Flash-Sinterforging of Nanograin Zirconia: Field Assisted Sintering and Superplasticity

We report on the influence of a uniaxial applied stress on flash‐sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal‐stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 95; no. 1; pp. 138 - 146
Main Authors Francis, John S.C., Raj, Rishi
Format Journal Article
LanguageEnglish
Published Columbus Blackwell Publishing Ltd 01.01.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on the influence of a uniaxial applied stress on flash‐sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal‐stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push‐rods and the specimen. The axial and radial strains in the experiment provide simultaneous measurement of the time‐dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. We see flash‐sintering which is characterized by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample, which sinters at 915°C under a stress of 1.5 MPa, densifies at only 850°C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature maybe related to the additional electrical fields generated within the specimen by the electro‐chemo‐mechanical mechanism described by Pannikkat and Raj [Acta Mater., 47 (1999) 3423]. Remarkably, we also show that the sample deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer, during the flash sintering, as a check on Joule heating. A reading of 1000°C–1100°C was obtained, up to 200° above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre‐exponential factor for the diffusion coefficient, noting that the pre‐exponential factor depends on concentration of defects, and not upon their mobility.
AbstractList The influence of a uniaxial applied stress on flash-sintering and field assisted superplastic behaviour of cylindrical powder preforms of 3 mol% tetragonal-stabilised zirconia was studied. Sinterforging was used, where in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push-rods and the specimen. The axial and radial strains provide simultaneous measurement of the time-dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. Flash-sintering is observed, which is characterised by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample which sinters at 915 C under a stress of 1.5 MPa densifies at only 850 C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature may be related to the additional electrical fields generated within the specimen by the electro-chemo-mechanical mechanism. The sample also deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer during the flash sintering, as a check on Joule heating. A reading of 1000-1100 C was obtained, which is up to 200 C above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre-exponential factor for the diffusion coefficient, noting that the pre-exponential factor depends on defect concentration, and not upon their mobility.
We report on the influence of a uniaxial applied stress on flash‐sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal‐stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push‐rods and the specimen. The axial and radial strains in the experiment provide simultaneous measurement of the time‐dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. We see flash‐sintering which is characterized by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample, which sinters at 915°C under a stress of 1.5 MPa, densifies at only 850°C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature maybe related to the additional electrical fields generated within the specimen by the electro‐chemo‐mechanical mechanism described by Pannikkat and Raj [ Acta Mater ., 47 (1999) 3423]. Remarkably, we also show that the sample deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer, during the flash sintering, as a check on Joule heating. A reading of 1000°C–1100°C was obtained, up to 200° above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre‐exponential factor for the diffusion coefficient, noting that the pre‐exponential factor depends on concentration of defects, and not upon their mobility.
We report on the influence of a uniaxial applied stress on flash‐sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal‐stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push‐rods and the specimen. The axial and radial strains in the experiment provide simultaneous measurement of the time‐dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. We see flash‐sintering which is characterized by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample, which sinters at 915°C under a stress of 1.5 MPa, densifies at only 850°C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature maybe related to the additional electrical fields generated within the specimen by the electro‐chemo‐mechanical mechanism described by Pannikkat and Raj [Acta Mater., 47 (1999) 3423]. Remarkably, we also show that the sample deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer, during the flash sintering, as a check on Joule heating. A reading of 1000°C–1100°C was obtained, up to 200° above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre‐exponential factor for the diffusion coefficient, noting that the pre‐exponential factor depends on concentration of defects, and not upon their mobility.
We report on the influence of a uniaxial applied stress on flash-sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal-stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push-rods and the specimen. The axial and radial strains in the experiment provide simultaneous measurement of the time-dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. We see flash-sintering which is characterized by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample, which sinters at 915...C under a stress of 1.5 MPa, densifies at only 850...C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature maybe related to the additional electrical fields generated within the specimen by the electro-chemo-mechanical mechanism described by Pannikkat and Raj [Acta Mater., 47 (1999) 3423]. Remarkably, we also show that the sample deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer, during the flash sintering, as a check on Joule heating. A reading of 1000...C-1100...C was obtained, up to 200... above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre-exponential factor for the diffusion coefficient, noting that the pre-exponential factor depends on concentration of defects, and not upon their mobility. (ProQuest: ... denotes formulae/symbols omitted.)
We report on the influence of a uniaxial applied stress on flash-sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol% tetragonal-stabilized zirconia. The experiments use the sinterforging method, where, in addition to pressure, a dc electrical field is applied by metal electrodes sandwiched between the push-rods and the specimen. The axial and radial strains in the experiment provide simultaneous measurement of the time-dependent densification and shear strains. Large effects of the electric field on sintering and superplasticity are observed. We see flash-sintering which is characterized by a threshold level of temperature and electric field. With higher applied fields, the sample sinters at a lower furnace temperature. Surprisingly, the applied stress further lowers this critical temperature: a sample, which sinters at 915 degree C under a stress of 1.5 MPa, densifies at only 850 degree C when the stress is raised to 12 MPa. This stress induced reduction in sintering temperature maybe related to the additional electrical fields generated within the specimen by the electro-chemo-mechanical mechanism described by Pannikkat and Raj [Acta Mater., 47 (1999) 3423]. Remarkably, we also show that the sample deforms in pure shear to 30% strain in just a few seconds at anomalously low temperatures. The specimen temperature was measured with a pyrometer, during the flash sintering, as a check on Joule heating. A reading of 1000 degree C-1100 degree C was obtained, up to 200 degree above the furnace temperature. This temperature is still too low to explain the sintering in just a few seconds. It is suggested that the electric field can nucleate a defect avalanche that enhances diffusion kinetics not by changing the activation energy but by increasing the pre-exponential factor for the diffusion coefficient, noting that the pre-exponential factor depends on concentration of defects, and not upon their mobility.
Author Francis, John S.C.
Raj, Rishi
Author_xml – sequence: 1
  givenname: John S.C.
  surname: Francis
  fullname: Francis, John S.C.
  email: john.s.francis@colorado.edu
  organization: Department of Mechanical Engineering, University of Colorado at Boulder, Colorado, 80309-0427, Boulder
– sequence: 2
  givenname: Rishi
  surname: Raj
  fullname: Raj, Rishi
  organization: Department of Mechanical Engineering, University of Colorado at Boulder, Colorado, 80309-0427, Boulder
BookMark eNqNkcFP2zAUxi3EJArsf4h24pLMdvIchwNSldHChBgSSEi7WK5rdy7B7uxUa_97HDJx4FRf7Cd_3-_pve8UHTvvNEIZwQVJ5_u6IAAkpw1hBcWEFLjiAMXuCE0-Po7RBGNM85pTfIJOY1ynkjS8mqDnWSfjn_zRul4H48PKulXmTXYvnV8FaV322wblnZWX2czqbplNY7Sx18ts9Ax66VK13eiwSbDeKtvvz9EXI7uov_6_z9DT7Pqpvcnvfs1v2-ldrqCqIKcgFVsCNpoyMGRBgBNJGKfaaFKyUoHipVpwhc2Cg1KVSQbMao4l8CWUZ-hixG6C_7vVsRevNirdddJpv42CsIaWmJUMHyCtU0fa4AOoaXkMaN3USfrtk3Ttt8GlkUVaPKW85iyJ-ChSwccYtBGbYF9l2CeSGFIUazGEJYawxJCieE9R7JL1arT-s53eH-wTP6ft9fBMgHwEDKHtPgAyvAhWlzWI5_u5gB9AHuZtK3j5BqEWsqI
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_jeurceramsoc_2016_08_036
crossref_primary_10_1016_j_actamat_2015_04_018
crossref_primary_10_1016_j_msea_2023_144724
crossref_primary_10_1016_j_jeurceramsoc_2018_02_012
crossref_primary_10_1111_jace_17510
crossref_primary_10_1016_j_jeurceramsoc_2014_11_013
crossref_primary_10_1016_j_jnoncrysol_2017_06_025
crossref_primary_10_1016_j_jeurceramsoc_2019_04_023
crossref_primary_10_1016_j_jeurceramsoc_2016_02_014
crossref_primary_10_1016_j_ceramint_2021_04_174
crossref_primary_10_1016_j_matchemphys_2022_126900
crossref_primary_10_1111_jace_13679
crossref_primary_10_1111_jace_15218
crossref_primary_10_1016_j_jeurceramsoc_2014_02_042
crossref_primary_10_1016_j_ceramint_2020_04_060
crossref_primary_10_17341_gazimmfd_1255470
crossref_primary_10_1016_j_jeurceramsoc_2019_03_051
crossref_primary_10_1016_j_jeurceramsoc_2018_09_002
crossref_primary_10_1080_21870764_2020_1864899
crossref_primary_10_1016_j_ceramint_2024_05_018
crossref_primary_10_1016_j_matlet_2017_07_129
crossref_primary_10_1016_j_jeurceramsoc_2018_08_032
crossref_primary_10_1016_j_jeurceramsoc_2023_05_048
crossref_primary_10_1111_jace_17072
crossref_primary_10_1016_j_ceramint_2016_08_048
crossref_primary_10_2109_jcersj2_15255
crossref_primary_10_1016_j_scriptamat_2021_114220
crossref_primary_10_1111_jace_14413
crossref_primary_10_1002_adem_202200731
crossref_primary_10_1016_j_jeurceramsoc_2016_03_021
crossref_primary_10_1016_j_jeurceramsoc_2022_01_017
crossref_primary_10_1111_jace_17963
crossref_primary_10_1016_j_jeurceramsoc_2018_08_048
crossref_primary_10_1016_j_ceramint_2019_04_015
crossref_primary_10_1111_jace_14615
crossref_primary_10_1016_j_ceramint_2018_12_211
crossref_primary_10_1016_j_jeurceramsoc_2021_11_007
crossref_primary_10_1088_2053_1591_3_10_102001
crossref_primary_10_1016_j_scriptamat_2017_12_006
crossref_primary_10_1088_2053_1591_ab4f97
crossref_primary_10_1063_1_4964811
crossref_primary_10_1016_j_scriptamat_2015_12_002
crossref_primary_10_1016_j_actamat_2023_119227
crossref_primary_10_1016_j_msea_2014_10_062
crossref_primary_10_1016_j_scriptamat_2021_114270
crossref_primary_10_1038_srep33408
crossref_primary_10_1063_1_4811362
crossref_primary_10_1111_jace_19719
crossref_primary_10_1016_j_jeurceramsoc_2018_07_010
crossref_primary_10_1038_s41598_023_50698_w
crossref_primary_10_1016_j_scriptamat_2019_02_004
crossref_primary_10_1016_j_cossms_2020_100868
crossref_primary_10_1016_j_ceramint_2015_02_130
crossref_primary_10_3390_ma10020179
crossref_primary_10_3390_ma14051321
crossref_primary_10_1016_j_ijhydene_2020_04_204
crossref_primary_10_1111_jace_18029
crossref_primary_10_1016_j_jnucmat_2018_03_049
crossref_primary_10_1016_j_nanoen_2020_105500
crossref_primary_10_3390_ma16206785
crossref_primary_10_1016_j_scriptamat_2019_08_032
crossref_primary_10_3390_app14103953
crossref_primary_10_1007_s10832_016_0054_x
crossref_primary_10_1007_s10853_019_03315_z
crossref_primary_10_3390_ma14185229
crossref_primary_10_1016_j_mtla_2018_07_006
crossref_primary_10_1111_jace_12281
crossref_primary_10_1016_j_ceramint_2020_01_034
crossref_primary_10_1111_jace_12972
crossref_primary_10_1016_j_jeurceramsoc_2023_01_013
crossref_primary_10_1016_j_matchemphys_2024_129421
crossref_primary_10_1111_jace_12176
crossref_primary_10_1016_j_jeurceramsoc_2012_09_020
crossref_primary_10_1080_17436753_2016_1251051
crossref_primary_10_1111_jace_17226
crossref_primary_10_1111_jace_17787
crossref_primary_10_1016_j_apsusc_2018_01_316
crossref_primary_10_1016_j_jeurceramsoc_2018_04_007
crossref_primary_10_1007_s12633_024_02893_1
crossref_primary_10_1016_j_ijhydene_2024_02_314
crossref_primary_10_1111_jace_13866
crossref_primary_10_15541_jim20220400
crossref_primary_10_1016_j_ceramint_2018_10_007
crossref_primary_10_1016_j_actamat_2020_116596
crossref_primary_10_1016_j_jeurceramsoc_2023_02_007
crossref_primary_10_1016_j_ceramint_2016_09_065
crossref_primary_10_1016_j_scriptamat_2016_12_008
crossref_primary_10_1016_j_ssi_2015_06_012
crossref_primary_10_1016_j_jeurceramsoc_2014_05_035
crossref_primary_10_1016_j_ceramint_2023_05_241
crossref_primary_10_1016_j_scriptamat_2021_114093
Cites_doi 10.1111/j.1151-2916.1986.tb07452.x
10.1007/s10853-006-6555-2
10.1111/j.1551-2916.2009.03102.x
10.1111/j.1551-2916.2010.04089.x
10.1063/1.1699681
10.1111/j.1151-2916.1982.tb10397.x
10.1063/1.1702656
10.1016/S1359-6462(02)00519-5
10.1016/S1359-6454(99)00206-2
10.1111/j.1551-2916.1986.tb00026.x
10.1111/j.1551-2916.2010.03905.x
10.1007/BF02664244
ContentType Journal Article
Copyright 2011 The American Ceramic Society
Copyright American Ceramic Society Jan 2012
Copyright_xml – notice: 2011 The American Ceramic Society
– notice: Copyright American Ceramic Society Jan 2012
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1551-2916.2011.04855.x
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
CrossRef

Materials Research Database
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
Editor Chen, I.-W.
Editor_xml – sequence: 1
  givenname: I.‐W.
  surname: Chen
  fullname: Chen, I.‐W.
– sequence: 3
  givenname: I.-W.
  surname: Chen
  fullname: Chen, I.-W.
EndPage 146
ExternalDocumentID 2561527361
10_1111_j_1551_2916_2011_04855_x
JACE4855
ark_67375_WNG_5D51PGCC_8
Genre article
GrantInformation_xml – fundername: Basic Science Division of the Department of Energy
  funderid: DE‐FG02‐07ER46403
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PK8
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
WTY
AAYXX
CITATION
7QQ
7SR
8FD
ADMHG
JG9
ID FETCH-LOGICAL-c5445-25ac6d50fe265f1b1581a1682efe1363c5c83cb8c0fb85cc4f5ac06780a58d53
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Aug 16 03:46:01 EDT 2024
Fri Aug 16 10:15:34 EDT 2024
Fri Aug 16 22:00:59 EDT 2024
Thu Oct 10 19:26:32 EDT 2024
Fri Aug 23 00:37:58 EDT 2024
Sat Aug 24 00:52:51 EDT 2024
Wed Jan 17 05:02:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5445-25ac6d50fe265f1b1581a1682efe1363c5c83cb8c0fb85cc4f5ac06780a58d53
Notes Basic Science Division of the Department of Energy - No. DE-FG02-07ER46403
ark:/67375/WNG-5D51PGCC-8
istex:E9311519C40A9551375134493614DDA1DAD13432
ArticleID:JACE4855
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 916228786
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1692306360
proquest_miscellaneous_1671362905
proquest_miscellaneous_1019652797
proquest_journals_916228786
crossref_primary_10_1111_j_1551_2916_2011_04855_x
wiley_primary_10_1111_j_1551_2916_2011_04855_x_JACE4855
istex_primary_ark_67375_WNG_5D51PGCC_8
PublicationCentury 2000
PublicationDate January 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: January 2012
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationTitleAlternate J. Am. Ceram. Soc
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. F. Ashby and R. Raj, "On Grain Boundary Sliding and Diffusional Creep," Metall. Trans., 2, 1113-27 (1971).
M. N. Rahaman, Sintering of Ceramics. CRC Press, Boca-Raton, 2008.
A. K. Pannikkat and R. Raj, "Measurement of an Electrical Potential Induced by Normal Stress Applied to the Interface of an Ionic Material at Elevated Temperatures," Acta Mater., 47 [12] 3423-31 (1999).
Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, "The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method," J. Mater. Sci., 41, 763-77 (2006).
C. Herring, "Diffusional Viscosity of a Polycrystalline Solid," J. Appl. Phys., 21, 437-45 (1950).
M. Cologna, B. Rashkova, and R. Raj, "Flash Sintering of Nanograin Zirconia in <5 s at 850°C," J. Am. Ceram. Soc., 3559, 3556-9 (2010).
K. R. Venkatachari and R. Raj, "Shear Deformation and Densification of Powder Compacts," J. Am. Ceram. Soc., 69, 499-506 (1986).
J. R. Groza and A. Zavaliangos, "Nanostructured Bulk Solids by Field Activated Sintering," Adv. Mater. Sci., 5, 24-33 (2003).
S. Ghosh, A. H. Chokshi, P. Lee, and R. Raj, "A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia," J. Am. Ceram. Soc., 92, 1856-9 (2009).
R. Raj, "Separation of Cavitation-Strain and Creep-Strain During Deformation," J. Am. Ceram. Soc., 65, C-46-C-46 (1982).
A. H. Chokshi, "Diffusion, Diffusion Creep and Grain Growth Characteristics of Nanocrystalline and Fine-Grained Monoclinic, Tetragonal and Cubic Zirconia," Scr. Mater., 48, 791-6 (2003).
F. Wakai, S. Sakaguchi, and Y. Matsuno, "Superplasticity of Yttria-Stabilized Tetragonal ZrO2Polycrystals," Adv. Ceram. Mater., 1, 259-63 (1986).
D. Yang, R. Raj, and H. Conrad, "Enhanced Sintering Rate of Zirconia (3Y-TZP) Through the Effect of a Weak dc Electric Field on Grain Growth," J. Am. Ceram. Soc., 2937, 2935-7 (2010).
R. L. Coble, "A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials," J. Appl. Phys., 34, 1679-82 (1963).
D. Yang and H. Conrad, "Influence of an Electric Field on the Superplastic Deformation of 3Y-TZP," Acta Metallurgica, 36, 1431-5 (1997).
1986; 1
2006; 41
1963; 34
2009; 92
1950; 21
1997; 36
1986; 69
1982; 65
1999; 47
2008
2010; 3559
2003; 48
2003; 5
2010; 2937
1971; 2
e_1_2_7_6_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Groza J. R. (e_1_2_7_4_1) 2003; 5
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
Rahaman M. N. (e_1_2_7_15_1) 2008
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Yang D. (e_1_2_7_5_1) 1997; 36
References_xml – volume: 2
  start-page: 1113
  year: 1971
  end-page: 27
  article-title: On Grain Boundary Sliding and Diffusional Creep
  publication-title: Metall. Trans.
– volume: 92
  start-page: 1856
  year: 2009
  end-page: 9
  article-title: A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia
  publication-title: J. Am. Ceram. Soc.
– volume: 47
  start-page: 3423
  issue: 12
  year: 1999
  end-page: 31
  article-title: Measurement of an Electrical Potential Induced by Normal Stress Applied to the Interface of an Ionic Material at Elevated Temperatures
  publication-title: Acta Mater.
– volume: 21
  start-page: 437
  year: 1950
  end-page: 45
  article-title: Diffusional Viscosity of a Polycrystalline Solid
  publication-title: J. Appl. Phys.
– year: 2008
– volume: 34
  start-page: 1679
  year: 1963
  end-page: 82
  article-title: A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials
  publication-title: J. Appl. Phys.
– volume: 41
  start-page: 763
  year: 2006
  end-page: 77
  article-title: The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method
  publication-title: J. Mater. Sci.
– volume: 48
  start-page: 791
  year: 2003
  end-page: 6
  article-title: Diffusion, Diffusion Creep and Grain Growth Characteristics of Nanocrystalline and Fine‐Grained Monoclinic, Tetragonal and Cubic Zirconia
  publication-title: Scr. Mater.
– volume: 5
  start-page: 24
  year: 2003
  end-page: 33
  article-title: Nanostructured Bulk Solids by Field Activated Sintering
  publication-title: Adv. Mater. Sci.
– volume: 1
  start-page: 259
  year: 1986
  end-page: 63
  article-title: Superplasticity of Yttria‐Stabilized Tetragonal ZrO Polycrystals
  publication-title: Adv. Ceram. Mater.
– volume: 65
  start-page: C‐46
  year: 1982
  end-page: C‐46
  article-title: Separation of Cavitation‐Strain and Creep‐Strain During Deformation
  publication-title: J. Am. Ceram. Soc.
– volume: 3559
  start-page: 3556
  year: 2010
  end-page: 9
  article-title: Flash Sintering of Nanograin Zirconia in <5 s at 850°C
  publication-title: J. Am. Ceram. Soc.
– volume: 69
  start-page: 499
  year: 1986
  end-page: 506
  article-title: Shear Deformation and Densification of Powder Compacts
  publication-title: J. Am. Ceram. Soc.
– volume: 36
  start-page: 1431
  year: 1997
  end-page: 5
  article-title: Influence of an Electric Field on the Superplastic Deformation of 3Y‐TZP
  publication-title: Acta Metallurgica
– volume: 2937
  start-page: 2935
  year: 2010
  end-page: 7
  article-title: Enhanced Sintering Rate of Zirconia (3Y‐TZP) Through the Effect of a Weak dc Electric Field on Grain Growth
  publication-title: J. Am. Ceram. Soc.
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1151-2916.1986.tb07452.x
– ident: e_1_2_7_3_1
  doi: 10.1007/s10853-006-6555-2
– volume: 5
  start-page: 24
  year: 2003
  ident: e_1_2_7_4_1
  article-title: Nanostructured Bulk Solids by Field Activated Sintering
  publication-title: Adv. Mater. Sci.
  contributor:
    fullname: Groza J. R.
– volume: 36
  start-page: 1431
  year: 1997
  ident: e_1_2_7_5_1
  article-title: Influence of an Electric Field on the Superplastic Deformation of 3Y‐TZP
  publication-title: Acta Metallurgica
  contributor:
    fullname: Yang D.
– volume-title: Sintering of Ceramics
  year: 2008
  ident: e_1_2_7_15_1
  contributor:
    fullname: Rahaman M. N.
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1551-2916.2009.03102.x
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1551-2916.2010.04089.x
– ident: e_1_2_7_13_1
  doi: 10.1063/1.1699681
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1151-2916.1982.tb10397.x
– ident: e_1_2_7_11_1
  doi: 10.1063/1.1702656
– ident: e_1_2_7_12_1
  doi: 10.1016/S1359-6462(02)00519-5
– ident: e_1_2_7_16_1
  doi: 10.1016/S1359-6454(99)00206-2
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1551-2916.1986.tb00026.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1551-2916.2010.03905.x
– ident: e_1_2_7_14_1
  doi: 10.1007/BF02664244
SSID ssj0001984
Score 2.427997
Snippet We report on the influence of a uniaxial applied stress on flash‐sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol%...
We report on the influence of a uniaxial applied stress on flash-sintering and field assisted superplastic behavior of cylindrical powder preforms of 3 mol%...
The influence of a uniaxial applied stress on flash-sintering and field assisted superplastic behaviour of cylindrical powder preforms of 3 mol%...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 138
SubjectTerms Ceramic sintering
Electric fields
Furnaces
Nanostructure
Sinter
Sintering (powder metallurgy)
Strain
Stresses
Superplasticity
Temperature effects
Zirconium dioxide
Title Flash-Sinterforging of Nanograin Zirconia: Field Assisted Sintering and Superplasticity
URI https://api.istex.fr/ark:/67375/WNG-5D51PGCC-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2011.04855.x
https://www.proquest.com/docview/916228786
https://search.proquest.com/docview/1019652797
https://search.proquest.com/docview/1671362905
https://search.proquest.com/docview/1692306360
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2h5QIHvhFhAQUJcUuVOLFjc1uV7a72sEKwwMLFsh1bW1VKq6aRFk78BH4jv4SZJC0tQiuEuOXDtuSxx_PGeXkGeEEaUV55m2D0kUmRBZ4o5U1S-YDhWFWk4U5si1Nx_L44OefnA_-J_oXp9SE2G27kGd16TQ5ubLPr5BjtE4b4ZlDiJJ2TEeFJ0tUjfPT2l5IU5tbFGgmTRNwuqeePDe1Equtk9MsdGLoNZrtoNLkNs3U_ehLKbNSu7Mh9_U3i8f909A7cGkBrfNDPsrtwzdf34OaWlCHefZg2bV-muQ-fJgjKL358-_6O5CiIQE9nIcXzEONqToSwaR1_ni4xF5-aV_GEWHQxThTqfRX3dai8qfGuXfjlApsj-vfqywM4mxyejY-T4RCHxJHOT8K4caLiafBM8JDZjMvMZEIyH3yWi9xxJ3NnpUuDldy5ImAFCqGp4bLi-UPYq-e1fwQxLs3BWk87MNhywaUvvbSs5C44FZSPIFuPl170Uh16K8VBG2qyoSYb6s6G-jKCl93AbiqY5YyobiXXH0-PNH_NszdH47GWEeyvR14PXt5obI1hxilFBM83b9E96ZuLqf28bYhBpwRnpSqvKCNKtARTKb-qjKJkMRdpBGU3W_66j_rkYHxIl4__ueY-3MDnrN96egJ7q2XrnyIYW9lnnZv9BAVVJUQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFD5C2wVwwfjVwgYECXGXKnHixN7d1K0rY1QICgxurNixRTWUVm0jbVzxCHvGPQnnJGlpEZoQ4i5Wji352MfnJ18-A7wgjigrrQ7Q-4ggiRwPpLR5UFiH7lgWxOFOaItB2v-QHJ_y0_Y6IPoXpuGHWBbcyDLq85oMnArS61aO7j5gGOC0VJxEdNLBgHITrZ-TlR68-8Ulhdl1soiFiSRuHdbzx5HWfNUmqf18LRBdDWdrf9Tbgm-LmTQwlLNONdcd8_03ksf_NNW7cKeNW_39ZqPdgxu2vA-3V9gMsfVxNKsamdkD-NzDuPzr1Y_L98RIQRh6ug7JHzsfD3TChI1K_8toiun4KN_zewSk83Gv0PQLv-lD8nmJrWpipxMcjhDg84uHMOwdDrv9oL3HITBE9RMwnpu04KGzLOUu0hEXUR6lgllnoziNDTciNlqY0GnBjUkcdiAvGuZcFDx-BBvluLTb4OPp7LS2VITBkRMubGaFZhk3zkgnrQfRYsHUpGHrUCtZDupQkQ4V6VDVOlTnHrysV3bZIZ-eEdot4-rT4EjxAx69Pep2lfBgZ7H0qjX0mcLRGCadIvXg-fItWih9dslLO65mBKKTKWeZzK6RSTPUBJMhv05GUr4Yp6EHWb1d_nqO6ni_e0iPj_-55zO42R--OVEnrwavd-AWyrCmErULG_NpZZ9gbDbXT2ub-wlsJilk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-hTULwwH-0sDGChHhLlTixY_M2tcvGQNUEAwYvVuLYoqqUVm0jDZ74CPuMfBLukrRrEZoQ4i1Wzif57PPdOb_8DPCCOKKsskWA0UcGSeR4oJTNg9I6DMeqJA53QlsMxfGH5OScn3f4J_oXpuWHWB24kWc0-zU5-LR0m06O0T5gmN90TJzEc9LDfHI7ETGjQmzw7opKCovrZJkKE0fcJqrnj5o2QtU2Wf1iIw9dz2abcJTdhfFyIC0KZdyrF0XPfP-N4_H_jPQe3OmyVv-gXWb34YatHsDtNS5DbH0czetWZv4QPmeYlX_9-ePyPfFREIKeLkPyJ87H7ZwQYaPK_zKaYTE-yl_5GcHofFwpNPrSb_uQfF5hq57a2RTVEf578e0RnGWHZ_3joLvFITBE9BMwnhtR8tBZJriLiojLKI-EZNbZKBax4UbGppAmdIXkxiQOO1AMDXMuSx4_hq1qUtkd8HFvdkVh6QgGNSdc2tTKgqXcOKOcsh5Ey_nS05arQ6_VOGhDTTbUZEPd2FBfePCymdhVh3w2JqxbyvWn4ZHmAx6dHvX7Wnqwu5x53bn5XKM2hiWnFB48X71F_6SPLnllJ_WcIHRKcJaq9BoZkaIlmAr5dTKKqsVYhB6kzWr56zHqk4P-IT0--eeez-Dm6SDTb18P3-zCLRRh7THUHmwtZrV9ionZothvPO4XvEgoEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLASH-SINTERFORGING+OF+NANOGRAIN+ZIRCONIA%3A+FIELD+ASSISTED+SINTERING+AND+SUPERPLASTICITY&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Francis%2C+J+S+C&rft.au=Raj%2C+R&rft.date=2012-01-01&rft.issn=0002-7820&rft.volume=95&rft.issue=1&rft.spage=138&rft.epage=146&rft_id=info:doi/10.1111%2Fj.1551-2916.2011.04855.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon