Competitive Bond Rupture in the Photodissociation of Bromoacetyl Chloride and 2- and 3-Bromopropionyl Chloride: Adiabatic versus Diabatic Dissociation
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) t...
Saved in:
Published in | Chemphyschem Vol. 14; no. 5; pp. 936 - 945 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
02.04.2013
WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1439-4235 1439-7641 1439-7641 |
DOI | 10.1002/cphc.201200957 |
Cover
Loading…
Abstract | Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.
Busted open: Insight into the mechanisms causing CCl and CBr bond fission of bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride by following the 1[n(O)→π*(CO)] transition is obtained. The figure shows the center‐of‐mass translational energy distributions of ground‐state Br formation through a diabatic pathway for the dissociation of 2‐bromopropionyl chloride. |
---|---|
AbstractList | Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O)[arrow right]π*(CO)] transition at 234-235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. [PUBLICATION ABSTRACT] Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1 [n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and n p (Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and n p (Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm are investigated. Branching ratios for CBr/CCl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the CO chromophore. CCl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(CO) and np(Cl)σ*(CCl) bands. In contrast, CBr bond fission is subject to much weaker coupling between n(O)π*(CO) and np(Br)σ*(CBr). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that CBr bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. Busted open: Insight into the mechanisms causing CCl and CBr bond fission of bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride by following the 1[n(O)→π*(CO)] transition is obtained. The figure shows the center‐of‐mass translational energy distributions of ground‐state Br formation through a diabatic pathway for the dissociation of 2‐bromopropionyl chloride. Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. |
Author | Lin, King-Chuen Zhang, Bing Tsai, Po-Yu Wei, Zheng-Rong Kasai, Toshio Chao, Meng-Hsuan Hsu, Ming-Yi |
Author_xml | – sequence: 1 givenname: Ming-Yi surname: Hsu fullname: Hsu, Ming-Yi organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan) – sequence: 2 givenname: Po-Yu surname: Tsai fullname: Tsai, Po-Yu organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan) – sequence: 3 givenname: Zheng-Rong surname: Wei fullname: Wei, Zheng-Rong organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (People's Republic of China) – sequence: 4 givenname: Meng-Hsuan surname: Chao fullname: Chao, Meng-Hsuan organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan) – sequence: 5 givenname: Bing surname: Zhang fullname: Zhang, Bing organization: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (People's Republic of China) – sequence: 6 givenname: Toshio surname: Kasai fullname: Kasai, Toshio organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan) – sequence: 7 givenname: King-Chuen surname: Lin fullname: Lin, King-Chuen email: kclin@ntu.edu.tw organization: Department of Chemistry, National Taiwan University, Taipei 106 (Taiwan) |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27232610$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23400968$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhiNURD_gyhFZQpW4ZPFX7IRbm5YuqIKqKiBxsRxnonXJxsF2WvaP8HvJfnRZVUKcxpaeZ2Y072Gy17kOkuQlwROCMX1r-pmZUEwoxkUmnyQHhLMilYKTvc2bU5btJ4ch3GKMcyzJs2SfMj7yIj9Ifpdu3kO00d4BOnVdja6HPg4ekO1QnAG6mrnoahuCM1ZH6zrkGnTq3dxpA3HRonLWOm9rQHqUaboqLF0RvXf9aOxA79BJbXU1NjLoDnwYAjp7-J_tDHmePG10G-DFph4lX96f35TT9PLzxYfy5DI1Gecy1YYVleQCeCZYUYjKEJ7LRuSVBgqC1QbLKmcV4zLTjICuKWhR6LyhXOYFY0fJm3XfcdWfA4So5jYYaFvdgRuCIowUJKfZCn39CL11g-_G7ZZUngnCeT5SrzbUUM2hVr23c-0X6uHiI3C8AXQwum287owNfzlJGRUEj9xkzRnvQvDQbBGC1TJ6tYxebaMfBf5IMDaujhm9tu2_tWKt3dsWFv8ZosqrabnrpmvXhgi_tq72P5SQTGbq26cLxSWZfv94_VXdsD9u-9KB |
CitedBy_id | crossref_primary_10_1080_00268976_2021_1985643 crossref_primary_10_1016_j_saa_2022_120899 crossref_primary_10_1002_jccs_202300116 crossref_primary_10_1039_D1CP05788J crossref_primary_10_1021_acs_jpca_0c02800 crossref_primary_10_1080_0144235X_2020_1822590 |
Cites_doi | 10.1063/1.1500734 10.1063/1.474624 10.1016/S0009-2614(00)00467-X 10.1063/1.463580 10.1063/1.460786 10.1063/1.1451250 10.1016/0009-2614(85)85272-6 10.1063/1.1633759 10.1063/1.466047 10.1039/c2fd20015e 10.1016/S0009-2614(03)00606-7 10.1016/S0009-2614(01)00574-7 10.1063/1.479874 10.1063/1.1148310 10.1063/1.467245 10.1063/1.2363991 10.1063/1.467877 10.1063/1.1333702 10.1063/1.465408 10.1063/1.1515318 10.1063/1.1812757 10.1063/1.1540622 10.1063/1.2435341 10.1063/1.466389 10.1063/1.3012353 10.1109/PROC.1963.1676 10.1063/1.2371044 10.1063/1.1412879 10.1063/1.469057 10.1021/j100338a038 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 INIST-CNRS Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 INIST-CNRS – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION IQODW NPM K9. 7X8 |
DOI | 10.1002/cphc.201200957 |
DatabaseName | Istex CrossRef Pascal-Francis PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1439-7641 |
EndPage | 945 |
ExternalDocumentID | 2923097971 23400968 27232610 10_1002_cphc_201200957 CPHC201200957 ark_67375_WNG_471HZJRV_T |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Council of Taiwan funderid: NSC 97‐2113‐M‐002‐010‐MY2 – fundername: National Science Council, Taiwan – fundername: Ministry of Education – fundername: National Taiwan University |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP GODZA HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION .GJ 31~ 53G AAMMB AEFGJ AGHNM AGXDD AI. AIDQK AIDYY FEDTE HF~ HVGLF IQODW VH1 XSW ZGI NPM K9. 7X8 |
ID | FETCH-LOGICAL-c5447-ac39b746e4563996bc1487f68bae2e63dc07b83b3475a31ead2ea69a8f2478933 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Fri Jul 11 06:02:09 EDT 2025 Fri Jul 25 12:30:39 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Mon Jul 21 09:16:05 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Tue Jul 01 03:17:00 EDT 2025 Wed Jan 22 16:22:51 EST 2025 Wed Oct 30 09:52:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | bond energy Imaging Reaction mechanism reaction mechanisms Ions Dissociation Photodissociation velocity ion imaging Velocity diabatic effects cleavage reactions Organic compounds |
Language | English |
License | CC BY 4.0 Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5447-ac39b746e4563996bc1487f68bae2e63dc07b83b3475a31ead2ea69a8f2478933 |
Notes | Ministry of Education National Taiwan University National Science Council of Taiwan - No. NSC 97-2113-M-002-010-MY2 National Science Council, Taiwan istex:D5CA7F92BE5779567461383CCE2FC10C7B56777F ArticleID:CPHC201200957 ark:/67375/WNG-471HZJRV-T These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23400968 |
PQID | 1318561448 |
PQPubID | 986334 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1319182593 proquest_journals_1318561448 pubmed_primary_23400968 pascalfrancis_primary_27232610 crossref_primary_10_1002_cphc_201200957 crossref_citationtrail_10_1002_cphc_201200957 wiley_primary_10_1002_cphc_201200957_CPHC201200957 istex_primary_ark_67375_WNG_471HZJRV_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2, 2013 |
PublicationDateYYYYMMDD | 2013-04-02 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2, 2013 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | ChemPhysChem |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley – name: Wiley Subscription Services, Inc |
References | J. T. Muckerman, J. Phys. Chem. 1989, 93, 179-184. P. W. Kash, G. C. G. Waschewsky, R. E. Morse, L. J. Butler, M. M. Francl, J. Chem. Phys. 1994, 100, 3463-3475. R. N. Zare, Mol. Photochem. 1972, 4, 1-37. F. Zhang, W.-J. Ding, W.-H. Fang, J. Chem. Phys. 2006, 125, 184305. Y. Tang, W. B. Lee, Z. F. Hu, B. Zhang, K. C. Lin, J. Chem. Phys. 2007, 126, 064302. K. W. Lee, Y.-J. Jee, K.-H. Jung, J. Chem. Phys. 2002, 116, 4490-4496. C. Zhu, H. Nakamura, J. Chem. Phys. 1995, 102, 7448-7461. A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 1997, 68, 3477-3484. D. H. Parker, A. T. J. B. Eppink, J. Chem. Phys. 1997, 107, 2357-2362. W.-J. Ding, W.-H. Fang, R.-Z. Liu, D.-C. Fang, J. Chem. Phys. 2002, 117, 8745-8753. H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2001, 115, 10353-10372. S. Arepalli, N. Presser, D. Robie, R. J. Gordon, Chem. Phys. Lett. 1985, 118, 88-92. M.-C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, M. Desouter-Lecomte, Chem. Phys. Lett. 2003, 374, 307-313. M. Hunter, S. A. Reid, D. C. Robie, H. Reisler, J. Chem. Phys. 1993, 99, 1093-1108. B. Lasorne, M.-C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, J. Chem. Phys. 2004, 120, 1271-1278. H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2002, 117, 5576-5593. H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2003, 118, 6816-6829. P. W. Kash, G. C. G. Waschewsky, L. J. Butler, J. Chem. Phys. 1994, 100, 4017-4018. Z.-R. Wei, X.-P. Zhang, W.-B. Lee, B. Zhang, K.-C. Lin, J. Chem. Phys. 2009, 130, 014307. P. W. Kash, G. C. G. Waschewsky, L. J. Butler, M. M. Francl, J. Chem. Phys. 1993, 99, 4479-4494. A. J. Marks, J. Chem. Phys. 2001, 114, 1700-1708. C. Zhu, H. Nakamura, J. Chem. Phys. 1994, 101, 10630-10647. M. D. Person, P. W. Kash, S. A. Schofield, L. J. Butler, J. Chem. Phys. 1991, 95, 3843-3846. R. Valero, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194305. G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, S. H. Kable, Faraday Discuss. 2012, 157, 227-241. W. S. McGivern, R. Li, P. Zou, S. W. North, J. Chem. Phys. 1999, 111, 5771-5779. M. D. Person, P. W. Kash, L. J. Butler, J. Chem. Phys. 1992, 97, 355-373. Y. Liu, L. J. Butler, J. Chem. Phys. 2004, 121, 11016-11022. R. N. Zare, D. R. Herschbach, Proc. IEEE 1963, 51, 173-182. T. P. Rakitzis, Chem. Phys. Lett. 2001, 342, 121-126. M.-S. Park, Y.-J. Jung, S.-H. Lee, D.-C. Kim, K.-H. Jung, Chem. Phys. Lett. 2000, 322, 429-438. 2001; 342 2007; 126 2004; 121 2004; 120 2003; 118 1997; 68 1991; 95 2002; 117 2002; 116 2009; 130 1992; 97 1972; 4 2003; 374 1994; 101 1989; 93 1994; 100 1997; 107 2012; 157 2000; 322 1963; 51 1993; 99 1995; 102 1985; 118 1999; 111 2001; 115 2001; 114 2006; 125 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 Zare R. N. (e_1_2_7_22_2) 1972; 4 |
References_xml | – reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2001, 115, 10353-10372. – reference: A. J. Marks, J. Chem. Phys. 2001, 114, 1700-1708. – reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2003, 118, 6816-6829. – reference: A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 1997, 68, 3477-3484. – reference: T. P. Rakitzis, Chem. Phys. Lett. 2001, 342, 121-126. – reference: M.-S. Park, Y.-J. Jung, S.-H. Lee, D.-C. Kim, K.-H. Jung, Chem. Phys. Lett. 2000, 322, 429-438. – reference: J. T. Muckerman, J. Phys. Chem. 1989, 93, 179-184. – reference: Y. Tang, W. B. Lee, Z. F. Hu, B. Zhang, K. C. Lin, J. Chem. Phys. 2007, 126, 064302. – reference: S. Arepalli, N. Presser, D. Robie, R. J. Gordon, Chem. Phys. Lett. 1985, 118, 88-92. – reference: W. S. McGivern, R. Li, P. Zou, S. W. North, J. Chem. Phys. 1999, 111, 5771-5779. – reference: P. W. Kash, G. C. G. Waschewsky, L. J. Butler, J. Chem. Phys. 1994, 100, 4017-4018. – reference: F. Zhang, W.-J. Ding, W.-H. Fang, J. Chem. Phys. 2006, 125, 184305. – reference: B. Lasorne, M.-C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, J. Chem. Phys. 2004, 120, 1271-1278. – reference: Y. Liu, L. J. Butler, J. Chem. Phys. 2004, 121, 11016-11022. – reference: M. D. Person, P. W. Kash, L. J. Butler, J. Chem. Phys. 1992, 97, 355-373. – reference: W.-J. Ding, W.-H. Fang, R.-Z. Liu, D.-C. Fang, J. Chem. Phys. 2002, 117, 8745-8753. – reference: P. W. Kash, G. C. G. Waschewsky, L. J. Butler, M. M. Francl, J. Chem. Phys. 1993, 99, 4479-4494. – reference: C. Zhu, H. Nakamura, J. Chem. Phys. 1995, 102, 7448-7461. – reference: K. W. Lee, Y.-J. Jee, K.-H. Jung, J. Chem. Phys. 2002, 116, 4490-4496. – reference: M. Hunter, S. A. Reid, D. C. Robie, H. Reisler, J. Chem. Phys. 1993, 99, 1093-1108. – reference: D. H. Parker, A. T. J. B. Eppink, J. Chem. Phys. 1997, 107, 2357-2362. – reference: H. Nakamura, D. G. Truhlar, J. Chem. Phys. 2002, 117, 5576-5593. – reference: M.-C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, M. Desouter-Lecomte, Chem. Phys. Lett. 2003, 374, 307-313. – reference: C. Zhu, H. Nakamura, J. Chem. Phys. 1994, 101, 10630-10647. – reference: G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, S. H. Kable, Faraday Discuss. 2012, 157, 227-241. – reference: M. D. Person, P. W. Kash, S. A. Schofield, L. J. Butler, J. Chem. Phys. 1991, 95, 3843-3846. – reference: R. N. Zare, D. R. Herschbach, Proc. IEEE 1963, 51, 173-182. – reference: P. W. Kash, G. C. G. Waschewsky, R. E. Morse, L. J. Butler, M. M. Francl, J. Chem. Phys. 1994, 100, 3463-3475. – reference: R. Valero, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194305. – reference: Z.-R. Wei, X.-P. Zhang, W.-B. Lee, B. Zhang, K.-C. Lin, J. Chem. Phys. 2009, 130, 014307. – reference: R. N. Zare, Mol. Photochem. 1972, 4, 1-37. – volume: 342 start-page: 121 year: 2001 end-page: 126 publication-title: Chem. Phys. Lett. – volume: 102 start-page: 7448 year: 1995 end-page: 7461 publication-title: J. Chem. Phys. – volume: 157 start-page: 227 year: 2012 end-page: 241 publication-title: Faraday Discuss. – volume: 97 start-page: 355 year: 1992 end-page: 373 publication-title: J. Chem. Phys. – volume: 322 start-page: 429 year: 2000 end-page: 438 publication-title: Chem. Phys. Lett. – volume: 100 start-page: 3463 year: 1994 end-page: 3475 publication-title: J. Chem. Phys. – volume: 125 start-page: 194305 year: 2006 publication-title: J. Chem. Phys. – volume: 107 start-page: 2357 year: 1997 end-page: 2362 publication-title: J. Chem. Phys. – volume: 4 start-page: 1 year: 1972 end-page: 37 publication-title: Mol. Photochem. – volume: 130 start-page: 014307 year: 2009 publication-title: J. Chem. Phys. – volume: 100 start-page: 4017 year: 1994 end-page: 4018 publication-title: J. Chem. Phys. – volume: 117 start-page: 5576 year: 2002 end-page: 5593 publication-title: J. Chem. Phys. – volume: 68 start-page: 3477 year: 1997 end-page: 3484 publication-title: Rev. Sci. Instrum. – volume: 118 start-page: 88 year: 1985 end-page: 92 publication-title: Chem. Phys. Lett. – volume: 99 start-page: 4479 year: 1993 end-page: 4494 publication-title: J. Chem. Phys. – volume: 116 start-page: 4490 year: 2002 end-page: 4496 publication-title: J. Chem. Phys. – volume: 101 start-page: 10630 year: 1994 end-page: 10647 publication-title: J. Chem. Phys. – volume: 93 start-page: 179 year: 1989 end-page: 184 publication-title: J. Phys. Chem. – volume: 99 start-page: 1093 year: 1993 end-page: 1108 publication-title: J. Chem. Phys. – volume: 117 start-page: 8745 year: 2002 end-page: 8753 publication-title: J. Chem. Phys. – volume: 51 start-page: 173 year: 1963 end-page: 182 publication-title: Proc. IEEE – volume: 111 start-page: 5771 year: 1999 end-page: 5779 publication-title: J. Chem. Phys. – volume: 118 start-page: 6816 year: 2003 end-page: 6829 publication-title: J. Chem. Phys. – volume: 374 start-page: 307 year: 2003 end-page: 313 publication-title: Chem. Phys. Lett. – volume: 114 start-page: 1700 year: 2001 end-page: 1708 publication-title: J. Chem. Phys. – volume: 120 start-page: 1271 year: 2004 end-page: 1278 publication-title: J. Chem. Phys. – volume: 121 start-page: 11016 year: 2004 end-page: 11022 publication-title: J. Chem. Phys. – volume: 95 start-page: 3843 year: 1991 end-page: 3846 publication-title: J. Chem. Phys. – volume: 125 start-page: 184305 year: 2006 publication-title: J. Chem. Phys. – volume: 126 start-page: 064302 year: 2007 publication-title: J. Chem. Phys. – volume: 115 start-page: 10353 year: 2001 end-page: 10372 publication-title: J. Chem. Phys. – ident: e_1_2_7_15_2 doi: 10.1063/1.1500734 – ident: e_1_2_7_18_2 doi: 10.1063/1.474624 – ident: e_1_2_7_31_2 doi: 10.1016/S0009-2614(00)00467-X – ident: e_1_2_7_2_2 doi: 10.1063/1.463580 – ident: e_1_2_7_1_2 doi: 10.1063/1.460786 – ident: e_1_2_7_33_2 doi: 10.1063/1.1451250 – ident: e_1_2_7_30_2 doi: 10.1016/0009-2614(85)85272-6 – ident: e_1_2_7_10_2 doi: 10.1063/1.1633759 – ident: e_1_2_7_3_2 doi: 10.1063/1.466047 – ident: e_1_2_7_28_2 doi: 10.1039/c2fd20015e – ident: e_1_2_7_9_2 doi: 10.1016/S0009-2614(03)00606-7 – ident: e_1_2_7_23_2 doi: 10.1016/S0009-2614(01)00574-7 – ident: e_1_2_7_32_2 doi: 10.1063/1.479874 – ident: e_1_2_7_17_2 doi: 10.1063/1.1148310 – ident: e_1_2_7_26_2 – ident: e_1_2_7_5_2 doi: 10.1063/1.467245 – ident: e_1_2_7_11_2 doi: 10.1063/1.2363991 – ident: e_1_2_7_12_2 doi: 10.1063/1.467877 – ident: e_1_2_7_8_2 doi: 10.1063/1.1333702 – ident: e_1_2_7_27_2 doi: 10.1063/1.465408 – ident: e_1_2_7_7_2 doi: 10.1063/1.1515318 – ident: e_1_2_7_24_2 doi: 10.1063/1.1812757 – ident: e_1_2_7_16_2 doi: 10.1063/1.1540622 – ident: e_1_2_7_19_2 doi: 10.1063/1.2435341 – ident: e_1_2_7_25_2 – ident: e_1_2_7_4_2 doi: 10.1063/1.466389 – ident: e_1_2_7_20_2 doi: 10.1063/1.3012353 – ident: e_1_2_7_21_2 doi: 10.1109/PROC.1963.1676 – volume: 4 start-page: 1 year: 1972 ident: e_1_2_7_22_2 publication-title: Mol. Photochem. – ident: e_1_2_7_6_2 doi: 10.1063/1.2371044 – ident: e_1_2_7_14_2 doi: 10.1063/1.1412879 – ident: e_1_2_7_13_2 doi: 10.1063/1.469057 – ident: e_1_2_7_29_2 doi: 10.1021/j100338a038 |
SSID | ssj0008071 |
Score | 2.0790727 |
Snippet | Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(CO)] transition at 234–235 nm... Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1 [n(O)→π*(CO)] transition at 234–235 nm... Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235... Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the 1[n(O)[arrow right]π*(CO)] transition at... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 936 |
SubjectTerms | Atomic and molecular physics bond energy cleavage reactions diabatic effects Exact sciences and technology Molecular properties and interactions with photons Photon interactions with molecules Physics reaction mechanisms velocity ion imaging |
Title | Competitive Bond Rupture in the Photodissociation of Bromoacetyl Chloride and 2- and 3-Bromopropionyl Chloride: Adiabatic versus Diabatic Dissociation |
URI | https://api.istex.fr/ark:/67375/WNG-471HZJRV-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201200957 https://www.ncbi.nlm.nih.gov/pubmed/23400968 https://www.proquest.com/docview/1318561448 https://www.proquest.com/docview/1319182593 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzT0ISMhOKXN-pFkubUpZVWJqlq1UHGxbMfRVq2SVTeRCid-Amd-Xn9JZ5xNtotASHBLlJlEdsbjb-zxN4S8duDiNC66W8DKEKBEPIQ4Kw9FkUsWgzPUnvHm42E8OhEHp_L01in-lh-iX3DDkeH9NQ5wbWbbC9JQO50gBeEAl_clHifHhC1EReMFf1QatRGXwO1OxmXH2hix7WX1pVnpLnbwFWZJ6hl0VNFWuPgdBF1GtH5K2n9IdNeYNhPlfKupzZb99gvP4_-09hF5MMerdKc1sMfkjiufkHtZVybuKfmZeeTtU5AoFimm42aK2xL0rKSALunRpKor3PbvzIBWBd3FLEBtXf31gmYTzALMHdWgzK6___AXHC68FDRveob5873gO7qDS8bINUsxq6SZ0b3ufu_Wh56Rk_33x9konBd8CK0UIgm15UOTiNgBqgPgFBsLwVpSxKnRjrmY5zZKTMoNF4nUfACDgDkdD3VaMJEA8OLPyUpZlW6V0IHJc5hoU5NKwEiJNLzQ4IoAbBp4jRQBCbsfruycDR2LclyolseZKexx1fd4QN728tOWB-SPkm-8_fRi-vIcs-cSqT4fflAABkZfDsaf1HFANpcMrFdgCcBcgLUBWe8sTs09y0wN8Lg7RvFpQF71j-Gf40aPLl3VeJkhxI1yyAPyorXUxcu5wLAVtJm3t7-0RmVHo6y_e_kvSmvkPvM1REQYsXWyUl82bgOQXG02_Wi9AbGwQKk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeygXyj-mpSwSgpNbZ39sh1txKKG0URWlgLisdu21UrWyo8aWgBOPwJnH40mYWccOQSAkuNnKjKNdz-x-Mzv-hpAnFpY4jUn3FLAyBCgB9yHOynyRZ5KFsBhqx3hzPAqHp-LwvWyrCfFbmIYfoku4oWe49RodHBPSe0vW0HQ2RQ7CHub3ZXSVrGNbb_TNwXjJIBUHTcwl8MCTcdnyNgZsb1V_ZV9axyn-iHWSeg5TlTc9Ln4HQlcxrduUDjaJaYfT1KKc79aV2U0__8L0-F_jvUGuLyAr3W9s7Ca5YotbZCNpO8XdJt8SB75dFRLFPsV0XM_wZIKeFRQAJj2ZllWJJ_-tJdAypy-wEFCntvp0QZMpFgJmlmpQZt-_fHUXHC6cFIxvdoYl9J3gc7qPWWOkm6VYWFLP6aC9H_z0R3fI6cHLSTL0Fz0f_FQKEfk65X0TidACsAPsFJoU4rUoD2OjLbMhz9IgMjE3XERS8x74AbM67Os4ZyIC7MXvkrWiLOx9Qnsmy2CvjU0sASZF0vBcw2oEeNPAY6TwiN--cZUuCNGxL8eFaqicmcIZV92Me-RZJz9rqED-KPnUGVAnpi_PsYAukurd6JUCPDD8cDh-qyYe2VmxsE6BRYB0Adl6ZLs1ObVYXOaqh1-8YyAfe-Rx9zO8czzr0YUtayfTh9BR9rlH7jWmunw4Fxi5gjZzBveX0ajkZJh0dw_-RekR2RhOjo_U0evRmy1yjbmWIsIP2DZZqy5r-xCAXWV2nOv-AJFuRMI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70egFCMhOKXN-pFkuZUsy1JgtVq1UHGx7MTRVq2SqLuRgBM_gTM_j1_CjLPJdhEICW6JMpPIznj8jT3-hpAnFlycxkX3FLAyBCgB9yHOynyRZ5KF4Ay1Y7x5Nw5Hh2L_SB6dO8Xf8EN0C244Mpy_xgFeZfnuijQ0rWZIQdjD5X0ZXSSbIgxiDL8G0xWBVBw0IZfA_U7GZUvbGLDddf21aWkTe_gTpknqOfRU3pS4-B0GXYe0bk4aXiO6bU2TinKyUy_MTvrlF6LH_2nudXJ1CVjpXmNhN8gFW9wkl5O2Ttwt8j1x0NvlIFGsUkyndYX7EvS4oAAv6WRWLkrc92_tgJY5fYFpgDq1i8-nNJlhGmBmqQZl9uPrN3fB4cJJQfOqY0yg7wSf0z1cM0ayWYppJfWcDtr7wbkP3SaHw5cHychfVnzwUylE5OuU900kQguwDpBTaFKI1qI8jI22zIY8S4PIxNxwEUnNezAKmNVhX8c5ExEgL36HbBRlYe8R2jNZBjNtbGIJICmShucafBGgTQOvkcIjfvvDVbqkQ8eqHKeqIXJmCntcdT3ukWedfNUQgfxR8qmzn05Mn51g-lwk1YfxKwVoYPRxf_peHXhke83AOgUWAc4FXOuRrdbi1NK1zFUPz7tjGB975HH3GP457vTowpa1k-lD4Cj73CN3G0tdvZwLjFtBmzl7-0trVDIZJd3d_X9RekQuTQZD9fb1-M0DcoW5eiLCD9gW2Vic1fYhoLqF2XYD9yesskN6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Bond+Rupture+in+the+Photodissociation+of+Bromoacetyl+Chloride+and+2-+and+3-Bromopropionyl+Chloride%3A+Adiabatic+versus+Diabatic+Dissociation&rft.jtitle=Chemphyschem&rft.au=Hsu%2C+Ming-Yi&rft.au=Tsai%2C+Po-Yu&rft.au=Wei%2C+Zheng-Rong&rft.au=Chao%2C+Meng-Hsuan&rft.date=2013-04-02&rft.pub=WILEY-VCH+Verlag&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=14&rft.issue=5&rft.spage=936&rft.epage=945&rft_id=info:doi/10.1002%2Fcphc.201200957&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_471HZJRV_T |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |