improved nonparametric lower bound of species richness via a modified good–turing frequency formula
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1...
Saved in:
Published in | Biometrics Vol. 70; no. 3; pp. 671 - 682 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishers
01.09.2014
Blackwell Publishing Ltd International Biometric Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. |
---|---|
AbstractList | It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyperdiverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. [PUBLICATION ABSTRACT] Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. |
Author | Chao, Anne Wang, Yi-Ting Chiu, Chun-Huo Walther, Bruno A. |
Author_xml | – sequence: 1 fullname: Chiu, Chun‐Huo – sequence: 2 fullname: Wang, Yi‐Ting – sequence: 3 fullname: Walther, Bruno A – sequence: 4 fullname: Chao, Anne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24945937$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFDXvAEhuElOLrvyTLUkFpVVqpTAU7y3GcwUMSD3bSMjvegTfkSXCbtkJVBd5Y1vnO0b0-W2ij971F6CmQHUjnTeV8twOUEvIAzUBwyAinZAPNCCEyYxy-bKKtGJfpWQpCH6FNyksuSpbPkHXdKvhzW-MUutJBd3YIzuDWX9iAKz_2NfYNjitrnI04SV97GyM-dxpr3PnaNS6ZF97Xv3_-Gsbg-gVugv0-2t6sceNDN7b6MXrY6DbaJ9f3Njp7_26-9yE7Otk_2Ns9yozgnGSmpA0FKvMqL6uCgq0EZxUtmWRGMCmAc6uFZFAbYQGqoq6MKUubl1xKqBq2jV5NuWmnNEEcVOeisW2re-vHqCAnwERJqPw_KvNC8JzyIqEv76BLP4Y-LaJASE5AEiES9fyaGqvO1moVXKfDWt38dQJeT4AJPsZgm1sEiLosUl0Wqa6KTDC5Axs36MH5fgjatfdbYLJcuNau_xGu3h6cfLzxPJs8yzj48NfMghVwpWeT7uJgf9zqOnxTMme5UJ-P91U5L07np4eFOkz8i4lvtFd6EVxUZ58oAUEIcMlIwf4Av87RvQ |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1111_jen_12429 crossref_primary_10_5897_JENE2024_0974 crossref_primary_10_1007_s11252_023_01464_3 crossref_primary_10_1080_00365521_2019_1624815 crossref_primary_10_1007_s10493_015_9954_8 crossref_primary_10_1111_icad_12768 crossref_primary_10_1186_s40168_017_0255_9 crossref_primary_10_1111_2041_210X_12349 crossref_primary_10_1084_jem_20161784 crossref_primary_10_1111_jse_12740 crossref_primary_10_1371_journal_pone_0130262 crossref_primary_10_1111_ddi_12972 crossref_primary_10_1002_eap_2862 crossref_primary_10_1111_geb_12577 crossref_primary_10_1111_jbi_12911 crossref_primary_10_1002_ece3_2463 crossref_primary_10_1016_j_marmicro_2016_05_001 crossref_primary_10_1038_s41598_023_27945_1 crossref_primary_10_1002_ecy_2000 crossref_primary_10_3390_d13090440 crossref_primary_10_1093_plankt_fby005 crossref_primary_10_1158_1078_0432_CCR_19_2244 crossref_primary_10_1145_3210309 crossref_primary_10_1007_s11274_024_04133_5 crossref_primary_10_13158_heia_32_2_2019_269 crossref_primary_10_3389_fmicb_2018_01909 crossref_primary_10_1214_22_EJS2072 crossref_primary_10_1371_journal_pbio_3000106 crossref_primary_10_1073_pnas_2002554117 crossref_primary_10_1038_s41598_018_20622_8 crossref_primary_10_1093_femsle_fnac079 crossref_primary_10_7717_peerj_15454 crossref_primary_10_1073_pnas_2115329119 crossref_primary_10_3389_fevo_2022_740371 crossref_primary_10_17221_11_2018_PPS crossref_primary_10_1111_2041_210X_12247 crossref_primary_10_1111_oik_08265 crossref_primary_10_4039_tce_2024_26 crossref_primary_10_1038_s41564_019_0449_y crossref_primary_10_3897_BDJ_8_e50124 crossref_primary_10_1016_j_heliyon_2025_e41821 crossref_primary_10_3390_insects14110861 crossref_primary_10_3390_f14101991 crossref_primary_10_1016_j_apsoil_2019_09_009 crossref_primary_10_1038_s41598_021_87017_0 crossref_primary_10_32011_txjsci_76_1_Article2 crossref_primary_10_1016_j_foreco_2021_119863 crossref_primary_10_1656_045_030_0409 crossref_primary_10_1186_s12903_024_04675_y crossref_primary_10_1038_sdata_2019_7 crossref_primary_10_3390_d16090589 crossref_primary_10_2903_sp_efsa_2025_EN_9186 crossref_primary_10_3389_fmars_2021_656899 crossref_primary_10_1038_nmicrobiol_2016_180 crossref_primary_10_48027_hnb_46_043 crossref_primary_10_1002_lol2_10189 crossref_primary_10_3389_fimmu_2017_01859 crossref_primary_10_1111_btp_12772 crossref_primary_10_3390_f11040427 crossref_primary_10_1111_cobi_13043 crossref_primary_10_1038_s41467_020_18758_1 crossref_primary_10_1007_s10260_016_0358_7 crossref_primary_10_3897_mycokeys_16_9646 crossref_primary_10_1016_j_rbe_2018_09_002 crossref_primary_10_1093_plankt_fbac034 crossref_primary_10_5194_bg_17_865_2020 crossref_primary_10_1007_s11252_023_01455_4 crossref_primary_10_1016_j_isci_2023_108661 crossref_primary_10_3897_afrinvertebr_66_138414 crossref_primary_10_1016_j_ecoinf_2016_04_004 crossref_primary_10_1093_jrsssc_qlaf005 crossref_primary_10_1111_gcb_14838 crossref_primary_10_1111_ecog_03860 crossref_primary_10_1158_2326_6066_CIR_20_0398 crossref_primary_10_7717_peerj_1634 crossref_primary_10_1038_s41467_021_26069_2 crossref_primary_10_1016_j_marenvres_2023_105897 crossref_primary_10_3897_zookeys_1147_93824 crossref_primary_10_1016_j_biocon_2022_109846 crossref_primary_10_1002_bimj_201900185 crossref_primary_10_3390_d16090557 crossref_primary_10_1111_2041_210X_13378 crossref_primary_10_1007_s10651_015_0318_7 crossref_primary_10_1111_icad_12540 crossref_primary_10_1186_s12898_017_0155_7 crossref_primary_10_1126_science_abl7655 crossref_primary_10_1002_2688_8319_70017 crossref_primary_10_1093_jee_toz338 crossref_primary_10_1111_ele_13820 crossref_primary_10_3389_fmicb_2017_00752 crossref_primary_10_1007_s11538_023_01190_z crossref_primary_10_1016_j_gecco_2018_e00492 crossref_primary_10_1002_ecy_2427 crossref_primary_10_1016_j_hal_2024_102795 crossref_primary_10_1007_s11756_021_00884_w crossref_primary_10_3390_math11173775 crossref_primary_10_1111_1755_0998_12900 crossref_primary_10_1002_ecs2_4363 crossref_primary_10_1080_01647954_2024_2323533 crossref_primary_10_1016_j_adro_2021_100857 crossref_primary_10_1080_21501203_2018_1481153 crossref_primary_10_7717_peerj_14540 crossref_primary_10_3390_d13110524 crossref_primary_10_1016_j_agee_2019_106740 crossref_primary_10_1016_j_immuni_2023_08_011 crossref_primary_10_1111_jbi_13501 crossref_primary_10_1111_2041_210X_12986 crossref_primary_10_1016_j_foreco_2021_119319 crossref_primary_10_1111_ecog_05172 crossref_primary_10_3389_fmars_2021_694846 crossref_primary_10_1016_j_rama_2024_08_022 crossref_primary_10_1111_jse_12583 crossref_primary_10_1080_00222933_2021_1943030 crossref_primary_10_3354_ame01829 crossref_primary_10_1007_s43621_024_00331_1 crossref_primary_10_1016_j_marmicro_2023_102257 crossref_primary_10_1590_0001_3765202320200927 crossref_primary_10_1515_biol_2022_0791 crossref_primary_10_3390_ecologies5040033 crossref_primary_10_3390_pathogens12070971 crossref_primary_10_3897_phytokeys_175_61467 crossref_primary_10_3390_microorganisms10050874 crossref_primary_10_1038_s41564_023_01573_x crossref_primary_10_1371_journal_pone_0159195 crossref_primary_10_1649_0010_065X_74_2_351 crossref_primary_10_4049_jimmunol_1901297 crossref_primary_10_1016_j_margen_2016_01_005 crossref_primary_10_1371_journal_pone_0162803 crossref_primary_10_3389_fmicb_2021_734782 crossref_primary_10_1111_2041_210X_13979 crossref_primary_10_3390_ani11010186 crossref_primary_10_1186_s40793_024_00590_5 crossref_primary_10_1111_2041_210X_14146 crossref_primary_10_1186_s40663_019_0193_z crossref_primary_10_1002_ecy_2174 crossref_primary_10_1111_nph_17033 crossref_primary_10_1093_ee_nvv221 crossref_primary_10_1038_ncomms9452 crossref_primary_10_3390_agrochemicals2020018 crossref_primary_10_1016_j_watres_2019_114893 crossref_primary_10_3354_meps14644 crossref_primary_10_1007_s10530_019_02165_9 crossref_primary_10_1016_j_geoderma_2020_114201 crossref_primary_10_1016_j_ecolind_2020_106135 crossref_primary_10_1007_s10342_019_01191_5 crossref_primary_10_1093_ee_nvab051 crossref_primary_10_1111_oik_08650 crossref_primary_10_1002_edn3_244 crossref_primary_10_3390_f15061056 crossref_primary_10_7717_peerj_18145 crossref_primary_10_1093_jeb_voae085 crossref_primary_10_1007_s10641_023_01438_6 crossref_primary_10_1016_j_spl_2021_109154 crossref_primary_10_1007_s11274_023_03678_1 crossref_primary_10_1002_ece3_3509 crossref_primary_10_1111_mec_16363 crossref_primary_10_1111_ddi_13690 crossref_primary_10_1111_icad_12164 crossref_primary_10_55446_IJE_2024_1838 crossref_primary_10_1016_j_xgen_2024_100580 crossref_primary_10_1007_s10661_021_08917_2 crossref_primary_10_1038_s41598_019_44483_x crossref_primary_10_1007_s00262_020_02804_4 crossref_primary_10_1016_j_urolonc_2022_09_018 crossref_primary_10_3390_f14081636 crossref_primary_10_52547_jibs_9_2_193 crossref_primary_10_1111_1755_0998_14023 crossref_primary_10_3390_d16020085 crossref_primary_10_1007_s10641_019_00870_x crossref_primary_10_1002_ece3_4722 crossref_primary_10_1038_s41563_022_01464_2 crossref_primary_10_1007_s00184_018_0689_5 crossref_primary_10_1126_sciadv_adj6979 crossref_primary_10_1007_s00531_021_02003_1 crossref_primary_10_1088_1748_9326_ab9f7e crossref_primary_10_1111_ecog_06299 crossref_primary_10_1111_sjos_12293 crossref_primary_10_1139_cjb_2016_0184 crossref_primary_10_1186_s12898_020_00329_z crossref_primary_10_1016_j_foreco_2016_06_010 crossref_primary_10_1093_gigascience_giaa135 crossref_primary_10_1007_s42991_021_00152_z crossref_primary_10_1002_ece3_4178 crossref_primary_10_3390_f13071090 crossref_primary_10_1093_jme_tjac030 crossref_primary_10_1172_JCI145254 crossref_primary_10_1080_10402381_2018_1443179 crossref_primary_10_3389_fmars_2019_00115 crossref_primary_10_1017_S0030605320001222 crossref_primary_10_35378_gujs_554644 crossref_primary_10_7717_peerj_15766 crossref_primary_10_1126_sciadv_aau3114 crossref_primary_10_3389_fpls_2023_1159090 crossref_primary_10_1186_s13075_021_02711_8 crossref_primary_10_4049_jimmunol_2300201 crossref_primary_10_1007_s10955_018_2128_4 crossref_primary_10_1007_s11756_024_01668_8 crossref_primary_10_1111_nph_14249 crossref_primary_10_3389_fmars_2019_00129 crossref_primary_10_1038_s41586_022_04932_6 |
Cites_doi | 10.1017/S0031182097002230 10.2307/2531485 10.2307/2290733 10.1034/j.1600-0706.2000.890316.x 10.1214/aoms/1177698526 10.1080/00949650008812016 10.2307/2531532 10.1111/j.1574-6941.2006.00105.x 10.1098/rstb.1994.0091 10.2307/1411 10.1093/biomet/43.1-2.45 10.1080/10618600.2011.647174 10.1111/j.1541-0420.2011.01739.x 10.1016/j.csda.2011.01.017 10.2307/1936861 10.1093/biomet/65.3.625 10.1093/biomet/asq026 10.2307/1935358 10.1890/11-1952.1 10.1073/pnas.43.3.293 10.1111/j.1474-919X.2001.tb04942.x 10.1111/j.2005.0906-7590.04112.x 10.1080/01621459.1992.10475194 10.1046/j.1472-4642.2003.00027.x 10.2307/1941127 10.1111/j.1654-1103.2012.01423.x 10.2307/1935359 |
ContentType | Journal Article |
Copyright | Copyright © 2014 International Biometric Society 2014, The International Biometric Society 2014, The International Biometric Society. |
Copyright_xml | – notice: Copyright © 2014 International Biometric Society – notice: 2014, The International Biometric Society – notice: 2014, The International Biometric Society. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7S9 L.6 7X8 |
DOI | 10.1111/biom.12200 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA ProQuest Computer Science Collection MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 682 |
ExternalDocumentID | 3438832911 24945937 10_1111_biom_12200 BIOM12200 24538100 ark_67375_WNG_9T8RTRJ8_J US201500146308 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAPXW AAUAY AAZSN ABEJV ABMNT ABXSQ ABXVV ADACV AJAOE ALIPV BSCLL IPSME KOP OIG OJZSN ROX AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- AAYXX AHGBF AJBYB CITATION PHGZM PHGZT CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5440-c92f21267b79b821eb543b29363c5365144ea5631dc5e11b8dbcc99e794661bf3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 13:06:24 EDT 2025 Fri Jul 11 18:30:15 EDT 2025 Wed Aug 13 10:47:07 EDT 2025 Mon Jul 21 05:25:59 EDT 2025 Tue Jul 01 00:58:04 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Jan 22 16:55:57 EST 2025 Thu Jul 03 22:44:06 EDT 2025 Wed Oct 30 09:56:36 EDT 2024 Wed Dec 27 19:15:49 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Abundance data Good–Turing frequency formula Species richness Incidence data |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5440-c92f21267b79b821eb543b29363c5365144ea5631dc5e11b8dbcc99e794661bf3 |
Notes | http://dx.doi.org/10.1111/biom.12200 ArticleID:BIOM12200 ark:/67375/WNG-9T8RTRJ8-J istex:2EB4EC4F04742F6D59A887E757AFEF6EE31C3D54 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24945937 |
PQID | 1564016055 |
PQPubID | 35366 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1701359026 proquest_miscellaneous_1678547248 proquest_journals_1564016055 pubmed_primary_24945937 crossref_primary_10_1111_biom_12200 crossref_citationtrail_10_1111_biom_12200 wiley_primary_10_1111_biom_12200_BIOM12200 jstor_primary_24538100 istex_primary_ark_67375_WNG_9T8RTRJ8_J fao_agris_US201500146308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2014 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: September 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biom |
PublicationYear | 2014 |
Publisher | Blackwell Publishers Blackwell Publishing Ltd International Biometric Society |
Publisher_xml | – name: Blackwell Publishers – name: Blackwell Publishing Ltd – name: International Biometric Society |
References | Xu, H., Liu, S., Li, Y., Zang, R., and He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science 23, 1006-1012. Good, I. J. and Toulmin, G. H. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43, 45-63. Robbins, H. E. (1968). Estimating the total probability of the unobserved outcomes of an experiment. The Annals of Mathematical Statistics 39, 256-257. Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395-405. Chao, A. and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87, 210-217. Walther, B. A. and Martin, J.-L. (2001). Species richness estimation of bird communities: How to control for sampling effort? Ibis 143, 413-419. Royle, J. A. and Dorazio, R. M. (2008). Hierarchical Modelling and Inference in Ecology. Amsterdam: Academic Press. Foissner, W., Agatha, S., and Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5, 1-1459. Gotelli, N. J. and Colwell, R. K. (2011). Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment, A. Magurran and B. McGill (eds). pages 39-54. Oxford: Oxford University Press. Novotny, V. and Basset, Y. (2000). Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564-572. Chao, A. and Shen, T.-J. (2010). Program SPADE (Species Prediction and Diversity Estimation). Program and User's Guide published at chao.stat.nthu.edu.tw. Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783-791. Chao, A. and Chiu, C.-H. (2014). Estimation of species richness and shared species richness. To appear as an entry in Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences. NY: Wiley. Chao, A. and Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533-2547. Colwell, R. K. and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 345, 101-118. Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics 45, 395-413. Good, I. J. (2000). Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation 66, 101-111. MacArthur, R. H. (1957). On the relative abundances of bird species. Proceedings of the National Academy of Science of the United States of America 43, 193-295. Janzen, D. H. (1973a). Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions. Ecology 54, 659-686. Chao, A. and Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics 68, 912-921. Böhning, D., Baksh, M. F., Lerdsuwansri, R., and Gallagher, J. (2013). The use of the ratio-plot in capture-recapture estimation. Journal of Computational and Graphical Statistics 22, 133-155. Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270. Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell. Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264. Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927-936. Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology 72, 1512-1513. Wang, J. P. (2010). Estimating species richness by a Poisson-compound gamma model. Biometrika 97, 727-740. Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12, 42-58. Lanumteang, K. and Böhning, D. (2011). An extension of Chao's estimator of population size based on the first three capture frequency counts. Computational Statistics and Data Analysis 55, 2302-2311. Bunge, J. and Fitzpatrick, M. (1993). Estimating the number of species: A review. Journal of the American Statistical Association 88, 364-373. Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 625-633. Janzen, D. H. (1973b). Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687-708. Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P., and Lamont, B. B. (2003). Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions 9, 283-295. Walther, B. A. and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815-829. 2001; 143 2010; 97 1989; 45 2013; 22 2011 2010 2000; 89 1993; 88 2002; 5 2000; 66 1991; 72 1943; 12 2008 2011; 55 2004 1998; 116 2005; 28 2012; 93 1957; 43 1987; 43 1994; 345 1968; 39 1978; 65 1956; 43 1984; 11 1973a; 54 2003; 9 1953; 40 2014 1973b; 54 1992; 87 2012; 68 2012; 23 1979; 60 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_20_1 Chao A. (e_1_2_10_6_1) 1984; 11 Gotelli N. J. (e_1_2_10_21_1) 2011 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_14_1 e_1_2_10_7_1 Chao A. (e_1_2_10_8_1) 2014 e_1_2_10_15_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 Foissner W. (e_1_2_10_17_1) 2002; 5 Royle J. A. (e_1_2_10_30_1) 2008 e_1_2_10_29_1 Magurran A. E. (e_1_2_10_26_1) 2004 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 Chao A. (e_1_2_10_12_1) 2010 |
References_xml | – reference: Walther, B. A. and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815-829. – reference: Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12, 42-58. – reference: Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell. – reference: Chao, A. and Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533-2547. – reference: Bunge, J. and Fitzpatrick, M. (1993). Estimating the number of species: A review. Journal of the American Statistical Association 88, 364-373. – reference: Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270. – reference: Chao, A. and Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics 68, 912-921. – reference: Foissner, W., Agatha, S., and Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5, 1-1459. – reference: Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 625-633. – reference: Royle, J. A. and Dorazio, R. M. (2008). Hierarchical Modelling and Inference in Ecology. Amsterdam: Academic Press. – reference: Lanumteang, K. and Böhning, D. (2011). An extension of Chao's estimator of population size based on the first three capture frequency counts. Computational Statistics and Data Analysis 55, 2302-2311. – reference: Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395-405. – reference: Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927-936. – reference: Chao, A. and Shen, T.-J. (2010). Program SPADE (Species Prediction and Diversity Estimation). Program and User's Guide published at chao.stat.nthu.edu.tw. – reference: Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology 72, 1512-1513. – reference: Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics 45, 395-413. – reference: Gotelli, N. J. and Colwell, R. K. (2011). Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment, A. Magurran and B. McGill (eds). pages 39-54. Oxford: Oxford University Press. – reference: Janzen, D. H. (1973a). Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions. Ecology 54, 659-686. – reference: Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P., and Lamont, B. B. (2003). Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions 9, 283-295. – reference: Good, I. J. (2000). Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation 66, 101-111. – reference: Wang, J. P. (2010). Estimating species richness by a Poisson-compound gamma model. Biometrika 97, 727-740. – reference: Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783-791. – reference: Colwell, R. K. and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 345, 101-118. – reference: Chao, A. and Chiu, C.-H. (2014). Estimation of species richness and shared species richness. To appear as an entry in Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences. NY: Wiley. – reference: Chao, A. and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87, 210-217. – reference: Walther, B. A. and Martin, J.-L. (2001). Species richness estimation of bird communities: How to control for sampling effort? Ibis 143, 413-419. – reference: Xu, H., Liu, S., Li, Y., Zang, R., and He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science 23, 1006-1012. – reference: MacArthur, R. H. (1957). On the relative abundances of bird species. Proceedings of the National Academy of Science of the United States of America 43, 193-295. – reference: Robbins, H. E. (1968). Estimating the total probability of the unobserved outcomes of an experiment. The Annals of Mathematical Statistics 39, 256-257. – reference: Böhning, D., Baksh, M. F., Lerdsuwansri, R., and Gallagher, J. (2013). The use of the ratio-plot in capture-recapture estimation. Journal of Computational and Graphical Statistics 22, 133-155. – reference: Janzen, D. H. (1973b). Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687-708. – reference: Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264. – reference: Novotny, V. and Basset, Y. (2000). Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564-572. – reference: Good, I. J. and Toulmin, G. H. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43, 45-63. – volume: 11 start-page: 265 year: 1984 end-page: 270 article-title: Nonparametric estimation of the number of classes in a population publication-title: Scandinavian Journal of Statistics – year: 2014 article-title: Estimation of species richness and shared species richness publication-title: Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences – volume: 97 start-page: 727 year: 2010 end-page: 740 article-title: Estimating species richness by a Poisson‐compound gamma model publication-title: Biometrika – volume: 345 start-page: 101 year: 1994 end-page: 118 article-title: Estimating terrestrial biodiversity through extrapolation publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences – volume: 89 start-page: 564 year: 2000 end-page: 572 article-title: Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons publication-title: Oikos – year: 2008 publication-title: Hierarchical Modelling and Inference in Ecology – volume: 43 start-page: 783 year: 1987 end-page: 791 article-title: Estimating the population size for capture‐recapture data with unequal catchability publication-title: Biometrics – volume: 60 start-page: 927 year: 1979 end-page: 936 article-title: Robust estimation of population size when capture probabilities vary among animals publication-title: Ecology – volume: 40 start-page: 237 year: 1953 end-page: 264 article-title: The population frequencies of species and the estimation of population parameters publication-title: Biometrika – volume: 39 start-page: 256 year: 1968 end-page: 257 article-title: Estimating the total probability of the unobserved outcomes of an experiment publication-title: The Annals of Mathematical Statistics – volume: 88 start-page: 364 year: 1993 end-page: 373 article-title: Estimating the number of species: A review publication-title: Journal of the American Statistical Association – volume: 68 start-page: 912 year: 2012 end-page: 921 article-title: Nonparametric lower bounds for species richness and shared species richness under sampling without replacement publication-title: Biometrics – volume: 9 start-page: 283 year: 2003 end-page: 295 article-title: Performance of nonparametric species richness estimators in a high diversity plant community publication-title: Diversity and Distributions – volume: 54 start-page: 687 year: 1973b end-page: 708 article-title: Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity publication-title: Ecology – volume: 54 start-page: 659 year: 1973a end-page: 686 article-title: Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions publication-title: Ecology – year: 2004 publication-title: Measuring Biological Diversity – volume: 143 start-page: 413 year: 2001 end-page: 419 article-title: Species richness estimation of bird communities: How to control for sampling effort? publication-title: Ibis – volume: 87 start-page: 210 year: 1992 end-page: 217 article-title: Estimating the number of classes via sample coverage publication-title: Journal of the American Statistical Association – volume: 43 start-page: 193 year: 1957 end-page: 295 article-title: On the relative abundances of bird species publication-title: Proceedings of the National Academy of Science of the United States of America – volume: 43 start-page: 45 year: 1956 end-page: 63 article-title: The number of new species, and the increase in population coverage, when a sample is increased publication-title: Biometrika – volume: 28 start-page: 815 year: 2005 end-page: 829 article-title: The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance publication-title: Ecography – volume: 93 start-page: 2533 year: 2012 end-page: 2547 article-title: Coverage‐based rarefaction and extrapolation: Standardizing samples by completeness rather than size publication-title: Ecology – volume: 23 start-page: 1006 year: 2012 end-page: 1012 article-title: Assessing non‐parametric and area‐based methods for estimating regional species richness publication-title: Journal of Vegetation Science – volume: 65 start-page: 625 year: 1978 end-page: 633 article-title: Estimation of the size of a closed population when capture probabilities vary among animals publication-title: Biometrika – volume: 12 start-page: 42 year: 1943 end-page: 58 article-title: The relation between the number of species and the number of individuals in a random sample of an animal population publication-title: Journal of Animal Ecology – year: 2011 article-title: Estimating species richness publication-title: Biological Diversity: Frontiers in Measurement and Assessment – volume: 72 start-page: 1512 year: 1991 end-page: 1513 article-title: Estimating species richness: The second‐order jackknife reconsidered publication-title: Ecology – volume: 66 start-page: 101 year: 2000 end-page: 111 article-title: Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma publication-title: Journal of Statistical Computation and Simulation – volume: 55 start-page: 2302 year: 2011 end-page: 2311 article-title: An extension of Chao's estimator of population size based on the first three capture frequency counts publication-title: Computational Statistics and Data Analysis – volume: 5 start-page: 1 year: 2002 end-page: 1459 article-title: Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert publication-title: Denisia – year: 2010 publication-title: Program SPADE (Species Prediction and Diversity Estimation) – volume: 45 start-page: 395 year: 1989 end-page: 413 article-title: Log‐linear models for capture‐recapture publication-title: Biometrics – volume: 22 start-page: 133 year: 2013 end-page: 155 article-title: The use of the ratio‐plot in capture‐recapture estimation publication-title: Journal of Computational and Graphical Statistics – volume: 116 start-page: 395 year: 1998 end-page: 405 article-title: Comparative performance of species richness estimation methods publication-title: Parasitology – ident: e_1_2_10_33_1 doi: 10.1017/S0031182097002230 – year: 2014 ident: e_1_2_10_8_1 article-title: Estimation of species richness and shared species richness publication-title: Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences – ident: e_1_2_10_15_1 doi: 10.2307/2531485 – year: 2004 ident: e_1_2_10_26_1 publication-title: Measuring Biological Diversity – ident: e_1_2_10_3_1 doi: 10.2307/2290733 – ident: e_1_2_10_27_1 doi: 10.1034/j.1600-0706.2000.890316.x – ident: e_1_2_10_29_1 doi: 10.1214/aoms/1177698526 – volume: 11 start-page: 265 year: 1984 ident: e_1_2_10_6_1 article-title: Nonparametric estimation of the number of classes in a population publication-title: Scandinavian Journal of Statistics – ident: e_1_2_10_19_1 doi: 10.1080/00949650008812016 – ident: e_1_2_10_7_1 doi: 10.2307/2531532 – ident: e_1_2_10_18_1 doi: 10.1111/j.1574-6941.2006.00105.x – ident: e_1_2_10_14_1 doi: 10.1098/rstb.1994.0091 – ident: e_1_2_10_16_1 doi: 10.2307/1411 – ident: e_1_2_10_20_1 doi: 10.1093/biomet/43.1-2.45 – ident: e_1_2_10_2_1 doi: 10.1080/10618600.2011.647174 – ident: e_1_2_10_11_1 doi: 10.1111/j.1541-0420.2011.01739.x – ident: e_1_2_10_24_1 doi: 10.1016/j.csda.2011.01.017 – ident: e_1_2_10_5_1 doi: 10.2307/1936861 – ident: e_1_2_10_4_1 doi: 10.1093/biomet/65.3.625 – ident: e_1_2_10_34_1 doi: 10.1093/biomet/asq026 – year: 2010 ident: e_1_2_10_12_1 publication-title: Program SPADE (Species Prediction and Diversity Estimation) – volume: 5 start-page: 1 year: 2002 ident: e_1_2_10_17_1 article-title: Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert publication-title: Denisia – ident: e_1_2_10_22_1 doi: 10.2307/1935358 – ident: e_1_2_10_9_1 doi: 10.1890/11-1952.1 – year: 2011 ident: e_1_2_10_21_1 article-title: Estimating species richness publication-title: Biological Diversity: Frontiers in Measurement and Assessment – ident: e_1_2_10_25_1 doi: 10.1073/pnas.43.3.293 – ident: e_1_2_10_31_1 doi: 10.1111/j.1474-919X.2001.tb04942.x – year: 2008 ident: e_1_2_10_30_1 publication-title: Hierarchical Modelling and Inference in Ecology – ident: e_1_2_10_32_1 doi: 10.1111/j.2005.0906-7590.04112.x – ident: e_1_2_10_10_1 doi: 10.1080/01621459.1992.10475194 – ident: e_1_2_10_13_1 doi: 10.1046/j.1472-4642.2003.00027.x – ident: e_1_2_10_28_1 doi: 10.2307/1941127 – ident: e_1_2_10_35_1 doi: 10.1111/j.1654-1103.2012.01423.x – ident: e_1_2_10_23_1 doi: 10.2307/1935359 |
SSID | ssj0009502 |
Score | 2.5251932 |
Snippet | It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate... It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyperdiverse community. Practically, an accurate... Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an... It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate... Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 671 |
SubjectTerms | Abundance data Animals Biodiversity BIOMETRIC METHODOLOGY Biometrics biometry Biometry - methods Chaos theory Computer Simulation data collection Data Interpretation, Statistical Datasets Demography - methods Epidemiologic Methods Estimation bias Estimation methods Estimators Good-Turing frequency formula Heuristic Humans Incidence data Mathematical models Models, Statistical Point estimators Population Dynamics Sample Size Sampling bias Simulations Species diversity Species richness statistics Statistics, Nonparametric |
Title | improved nonparametric lower bound of species richness via a modified good–turing frequency formula |
URI | https://api.istex.fr/ark:/67375/WNG-9T8RTRJ8-J/fulltext.pdf https://www.jstor.org/stable/24538100 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12200 https://www.ncbi.nlm.nih.gov/pubmed/24945937 https://www.proquest.com/docview/1564016055 https://www.proquest.com/docview/1678547248 https://www.proquest.com/docview/1701359026 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qQagffDltG62yoggKOW6T3byAX6pYa-EqVA_viyy7m0179HqRexHrJ_-D_9Bf4szmEq9SCvotkElIZmdmn92deQbgqS7yKNOxC3NjylCkVoe5kzosoiS2jpdJz9HWQP8w2R-Ig6EcrsHLpham5odoN9zIM3y8JgfXZrbi5FSe3uURjjIGYErWIkR0FK0w7vZqqnBK7hJ8uOQmpTSeP49emI2ulbpCjErq_dakJ14GPC_iWD8R7d2Cz80v1Pknp93F3HTt97_YHf_3H2_DzSVCZbu1Sd2BNTfpwPW6Z-V5B270W6LXWQc2CKzWXM934WR3wkZ-k8IVbFJNiFb8jDp2WTamZmzMUA8nVpWM6jtxic7w1gnFWvZ1pJlmZ1UxKhETs-OqKn79-Dn3NZSsnNb53ueMEPZirO_BYO_Nx9f74bKTQ2glHR7bPCpxjkxSk-Ymi7gzUsQGkQYahMShw1Wd0zKJeWGl49xkhbE2z51nv-emjDdhHT_bbQNDACM4T0yBE6mwuF7UvESrMj2ui8gmNoDnzYgqu6Q5p24bY9Usd0ipyis1gCet7Jea3ONSqW00DKWPMeqqwYeI9oiIcifuZQE889bSPq2np5Qpl0r16fCtyql68OggUwcBbHpzagUjIYlbDV--09iXWkaPmSICH2L-kzKAx-1t9Hs6zNETVy1QBlGGFGkksitkUgT4xM-TBLBV2-7KB-RCIjYN4IW3wCsUoF69e9_3V_f_RfgBbKCuRJ2QtwPr8-nCPUQENzePvKf-Br52PmU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbYEGJ84KUwFhhgBEICKVWd2Hn5OBCjK2uRxqr1m2U7zlatS1BfEOMT_4F_yC_hzklDh6ZJ8C1SLlFyvrMfn--eI-SlytIgUaH1U61zn8dG-akVys-CKDSW5VHHYmigP4i6Q94biVGdm4O1MBU_RBNwQ89w8zU6OAakV7wc69PbLIBhXiPXsaW321EdBCucu52KLBzTuzgb1eykmMjz59kL69FarkpAqajgb8sExcug50Uk65ai3TtVv9WZYzDEDJTT9mKu2-b7X_yO__2Xd8ntGqTSncqq7pFrtmiRG1XbyvMWudVvuF5nLbKBeLWie75PTnYKOnZxCpvRoiyQWfwMm3YZOsF-bFRjGyda5hRLPGGXTuHWCU639OtYUUXPymycAyymx2WZ_frxc-7KKGk-rVK-zymC7MVEPSDD3feH77p-3czBNwLPj00a5LBMRrGOU50EzGrBQw1gA2xChDB6nFslopBlRljGdJJpY9LUOgJ8pvNwk6zDZ9stQgHDcMYincFayg1sGRXLwbB0h6ksMJHxyOvlkEpTM51jw42JXO54UKnSKdUjLxrZLxW_x6VSW2AZUh3DxCuHnwMMEyHrTthJPPLKmUvztJqeYrJcLOTR4INMsYDwoJfInkc2nT01ggEXSK8GL99eGpisJ5CZRA4fJP8TwiPPm9vg-nieowpbLkAGgIbgccCTK2RiwPhI0RN55GFlvCsfkHIB8NQjb5wJXqEA-XbvU99dPfoX4WfkZvewvy_39wYfH5MN0Buv8vO2yfp8urBPANDN9VPntr8Bh0FCgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RaDywCVQaiiwCIQEUqKsveuLxEuhhLaQgAoReUGr3fW6jZrGVZogyhP_wB_yJczYsUlRVQneLHls2eMzu2fXM2cAnug08WMduGZiTNYUkdXNxEndTP0wsI5nYdvR1kC3F273xe5ADpbgRVULU-pD1BtuFBnFeE0BfpxmC0FO5ekt7uNXXoZLImzHhOmtPX9BcrddaoVTdpfgg7k4KeXx_Ln2zHS0nOkcSSr591uVn3ge8zxLZIuZqHMdvlTvUCagHLZmU9Oy3_-Sd_zfl7wB1-YUlW2WmLoJS27cgMtl08rTBlzt1kqvJw1YJbZaij3fgoPNMRsWuxQuZeN8TLriR9Syy7IRdWNjhpo4sTxjVOCJa3SGpw5osGVfh5ppdpSnwwxJMdvP8_TXj5_TooiSZZMy4fuUEcWejfRt6Hdef3q13Zy3cmhaSX-PbeJnOEmGkYkSE_vcGSkCg1QDESGDEFmbcFqGAU-tdJybODXWJokr5O-5yYI1WMHHduvAkMEIzkOT4kwqLC4YNc8QVqbNderb0HrwrPqiys51zqndxkhV6x1yqiqc6sHj2va4VPc412odgaH0Pg67qv_Rp00i0twJ2rEHTwu01FfrySGlykVSfe69UQmVD-7txmrXg7UCTrWhLySJq-HNNyp8qfnwcaJIwYek_6T04FF9GgOf_ubosctnaIM0Q4rIF_EFNhEyfBLoCT24U2J34QESIZGcevC8QOAFDlAvd953i6O7_2L8EK582Oqodzu9t_dgFd0myuS8DViZTmbuPrK5qXlQBO1vp6dBOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+nonparametric+lower+bound+of+species+richness+via+a+modified+good-turing+frequency+formula&rft.jtitle=Biometrics&rft.au=Chiu%2C+Chun-Huo&rft.au=Wang%2C+Yi-Ting&rft.au=Walther%2C+Bruno+A&rft.au=Chao%2C+Anne&rft.date=2014-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=70&rft.issue=3&rft.spage=671&rft_id=info:doi/10.1111%2Fbiom.12200&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3438832911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |