16_2
  doi: 10.1063/1.1540622
– ident: e_1_2_7_19_2
  doi: 10.1063/1.2435341
– ident: e_1_2_7_25_2
– ident: e_1_2_7_4_2
  doi: 10.1063/1.466389
– ident: e_1_2_7_20_2
  doi: 10.1063/1.3012353
– ident: e_1_2_7_21_2
  doi: 10.1109/PROC.1963.1676
– volume: 4
  start-page: 1
  year: 1972
  ident: e_1_2_7_22_2
  publication-title: Mol. Photochem.
– ident: e_1_2_7_6_2
  doi: 10.1063/1.2371044
– ident: e_1_2_7_14_2
  doi: 10.1063/1.1412879
– ident: e_1_2_7_13_2
  doi: 10.1063/1.469057
– ident: e_1_2_7_29_2
  doi: 10.1021/j100338a038
SSID ssj0008071
Score 2.0790727
Snippet Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm...
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1 [n(O)→π*(CO)] transition at 234–235 nm...
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235...
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O)[arrow right]π*(CO)] transition at...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 936
SubjectTerms Atomic and molecular physics
bond energy
cleavage reactions
diabatic effects
Exact sciences and technology
Molecular properties and interactions with photons
Photon interactions with molecules
Physics
reaction mechanisms
velocity ion imaging
Title Competitive Bond Rupture in the Photodissociation of Bromoacetyl Chloride and 2- and 3-Bromopropionyl Chloride: Adiabatic versus Diabatic Dissociation
URI https://api.istex.fr/ark:/67375/WNG-471HZJRV-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201200957
https://www.ncbi.nlm.nih.gov/pubmed/23400968
https://www.proquest.com/docview/1318561448
https://www.proquest.com/docview/1319182593
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzT0ISMhOKXN-pFkubUpZVWJqlq1UHGxbMfRVq2SVTeRCid-Amd-Xn9JZ5xNtotASHBLlJlEdsbjb-zxN4S8duDiNC66W8DKEKBEPIQ4Kw9FkUsWgzPUnvHm42E8OhEHp_L01in-lh-iX3DDkeH9NQ5wbWbbC9JQO50gBeEAl_clHifHhC1EReMFf1QatRGXwO1OxmXH2hix7WX1pVnpLnbwFWZJ6hl0VNFWuPgdBF1GtH5K2n9IdNeYNhPlfKupzZb99gvP4_-09hF5MMerdKc1sMfkjiufkHtZVybuKfmZeeTtU5AoFimm42aK2xL0rKSALunRpKor3PbvzIBWBd3FLEBtXf31gmYTzALMHdWgzK6___AXHC68FDRveob5873gO7qDS8bINUsxq6SZ0b3ufu_Wh56Rk_33x9konBd8CK0UIgm15UOTiNgBqgPgFBsLwVpSxKnRjrmY5zZKTMoNF4nUfACDgDkdD3VaMJEA8OLPyUpZlW6V0IHJc5hoU5NKwEiJNLzQ4IoAbBp4jRQBCbsfruycDR2LclyolseZKexx1fd4QN728tOWB-SPkm-8_fRi-vIcs-cSqT4fflAABkZfDsaf1HFANpcMrFdgCcBcgLUBWe8sTs09y0wN8Lg7RvFpQF71j-Gf40aPLl3VeJkhxI1yyAPyorXUxcu5wLAVtJm3t7-0RmVHo6y_e_kvSmvkPvM1REQYsXWyUl82bgOQXG02_Wi9AbGwQKk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeygXyj-mpSwSgpNbZ39sh1txKKG0URWlgLisdu21UrWyo8aWgBOPwJnH40mYWccOQSAkuNnKjKNdz-x-Mzv-hpAnFpY4jUn3FLAyBCgB9yHOynyRZ5KFsBhqx3hzPAqHp-LwvWyrCfFbmIYfoku4oWe49RodHBPSe0vW0HQ2RQ7CHub3ZXSVrGNbb_TNwXjJIBUHTcwl8MCTcdnyNgZsb1V_ZV9axyn-iHWSeg5TlTc9Ln4HQlcxrduUDjaJaYfT1KKc79aV2U0__8L0-F_jvUGuLyAr3W9s7Ca5YotbZCNpO8XdJt8SB75dFRLFPsV0XM_wZIKeFRQAJj2ZllWJJ_-tJdAypy-wEFCntvp0QZMpFgJmlmpQZt-_fHUXHC6cFIxvdoYl9J3gc7qPWWOkm6VYWFLP6aC9H_z0R3fI6cHLSTL0Fz0f_FQKEfk65X0TidACsAPsFJoU4rUoD2OjLbMhz9IgMjE3XERS8x74AbM67Os4ZyIC7MXvkrWiLOx9Qnsmy2CvjU0sASZF0vBcw2oEeNPAY6TwiN--cZUuCNGxL8eFaqicmcIZV92Me-RZJz9rqED-KPnUGVAnpi_PsYAukurd6JUCPDD8cDh-qyYe2VmxsE6BRYB0Adl6ZLs1ObVYXOaqh1-8YyAfe-Rx9zO8czzr0YUtayfTh9BR9rlH7jWmunw4Fxi5gjZzBveX0ajkZJh0dw_-RekR2RhOjo_U0evRmy1yjbmWIsIP2DZZqy5r-xCAXWV2nOv-AJFuRMI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egFCMhOKXN-pFkuZUsy1JgtVq1UHGx7MTRVq2SqLuRgBM_gTM_j1_CjLPJdhEICW6JMpPIznj8jT3-hpAnFlycxkX3FLAyBCgB9yHOynyRZ5KF4Ay1Y7x5Nw5Hh2L_SB6dO8Xf8EN0C244Mpy_xgFeZfnuijQ0rWZIQdjD5X0ZXSSbIgxiDL8G0xWBVBw0IZfA_U7GZUvbGLDddf21aWkTe_gTpknqOfRU3pS4-B0GXYe0bk4aXiO6bU2TinKyUy_MTvrlF6LH_2nudXJ1CVjpXmNhN8gFW9wkl5O2Ttwt8j1x0NvlIFGsUkyndYX7EvS4oAAv6WRWLkrc92_tgJY5fYFpgDq1i8-nNJlhGmBmqQZl9uPrN3fB4cJJQfOqY0yg7wSf0z1cM0ayWYppJfWcDtr7wbkP3SaHw5cHychfVnzwUylE5OuU900kQguwDpBTaFKI1qI8jI22zIY8S4PIxNxwEUnNezAKmNVhX8c5ExEgL36HbBRlYe8R2jNZBjNtbGIJICmShucafBGgTQOvkcIjfvvDVbqkQ8eqHKeqIXJmCntcdT3ukWedfNUQgfxR8qmzn05Mn51g-lwk1YfxKwVoYPRxf_peHXhke83AOgUWAc4FXOuRrdbi1NK1zFUPz7tjGB975HH3GP457vTowpa1k-lD4Cj73CN3G0tdvZwLjFtBmzl7-0trVDIZJd3d_X9RekQuTQZD9fb1-M0DcoW5eiLCD9gW2Vic1fYhoLqF2XYD9yesskN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Bond+Rupture+in+the+Photodissociation+of+Bromoacetyl+Chloride+and+2-+and+3-Bromopropionyl+Chloride%3A+Adiabatic+versus+Diabatic+Dissociation&rft.jtitle=Chemphyschem&rft.au=Hsu%2C+Ming-Yi&rft.au=Tsai%2C+Po-Yu&rft.au=Wei%2C+Zheng-Rong&rft.au=Chao%2C+Meng-Hsuan&rft.date=2013-04-02&rft.pub=WILEY-VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=14&rft.issue=5&rft.spage=936&rft.epage=945&rft_id=info:doi/10.1002%2Fcphc.201200957&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_471HZJRV_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon