Genetic structure and first genome‐wide insights into the adaptation of a wild relative of grapevine, Vitis berlandieri
In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vin...
Saved in:
Published in | Evolutionary applications Vol. 16; no. 6; pp. 1184 - 1200 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.06.2023
Blackwell John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome–environment association analysis (GEA). De novo long‐read whole‐genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. |
---|---|
AbstractList | In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome-environment association analysis (GEA). De novo long-read whole-genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks.In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome-environment association analysis (GEA). De novo long-read whole-genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome–environment association analysis (GEA). De novo long-read whole-genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis , including V . berlandieri . The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V . berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V . berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome–environment association analysis (GEA). De novo long‐read whole‐genome sequencing was performed on V . berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American , including . . The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of . and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild . plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome-environment association analysis (GEA). De novo . and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. Abstract In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently use in vineyards are derived from breeding programs involving very small numbers of parental individuals. We investigated the structure of a natural population of V. berlandieri and the association of genetic diversity with environmental variables. In this study, we collected seeds from 78 wild V. berlandieri plants in Texas after open fertilization. We genotyped 286 individuals to describe the structure of the population, and environmental information collected at the sampling site made it possible to perform genome–environment association analysis (GEA). De novo long‐read whole‐genome sequencing was performed on V. berlandieri and a STRUCTURE analysis was performed. We identified and filtered 104,378 SNPs. We found that there were two subpopulations associated with differences in elevation, temperature, and rainfall between sampling sites. GEA identified three QTL for elevation and 15 QTL for PCA coordinates based on environmental parameter variability. This original study is the first GEA study to be performed on a population of grapevines sampled in natural conditions. Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks. |
Author | Blois, Louis Segura, Vincent de Miguel, Marina Girollet, Nabil Schmid, Joachim Ollat, Nathalie Rubio, Bernadette Voss‐Fels, Kai P. Marguerit, Elisa Bert, Pierre‐François |
AuthorAffiliation | 2 Department of Grapevine Breeding Geisenheim University Geisenheim Germany 3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier France 1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV Villenave d'Ornon France |
AuthorAffiliation_xml | – name: 3 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier France – name: 2 Department of Grapevine Breeding Geisenheim University Geisenheim Germany – name: 1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV Villenave d'Ornon France |
Author_xml | – sequence: 1 givenname: Louis orcidid: 0000-0001-8392-5639 surname: Blois fullname: Blois, Louis email: louis.blois@inrae.fr organization: Geisenheim University – sequence: 2 givenname: Marina orcidid: 0000-0001-6398-2660 surname: de Miguel fullname: de Miguel, Marina organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV – sequence: 3 givenname: Pierre‐François surname: Bert fullname: Bert, Pierre‐François organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV – sequence: 4 givenname: Nabil surname: Girollet fullname: Girollet, Nabil organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV – sequence: 5 givenname: Nathalie surname: Ollat fullname: Ollat, Nathalie organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV – sequence: 6 givenname: Bernadette surname: Rubio fullname: Rubio, Bernadette organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV – sequence: 7 givenname: Vincent surname: Segura fullname: Segura, Vincent organization: AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro – sequence: 8 givenname: Kai P. surname: Voss‐Fels fullname: Voss‐Fels, Kai P. organization: Geisenheim University – sequence: 9 givenname: Joachim surname: Schmid fullname: Schmid, Joachim organization: Geisenheim University – sequence: 10 givenname: Elisa surname: Marguerit fullname: Marguerit, Elisa organization: EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37360024$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-04221476$$DView record in HAL |
BookMark | eNp1ks1u1DAQxyNURD_gwAsgS1xAYlt_JzmhVVXaSitxgV4tx57sepWNF9vZam88As_Ik-BttqWtwDl4NPnNfzKT_3Fx0PseiuItwacknzPY6FPChJQviiNSCjrhoiQHj-LD4jjGJcYSS0ZfFYesZBJjyo-K7SX0kJxBMYXBpCEA0r1FrQsxoTn0fgW_f_66dRaQ66ObL1LMQfIoLTJp9Trp5HyPfIs0unWdRQG6nNrALjUPeg0b18MndOOSi6iB0GV9B8G9Ll62uovwZn-fFN-_XHw7v5rMvl5en09nEyM4lxMQVFvMADMu29qyqm40mJq1GKqmKoXkEkOjqcCVEZSBFcRKkKytmChrwthJcT3qWq-Xah3cSoet8tqpu4QPc6VD3kAHSnKOBeWMGI65LU0NpqkN0byqbU2FyFqfR6310KzAGuhT0N0T0adverdQc79RBNNKUlpnhY-jwuJZ3dV0pnY5zCklvJQbktkP-27B_xggJrVy0UCXNwh-iIpWDFNS10Rm9P0zdOmH0Oe9Zio_eRHlrvm7x5__0P_eDhk4GwETfIwBWmXc-IPzNK7LY6id4VQ2nLoz3N95HiruRf_F7tWzT2D7f1Bd3EzHij-8M-TG |
CitedBy_id | crossref_primary_10_1016_j_tig_2024_04_014 crossref_primary_10_1186_s12870_025_06045_4 crossref_primary_10_1007_s00122_023_04472_1 crossref_primary_10_1093_hr_uhad226 crossref_primary_10_1007_s10722_024_02106_z |
Cites_doi | 10.1093/gigascience/giy154 10.1016/j.jmb.2005.07.050 10.1515/9781400849536.1 10.1186/1471‐2105‐6‐S1‐S17 10.1016/j.tig.2006.01.004 10.1016/j.febslet.2007.04.043 10.1016/j.plantsci.2005.12.006 10.1016/j.agrformet.2003.06.001 10.1101/571042 10.1093/jxb/erh277 10.3389/fpls.2018.00967 10.1016/j.tig.2015.10.002 10.1038/sdata.2017.191 10.20870/oeno-one.2017.51.2.1780 10.1038/142219a0 10.1093/nar/gkaa1100 10.1111/nph.13809 10.1111/mec.12524 10.1016/j.tig.2006.07.008 10.1007/s00122‐010‐1411‐9 10.1093/jhered/esn084 10.1038/s41467‐019‐09135‐8 10.1017/s0016672303006177 10.3390/plants9101385 10.1093/jxb/eru040 10.1186/1471‐2229‐13‐25 10.1016/j.csbj.2014.05.003 10.1146/annurev‐genet‐120116‐024846 10.1017/S1479262111000013 10.1038/s41597‐019‐0133‐3 10.1007/s00122‐019‐03320‐5 10.3389/fgene.2022.910386 10.2307/2346830 10.1111/j.1365‐3059.2011.02502.x 10.3390/genes12050783 10.1093/gbe/evz220 10.17660/ActaHortic.2019.1248.33 10.1016/0040‐5809(88)90004‐4 10.5073/vitis.1974.13.186‐197 10.1038/s41467‐020‐20337‐3 10.3835/plantgenome2015.03.0013 10.1007/s11295‐008‐0190‐9 10.1007/s11103‐005‐6217‐9 10.1111/j.1365‐294X.2006.03049.x 10.1126/sciadv.1400218 10.1111/j.1744‐7348.2006.00104.x 10.1101/gr.107524.110 10.1038/nature01286 10.1371/journal.pone.0087381 10.2135/cropsci2007.04.0001IPBS 10.4161/fly.19695 10.1007/s00122‐010‐1527‐y 10.1111/ddi.12816 10.1017/S0016672300010156 10.1111/1755‐0998.12901 10.1073/pnas.1709257114 10.1007/s10722‐004‐6896‐0 10.1007/s11240‐005‐2387‐z 10.1111/j.1751‐7915.2009.00111.x 10.1038/s41586‐020‐2467‐6 10.1186/s13059‐021‐02467‐z 10.1007/s10709‐015‐9836‐3 10.1007/s00122‐020‐03727‐5 10.1111/j.1365‐2699.2010.02410.x 10.1371/journal.pone.0019379 10.1038/s41438‐018‐0041‐2 10.3389/fpls.2015.00813 10.1093/genetics/155.2.945 10.1186/gb4015 10.1007/s00122‐010‐1299‐4 10.1016/s0168‐9525(02)02557‐x 10.1038/ng.546 10.1139/g09‐048 10.1093/molbev/msx088 10.1016/j.gdata.2017.09.002 10.1038/246096a0 10.1016/j.foreco.2007.04.018 10.1038/217624a0 10.1038/ng.3845 10.3390/plants10081572 10.1111/mec.15881 10.1038/nature01333 10.1016/j.cub.2017.07.007 10.1007/s10722‐014‐0125‐2 10.1111/j.1365‐294X.2005.02553.x 10.1146/annurev.bi.56.070187.001013 10.1111/nph.13410 10.1371/journal.pone.0192540 10.1016/S1369‐5266(00)00164‐3 10.1534/g3.118.200563 10.1111/mec.12199 10.1534/genetics.107.080101 10.17660/ActaHortic.2009.827.22 10.1017/CBO9780511623486 10.14806/ej.17.1.200 10.1093/bioinformatics/btr330 10.1111/mec.16715 10.2307/2408641 10.1038/s41437‐021‐00494‐x 10.1073/pnas.201394398 10.1007/s00122‐019‐03311‐6 10.1073/pnas.1916892116 10.1038/ng.548 10.1073/pnas.1009363108 10.1016/j.plantsci.2022.111539 10.1055/s‐2003‐44689 10.1093/hr/uhab059 10.1371/journal.pone.0008219 10.1093/bib/bbr042 10.5344/ajev.2007.58.1.75 10.1111/mec.13322 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | 24P AAYXX CITATION NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1111/eva.13566 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Blois et al |
EISSN | 1752-4571 |
EndPage | 1200 |
ExternalDocumentID | oai_doaj_org_article_644052431c404d7c9ecb9c1a489d9255 PMC10286229 oai_HAL_hal_04221476v1 37360024 10_1111_eva_13566 EVA13566 |
Genre | researchArticle Journal Article |
GeographicLocations | United States--US Texas Edwards Plateau |
GeographicLocations_xml | – name: Edwards Plateau – name: Texas – name: United States--US |
GrantInformation_xml | – fundername: Hessisches Ministerium für Wissenschaft und Kunst – fundername: Conseil Régional Aquitaine – fundername: ; |
GroupedDBID | 0R~ 1OC 24P 29G 31~ 4.4 5DZ 5GY 5VS 8-0 8-1 8FE 8FH AAHHS AAKDD AAZKR ACCFJ ACCMX ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CAG CCPQU COF CS3 D-8 D-9 DU5 EBS ECGQY EJD ESX F5P GODZA GROUPED_DOAJ GX1 HCIFZ HYE HZ~ IAO IGS IHR ITC KQ8 LK8 M48 M7P M~E O9- OIG OK1 OVD PIMPY PROAC RNS RPM TEORI WIN AAYXX CITATION PHGZM PHGZT NPM 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c5446-e52ad03e0346f9d389baec93f0e8b8756460eba2508c523ed51d6e63f83579133 |
IEDL.DBID | M48 |
ISSN | 1752-4571 1752-4563 |
IngestDate | Wed Aug 27 01:18:58 EDT 2025 Thu Aug 21 18:36:51 EDT 2025 Fri May 09 12:13:27 EDT 2025 Fri Jul 11 12:41:56 EDT 2025 Wed Aug 13 09:23:00 EDT 2025 Wed Feb 19 02:06:51 EST 2025 Tue Jul 01 02:18:05 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Wed Jan 22 16:20:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | genotyping by sequencing population genetics long reads grapevine rootstock whole‐genome sequencing genome‐wide association grapevinelong reads genome-wide association whole-genome sequencing |
Language | English |
License | Attribution 2023 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5446-e52ad03e0346f9d389baec93f0e8b8756460eba2508c523ed51d6e63f83579133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6398-2660 0000-0001-8392-5639 0000-0003-3209-952X 0000-0003-1860-2256 0000-0002-6182-9686 0000-0002-5016-990X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/eva.13566 |
PMID | 37360024 |
PQID | 2828291379 |
PQPubID | 986360 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_644052431c404d7c9ecb9c1a489d9255 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10286229 hal_primary_oai_HAL_hal_04221476v1 proquest_miscellaneous_2830219916 proquest_journals_2828291379 pubmed_primary_37360024 crossref_citationtrail_10_1111_eva_13566 crossref_primary_10_1111_eva_13566 wiley_primary_10_1111_eva_13566_EVA13566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Evolutionary applications |
PublicationTitleAlternate | Evol Appl |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Blackwell John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell – name: John Wiley and Sons Inc – name: Wiley |
References | 2002; 18 2019; 11 2019; 10 2007; 581 2015; 143 2006; 170 2012; 13 1979; 28 2018; 9 2018; 8 2010; 20 2018; 5 2006; 22 1984 1983 2022; 31 2010; 5 2011; 122 1902 2014; 10 1988 2021; 49 1973; 246 1987; 56 2006; 53 2019; 6 2005; 353 1998 1996 2005; 82 2023; 327 2011; 6 2011; 9 2018; 24 2017; 51 2004; 55 2018; 18 2010; 42 1968; 217 1938; 142 2007; 150 2021; 134 1984; 38 2022; 9 2022; 13 2009; 100 2016; 210 2005; 6 2005; 14 2018; 13 2012; 61 2019; 1248 1974; 13 2021; 22 2004; 124 2013; 22 2017; 49 2015; 31 1988; 33 2011; 12 2011; 17 2014; 61 2021; 30 2017; 114 2014; 65 2009; 52 2006; 61 2013; 13 2020; 9 2017; 34 2019; 116 1994; 33 2003; 5 2014; 9 2011; 27 2022; 128 1946 2001; 98 2007; 247 2015; 1 2015; 6 2003; 81 2017; 27 1966; 8 2006; 15 2010; 121 2006 2015; 207 2020; 584 2003 2000; 155 2011; 38 2015; 8 2007; 58 1956 2015; 24 2021; 10 2011; 108 2009; 827 2021; 12 2017; 14 2001; 4 2019 2018; 52 2014 2009; 5 2012; 6 2008; 178 2009; 2 2003; 421 2007; 47 1966 2019; 132 Carbonneau A. (e_1_2_9_18_1) 1998 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_37_1 e_1_2_9_64_1 e_1_2_9_87_1 Branas J. (e_1_2_9_14_1) 1946 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Wright S. (e_1_2_9_120_1) 1984 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 Riou C. (e_1_2_9_101_1) 1994; 33 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 Williams G. C. (e_1_2_9_119_1) 1996 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 Galet P. (e_1_2_9_41_1) 1988 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 Galet P. (e_1_2_9_40_1) 1956 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 27 start-page: 2156 issue: 15 year: 2011 end-page: 2158 article-title: The variant call format and VCFtools publication-title: Bioinformatics – volume: 30 start-page: 2333 issue: 10 year: 2021 end-page: 2348 article-title: Genetic diversity and population structure in Vitis species illustrate phylogeographic patterns in eastern North America publication-title: Molecular Ecology – year: 1966 – volume: 6 issue: 5 year: 2011 article-title: A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species publication-title: PLoS One – volume: 132 start-page: 1733 issue: 6 year: 2019 end-page: 1744 article-title: A reference high‐density genetic map of greater yam ( L.) publication-title: Theoretical and Applied Genetics – volume: 47 start-page: S‐120 issue: S3 year: 2007 end-page: S‐141 article-title: Genome‐wide approaches to investigate and improve maize response to drought publication-title: Crop Science – volume: 42 start-page: 355 issue: 4 year: 2010 end-page: 360 article-title: Mixed linear model approach adapted for genome‐wide association studies publication-title: Nature Genetics – year: 1946 – volume: 134 start-page: 731 issue: 2 year: 2021 end-page: 742 article-title: Genetic diversity of Ethiopian sorghum reveals signatures of climatic adaptation publication-title: Theoretical and Applied Genetics – volume: 9 issue: 2 year: 2014 article-title: High‐level genetic diversity and complex population structure of Siberian apricot ( L.) in China as revealed by nuclear SSR markers publication-title: PLoS One – volume: 13 start-page: 186 issue: 3 year: 1974 article-title: Les Vignes Sauvages Comme Sources de Gènes Pour l'amélioration publication-title: VITIS – Journal of Grapevine Research – year: 2014 – volume: 827 start-page: 151 issue: May year: 2009 end-page: 154 article-title: Collecting from native habitat sites publication-title: Acta Horticulturae – volume: 34 start-page: 1417 issue: 6 year: 2017 end-page: 1428 article-title: Genetic diversity and the efficacy of purifying selection across plant and animal species publication-title: Molecular Biology and Evolution – volume: 53 start-page: 1003 issue: 5 year: 2006 end-page: 1011 article-title: Chloroplast microsatellites to investigate the origin of grapevine publication-title: Genetic Resources and Crop Evolution – volume: 178 start-page: 1709 issue: 3 year: 2008 end-page: 1723 article-title: Efficient control of population structure in model organism association mapping publication-title: Genetics – volume: 58 start-page: 75 issue: 1 year: 2007 end-page: 86 article-title: Molecular characterization of grapevine rootstocks maintained in germplasm collections publication-title: American Journal of Enology and Viticulture – volume: 207 start-page: 953 issue: 4 year: 2015 end-page: 967 article-title: Genomic variation across landscapes: Insights and applications publication-title: The New Phytologist – volume: 12 start-page: 783 issue: 5 year: 2021 article-title: Harnessing crop wild diversity for climate change adaptation publication-title: Genes – volume: 28 start-page: 100 issue: 1 year: 1979 end-page: 108 article-title: Algorithm AS 136: A K‐means clustering algorithm publication-title: Journal of the Royal Statistical Society: Series C: Applied Statistics – volume: 49 start-page: 959 issue: 6 year: 2017 end-page: 963 article-title: Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation publication-title: Nature Genetics – volume: 61 start-page: 106 issue: 1 year: 2012 end-page: 119 article-title: Development of microsatellite markers from the transcriptome of for analysing population structure in North America and Europe publication-title: Plant Pathology – volume: 8 start-page: 3321 issue: 10 year: 2018 end-page: 3329 article-title: Comparative genomics approaches accurately predict deleterious variants in plants publication-title: G3: Genes, Genomes, Genetics – volume: 49 start-page: D480 issue: D1 year: 2021 end-page: D489 article-title: UniProt: The universal protein knowledgebase in 2021 publication-title: Nucleic Acids Research – volume: 11 start-page: 2976 issue: 10 year: 2019 end-page: 2989 article-title: Environmental genome‐wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine publication-title: Genome Biology and Evolution – volume: 20 start-page: 1297 issue: 9 year: 2010 end-page: 1303 article-title: The genome analysis toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data publication-title: Genome Research – volume: 81 start-page: 179 issue: 3 year: 2003 end-page: 192 article-title: Genetic structure and differentiation in cultivated grape, L publication-title: Genetics Research – year: 2019 – volume: 128 start-page: 107 issue: 2 year: 2022 end-page: 119 article-title: Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley ( L. ssp. spontaneum) in the southern levant publication-title: Heredity – volume: 22 start-page: 254 issue: 1 year: 2021 article-title: Introgression among north American wild grapes (Vitis) fuels biotic and abiotic adaptation publication-title: Genome Biology – volume: 2 start-page: 441 issue: 4 year: 2009 end-page: 451 article-title: Nitrilase enzymes and their role in plant–microbe interactions publication-title: Microbial Biotechnology – volume: 38 start-page: 1358 issue: 6 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution – volume: 9 start-page: 375 issue: 3 year: 2011 end-page: 383 article-title: Genetic diversity in Anatolian wild grapes ( subsp. sylvestris) estimated by SSR markers publication-title: Plant Genetic Resources – volume: 51 start-page: 133 issue: 2 year: 2017 end-page: 139 article-title: Climate vs grapevine pests and diseases worldwide: The first results of a global survey publication-title: OENO One – volume: 8 start-page: 269 issue: 3 year: 1966 end-page: 294 article-title: The effect of linkage on limits to artificial selection publication-title: Genetics Research – volume: 121 start-page: 1569 issue: 8 year: 2010 end-page: 1585 article-title: The SSR‐based molecular profile of 1005 grapevine ( L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin publication-title: TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik – year: 1902 – volume: 9 start-page: 1385 issue: 10 year: 2020 article-title: How do novel M‐rootstock ( spp.) genotypes cope with drought? publication-title: Plants (Basel) – volume: 13 start-page: 243 issue: 4 year: 2012 article-title: Current challenges in de novo plant genome sequencing and assembly publication-title: Genome Biology – volume: 18 start-page: 729 issue: 4 year: 2018 end-page: 738 article-title: Wild GWAS—Association mapping in natural populations publication-title: Molecular Ecology Resources – volume: 4 start-page: 219 issue: 3 year: 2001 end-page: 224 article-title: Plant glycosyltransferases publication-title: Current Opinion in Plant Biology – volume: 150 start-page: 1 issue: 1 year: 2007 end-page: 26 article-title: Asparagine in plants publication-title: Annals of Applied Biology – volume: 10 start-page: 1190 issue: 1 year: 2019 article-title: Whole‐genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses publication-title: Nature Communications – volume: 143 start-page: 373 issue: 3 year: 2015 end-page: 384 article-title: MybA1 gene diversity across the Vitis genus publication-title: Genetica – year: 1984 – volume: 217 start-page: 624 issue: 5129 year: 1968 end-page: 626 article-title: Evolutionary rate at the molecular level publication-title: Nature – volume: 55 start-page: 2447 issue: 407 year: 2004 end-page: 2460 article-title: Breeding for high water‐use efficiency publication-title: Journal of Experimental Botany – volume: 5 start-page: 339 issue: 2 year: 2009 end-page: 347 article-title: Genetic diversity and population structure in malus Sieversii, a wild progenitor species of domesticated apple publication-title: Tree Genetics & Genomes – volume: 1 issue: 6 year: 2015 article-title: Genome‐environment associations in sorghum landraces predict adaptive traits publication-title: Science Advances – volume: 124 start-page: 81 issue: 1 year: 2004 end-page: 97 article-title: A multicriteria climatic classification system for grape‐growing regions worldwide publication-title: Agricultural and Forest Meteorology – volume: 170 start-page: 1036 issue: 6 year: 2006 end-page: 1044 article-title: SSR‐based assessment of genetic diversity in south American varieties publication-title: Plant Science – volume: 246 start-page: 96 issue: 5428 year: 1973 end-page: 98 article-title: Slightly deleterious mutant substitutions in evolution publication-title: Nature – volume: 6 start-page: S17 issue: Suppl 1 year: 2005 article-title: An evaluation of GO annotation retrieval for BioCreAtIvE and GOA publication-title: BMC Bioinformatics – volume: 98 start-page: 11479 issue: 20 year: 2001 end-page: 11484 article-title: Structure of linkage disequilibrium and phenotypic associations in the maize genome publication-title: Proceedings of the National Academy of Sciences – volume: 12 start-page: 449 issue: 5 year: 2011 end-page: 462 article-title: Phylogenetic‐based propagation of functional annotations within the gene ontology consortium publication-title: Briefings in Bioinformatics – volume: 5 issue: 1 year: 2018 article-title: TerraClimate, a high‐resolution global dataset of monthly climate and climatic water balance from 1958–2015 publication-title: Scientific Data – volume: 61 start-page: 1507 issue: 8 year: 2014 end-page: 1521 article-title: Genetic diversity of in Georgia: Relationships between local cultivars and wild grapevine, . L. subsp. sylvestris publication-title: Genetic Resources and Crop Evolution – volume: 108 start-page: 3530 issue: 9 year: 2011 end-page: 3535 article-title: Genetic structure and domestication history of the grape publication-title: Proceedings of the National Academy of Sciences – volume: 132 start-page: 1847 issue: 6 year: 2019 end-page: 1860 article-title: Genetic diversity and parentage analysis of grape rootstocks publication-title: Theoretical and Applied Genetics – volume: 24 start-page: 4348 issue: 17 year: 2015 end-page: 4370 article-title: A practical guide to environmental association analysis in landscape genomics publication-title: Molecular Ecology – year: 1956 – volume: 13 issue: August year: 2022 article-title: Genome–environment associations, an innovative tool for studying heritable evolutionary adaptation in orphan crops and wild relatives publication-title: Frontiers in Genetics – volume: 15 start-page: 3707 issue: 12 year: 2006 end-page: 3714 article-title: Multiple origins of cultivated grapevine ( L. ssp. sativa) based on chloroplast DNA polymorphisms publication-title: Molecular Ecology – volume: 17 start-page: 10 issue: 1 year: 2011 end-page: 12 article-title: Cutadapt removes adapter sequences from high‐throughput sequencing reads publication-title: EMBnet.Journal – volume: 31 start-page: 6457 issue: 24 year: 2022 end-page: 6472 article-title: Evaluating the persistence and utility of five wild species in the context of climate change publication-title: Molecular Ecology – volume: 584 start-page: 602 issue: 7822 year: 2020 end-page: 607 article-title: Massive haplotypes underlie ecotypic differentiation in sunflowers publication-title: Nature – volume: 61 start-page: 111 issue: 1–2 year: 2006 end-page: 122 article-title: Cyanide metabolism in higher plants: Cyanoalanine hydratase is a NIT4 homolog publication-title: Plant Molecular Biology – volume: 155 start-page: 945 issue: 2 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 42 start-page: 348 issue: 4 year: 2010 end-page: 354 article-title: Variance component model to account for sample structure in genome‐wide association studies publication-title: Nature Genetics – volume: 52 start-page: 790 issue: 9 year: 2009 end-page: 800 article-title: New insights on the genetic basis of Portuguese grapevine and on grapevine domestication publication-title: Genome – volume: 33 start-page: 109 year: 1994 end-page: 115 article-title: Consommation d'eau de la vigne en conditions hydriques non limitantes. Formulation simplifiée de la transpiration publication-title: Vitis – volume: 100 start-page: 66 issue: 1 year: 2009 end-page: 75 article-title: Low level of pollen‐mediated gene flow from cultivated to wild grapevine: Consequences for the evolution of the endangered subspecies L. subsp. silvestris publication-title: Journal of Heredity – volume: 142 start-page: 219 issue: 3587 year: 1938 end-page: 220 article-title: Clines: An auxiliary taxonomic principle publication-title: Nature – volume: 581 start-page: 2273 issue: 12 year: 2007 end-page: 2280 article-title: Mining iron: Iron uptake and transport in plants publication-title: FEBS Letters – volume: 421 start-page: 57 issue: 6918 year: 2003 end-page: 60 article-title: Fingerprints of global warming on wild animals and plants publication-title: Nature – volume: 121 start-page: 157 issue: 1 year: 2010 end-page: 168 article-title: Deleterious amino acid polymorphisms in and rice publication-title: Theoretical and Applied Genetics – volume: 22 start-page: 5972 issue: 24 year: 2013 end-page: 5982 article-title: On the accumulation of deleterious mutations during range expansions publication-title: Molecular Ecology – volume: 6 start-page: 80 issue: 2 year: 2012 end-page: 92 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain W1118; Iso‐2; Iso‐3 publication-title: Fly – volume: 247 start-page: 98 issue: 1–3 year: 2007 end-page: 106 article-title: Genetic diversity and differentiation in European beech ( L.) stands varying in management history publication-title: Forest Ecology and Management – volume: 6 start-page: 127 year: 2019 article-title: phased assembly of the grape genome publication-title: Scientific Data – volume: 13 start-page: 25 issue: 1 year: 2013 article-title: Genetic structure in cultivated grapevines is linked to geography and human selection publication-title: BMC Plant Biology – volume: 8 issue: 2 year: 2018 article-title: BLINK: A package for the next level of genome‐wide association studies with both individuals and markers in the millions publication-title: GigaScience – volume: 18 start-page: 83 issue: 2 year: 2002 end-page: 90 article-title: Linkage disequilibrium: What history has to tell us publication-title: Trends in Genetics – volume: 327 year: 2023 article-title: Review: Status and prospects of association mapping in grapevine publication-title: Plant Science – volume: 5 issue: 1 year: 2010 article-title: Rapid genomic characterization of the genus Vitis publication-title: PLoS One – volume: 210 start-page: 589 issue: 2 year: 2016 end-page: 601 article-title: Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus Sylvatica publication-title: New Phytologist – volume: 65 start-page: 6141 issue: 21 year: 2014 end-page: 6153 article-title: Transpiration efficiency: New insights into an old story publication-title: Journal of Experimental Botany – year: 1983 – volume: 9 issue: January year: 2022 article-title: Genomic population structure and local adaptation of the wild strawberry publication-title: Horticulture Research – volume: 353 start-page: 53 issue: 1 year: 2005 end-page: 67 article-title: Oligosaccharide preferences of Beta1,4‐galactosyltransferase‐I: Crystal structures of Met340His mutant of human Beta1,4‐galactosyltransferase‐I with a Pentasaccharide and Trisaccharides of the N‐glycan moiety publication-title: Journal of Molecular Biology – volume: 9 start-page: 967 year: 2018 article-title: A genomic map of climate adaptation in arabidopsis thaliana at a micro‐geographic scale publication-title: Frontiers in Plant Science – volume: 122 start-page: 1233 issue: 6 year: 2011 end-page: 1245 article-title: High throughput analysis of grape genetic diversity as a tool for germplasm collection management publication-title: Theoretical and Applied Genetics – year: 2003 – volume: 116 start-page: 24933 issue: 50 year: 2019 end-page: 24942 article-title: The iron deficiency response in requires the phosphorylated transcription factor URI publication-title: Proceedings of the National Academy of Sciences – start-page: 1011 year: 1998 – volume: 5 start-page: 34 year: 2018 article-title: Genomic signatures of different adaptations to environmental stimuli between wild and cultivated L publication-title: Horticulture Research – year: 1996 – volume: 6 start-page: 813 year: 2015 article-title: Landscape genomics reveal signatures of local adaptation in barley ( L.) publication-title: Frontiers in Plant Science – volume: 22 start-page: 1626 issue: 6 year: 2013 end-page: 1639 article-title: Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in alpine Brassicaceae species publication-title: Molecular Ecology – volume: 13 issue: 2 year: 2018 article-title: Extended diversity analysis of cultivated grapevine with 10K genome‐wide SNPs publication-title: PLoS One – volume: 56 start-page: 125 issue: 1 year: 1987 end-page: 158 article-title: Aminoacyl TRNA synthetases: General scheme of structure‐function relationships in the polypeptides and recognition of transfer RNAS publication-title: Annual Review of Biochemistry – volume: 10 start-page: 1572 issue: 8 year: 2021 article-title: Genome‐environment association analysis for bio‐climatic variables in common bean ( L.) from Brazil publication-title: Plants – volume: 10 start-page: 23 issue: 16 year: 2014 end-page: 32 article-title: Structure and function of nucleotide sugar transporters: Current progress publication-title: Computational and Structural Biotechnology Journal – volume: 1248 start-page: 227 year: 2019 end-page: 234 article-title: Genome‐wide association study of a diverse grapevine panel: Example of berry weight publication-title: Acta Horticulturae – volume: 14 start-page: 56 issue: December year: 2017 end-page: 62 article-title: A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.V3) publication-title: Genomics Data – volume: 31 start-page: 709 issue: 12 year: 2015 end-page: 719 article-title: Genomics and the contrasting dynamics of annual and perennial domestication publication-title: Trends in Genetics – volume: 421 start-page: 37 issue: 6918 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – volume: 22 start-page: 126 issue: 3 year: 2006 end-page: 131 article-title: The accumulation of deleterious mutations in rice genomes: A hypothesis on the cost of domestication publication-title: Trends in Genetics – volume: 114 start-page: 11715 issue: 44 year: 2017 end-page: 11720 article-title: Evolutionary genomics of grape ( ssp. vinifera) domestication publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 608 issue: 6 year: 2003 end-page: 614 article-title: Genetic isolation and diffusion of wild grapevine Italian and Spanish populations as estimated by nuclear and chloroplast SSR analysis publication-title: Plant Biology – volume: 33 start-page: 54 issue: 1 year: 1988 end-page: 78 article-title: Variances and covariances of squared linkage disequilibria in finite populations publication-title: Theoretical Population Biology – volume: 24 start-page: 1883 issue: 12 year: 2018 end-page: 1889 article-title: Assessing population structure in the face of isolation by distance: Are we neglecting the problem? publication-title: Diversity and Distributions – volume: 52 start-page: 421 issue: 1 year: 2018 end-page: 444 article-title: On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics publication-title: Annual Review of Genetics – volume: 14 start-page: 2611 issue: 8 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study publication-title: Molecular Ecology – year: 1988 – year: 2006 – volume: 27 start-page: 2544 issue: 16 year: 2017 end-page: 2551.e4 article-title: Range expansion compromises adaptive evolution in an outcrossing plant publication-title: Current Biology – volume: 12 start-page: 97 issue: 1 year: 2021 article-title: The patterns of deleterious mutations during the domestication of soybean publication-title: Nature Communications – volume: 82 start-page: 317 issue: 3 year: 2005 end-page: 342 article-title: Marker assisted selection in crop plants publication-title: Plant Cell, Tissue and Organ Culture – volume: 8 issue: 2 year: 2015 article-title: Subgenomic diversity patterns caused by directional selection in bread wheat gene pools publication-title: The Plant Genome – volume: 22 start-page: 511 issue: 9 year: 2006 end-page: 519 article-title: Historical origins and genetic diversity of wine grapes publication-title: Trends in Genetics – volume: 38 start-page: 471 issue: 3 year: 2011 end-page: 486 article-title: Genetic variation and biogeography of the disjunct subg. (Vitaceae) publication-title: Journal of Biogeography – ident: e_1_2_9_54_1 doi: 10.1093/gigascience/giy154 – ident: e_1_2_9_94_1 doi: 10.1016/j.jmb.2005.07.050 – ident: e_1_2_9_77_1 doi: 10.1515/9781400849536.1 – ident: e_1_2_9_16_1 doi: 10.1186/1471‐2105‐6‐S1‐S17 – ident: e_1_2_9_73_1 doi: 10.1016/j.tig.2006.01.004 – ident: e_1_2_9_62_1 doi: 10.1016/j.febslet.2007.04.043 – ident: e_1_2_9_76_1 doi: 10.1016/j.plantsci.2005.12.006 – ident: e_1_2_9_112_1 doi: 10.1016/j.agrformet.2003.06.001 – ident: e_1_2_9_6_1 doi: 10.1101/571042 – ident: e_1_2_9_23_1 doi: 10.1093/jxb/erh277 – ident: e_1_2_9_37_1 doi: 10.3389/fpls.2018.00967 – ident: e_1_2_9_43_1 doi: 10.1016/j.tig.2015.10.002 – ident: e_1_2_9_2_1 doi: 10.1038/sdata.2017.191 – ident: e_1_2_9_11_1 doi: 10.20870/oeno-one.2017.51.2.1780 – ident: e_1_2_9_55_1 doi: 10.1038/142219a0 – ident: e_1_2_9_96_1 – ident: e_1_2_9_109_1 doi: 10.1093/nar/gkaa1100 – ident: e_1_2_9_92_1 doi: 10.1111/nph.13809 – ident: e_1_2_9_86_1 doi: 10.1111/mec.12524 – ident: e_1_2_9_110_1 doi: 10.1016/j.tig.2006.07.008 – ident: e_1_2_9_22_1 doi: 10.1007/s00122‐010‐1411‐9 – ident: e_1_2_9_30_1 doi: 10.1093/jhered/esn084 – ident: e_1_2_9_71_1 doi: 10.1038/s41467‐019‐09135‐8 – ident: e_1_2_9_5_1 doi: 10.1017/s0016672303006177 – ident: e_1_2_9_9_1 doi: 10.3390/plants9101385 – ident: e_1_2_9_114_1 doi: 10.1093/jxb/eru040 – ident: e_1_2_9_8_1 doi: 10.1186/1471‐2229‐13‐25 – ident: e_1_2_9_48_1 doi: 10.1016/j.csbj.2014.05.003 – ident: e_1_2_9_116_1 doi: 10.1146/annurev‐genet‐120116‐024846 – volume-title: Dictionnaire encyclopédique des cépages et de leurs synonymes year: 1956 ident: e_1_2_9_40_1 – ident: e_1_2_9_34_1 doi: 10.1017/S1479262111000013 – ident: e_1_2_9_44_1 doi: 10.1038/s41597‐019‐0133‐3 – ident: e_1_2_9_99_1 doi: 10.1007/s00122‐019‐03320‐5 – ident: e_1_2_9_26_1 doi: 10.3389/fgene.2022.910386 – ident: e_1_2_9_49_1 doi: 10.2307/2346830 – ident: e_1_2_9_39_1 doi: 10.1111/j.1365‐3059.2011.02502.x – ident: e_1_2_9_25_1 doi: 10.3390/genes12050783 – ident: e_1_2_9_29_1 doi: 10.1093/gbe/evz220 – start-page: 1011 volume-title: Traité d’irrigation year: 1998 ident: e_1_2_9_18_1 – ident: e_1_2_9_36_1 doi: 10.17660/ActaHortic.2019.1248.33 – ident: e_1_2_9_51_1 doi: 10.1016/0040‐5809(88)90004‐4 – ident: e_1_2_9_102_1 doi: 10.5073/vitis.1974.13.186‐197 – ident: e_1_2_9_61_1 doi: 10.1038/s41467‐020‐20337‐3 – ident: e_1_2_9_115_1 doi: 10.3835/plantgenome2015.03.0013 – ident: e_1_2_9_100_1 doi: 10.1007/s11295‐008‐0190‐9 – ident: e_1_2_9_91_1 doi: 10.1007/s11103‐005‐6217‐9 – ident: e_1_2_9_7_1 doi: 10.1111/j.1365‐294X.2006.03049.x – ident: e_1_2_9_67_1 doi: 10.1126/sciadv.1400218 – ident: e_1_2_9_70_1 doi: 10.1111/j.1744‐7348.2006.00104.x – ident: e_1_2_9_78_1 doi: 10.1101/gr.107524.110 – ident: e_1_2_9_85_1 doi: 10.1038/nature01286 – ident: e_1_2_9_117_1 doi: 10.1371/journal.pone.0087381 – ident: e_1_2_9_113_1 doi: 10.2135/cropsci2007.04.0001IPBS – ident: e_1_2_9_21_1 doi: 10.4161/fly.19695 – volume-title: Adaptation and natural selection: A critique of some current evolutionary thought year: 1996 ident: e_1_2_9_119_1 – ident: e_1_2_9_68_1 doi: 10.1007/s00122‐010‐1527‐y – ident: e_1_2_9_87_1 doi: 10.1111/ddi.12816 – ident: e_1_2_9_50_1 doi: 10.1017/S0016672300010156 – ident: e_1_2_9_104_1 doi: 10.1111/1755‐0998.12901 – ident: e_1_2_9_122_1 doi: 10.1073/pnas.1709257114 – ident: e_1_2_9_12_1 – ident: e_1_2_9_56_1 doi: 10.1007/s10722‐004‐6896‐0 – ident: e_1_2_9_38_1 doi: 10.1007/s11240‐005‐2387‐z – ident: e_1_2_9_52_1 doi: 10.1111/j.1751‐7915.2009.00111.x – ident: e_1_2_9_111_1 doi: 10.1038/s41586‐020‐2467‐6 – ident: e_1_2_9_80_1 doi: 10.1186/s13059‐021‐02467‐z – ident: e_1_2_9_90_1 doi: 10.1007/s10709‐015‐9836‐3 – ident: e_1_2_9_79_1 doi: 10.1007/s00122‐020‐03727‐5 – ident: e_1_2_9_88_1 doi: 10.1111/j.1365‐2699.2010.02410.x – ident: e_1_2_9_33_1 doi: 10.1371/journal.pone.0019379 – ident: e_1_2_9_74_1 doi: 10.1038/s41438‐018‐0041‐2 – ident: e_1_2_9_3_1 doi: 10.3389/fpls.2015.00813 – volume: 33 start-page: 109 year: 1994 ident: e_1_2_9_101_1 article-title: Consommation d'eau de la vigne en conditions hydriques non limitantes. Formulation simplifiée de la transpiration publication-title: Vitis – ident: e_1_2_9_93_1 doi: 10.1093/genetics/155.2.945 – ident: e_1_2_9_105_1 doi: 10.1186/gb4015 – ident: e_1_2_9_47_1 doi: 10.1007/s00122‐010‐1299‐4 – ident: e_1_2_9_83_1 doi: 10.1016/s0168‐9525(02)02557‐x – ident: e_1_2_9_121_1 doi: 10.1038/ng.546 – ident: e_1_2_9_72_1 doi: 10.1139/g09‐048 – ident: e_1_2_9_20_1 doi: 10.1093/molbev/msx088 – ident: e_1_2_9_17_1 doi: 10.1016/j.gdata.2017.09.002 – ident: e_1_2_9_84_1 doi: 10.1038/246096a0 – ident: e_1_2_9_15_1 doi: 10.1016/j.foreco.2007.04.018 – ident: e_1_2_9_64_1 doi: 10.1038/217624a0 – ident: e_1_2_9_95_1 doi: 10.1038/ng.3845 – ident: e_1_2_9_32_1 doi: 10.3390/plants10081572 – ident: e_1_2_9_89_1 doi: 10.1111/mec.15881 – ident: e_1_2_9_103_1 doi: 10.1038/nature01333 – ident: e_1_2_9_45_1 doi: 10.1016/j.cub.2017.07.007 – ident: e_1_2_9_31_1 doi: 10.1007/s10722‐014‐0125‐2 – ident: e_1_2_9_57_1 – ident: e_1_2_9_35_1 doi: 10.1111/j.1365‐294X.2005.02553.x – ident: e_1_2_9_106_1 doi: 10.1146/annurev.bi.56.070187.001013 – volume-title: Éléments de viticulture générale year: 1946 ident: e_1_2_9_14_1 – ident: e_1_2_9_13_1 doi: 10.1111/nph.13410 – ident: e_1_2_9_69_1 doi: 10.1371/journal.pone.0192540 – ident: e_1_2_9_60_1 doi: 10.1016/S1369‐5266(00)00164‐3 – ident: e_1_2_9_66_1 doi: 10.1534/g3.118.200563 – ident: e_1_2_9_123_1 doi: 10.1111/mec.12199 – ident: e_1_2_9_59_1 doi: 10.1534/genetics.107.080101 – ident: e_1_2_9_107_1 doi: 10.17660/ActaHortic.2009.827.22 – ident: e_1_2_9_65_1 doi: 10.1017/CBO9780511623486 – ident: e_1_2_9_75_1 doi: 10.14806/ej.17.1.200 – ident: e_1_2_9_27_1 doi: 10.1093/bioinformatics/btr330 – ident: e_1_2_9_4_1 doi: 10.1111/mec.16715 – ident: e_1_2_9_118_1 doi: 10.2307/2408641 – ident: e_1_2_9_10_1 – ident: e_1_2_9_19_1 doi: 10.1038/s41437‐021‐00494‐x – volume-title: Cépages et Vignobles de France – Tome 1 Les Vignes Américaines year: 1988 ident: e_1_2_9_41_1 – ident: e_1_2_9_98_1 doi: 10.1073/pnas.201394398 – ident: e_1_2_9_24_1 doi: 10.1007/s00122‐019‐03311‐6 – ident: e_1_2_9_63_1 doi: 10.1073/pnas.1916892116 – ident: e_1_2_9_58_1 doi: 10.1038/ng.548 – ident: e_1_2_9_81_1 doi: 10.1073/pnas.1009363108 – ident: e_1_2_9_108_1 doi: 10.1016/j.plantsci.2022.111539 – ident: e_1_2_9_46_1 doi: 10.1055/s‐2003‐44689 – ident: e_1_2_9_53_1 doi: 10.1093/hr/uhab059 – ident: e_1_2_9_82_1 doi: 10.1371/journal.pone.0008219 – ident: e_1_2_9_42_1 doi: 10.1093/bib/bbr042 – ident: e_1_2_9_28_1 doi: 10.5344/ajev.2007.58.1.75 – ident: e_1_2_9_97_1 doi: 10.1111/mec.13322 – volume-title: Evolution and the genetics of populations, volume 2: Theory of gene frequencies year: 1984 ident: e_1_2_9_120_1 |
SSID | ssj0060632 ssib007833032 |
Score | 2.3643665 |
Snippet | In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate... Abstract In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1184 |
SubjectTerms | Adaptation Association analysis Barley Climate change Fertilization Genetic diversity Genetic structure Genetics Genomes genome‐wide association genotyping by sequencing grapevine Hybrids Life Sciences long reads Mutation Original Plants genetics Population population genetics Quantitative genetics Quantitative trait loci rootstock Rootstocks Sampling Seeds Single-nucleotide polymorphism Vitis berlandieri Whole genome sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQQhx6ISPxKfFxQqxVCnGjVW-THRI0E2YptF_XWn8Bv5JcwY2eXrgriwi2yR7E1M858I0--Yey1F1EaDHtl22oolZZ96dsApXaiATBAba-o2uKTmR-pDyf65FqrL6oJy_TAWXFvMV5XWmCYC6pSsQkWgrehdqq10SIepq8vxrx1MpW_wYjKpZh4hKhuB1aOGjwkKsTf0SeR9GNMOaUSyJv48maZ5HX4muLP4T12dwKOfJY3vMtuwXif3c6tJC8fsEvij8YpnglhL74Bd2Pk_YDojhMR61f4efXj-xCBD-OSMvIlPpwvOAJA7qI7y1fyfNFzx3EDkee_XFZAQ0RrjRF0hDf8mEiQuM8_CWNMHR6yo8ODz-_n5dRWoQyoeVOCFi5WEiqpTG8jIhbvIFjZV9B6TF-MMhV4h9ioDZimQtR1NGBkj2CtsZjTPmI742KEJ4wDoDmaHudFUHVrHUpEBB2-1gEa3Rdsf63uLkyc49T64ku3zj3QMl2yTMFebUTPMtHGn4Tekc02AsSNnQbQY7rJY7p_eQyuhBbfesd89rGjMSJEq1VjVnXB9tYO0U2netlReipQA40t2MvNNJ5HumRxIywuSEYibCLUXbDH2X82S8lG0jWoKli75Vlbe9meGYfTxPlNONAIgQvvJyf8u466g-NZenj6P5T1jN0RCOtycdwe20EfhucIw879i3TifgGm8S_q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxLsppTKIQw9EJLbjJCe0RVutEKoQolVvkR-TNlJJtt12K_49M4mzZdXCLbJHceIZe76JJ98w9sEKLzW6vbgoMohVJuvYFg7izIgcQAOVvaJsi0M9O1JfT7KT8MFtEdIqxz2x36h95-gb-ScKDUSZyrz8PL-IqWoUna6GEhoP2SZuwQUGX5v708PvP8a9GNG5FIFPiPJ3YGmo0ENPiXjrhXqyfvQtZ5QKeRdn3k2X_BvG9n7o4Cl7EgAknwwaf8YeQPucPRpKSv5-wW6IRxq7-EAMe30J3LSe1w2iPE6ErL8gvmk88KZdUFy-wIurjiMM5Mab-XAwz7uaG47Dez7867IEaiJya_SjLXzkx0SFxO3wqzB61uYlOzqY_vwyi0Nxhdjh_OsYMmF8IiGRStelR9xiDbhS1gkUFoMYrXQC1iBCKhwGq-Cz1GvQskbIlqMe5Cu20XYtbDEOUILLa-wXTqVFaVDCI_SwaeYgz-qI7Y2TXbnAPE4FMM6rMQJBvVS9XiL2fiU6H-g27hPaJ42tBIghu2_oLk-rsOAqxHlJJhAeOZUonzt8RFu61Kii9CXGUTgS6nvtHrPJt4raiBYtVblephHbGc2hCmt7Ud1aYsTerbpxVdJRi2mhuyYZieCJsHfEXg_WsxpK5pIOQ1XEijW7WnuW9Z62OeuZvwkNaiFw4L3eBP89R9X0eNJfbP__Fd6wxwJh25D8tsM20DbhLcKsK7sb1tIfVhYoHA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKERKXqvw2UJBBHHogUuI4TiJOC2q1QghxoFVvkX8mNBIkVbdd1Fsfoc_Ik3TGTqJGBYlbZM-uLY8n8008_oaxd0a4TKHbi8syh1jmWROb0kKca1EAKKCyV5Rt8VUtD-Xn4_x4g30Y78IEfojpgxtZhn9fk4Frs7pl5LDWVLRBqXvsPl2tJeJ8Ib-Nr2EE5r46GbpHgXMo0oFWiNJ4pp_OnJHn7EcXc0IZkXfh5t2sydto1rujg222NeBIvgiKf8Q2oHvMHoTKkpdP2CXRSWMXD_ywF2fAded40yLY48TL-gv-XF3_bh3wtltRgL7Ch_OeIx7k2unTcELP-4ZrjhNwPFx6WQM1Ecs1OtQO3vMj4kTiJtwZRhfbPmWHB_vfPy3jocpCbFERKoZcaJdkkGRSNZVDAGM02CprEigNRjNKqgSMRqhUWoxaweWpU6CyBrFbUWGI-4xtdn0HO4wDVGCLBvuFlWlZaZRwiEFMmlso8iZie-Ny13agIKdKGD_rMRRBzdReMxF7O4meBt6Nvwl9JJ1NAkSV7Rv6sx_1YHk1Ar4kF4iTrEykKyxO0VQ21bKsXIUBFY6EGp_9x3LxpaY24kdLZaHWacR2xw1RD0a-qilaFbgCRRWxN1M3mieduegO-guSyRBFEQiP2POwf6ahsiKjU1EZsXK2s2Zzmfd07YmnACdYqITAgff8Jvz3GtX7Rwv_8OL_RV-yhwKxXMiI22WbuFPhFWKvc_Pa29gNQvcqVA priority: 102 providerName: Wiley-Blackwell |
Title | Genetic structure and first genome‐wide insights into the adaptation of a wild relative of grapevine, Vitis berlandieri |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Feva.13566 https://www.ncbi.nlm.nih.gov/pubmed/37360024 https://www.proquest.com/docview/2828291379 https://www.proquest.com/docview/2830219916 https://hal.inrae.fr/hal-04221476 https://pubmed.ncbi.nlm.nih.gov/PMC10286229 https://doaj.org/article/644052431c404d7c9ecb9c1a489d9255 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISQuiDdpy8ogDj0QlDiOkxwQ2qKtVgiqCrFVb5FjT9qVSrbstgt74yfwG_klzOSxImq5cIvsUWx5ZjTfxJNvAF4V0kWawp6fpjH6Ko5Kv0gt-rGRCaJGbnvF1RZHejxRH07j0w3oemy2B7i4NbXjflKT-cWbH99W78jh33ZVObg03L5B603YpoCUsH9-UuvLBILokWxJhXrivVBUM_ZTgDnnesibYPNmzeTfWLYORof34V6LIsWwUfsD2MDqIdxp-kquHsGKyaRpSjTssNdzFKZyopwS1BPMyvoVf__89X3qUEyrBafnC3q4mglCg8I4c9ncz4tZKYygDTjR_PKyRB5ijmsKpxW-FifMiCSK5o9hCrDTxzA5HH15P_bbHgu-JTVoH2NpXBBhECldZo7gS2HQZlEZYFpQLqOVDrAwBJRSSzkrujh0GnVUEnJLMkpwn8BWNavwGQjEDG1S0ry0KkwzQxKOEEgRxhaTuPRgvzvu3LYE5NwH4yLvEhHSTF5rxoOXa9HLhnXjNqED1tlagImy64HZ_Cxv_S4nuBfEklCSVYFyiaUtFpkNjUozl1E6RSuRxnvvGA8_5jzG7GihSvQy9GCvM4i8s9Ccc1VJJ5BkHrxYT5Nz8o2LqXB2zTIRYSiG4B48bexnvVSURHwnqjxIe5bV20t_ppqe1wTgDAq1lLTwfm2E_z6jfHQyrB92_n-VXbgrCdk19XF7sEWWi88JiV0VA9iU6ngA2wejo-PPg_p7xqD2vT9kMDle |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CAwwCaQ9EJLbjJA8IddCpY6VCaJv2ljn2hVWCpKxbq_1T_I3c5aOjGvC2t8g-xY599v0uPv-OsVe5cFKj2fOTJAJfRbLw88SCHxkRA2igtFcUbTHWw3316TA6XGO_urswFFbZ7Yn1Ru0qS__I35JrINJQxun76U-fskbR6WqXQqNRi104X6DLNnu38xHn97UQ24O9D0O_zSrgW2xY-xAJ4wIJgVS6SB0a7NyATWURQJIjetdKB5AbhAaJRS8NXBQ6DVoWiFVi7IDE915j60qiK9Nj61uD8Zev3d6P3oAULX8RxQvB3FBiiZqC8cLq1ckB0JYdU-jlZVx7OTzzT9hc273t2-xWC1h5v9GwO2wNyrvsepPC8vweWxBvNVbxhoj27AS4KR0vJogqORHA_gB_MXHAJ-WM_gPM8OG04gg7uXFm2gQC8KrghmPzjjd3a-ZARUSmjXa7hDf8gKiXeN5cTUZLPrnP9q9k2B-wXlmV8IhxgBRsXGC9sCpMUoMSDqFOHkYW4qjw2GY32Jltmc4p4cb3rPN4cF6yel489nIpOm3oPf4mtEUzthQgRu66oDr5lrULPENcGUQC4ZhVgXKxxS7mqQ2NSlKXot-GLeF8r7xj2B9lVEY0bKGK9Tz02EanDlm7l8yyC8332ItlNe4CdLRjSqjOSEYiWCOs77GHjfYsm5KxpMNX5bFkRa9W-rJaU06Oa6ZxQp9aCGx4s1bBf49RNjjo1w-P__8Jz9mN4d7nUTbaGe8-YTcFQsYm8G6D9VBP4SlCvNP8WbuuODu66qX8G51gY58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBQwCqQeiJnaeB4S2dFdbWq0qRKvegmNP6EqQLN12V_1r_Dpm8tiyKnDrLbJHsWOPPd_E428A3uTSqojMnpskIbpBqAo3Twy6oZYxYoSc9oqjLcbR6DD4dBwer8Gv7i4Mh1V2e2K9UdvK8D_yLXYNZOqrON0q2rCIg53hh-lPlzNI8Ulrl06jUZE9vFiQ-zZ7v7tDc_1WyuHgy8eR22YYcA11InIxlNp6Cj0VREVqyXjnGk2qCg-TnJB8FEQe5ppgQmLIY0Mb-jbCSBWEW2LqjKL33oD1mLwirwfr24PxwefODpBnoGTLZcSxQzjXnGSipmO8tIB1ogCyaycchnkV414N1fwTQtc2cHgX7rTgVfQbbbsHa1jeh5tNOsuLB7BgDmuqEg0p7fkpCl1aUUwIYQomg_2B7mJiUUzKGf8TmNHDWSUIggpt9bQJChBVIbSg5q1o7tnMkYuYWJtseInvxBHTMIm8uaZMVn3yEA6vZdgfQa-sSnwCAjFFExdUL03gJ6kmCUuwJ_dDg3FYOLDZDXZmWtZzTr7xPeu8H5qXrJ4XB14vRacN1cffhLZ5xpYCzM5dF1Sn37J2sWeEMb1QEjQzgRfY2FAX89T4OkhSm5IPRy3RfK-8Y9Tfz7iMKdn8II7mvgMbnTpk7b4yyy5XgQOvltW0I_Axjy6xOmcZRcCNcb8DjxvtWTalYsUHsYEDyYperfRltaacnNSs44xEIymp4c1aBf89RtngqF8_PP3_J7yEW7SEs_3d8d4zuC0JPTYxeBvQIzXF54T2zvIX7bIS8PW6V_JvOZ5n1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+structure+and+first+genome%E2%80%90wide+insights+into+the+adaptation+of+a+wild+relative+of+grapevine%2C+Vitis+berlandieri&rft.jtitle=Evolutionary+applications&rft.au=Blois%2C+Louis&rft.au=de%C2%A0Miguel%2C+Marina&rft.au=Bert%2C+Pierre%E2%80%90Fran%C3%A7ois&rft.au=Girollet%2C+Nabil&rft.date=2023-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=1752-4571&rft.volume=16&rft.issue=6&rft.spage=1184&rft.epage=1200&rft_id=info:doi/10.1111%2Feva.13566&rft.externalDocID=PMC10286229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-4571&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-4571&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-4571&client=summon |