Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination

Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when us...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of food science & technology Vol. 50; no. 6; pp. 1461 - 1467
Main Author Garcia Martin, Juan Francisco
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when using solely the NIR region. The PLS model obtained with the NIR spectrum using the 10‐mm cuvette was subjected to optimisation by Monte Carlo uninformative variable elimination (MCUVE) and successive projections algorithm (SPA). Both methods drastically reduced the number of spectral variables and markedly improved the performance of the PLS model, especially the SPA‐PLS model, which achieved a SEP (0.051) quite close to SEL (0.048). Interestingly, only twelve of the eighty spectral variables selected by SPA were among the 314 variables provided by MCUVE. All in all, NIRS incorporated to MCUVE‐PLS or SPA‐PLS may be applied as an alternative method for the rapid determination of olive oil's free acidity. Scheme for selecting optical path length and wavelengths in the olive oil's free acidity determination by VisNIR spectroscopy.
AbstractList Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when using solely the NIR region. The PLS model obtained with the NIR spectrum using the 10-mm cuvette was subjected to optimisation by Monte Carlo uninformative variable elimination (MCUVE) and successive projections algorithm (SPA). Both methods drastically reduced the number of spectral variables and markedly improved the performance of the PLS model, especially the SPA-PLS model, which achieved a SEP (0.051) quite close to SEL (0.048). Interestingly, only twelve of the eighty spectral variables selected by SPA were among the 314 variables provided by MCUVE. All in all, NIRS incorporated to MCUVE-PLS or SPA-PLS may be applied as an alternative method for the rapid determination of olive oil's free acidity.
Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when using solely the NIR region. The PLS model obtained with the NIR spectrum using the 10‐mm cuvette was subjected to optimisation by Monte Carlo uninformative variable elimination (MCUVE) and successive projections algorithm (SPA). Both methods drastically reduced the number of spectral variables and markedly improved the performance of the PLS model, especially the SPA‐PLS model, which achieved a SEP (0.051) quite close to SEL (0.048). Interestingly, only twelve of the eighty spectral variables selected by SPA were among the 314 variables provided by MCUVE. All in all, NIRS incorporated to MCUVE‐PLS or SPA‐PLS may be applied as an alternative method for the rapid determination of olive oil's free acidity.
Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/ NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when using solely the NIR region. The PLS model obtained with the NIR spectrum using the 10‐mm cuvette was subjected to optimisation by Monte Carlo uninformative variable elimination ( MCUVE ) and successive projections algorithm ( SPA ). Both methods drastically reduced the number of spectral variables and markedly improved the performance of the PLS model, especially the SPA ‐ PLS model, which achieved a SEP (0.051) quite close to SEL (0.048). Interestingly, only twelve of the eighty spectral variables selected by SPA were among the 314 variables provided by MCUVE . All in all, NIRS incorporated to MCUVE ‐ PLS or SPA ‐ PLS may be applied as an alternative method for the rapid determination of olive oil's free acidity.
Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results illustrated that the use of higher path length during spectra acquisition resulted in more accurate PLS models, especially when using solely the NIR region. The PLS model obtained with the NIR spectrum using the 10‐mm cuvette was subjected to optimisation by Monte Carlo uninformative variable elimination (MCUVE) and successive projections algorithm (SPA). Both methods drastically reduced the number of spectral variables and markedly improved the performance of the PLS model, especially the SPA‐PLS model, which achieved a SEP (0.051) quite close to SEL (0.048). Interestingly, only twelve of the eighty spectral variables selected by SPA were among the 314 variables provided by MCUVE. All in all, NIRS incorporated to MCUVE‐PLS or SPA‐PLS may be applied as an alternative method for the rapid determination of olive oil's free acidity. Scheme for selecting optical path length and wavelengths in the olive oil's free acidity determination by VisNIR spectroscopy.
Author García Martín, Juan Francisco
Author_xml – sequence: 1
  givenname: Juan Francisco
  surname: Garcia Martin
  fullname: Garcia Martin, Juan Francisco
BookMark eNp9kF9PFDEUxRuDiQv44ido4oPGZKD_O_MoRGCBAAHFx6bbabHrbDu2XXC_PV0WfSDG-3Jvm985ufdsg60QgwXgHUZ7uNa-n7u8h4ns0CswwVTwhgiCt8AEdRw1nBH6BmznPEcIESrZBKTLsXijBzjq8gMONtzVpkMPH_S9fX7mOpjiY4DL7MMdvPV5_2J6DfNYv1PMJo4r6GKCcfD3FkY_fMjQJWuhNr73ZQV7W2xa-KDXLrvgtdNDtm-f-w74dvTl6-FJc355PD38fN4YzhhqtGRIzjilvbCWETZjupWUzmhHTS-QbLnuTWU07mfcUEdRZ7RzmLCOc-0M3QEfN75jir-WNhe18NnYYdDBxmVWWGJEiGwFr-j7F-g8LlOo2yksWiREV7FKfdpQph6dk3VqTH6h00phpNbxq3X86in-CqMXsPHl6f6StB_-LcEbyYMf7Oo_5mp6enTzR9NsND4X-_uvRqefSkgqufp-cazag4Oz2yt5pU7oI_8rqiA
CitedBy_id crossref_primary_10_1016_j_biosystemseng_2019_04_013
crossref_primary_10_1016_j_scitotenv_2024_176979
crossref_primary_10_1016_j_foodcont_2022_109266
crossref_primary_10_1016_j_foodchem_2017_02_149
crossref_primary_10_1016_j_jfoodeng_2023_111653
crossref_primary_10_1002_cem_2812
crossref_primary_10_1016_j_foodcont_2022_108897
crossref_primary_10_1016_j_talanta_2018_02_097
crossref_primary_10_3390_bios11080261
crossref_primary_10_1080_05704928_2019_1584567
crossref_primary_10_1080_10408398_2020_1779649
crossref_primary_10_1016_j_infrared_2019_05_005
crossref_primary_10_3390_foods13203241
crossref_primary_10_1016_j_fuel_2018_11_142
crossref_primary_10_1080_10408398_2016_1225666
crossref_primary_10_1111_jfpe_12496
crossref_primary_10_1007_s12161_017_0946_7
crossref_primary_10_3390_foods13233894
crossref_primary_10_1109_ACCESS_2021_3116980
crossref_primary_10_3390_pr9020316
crossref_primary_10_1016_j_saa_2019_03_113
crossref_primary_10_1002_jsfa_8746
crossref_primary_10_3390_pr8070823
crossref_primary_10_1002_jsfa_7733
crossref_primary_10_1111_1750_3841_14024
crossref_primary_10_17660_ActaHortic_2017_1152_40
crossref_primary_10_1016_j_lwt_2020_109398
crossref_primary_10_3390_foods11081092
crossref_primary_10_3390_s22082831
crossref_primary_10_1016_j_compag_2024_109101
crossref_primary_10_1016_j_foodcont_2021_108536
crossref_primary_10_3390_foods12020300
crossref_primary_10_1142_S1793545820500066
crossref_primary_10_1016_j_infrared_2016_11_006
crossref_primary_10_3390_s18040975
crossref_primary_10_1016_j_jfoodeng_2017_01_015
crossref_primary_10_1039_C7RA00634A
crossref_primary_10_1016_j_foodcont_2021_108152
crossref_primary_10_1039_D3AY00436H
crossref_primary_10_3390_pr7050304
Cites_doi 10.1007/BF02541084
10.1016/j.chemolab.2007.10.001
10.1016/j.snb.2004.11.103
10.1255/jnirs.263
10.1021/ac00144a725
10.1007/BF02660596
10.3989/gya.097308
10.1016/j.aca.2008.02.032
10.1016/j.foodres.2008.03.007
10.1016/S0169-7439(01)00119-8
10.1007/978-1-4614-7777-8_10
10.1021/jf4021575
10.1166/sl.2011.1385
10.1080/00401706.1969.10490666
ContentType Journal Article
Copyright 2015 Institute of Food Science and Technology
International Journal of Food Science and Technology © 2015 Institute of Food Science and Technology
Copyright_xml – notice: 2015 Institute of Food Science and Technology
– notice: International Journal of Food Science and Technology © 2015 Institute of Food Science and Technology
DBID BSCLL
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
SOI
7S9
L.6
DOI 10.1111/ijfs.12790
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Diet & Clinical Nutrition
EISSN 1365-2621
EndPage 1467
ExternalDocumentID 3683432641
10_1111_ijfs_12790
IJFS12790
ark_67375_WNG_8BBKVP7P_H
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEJV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TOX
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
Y6R
YFH
YUY
ZZTAW
~IA
~WT
AANHP
AAYCA
ABXVV
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABGNP
AGHNM
AGQPQ
AMNDL
CITATION
GROUPED_DOAJ
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7ST
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H13
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c5440-a7407b533d6ee424b4a8733b393cd60785adc740a1db5c3f309caff124955afc3
IEDL.DBID DR2
ISSN 0950-5423
IngestDate Fri Jul 11 18:22:56 EDT 2025
Wed Aug 13 07:03:20 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 02:40:43 EDT 2025
Wed Jan 22 16:52:16 EST 2025
Wed Oct 30 09:52:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5440-a7407b533d6ee424b4a8733b393cd60785adc740a1db5c3f309caff124955afc3
Notes Figure S1. Selected wavelengths (squares) by the SPA method. Figure S2. Variation of root mean square error of cross-validation (dashed line) and root mean square error of prediction (continuous line) with the number of selected variables by Monte Carlo uninformative variable elimination for the free aidity of olive oil. Table S1. Criteria for the evaluation of the results. Table S2. Calibration and prediction results of free acidity by partial least squares models with 0.5-mm path-length cuvette. Table S3. Calibration and prediction results of Free acidity by partial least squares models with 2-mm path-length cuvette. Table S4. Calibration and prediction results of free acidity by partial least squares models with 5-mm path-length cuvette. Table S5. Calibration and prediction results of free acidity by partial least squares models with 10-mm path-length cuvette.
istex:4C8013DD6B029B1AB2B4745380577472BBB42DE0
ark:/67375/WNG-8BBKVP7P-H
ArticleID:IJFS12790
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/10261/116607
PQID 1680669786
PQPubID 2026381
PageCount 7
ParticipantIDs proquest_miscellaneous_1710227865
proquest_journals_1680669786
crossref_primary_10_1111_ijfs_12790
crossref_citationtrail_10_1111_ijfs_12790
wiley_primary_10_1111_ijfs_12790_IJFS12790
istex_primary_ark_67375_WNG_8BBKVP7P_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of food science & technology
PublicationTitleAlternate Int J Food Sci Technol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Li, H.D., Xu, Q.S. & Liang, Y.Z. (2014). libPLS: an integrated library for partial least squares regression and discriminant analysis. PeerJ PrePrints, 2, e190v1.
Beebe, K.R. & Kowalsky, B.R. (1987). An introduction to multivariate calibration and analysis. Analytical Chemistry, 59(17), 1007-1017.
Cayuela, J.A., García, J.M. & Caliani, N. (2009). NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites, 60, 194-202.
Wesley, I.J., Barnes, R.J. & McGill, A. (1995). Measurement of adulteration of olive oils by near infrared spectroscopy. Journal of the American Oil Chemists' Society, 3, 289-298.
Bertran, E., Blanco, M., Coello, J., Iturriaga, H., Maspoch, S. & Monteliu, I. (2000). Near infrared spectrometry and pattern recognition as screening methods for the authentication of virgin olive oils of very close geographical origins. Journal of Near Infrared Spectroscopy, 8, 45-52.
Cayuela Sánchez, J.A., Moreda, W. & García, J.M. (2013). Rapid determination of olive oil oxidative stability and its major quality parameters using Vis/NIR transmittance spectroscopy. Journal of Agricultural and Food Chemistry, 61, 8056-8062.
Moyano, M.J., Meléndez, A.J., Alba, J. & Heredia, F.J. (2008). A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non-uniform colour space. Food Research International, 41, 505-512.
Cai, W., Li, Y. & Shao, X. (2008). A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 90, 188-194.
Han, Q.-J., Wu, H.-L., Cai, C.-B., Xu, L. & Yu, R.-Q. (2008). An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Analytica Chimica Acta, 612, 121-125.
Kennard, R.W. & Stone, L.A. (1969). Computer aided design of experiments. Technometrics, 11, 137-148.
Hao, Y., Sun, X., Zhang, H. & Liu, Y. (2011). Application of effective wavelength selection methods to determine total acidity of navel orange. Sensor Letters, 9, 1229-1234.
Jiménez Marquez, A., Molina Díaz, A. & Pascual Reguera, M.I. (2005). Using optical NIR sensor for on-line virgin olive oils characterization. Sensors and Actuators. B, Chemical, 107, 64-68.
Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C. & Visani, V. (2001). The Successive Projections Algorithm for variable selection in spectroscopic multicomponent. Chemometrics and Intelligent Laboratory Systems, 57, 65-73.
Sato, T., Kawano, S. & Iwamoto, M. (1991). Near-infrared spectral patterns of fatty acid analysis from fats and oils. Journal of the American Oil Chemists' Society, 68, 827-883.
García, A., Ramos, N. & Ballesteros, E. (2005). Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén. Grasas y Aceites, 56, 220-227.
2014; 2
2001
1991; 68
2009; 60
2013; 61
2000; 8
2005; 107
1997
1969; 11
1996
2008; 612
2008; 41
1991
2013
2001; 57
1995; 3
2008; 90
2005; 56
1987; 59
2011; 9
e_1_2_5_15_1
e_1_2_5_14_1
Shenk J.S. (e_1_2_5_19_1) 1996
e_1_2_5_17_1
e_1_2_5_9_1
García A. (e_1_2_5_10_1) 2005; 56
Li H.D. (e_1_2_5_16_1) 2014; 2
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_2_1
Beebe K.R. (e_1_2_5_3_1) 1987; 59
e_1_2_5_18_1
Shenk J.S. (e_1_2_5_20_1) 2001
References_xml – reference: Moyano, M.J., Meléndez, A.J., Alba, J. & Heredia, F.J. (2008). A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non-uniform colour space. Food Research International, 41, 505-512.
– reference: Cayuela Sánchez, J.A., Moreda, W. & García, J.M. (2013). Rapid determination of olive oil oxidative stability and its major quality parameters using Vis/NIR transmittance spectroscopy. Journal of Agricultural and Food Chemistry, 61, 8056-8062.
– reference: Wesley, I.J., Barnes, R.J. & McGill, A. (1995). Measurement of adulteration of olive oils by near infrared spectroscopy. Journal of the American Oil Chemists' Society, 3, 289-298.
– reference: Li, H.D., Xu, Q.S. & Liang, Y.Z. (2014). libPLS: an integrated library for partial least squares regression and discriminant analysis. PeerJ PrePrints, 2, e190v1.
– reference: Cai, W., Li, Y. & Shao, X. (2008). A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 90, 188-194.
– reference: Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C. & Visani, V. (2001). The Successive Projections Algorithm for variable selection in spectroscopic multicomponent. Chemometrics and Intelligent Laboratory Systems, 57, 65-73.
– reference: Jiménez Marquez, A., Molina Díaz, A. & Pascual Reguera, M.I. (2005). Using optical NIR sensor for on-line virgin olive oils characterization. Sensors and Actuators. B, Chemical, 107, 64-68.
– reference: Sato, T., Kawano, S. & Iwamoto, M. (1991). Near-infrared spectral patterns of fatty acid analysis from fats and oils. Journal of the American Oil Chemists' Society, 68, 827-883.
– reference: García, A., Ramos, N. & Ballesteros, E. (2005). Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén. Grasas y Aceites, 56, 220-227.
– reference: Han, Q.-J., Wu, H.-L., Cai, C.-B., Xu, L. & Yu, R.-Q. (2008). An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Analytica Chimica Acta, 612, 121-125.
– reference: Beebe, K.R. & Kowalsky, B.R. (1987). An introduction to multivariate calibration and analysis. Analytical Chemistry, 59(17), 1007-1017.
– reference: Bertran, E., Blanco, M., Coello, J., Iturriaga, H., Maspoch, S. & Monteliu, I. (2000). Near infrared spectrometry and pattern recognition as screening methods for the authentication of virgin olive oils of very close geographical origins. Journal of Near Infrared Spectroscopy, 8, 45-52.
– reference: Kennard, R.W. & Stone, L.A. (1969). Computer aided design of experiments. Technometrics, 11, 137-148.
– reference: Cayuela, J.A., García, J.M. & Caliani, N. (2009). NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites, 60, 194-202.
– reference: Hao, Y., Sun, X., Zhang, H. & Liu, Y. (2011). Application of effective wavelength selection methods to determine total acidity of navel orange. Sensor Letters, 9, 1229-1234.
– volume: 107
  start-page: 64
  year: 2005
  end-page: 68
  article-title: Using optical NIR sensor for on‐line virgin olive oils characterization
  publication-title: Sensors and Actuators. B, Chemical
– volume: 61
  start-page: 8056
  year: 2013
  end-page: 8062
  article-title: Rapid determination of olive oil oxidative stability and its major quality parameters using Vis/NIR transmittance spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 60
  start-page: 194
  year: 2009
  end-page: 202
  article-title: NIR prediction of fruit moisture, free acidity and oil content in intact olives
  publication-title: Grasas y Aceites
– start-page: 419
  year: 2001
  end-page: 474
– volume: 8
  start-page: 45
  year: 2000
  end-page: 52
  article-title: Near infrared spectrometry and pattern recognition as screening methods for the authentication of virgin olive oils of very close geographical origins
  publication-title: Journal of Near Infrared Spectroscopy
– start-page: 335
  year: 2013
  end-page: 393
– volume: 612
  start-page: 121
  year: 2008
  end-page: 125
  article-title: An ensemble of Monte Carlo uninformative variable elimination for wavelength selection
  publication-title: Analytica Chimica Acta
– volume: 59
  start-page: 1007
  issue: 17
  year: 1987
  end-page: 1017
  article-title: An introduction to multivariate calibration and analysis
  publication-title: Analytical Chemistry
– volume: 3
  start-page: 289
  year: 1995
  end-page: 298
  article-title: Measurement of adulteration of olive oils by near infrared spectroscopy
  publication-title: Journal of the American Oil Chemists’ Society
– volume: 57
  start-page: 65
  year: 2001
  end-page: 73
  article-title: The Successive Projections Algorithm for variable selection in spectroscopic multicomponent
  publication-title: Chemometrics and Intelligent Laboratory Systems
– year: 1997
– volume: 9
  start-page: 1229
  year: 2011
  end-page: 1234
  article-title: Application of effective wavelength selection methods to determine total acidity of navel orange
  publication-title: Sensor Letters
– volume: 41
  start-page: 505
  year: 2008
  end-page: 512
  article-title: A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non‐uniform colour space
  publication-title: Food Research International
– volume: 90
  start-page: 188
  year: 2008
  end-page: 194
  article-title: A variable selection method based on uninformative variable elimination for multivariate calibration of near‐infrared spectra
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– start-page: 198
  year: 1996
  end-page: 202
– volume: 68
  start-page: 827
  year: 1991
  end-page: 883
  article-title: Near‐infrared spectral patterns of fatty acid analysis from fats and oils
  publication-title: Journal of the American Oil Chemists’ Society
– year: 1991
– volume: 2
  start-page: e190v1
  year: 2014
  article-title: libPLS: an integrated library for partial least squares regression and discriminant analysis
  publication-title: PeerJ PrePrints
– volume: 56
  start-page: 220
  year: 2005
  end-page: 227
  article-title: Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén
  publication-title: Grasas y Aceites
– start-page: 198
  volume-title: Near‐infrared Spectroscopy: The Future Waves
  year: 1996
  ident: e_1_2_5_19_1
– volume: 56
  start-page: 220
  year: 2005
  ident: e_1_2_5_10_1
  article-title: Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén
  publication-title: Grasas y Aceites
– ident: e_1_2_5_21_1
  doi: 10.1007/BF02541084
– ident: e_1_2_5_5_1
  doi: 10.1016/j.chemolab.2007.10.001
– ident: e_1_2_5_14_1
  doi: 10.1016/j.snb.2004.11.103
– ident: e_1_2_5_4_1
  doi: 10.1255/jnirs.263
– start-page: 419
  volume-title: Handbook of Near‐infrared Analysis
  year: 2001
  ident: e_1_2_5_20_1
– volume: 59
  start-page: 1007
  issue: 17
  year: 1987
  ident: e_1_2_5_3_1
  article-title: An introduction to multivariate calibration and analysis
  publication-title: Analytical Chemistry
  doi: 10.1021/ac00144a725
– ident: e_1_2_5_8_1
– ident: e_1_2_5_18_1
  doi: 10.1007/BF02660596
– ident: e_1_2_5_7_1
  doi: 10.3989/gya.097308
– ident: e_1_2_5_12_1
  doi: 10.1016/j.aca.2008.02.032
– volume: 2
  start-page: e190v1
  year: 2014
  ident: e_1_2_5_16_1
  article-title: libPLS: an integrated library for partial least squares regression and discriminant analysis
  publication-title: PeerJ PrePrints
– ident: e_1_2_5_17_1
  doi: 10.1016/j.foodres.2008.03.007
– ident: e_1_2_5_9_1
– ident: e_1_2_5_2_1
  doi: 10.1016/S0169-7439(01)00119-8
– ident: e_1_2_5_11_1
  doi: 10.1007/978-1-4614-7777-8_10
– ident: e_1_2_5_6_1
  doi: 10.1021/jf4021575
– ident: e_1_2_5_13_1
  doi: 10.1166/sl.2011.1385
– ident: e_1_2_5_15_1
  doi: 10.1080/00401706.1969.10490666
SSID ssj0002374
Score 2.304511
Snippet Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy....
Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/ NIR spectroscopy. Results...
Summary Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy....
Four different optical path lengths, namely 0.5, 1, 5 and 10 mm, were assayed for olive oil's free acidity determination using Vis/NIR spectroscopy. Results...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1461
SubjectTerms Acidity
algorithms
Food science
near-infrared spectroscopy
NIR spectroscopy
Olive oil
optical path length
rapid methods
Spectroscopy
Spectrum analysis
wavelength selection
wavelengths
Title Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination
URI https://api.istex.fr/ark:/67375/WNG-8BBKVP7P-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fijfs.12790
https://www.proquest.com/docview/1680669786
https://www.proquest.com/docview/1710227865
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaq8gAvHAVEaEFGoCKQsuzGdg6JFwos2yK2VemxLyjyWYWuktVmVxy_nhkn2bYIIcFLDmVsObbH_sYef0PIM24HInEmDrMkEiE3nIepY1Go0ky71Did-Jb-NI5Hx3xvIiZr5HV3Fqbhh1gtuKFm-PEaFVyq-pKSF19d3RtESYYGOzprISI6vOCOilhDwZyJfigANLTcpOjGc5H0ymx0DSv2-xWoeRmw-hlneIt86craOJqc95YL1dM_f6Nx_N-fuU1utlCUvmn6zh2yZssNErwr7IJu05YvdErHHV3_BrnenWKu75L5_syvglMMaUwxHAvcZGnoN4mhLPxr7WPsQFKK3vVn9KSoX413D6k_3YksmtXsBwXQTKspjLm0KqbPa-rm1lKpCwPmATWdsw7mco8cD98fvR2FbfyGUAvcMpYJWIsK8KSJreURV1ymCWOKZUybGLCJkEaDjBwYJTRzrJ9p6ZwPhy2k0-w-WS-r0j4gVKUObB9kwpGKAypJrWSaM9mXJh44ywPyomvHXLfk5hhjY5p3Rg7WcO5rOCBPV7KzhtLjj1LbvjusROT8HJ3gEpGfjj_k6c7Ox5OD5CAfBWSr6y95q_-QRZwClgMLPQ7Ik9Vn0FzcjpGlrZYgg-AuAhERkJe-c_ylOPnu3vCzf3r4L8Kb5AYgPNH4tm2R9cV8aR8Bilqox15b4Hq0P_kFP9oaVg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQ9jBeGBsgMgYYgYZASmljO5dHBpR2lzCNbewtcnxBYVVSNa1g_HrOcZJuQwgJnpIoJ1bi-NjfsY-_j5AX3AxEZHXoJ1EgfK4592PLAj-PE2VjbVXk_vRhGo5O-d65OG9zc3AvTMMPsZxwQ89w_TU6OE5IX_Py4pute4MgSiBiX0VJbxdRHV-xRwWsIWFORN8XABtadlJM5Ll69sZ4tIpV--MG2LwOWd2YM1xvhFVrR1WIqSYXvcU876mfvxE5_vfn3CV3WjRK3zbNZ4PcMuUm8d4XZk53aEsZOqFpx9i_Sda6jcz1PTL7NHUT4RRVjSkqssBBlpp-l6hm4S5rJ7MDj1JMsP9Kz4r6TTo-pm6DJxJpVtNLCriZVhPodmlVTF7W1M6MoVIVGiIEqrt8HSzlPjkdfjh5N_JbCQdfCVw1lhEEjDlASh0awwOecxlHjOUsYUqHAE-E1Aps5EDnQjHL-omS1jpFbCGtYg_ISlmV5iGheWwh_EEyHJlzACaxkUxxJvtShwNruEdedT8yUy2_OcpsTLIuzsEazlwNe-T50nbasHr80WrHtYeliZxdYB5cJLIv6ccs3t3dPzuKjrKRR7a7BpO1XQAUEcYA5yBIDz3ybHkbnBdXZGRpqgXYIL4LwER45LVrHX95nWy8N_zszrb-xfgpWRudHB5kB-N0_xG5DYBPNKlu22RlPluYxwCq5vkT5zq_AB-gHVU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NmwS8DBggMgYYgYZASmljOx8SL4xS2g1KNbaxFxQ5_kBhVVI1rfj46zk7SbchhARPSZRz5Nh39u_s8-8AnjDd45FRoZ9EAfeZYsyPDQ38LE6kiZWRkevp9-NweMz2T_npGrxsz8LU_BCrBTdrGW68tgY-U-aCkedfTdXpBVGCDvsGC7ux1en-4Tl5VEBrDuaEd32OqKEhJ7VxPOdlL01HG7Zlv1_CmhcRq5tyBtfhc1vZOtLkrLNcZB358zcex__9mxuw2WBR8qpWnpuwpost8Pq5XpBd0hCGTsm45evfgqvtMebqFsw_zNwyOLE5jYnNx4IXUSjyTdhcFu6xckl2sCix4fVfyElevRiPDok73mlpNMvZD4KomZRTHHRJmU-fVsTMtSZC5gr9A6LaaB37ldtwPHhz9HroNwkcfMntnrGI0F3MEFCqUGsWsIyJOKI0owmVKkRwwoWSKCN6KuOSGtpNpDDG5cPmwkh6B9aLstB3gWSxQefHUuGIjCEsibWgklHRFSrsGc08eNb2YyobdnObZGOatl6ObeHUtbAHj1eys5rT449Su04dViJifmaj4CKefhq_TeO9vYOTSTRJhx7stPqSNgMAfiKMEcyhix568Gj1Gk3X7seIQpdLlLHoLkAR7sFzpxx_qU462h98dHfb_yL8EK5M-oP03Wh8cA-uIdrjdZzbDqwv5kt9HxHVInvgDOcX1DscDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+path+length+and+wavelength+selection+using+Vis%2FNIR+spectroscopy+for+olive+oil%27s+free+acidity+determination&rft.jtitle=International+journal+of+food+science+%26+technology&rft.au=Garc%C3%ADa+Mart%C3%ADn%2C+Juan+Francisco&rft.date=2015-06-01&rft.issn=0950-5423&rft.eissn=1365-2621&rft.volume=50&rft.issue=6&rft.spage=1461&rft.epage=1467&rft_id=info:doi/10.1111%2Fijfs.12790&rft.externalDBID=10.1111%252Fijfs.12790&rft.externalDocID=IJFS12790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5423&client=summon