improved nonparametric lower bound of species richness via a modified good–turing frequency formula

It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 70; no. 3; pp. 671 - 682
Main Authors Chiu, Chun‐Huo, Wang, Yi‐Ting, Walther, Bruno A, Chao, Anne
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishers 01.09.2014
Blackwell Publishing Ltd
International Biometric Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.
AbstractList It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyperdiverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.
Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. [PUBLICATION ABSTRACT]
Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for individual‐based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive an approximate formula for the first‐order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators.
Author Chao, Anne
Wang, Yi-Ting
Chiu, Chun-Huo
Walther, Bruno A.
Author_xml – sequence: 1
  fullname: Chiu, Chun‐Huo
– sequence: 2
  fullname: Wang, Yi‐Ting
– sequence: 3
  fullname: Walther, Bruno A
– sequence: 4
  fullname: Chao, Anne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24945937$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFDXvAEhuElOLrvyTLUkFpVVqpTAU7y3GcwUMSD3bSMjvegTfkSXCbtkJVBd5Y1vnO0b0-W2ij971F6CmQHUjnTeV8twOUEvIAzUBwyAinZAPNCCEyYxy-bKKtGJfpWQpCH6FNyksuSpbPkHXdKvhzW-MUutJBd3YIzuDWX9iAKz_2NfYNjitrnI04SV97GyM-dxpr3PnaNS6ZF97Xv3_-Gsbg-gVugv0-2t6sceNDN7b6MXrY6DbaJ9f3Njp7_26-9yE7Otk_2Ns9yozgnGSmpA0FKvMqL6uCgq0EZxUtmWRGMCmAc6uFZFAbYQGqoq6MKUubl1xKqBq2jV5NuWmnNEEcVOeisW2re-vHqCAnwERJqPw_KvNC8JzyIqEv76BLP4Y-LaJASE5AEiES9fyaGqvO1moVXKfDWt38dQJeT4AJPsZgm1sEiLosUl0Wqa6KTDC5Axs36MH5fgjatfdbYLJcuNau_xGu3h6cfLzxPJs8yzj48NfMghVwpWeT7uJgf9zqOnxTMme5UJ-P91U5L07np4eFOkz8i4lvtFd6EVxUZ58oAUEIcMlIwf4Av87RvQ
CODEN BIOMA5
CitedBy_id crossref_primary_10_1111_jen_12429
crossref_primary_10_5897_JENE2024_0974
crossref_primary_10_1007_s11252_023_01464_3
crossref_primary_10_1080_00365521_2019_1624815
crossref_primary_10_1007_s10493_015_9954_8
crossref_primary_10_1111_icad_12768
crossref_primary_10_1186_s40168_017_0255_9
crossref_primary_10_1111_2041_210X_12349
crossref_primary_10_1084_jem_20161784
crossref_primary_10_1111_jse_12740
crossref_primary_10_1371_journal_pone_0130262
crossref_primary_10_1111_ddi_12972
crossref_primary_10_1002_eap_2862
crossref_primary_10_1111_geb_12577
crossref_primary_10_1111_jbi_12911
crossref_primary_10_1002_ece3_2463
crossref_primary_10_1016_j_marmicro_2016_05_001
crossref_primary_10_1038_s41598_023_27945_1
crossref_primary_10_1002_ecy_2000
crossref_primary_10_3390_d13090440
crossref_primary_10_1093_plankt_fby005
crossref_primary_10_1158_1078_0432_CCR_19_2244
crossref_primary_10_1145_3210309
crossref_primary_10_1007_s11274_024_04133_5
crossref_primary_10_13158_heia_32_2_2019_269
crossref_primary_10_3389_fmicb_2018_01909
crossref_primary_10_1214_22_EJS2072
crossref_primary_10_1371_journal_pbio_3000106
crossref_primary_10_1073_pnas_2002554117
crossref_primary_10_1038_s41598_018_20622_8
crossref_primary_10_1093_femsle_fnac079
crossref_primary_10_7717_peerj_15454
crossref_primary_10_1073_pnas_2115329119
crossref_primary_10_3389_fevo_2022_740371
crossref_primary_10_17221_11_2018_PPS
crossref_primary_10_1111_2041_210X_12247
crossref_primary_10_1111_oik_08265
crossref_primary_10_4039_tce_2024_26
crossref_primary_10_1038_s41564_019_0449_y
crossref_primary_10_3897_BDJ_8_e50124
crossref_primary_10_1016_j_heliyon_2025_e41821
crossref_primary_10_3390_insects14110861
crossref_primary_10_3390_f14101991
crossref_primary_10_1016_j_apsoil_2019_09_009
crossref_primary_10_1038_s41598_021_87017_0
crossref_primary_10_32011_txjsci_76_1_Article2
crossref_primary_10_1016_j_foreco_2021_119863
crossref_primary_10_1656_045_030_0409
crossref_primary_10_1186_s12903_024_04675_y
crossref_primary_10_1038_sdata_2019_7
crossref_primary_10_3390_d16090589
crossref_primary_10_2903_sp_efsa_2025_EN_9186
crossref_primary_10_3389_fmars_2021_656899
crossref_primary_10_1038_nmicrobiol_2016_180
crossref_primary_10_48027_hnb_46_043
crossref_primary_10_1002_lol2_10189
crossref_primary_10_3389_fimmu_2017_01859
crossref_primary_10_1111_btp_12772
crossref_primary_10_3390_f11040427
crossref_primary_10_1111_cobi_13043
crossref_primary_10_1038_s41467_020_18758_1
crossref_primary_10_1007_s10260_016_0358_7
crossref_primary_10_3897_mycokeys_16_9646
crossref_primary_10_1016_j_rbe_2018_09_002
crossref_primary_10_1093_plankt_fbac034
crossref_primary_10_5194_bg_17_865_2020
crossref_primary_10_1007_s11252_023_01455_4
crossref_primary_10_1016_j_isci_2023_108661
crossref_primary_10_3897_afrinvertebr_66_138414
crossref_primary_10_1016_j_ecoinf_2016_04_004
crossref_primary_10_1093_jrsssc_qlaf005
crossref_primary_10_1111_gcb_14838
crossref_primary_10_1111_ecog_03860
crossref_primary_10_1158_2326_6066_CIR_20_0398
crossref_primary_10_7717_peerj_1634
crossref_primary_10_1038_s41467_021_26069_2
crossref_primary_10_1016_j_marenvres_2023_105897
crossref_primary_10_3897_zookeys_1147_93824
crossref_primary_10_1016_j_biocon_2022_109846
crossref_primary_10_1002_bimj_201900185
crossref_primary_10_3390_d16090557
crossref_primary_10_1111_2041_210X_13378
crossref_primary_10_1007_s10651_015_0318_7
crossref_primary_10_1111_icad_12540
crossref_primary_10_1186_s12898_017_0155_7
crossref_primary_10_1126_science_abl7655
crossref_primary_10_1002_2688_8319_70017
crossref_primary_10_1093_jee_toz338
crossref_primary_10_1111_ele_13820
crossref_primary_10_3389_fmicb_2017_00752
crossref_primary_10_1007_s11538_023_01190_z
crossref_primary_10_1016_j_gecco_2018_e00492
crossref_primary_10_1002_ecy_2427
crossref_primary_10_1016_j_hal_2024_102795
crossref_primary_10_1007_s11756_021_00884_w
crossref_primary_10_3390_math11173775
crossref_primary_10_1111_1755_0998_12900
crossref_primary_10_1002_ecs2_4363
crossref_primary_10_1080_01647954_2024_2323533
crossref_primary_10_1016_j_adro_2021_100857
crossref_primary_10_1080_21501203_2018_1481153
crossref_primary_10_7717_peerj_14540
crossref_primary_10_3390_d13110524
crossref_primary_10_1016_j_agee_2019_106740
crossref_primary_10_1016_j_immuni_2023_08_011
crossref_primary_10_1111_jbi_13501
crossref_primary_10_1111_2041_210X_12986
crossref_primary_10_1016_j_foreco_2021_119319
crossref_primary_10_1111_ecog_05172
crossref_primary_10_3389_fmars_2021_694846
crossref_primary_10_1016_j_rama_2024_08_022
crossref_primary_10_1111_jse_12583
crossref_primary_10_1080_00222933_2021_1943030
crossref_primary_10_3354_ame01829
crossref_primary_10_1007_s43621_024_00331_1
crossref_primary_10_1016_j_marmicro_2023_102257
crossref_primary_10_1590_0001_3765202320200927
crossref_primary_10_1515_biol_2022_0791
crossref_primary_10_3390_ecologies5040033
crossref_primary_10_3390_pathogens12070971
crossref_primary_10_3897_phytokeys_175_61467
crossref_primary_10_3390_microorganisms10050874
crossref_primary_10_1038_s41564_023_01573_x
crossref_primary_10_1371_journal_pone_0159195
crossref_primary_10_1649_0010_065X_74_2_351
crossref_primary_10_4049_jimmunol_1901297
crossref_primary_10_1016_j_margen_2016_01_005
crossref_primary_10_1371_journal_pone_0162803
crossref_primary_10_3389_fmicb_2021_734782
crossref_primary_10_1111_2041_210X_13979
crossref_primary_10_3390_ani11010186
crossref_primary_10_1186_s40793_024_00590_5
crossref_primary_10_1111_2041_210X_14146
crossref_primary_10_1186_s40663_019_0193_z
crossref_primary_10_1002_ecy_2174
crossref_primary_10_1111_nph_17033
crossref_primary_10_1093_ee_nvv221
crossref_primary_10_1038_ncomms9452
crossref_primary_10_3390_agrochemicals2020018
crossref_primary_10_1016_j_watres_2019_114893
crossref_primary_10_3354_meps14644
crossref_primary_10_1007_s10530_019_02165_9
crossref_primary_10_1016_j_geoderma_2020_114201
crossref_primary_10_1016_j_ecolind_2020_106135
crossref_primary_10_1007_s10342_019_01191_5
crossref_primary_10_1093_ee_nvab051
crossref_primary_10_1111_oik_08650
crossref_primary_10_1002_edn3_244
crossref_primary_10_3390_f15061056
crossref_primary_10_7717_peerj_18145
crossref_primary_10_1093_jeb_voae085
crossref_primary_10_1007_s10641_023_01438_6
crossref_primary_10_1016_j_spl_2021_109154
crossref_primary_10_1007_s11274_023_03678_1
crossref_primary_10_1002_ece3_3509
crossref_primary_10_1111_mec_16363
crossref_primary_10_1111_ddi_13690
crossref_primary_10_1111_icad_12164
crossref_primary_10_55446_IJE_2024_1838
crossref_primary_10_1016_j_xgen_2024_100580
crossref_primary_10_1007_s10661_021_08917_2
crossref_primary_10_1038_s41598_019_44483_x
crossref_primary_10_1007_s00262_020_02804_4
crossref_primary_10_1016_j_urolonc_2022_09_018
crossref_primary_10_3390_f14081636
crossref_primary_10_52547_jibs_9_2_193
crossref_primary_10_1111_1755_0998_14023
crossref_primary_10_3390_d16020085
crossref_primary_10_1007_s10641_019_00870_x
crossref_primary_10_1002_ece3_4722
crossref_primary_10_1038_s41563_022_01464_2
crossref_primary_10_1007_s00184_018_0689_5
crossref_primary_10_1126_sciadv_adj6979
crossref_primary_10_1007_s00531_021_02003_1
crossref_primary_10_1088_1748_9326_ab9f7e
crossref_primary_10_1111_ecog_06299
crossref_primary_10_1111_sjos_12293
crossref_primary_10_1139_cjb_2016_0184
crossref_primary_10_1186_s12898_020_00329_z
crossref_primary_10_1016_j_foreco_2016_06_010
crossref_primary_10_1093_gigascience_giaa135
crossref_primary_10_1007_s42991_021_00152_z
crossref_primary_10_1002_ece3_4178
crossref_primary_10_3390_f13071090
crossref_primary_10_1093_jme_tjac030
crossref_primary_10_1172_JCI145254
crossref_primary_10_1080_10402381_2018_1443179
crossref_primary_10_3389_fmars_2019_00115
crossref_primary_10_1017_S0030605320001222
crossref_primary_10_35378_gujs_554644
crossref_primary_10_7717_peerj_15766
crossref_primary_10_1126_sciadv_aau3114
crossref_primary_10_3389_fpls_2023_1159090
crossref_primary_10_1186_s13075_021_02711_8
crossref_primary_10_4049_jimmunol_2300201
crossref_primary_10_1007_s10955_018_2128_4
crossref_primary_10_1007_s11756_024_01668_8
crossref_primary_10_1111_nph_14249
crossref_primary_10_3389_fmars_2019_00129
crossref_primary_10_1038_s41586_022_04932_6
Cites_doi 10.1017/S0031182097002230
10.2307/2531485
10.2307/2290733
10.1034/j.1600-0706.2000.890316.x
10.1214/aoms/1177698526
10.1080/00949650008812016
10.2307/2531532
10.1111/j.1574-6941.2006.00105.x
10.1098/rstb.1994.0091
10.2307/1411
10.1093/biomet/43.1-2.45
10.1080/10618600.2011.647174
10.1111/j.1541-0420.2011.01739.x
10.1016/j.csda.2011.01.017
10.2307/1936861
10.1093/biomet/65.3.625
10.1093/biomet/asq026
10.2307/1935358
10.1890/11-1952.1
10.1073/pnas.43.3.293
10.1111/j.1474-919X.2001.tb04942.x
10.1111/j.2005.0906-7590.04112.x
10.1080/01621459.1992.10475194
10.1046/j.1472-4642.2003.00027.x
10.2307/1941127
10.1111/j.1654-1103.2012.01423.x
10.2307/1935359
ContentType Journal Article
Copyright Copyright © 2014 International Biometric Society
2014, The International Biometric Society
2014, The International Biometric Society.
Copyright_xml – notice: Copyright © 2014 International Biometric Society
– notice: 2014, The International Biometric Society
– notice: 2014, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
DOI 10.1111/biom.12200
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
ProQuest Computer Science Collection

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 682
ExternalDocumentID 3438832911
24945937
10_1111_biom_12200
BIOM12200
24538100
ark_67375_WNG_9T8RTRJ8_J
US201500146308
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7S9
L.6
7X8
ID FETCH-LOGICAL-c5440-c92f21267b79b821eb543b29363c5365144ea5631dc5e11b8dbcc99e794661bf3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 13:06:24 EDT 2025
Fri Jul 11 18:30:15 EDT 2025
Wed Aug 13 10:47:07 EDT 2025
Mon Jul 21 05:25:59 EDT 2025
Tue Jul 01 00:58:04 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Jan 22 16:55:57 EST 2025
Thu Jul 03 22:44:06 EDT 2025
Wed Oct 30 09:56:36 EDT 2024
Wed Dec 27 19:15:49 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Abundance data
Good–Turing frequency formula
Species richness
Incidence data
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5440-c92f21267b79b821eb543b29363c5365144ea5631dc5e11b8dbcc99e794661bf3
Notes http://dx.doi.org/10.1111/biom.12200
ArticleID:BIOM12200
ark:/67375/WNG-9T8RTRJ8-J
istex:2EB4EC4F04742F6D59A887E757AFEF6EE31C3D54
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24945937
PQID 1564016055
PQPubID 35366
PageCount 12
ParticipantIDs proquest_miscellaneous_1701359026
proquest_miscellaneous_1678547248
proquest_journals_1564016055
pubmed_primary_24945937
crossref_primary_10_1111_biom_12200
crossref_citationtrail_10_1111_biom_12200
wiley_primary_10_1111_biom_12200_BIOM12200
jstor_primary_24538100
istex_primary_ark_67375_WNG_9T8RTRJ8_J
fao_agris_US201500146308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2014
Publisher Blackwell Publishers
Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishers
– name: Blackwell Publishing Ltd
– name: International Biometric Society
References Xu, H., Liu, S., Li, Y., Zang, R., and He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science 23, 1006-1012.
Good, I. J. and Toulmin, G. H. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43, 45-63.
Robbins, H. E. (1968). Estimating the total probability of the unobserved outcomes of an experiment. The Annals of Mathematical Statistics 39, 256-257.
Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395-405.
Chao, A. and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87, 210-217.
Walther, B. A. and Martin, J.-L. (2001). Species richness estimation of bird communities: How to control for sampling effort? Ibis 143, 413-419.
Royle, J. A. and Dorazio, R. M. (2008). Hierarchical Modelling and Inference in Ecology. Amsterdam: Academic Press.
Foissner, W., Agatha, S., and Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5, 1-1459.
Gotelli, N. J. and Colwell, R. K. (2011). Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment, A. Magurran and B. McGill (eds). pages 39-54. Oxford: Oxford University Press.
Novotny, V. and Basset, Y. (2000). Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564-572.
Chao, A. and Shen, T.-J. (2010). Program SPADE (Species Prediction and Diversity Estimation). Program and User's Guide published at chao.stat.nthu.edu.tw.
Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783-791.
Chao, A. and Chiu, C.-H. (2014). Estimation of species richness and shared species richness. To appear as an entry in Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences. NY: Wiley.
Chao, A. and Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533-2547.
Colwell, R. K. and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 345, 101-118.
Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics 45, 395-413.
Good, I. J. (2000). Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation 66, 101-111.
MacArthur, R. H. (1957). On the relative abundances of bird species. Proceedings of the National Academy of Science of the United States of America 43, 193-295.
Janzen, D. H. (1973a). Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions. Ecology 54, 659-686.
Chao, A. and Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics 68, 912-921.
Böhning, D., Baksh, M. F., Lerdsuwansri, R., and Gallagher, J. (2013). The use of the ratio-plot in capture-recapture estimation. Journal of Computational and Graphical Statistics 22, 133-155.
Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270.
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell.
Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.
Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927-936.
Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology 72, 1512-1513.
Wang, J. P. (2010). Estimating species richness by a Poisson-compound gamma model. Biometrika 97, 727-740.
Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12, 42-58.
Lanumteang, K. and Böhning, D. (2011). An extension of Chao's estimator of population size based on the first three capture frequency counts. Computational Statistics and Data Analysis 55, 2302-2311.
Bunge, J. and Fitzpatrick, M. (1993). Estimating the number of species: A review. Journal of the American Statistical Association 88, 364-373.
Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 625-633.
Janzen, D. H. (1973b). Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687-708.
Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P., and Lamont, B. B. (2003). Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions 9, 283-295.
Walther, B. A. and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815-829.
2001; 143
2010; 97
1989; 45
2013; 22
2011
2010
2000; 89
1993; 88
2002; 5
2000; 66
1991; 72
1943; 12
2008
2011; 55
2004
1998; 116
2005; 28
2012; 93
1957; 43
1987; 43
1994; 345
1968; 39
1978; 65
1956; 43
1984; 11
1973a; 54
2003; 9
1953; 40
2014
1973b; 54
1992; 87
2012; 68
2012; 23
1979; 60
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_20_1
Chao A. (e_1_2_10_6_1) 1984; 11
Gotelli N. J. (e_1_2_10_21_1) 2011
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_14_1
e_1_2_10_7_1
Chao A. (e_1_2_10_8_1) 2014
e_1_2_10_15_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
Foissner W. (e_1_2_10_17_1) 2002; 5
Royle J. A. (e_1_2_10_30_1) 2008
e_1_2_10_29_1
Magurran A. E. (e_1_2_10_26_1) 2004
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
Chao A. (e_1_2_10_12_1) 2010
References_xml – reference: Walther, B. A. and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815-829.
– reference: Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12, 42-58.
– reference: Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell.
– reference: Chao, A. and Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533-2547.
– reference: Bunge, J. and Fitzpatrick, M. (1993). Estimating the number of species: A review. Journal of the American Statistical Association 88, 364-373.
– reference: Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265-270.
– reference: Chao, A. and Lin, C.-W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics 68, 912-921.
– reference: Foissner, W., Agatha, S., and Berger, H. (2002). Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5, 1-1459.
– reference: Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 625-633.
– reference: Royle, J. A. and Dorazio, R. M. (2008). Hierarchical Modelling and Inference in Ecology. Amsterdam: Academic Press.
– reference: Lanumteang, K. and Böhning, D. (2011). An extension of Chao's estimator of population size based on the first three capture frequency counts. Computational Statistics and Data Analysis 55, 2302-2311.
– reference: Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395-405.
– reference: Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927-936.
– reference: Chao, A. and Shen, T.-J. (2010). Program SPADE (Species Prediction and Diversity Estimation). Program and User's Guide published at chao.stat.nthu.edu.tw.
– reference: Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology 72, 1512-1513.
– reference: Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics 45, 395-413.
– reference: Gotelli, N. J. and Colwell, R. K. (2011). Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment, A. Magurran and B. McGill (eds). pages 39-54. Oxford: Oxford University Press.
– reference: Janzen, D. H. (1973a). Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions. Ecology 54, 659-686.
– reference: Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P., and Lamont, B. B. (2003). Performance of nonparametric species richness estimators in a high diversity plant community. Diversity and Distributions 9, 283-295.
– reference: Good, I. J. (2000). Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation 66, 101-111.
– reference: Wang, J. P. (2010). Estimating species richness by a Poisson-compound gamma model. Biometrika 97, 727-740.
– reference: Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783-791.
– reference: Colwell, R. K. and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 345, 101-118.
– reference: Chao, A. and Chiu, C.-H. (2014). Estimation of species richness and shared species richness. To appear as an entry in Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences. NY: Wiley.
– reference: Chao, A. and Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87, 210-217.
– reference: Walther, B. A. and Martin, J.-L. (2001). Species richness estimation of bird communities: How to control for sampling effort? Ibis 143, 413-419.
– reference: Xu, H., Liu, S., Li, Y., Zang, R., and He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science 23, 1006-1012.
– reference: MacArthur, R. H. (1957). On the relative abundances of bird species. Proceedings of the National Academy of Science of the United States of America 43, 193-295.
– reference: Robbins, H. E. (1968). Estimating the total probability of the unobserved outcomes of an experiment. The Annals of Mathematical Statistics 39, 256-257.
– reference: Böhning, D., Baksh, M. F., Lerdsuwansri, R., and Gallagher, J. (2013). The use of the ratio-plot in capture-recapture estimation. Journal of Computational and Graphical Statistics 22, 133-155.
– reference: Janzen, D. H. (1973b). Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687-708.
– reference: Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.
– reference: Novotny, V. and Basset, Y. (2000). Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564-572.
– reference: Good, I. J. and Toulmin, G. H. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43, 45-63.
– volume: 11
  start-page: 265
  year: 1984
  end-page: 270
  article-title: Nonparametric estimation of the number of classes in a population
  publication-title: Scandinavian Journal of Statistics
– year: 2014
  article-title: Estimation of species richness and shared species richness
  publication-title: Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences
– volume: 97
  start-page: 727
  year: 2010
  end-page: 740
  article-title: Estimating species richness by a Poisson‐compound gamma model
  publication-title: Biometrika
– volume: 345
  start-page: 101
  year: 1994
  end-page: 118
  article-title: Estimating terrestrial biodiversity through extrapolation
  publication-title: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences
– volume: 89
  start-page: 564
  year: 2000
  end-page: 572
  article-title: Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons
  publication-title: Oikos
– year: 2008
  publication-title: Hierarchical Modelling and Inference in Ecology
– volume: 43
  start-page: 783
  year: 1987
  end-page: 791
  article-title: Estimating the population size for capture‐recapture data with unequal catchability
  publication-title: Biometrics
– volume: 60
  start-page: 927
  year: 1979
  end-page: 936
  article-title: Robust estimation of population size when capture probabilities vary among animals
  publication-title: Ecology
– volume: 40
  start-page: 237
  year: 1953
  end-page: 264
  article-title: The population frequencies of species and the estimation of population parameters
  publication-title: Biometrika
– volume: 39
  start-page: 256
  year: 1968
  end-page: 257
  article-title: Estimating the total probability of the unobserved outcomes of an experiment
  publication-title: The Annals of Mathematical Statistics
– volume: 88
  start-page: 364
  year: 1993
  end-page: 373
  article-title: Estimating the number of species: A review
  publication-title: Journal of the American Statistical Association
– volume: 68
  start-page: 912
  year: 2012
  end-page: 921
  article-title: Nonparametric lower bounds for species richness and shared species richness under sampling without replacement
  publication-title: Biometrics
– volume: 9
  start-page: 283
  year: 2003
  end-page: 295
  article-title: Performance of nonparametric species richness estimators in a high diversity plant community
  publication-title: Diversity and Distributions
– volume: 54
  start-page: 687
  year: 1973b
  end-page: 708
  article-title: Sweep samples of tropical foliage insects: Effects of seasons, vegetation types, elevation, time of day, and insularity
  publication-title: Ecology
– volume: 54
  start-page: 659
  year: 1973a
  end-page: 686
  article-title: Sweep samples of tropical foliage insects: Description of study sites, with data on species abundances and size distributions
  publication-title: Ecology
– year: 2004
  publication-title: Measuring Biological Diversity
– volume: 143
  start-page: 413
  year: 2001
  end-page: 419
  article-title: Species richness estimation of bird communities: How to control for sampling effort?
  publication-title: Ibis
– volume: 87
  start-page: 210
  year: 1992
  end-page: 217
  article-title: Estimating the number of classes via sample coverage
  publication-title: Journal of the American Statistical Association
– volume: 43
  start-page: 193
  year: 1957
  end-page: 295
  article-title: On the relative abundances of bird species
  publication-title: Proceedings of the National Academy of Science of the United States of America
– volume: 43
  start-page: 45
  year: 1956
  end-page: 63
  article-title: The number of new species, and the increase in population coverage, when a sample is increased
  publication-title: Biometrika
– volume: 28
  start-page: 815
  year: 2005
  end-page: 829
  article-title: The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance
  publication-title: Ecography
– volume: 93
  start-page: 2533
  year: 2012
  end-page: 2547
  article-title: Coverage‐based rarefaction and extrapolation: Standardizing samples by completeness rather than size
  publication-title: Ecology
– volume: 23
  start-page: 1006
  year: 2012
  end-page: 1012
  article-title: Assessing non‐parametric and area‐based methods for estimating regional species richness
  publication-title: Journal of Vegetation Science
– volume: 65
  start-page: 625
  year: 1978
  end-page: 633
  article-title: Estimation of the size of a closed population when capture probabilities vary among animals
  publication-title: Biometrika
– volume: 12
  start-page: 42
  year: 1943
  end-page: 58
  article-title: The relation between the number of species and the number of individuals in a random sample of an animal population
  publication-title: Journal of Animal Ecology
– year: 2011
  article-title: Estimating species richness
  publication-title: Biological Diversity: Frontiers in Measurement and Assessment
– volume: 72
  start-page: 1512
  year: 1991
  end-page: 1513
  article-title: Estimating species richness: The second‐order jackknife reconsidered
  publication-title: Ecology
– volume: 66
  start-page: 101
  year: 2000
  end-page: 111
  article-title: Turing's anticipation of empirical bayes in connection with the cryptanalysis of the naval enigma
  publication-title: Journal of Statistical Computation and Simulation
– volume: 55
  start-page: 2302
  year: 2011
  end-page: 2311
  article-title: An extension of Chao's estimator of population size based on the first three capture frequency counts
  publication-title: Computational Statistics and Data Analysis
– volume: 5
  start-page: 1
  year: 2002
  end-page: 1459
  article-title: Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert
  publication-title: Denisia
– year: 2010
  publication-title: Program SPADE (Species Prediction and Diversity Estimation)
– volume: 45
  start-page: 395
  year: 1989
  end-page: 413
  article-title: Log‐linear models for capture‐recapture
  publication-title: Biometrics
– volume: 22
  start-page: 133
  year: 2013
  end-page: 155
  article-title: The use of the ratio‐plot in capture‐recapture estimation
  publication-title: Journal of Computational and Graphical Statistics
– volume: 116
  start-page: 395
  year: 1998
  end-page: 405
  article-title: Comparative performance of species richness estimation methods
  publication-title: Parasitology
– ident: e_1_2_10_33_1
  doi: 10.1017/S0031182097002230
– year: 2014
  ident: e_1_2_10_8_1
  article-title: Estimation of species richness and shared species richness
  publication-title: Handbook of Methods and Applications of Statistics in the Atmospheric and Earth Sciences
– ident: e_1_2_10_15_1
  doi: 10.2307/2531485
– year: 2004
  ident: e_1_2_10_26_1
  publication-title: Measuring Biological Diversity
– ident: e_1_2_10_3_1
  doi: 10.2307/2290733
– ident: e_1_2_10_27_1
  doi: 10.1034/j.1600-0706.2000.890316.x
– ident: e_1_2_10_29_1
  doi: 10.1214/aoms/1177698526
– volume: 11
  start-page: 265
  year: 1984
  ident: e_1_2_10_6_1
  article-title: Nonparametric estimation of the number of classes in a population
  publication-title: Scandinavian Journal of Statistics
– ident: e_1_2_10_19_1
  doi: 10.1080/00949650008812016
– ident: e_1_2_10_7_1
  doi: 10.2307/2531532
– ident: e_1_2_10_18_1
  doi: 10.1111/j.1574-6941.2006.00105.x
– ident: e_1_2_10_14_1
  doi: 10.1098/rstb.1994.0091
– ident: e_1_2_10_16_1
  doi: 10.2307/1411
– ident: e_1_2_10_20_1
  doi: 10.1093/biomet/43.1-2.45
– ident: e_1_2_10_2_1
  doi: 10.1080/10618600.2011.647174
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1541-0420.2011.01739.x
– ident: e_1_2_10_24_1
  doi: 10.1016/j.csda.2011.01.017
– ident: e_1_2_10_5_1
  doi: 10.2307/1936861
– ident: e_1_2_10_4_1
  doi: 10.1093/biomet/65.3.625
– ident: e_1_2_10_34_1
  doi: 10.1093/biomet/asq026
– year: 2010
  ident: e_1_2_10_12_1
  publication-title: Program SPADE (Species Prediction and Diversity Estimation)
– volume: 5
  start-page: 1
  year: 2002
  ident: e_1_2_10_17_1
  article-title: Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert
  publication-title: Denisia
– ident: e_1_2_10_22_1
  doi: 10.2307/1935358
– ident: e_1_2_10_9_1
  doi: 10.1890/11-1952.1
– year: 2011
  ident: e_1_2_10_21_1
  article-title: Estimating species richness
  publication-title: Biological Diversity: Frontiers in Measurement and Assessment
– ident: e_1_2_10_25_1
  doi: 10.1073/pnas.43.3.293
– ident: e_1_2_10_31_1
  doi: 10.1111/j.1474-919X.2001.tb04942.x
– year: 2008
  ident: e_1_2_10_30_1
  publication-title: Hierarchical Modelling and Inference in Ecology
– ident: e_1_2_10_32_1
  doi: 10.1111/j.2005.0906-7590.04112.x
– ident: e_1_2_10_10_1
  doi: 10.1080/01621459.1992.10475194
– ident: e_1_2_10_13_1
  doi: 10.1046/j.1472-4642.2003.00027.x
– ident: e_1_2_10_28_1
  doi: 10.2307/1941127
– ident: e_1_2_10_35_1
  doi: 10.1111/j.1654-1103.2012.01423.x
– ident: e_1_2_10_23_1
  doi: 10.2307/1935359
SSID ssj0009502
Score 2.5251932
Snippet It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an accurate...
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyperdiverse community. Practically, an accurate...
Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper‐diverse community. Practically, an...
It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate...
Summary It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 671
SubjectTerms Abundance data
Animals
Biodiversity
BIOMETRIC METHODOLOGY
Biometrics
biometry
Biometry - methods
Chaos theory
Computer Simulation
data collection
Data Interpretation, Statistical
Datasets
Demography - methods
Epidemiologic Methods
Estimation bias
Estimation methods
Estimators
Good-Turing frequency formula
Heuristic
Humans
Incidence data
Mathematical models
Models, Statistical
Point estimators
Population Dynamics
Sample Size
Sampling bias
Simulations
Species diversity
Species richness
statistics
Statistics, Nonparametric
Title improved nonparametric lower bound of species richness via a modified good–turing frequency formula
URI https://api.istex.fr/ark:/67375/WNG-9T8RTRJ8-J/fulltext.pdf
https://www.jstor.org/stable/24538100
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12200
https://www.ncbi.nlm.nih.gov/pubmed/24945937
https://www.proquest.com/docview/1564016055
https://www.proquest.com/docview/1678547248
https://www.proquest.com/docview/1701359026
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qQagffDltG62yoggKOW6T3byAX6pYa-EqVA_viyy7m0179HqRexHrJ_-D_9Bf4szmEq9SCvotkElIZmdmn92deQbgqS7yKNOxC3NjylCkVoe5kzosoiS2jpdJz9HWQP8w2R-Ig6EcrsHLpham5odoN9zIM3y8JgfXZrbi5FSe3uURjjIGYErWIkR0FK0w7vZqqnBK7hJ8uOQmpTSeP49emI2ulbpCjErq_dakJ14GPC_iWD8R7d2Cz80v1Pknp93F3HTt97_YHf_3H2_DzSVCZbu1Sd2BNTfpwPW6Z-V5B270W6LXWQc2CKzWXM934WR3wkZ-k8IVbFJNiFb8jDp2WTamZmzMUA8nVpWM6jtxic7w1gnFWvZ1pJlmZ1UxKhETs-OqKn79-Dn3NZSsnNb53ueMEPZirO_BYO_Nx9f74bKTQ2glHR7bPCpxjkxSk-Ymi7gzUsQGkQYahMShw1Wd0zKJeWGl49xkhbE2z51nv-emjDdhHT_bbQNDACM4T0yBE6mwuF7UvESrMj2ui8gmNoDnzYgqu6Q5p24bY9Usd0ipyis1gCet7Jea3ONSqW00DKWPMeqqwYeI9oiIcifuZQE889bSPq2np5Qpl0r16fCtyql68OggUwcBbHpzagUjIYlbDV--09iXWkaPmSICH2L-kzKAx-1t9Hs6zNETVy1QBlGGFGkksitkUgT4xM-TBLBV2-7KB-RCIjYN4IW3wCsUoF69e9_3V_f_RfgBbKCuRJ2QtwPr8-nCPUQENzePvKf-Br52PmU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbYEGJ84KUwFhhgBEICKVWd2Hn5OBCjK2uRxqr1m2U7zlatS1BfEOMT_4F_yC_hzklDh6ZJ8C1SLlFyvrMfn--eI-SlytIgUaH1U61zn8dG-akVys-CKDSW5VHHYmigP4i6Q94biVGdm4O1MBU_RBNwQ89w8zU6OAakV7wc69PbLIBhXiPXsaW321EdBCucu52KLBzTuzgb1eykmMjz59kL69FarkpAqajgb8sExcug50Uk65ai3TtVv9WZYzDEDJTT9mKu2-b7X_yO__2Xd8ntGqTSncqq7pFrtmiRG1XbyvMWudVvuF5nLbKBeLWie75PTnYKOnZxCpvRoiyQWfwMm3YZOsF-bFRjGyda5hRLPGGXTuHWCU639OtYUUXPymycAyymx2WZ_frxc-7KKGk-rVK-zymC7MVEPSDD3feH77p-3czBNwLPj00a5LBMRrGOU50EzGrBQw1gA2xChDB6nFslopBlRljGdJJpY9LUOgJ8pvNwk6zDZ9stQgHDcMYincFayg1sGRXLwbB0h6ksMJHxyOvlkEpTM51jw42JXO54UKnSKdUjLxrZLxW_x6VSW2AZUh3DxCuHnwMMEyHrTthJPPLKmUvztJqeYrJcLOTR4INMsYDwoJfInkc2nT01ggEXSK8GL99eGpisJ5CZRA4fJP8TwiPPm9vg-nieowpbLkAGgIbgccCTK2RiwPhI0RN55GFlvCsfkHIB8NQjb5wJXqEA-XbvU99dPfoX4WfkZvewvy_39wYfH5MN0Buv8vO2yfp8urBPANDN9VPntr8Bh0FCgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RaDywCVQaiiwCIQEUqKsveuLxEuhhLaQgAoReUGr3fW6jZrGVZogyhP_wB_yJczYsUlRVQneLHls2eMzu2fXM2cAnug08WMduGZiTNYUkdXNxEndTP0wsI5nYdvR1kC3F273xe5ADpbgRVULU-pD1BtuFBnFeE0BfpxmC0FO5ekt7uNXXoZLImzHhOmtPX9BcrddaoVTdpfgg7k4KeXx_Ln2zHS0nOkcSSr591uVn3ge8zxLZIuZqHMdvlTvUCagHLZmU9Oy3_-Sd_zfl7wB1-YUlW2WmLoJS27cgMtl08rTBlzt1kqvJw1YJbZaij3fgoPNMRsWuxQuZeN8TLriR9Syy7IRdWNjhpo4sTxjVOCJa3SGpw5osGVfh5ppdpSnwwxJMdvP8_TXj5_TooiSZZMy4fuUEcWejfRt6Hdef3q13Zy3cmhaSX-PbeJnOEmGkYkSE_vcGSkCg1QDESGDEFmbcFqGAU-tdJybODXWJokr5O-5yYI1WMHHduvAkMEIzkOT4kwqLC4YNc8QVqbNderb0HrwrPqiys51zqndxkhV6x1yqiqc6sHj2va4VPc412odgaH0Pg67qv_Rp00i0twJ2rEHTwu01FfrySGlykVSfe69UQmVD-7txmrXg7UCTrWhLySJq-HNNyp8qfnwcaJIwYek_6T04FF9GgOf_ubosctnaIM0Q4rIF_EFNhEyfBLoCT24U2J34QESIZGcevC8QOAFDlAvd953i6O7_2L8EK582Oqodzu9t_dgFd0myuS8DViZTmbuPrK5qXlQBO1vp6dBOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+nonparametric+lower+bound+of+species+richness+via+a+modified+good-turing+frequency+formula&rft.jtitle=Biometrics&rft.au=Chiu%2C+Chun-Huo&rft.au=Wang%2C+Yi-Ting&rft.au=Walther%2C+Bruno+A&rft.au=Chao%2C+Anne&rft.date=2014-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=70&rft.issue=3&rft.spage=671&rft_id=info:doi/10.1111%2Fbiom.12200&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3438832911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon