Identification and Abiotic Stress Expression Profiling of Malic Enzyme-Associated Genes in Maize (Zea mays L.)

Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by pe...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 14; no. 11; p. 1603
Main Authors Yan, Haishan, Li, Yongsheng, Ma, Zengke, Wang, Ruihong, Zhou, Yuqian, Zhou, Wenqi, He, Haijun, Wang, Xiaojuan, Lian, Xiaorong, Dong, Xiaoyun, Yao, Lirong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte (Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.
AbstractList Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte (Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO , and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize genes were identified by performing homologous sequence alignment using the sequences of the gene family as references. Chromosomal localization analysis demonstrated that genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize genes and their orthologs in teosinte ( L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize genes, with emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize gene family.
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO 2 , and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte ( Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte (Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte (Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO[sub.2], and NADPH. This enzyme plays essential roles in plant growth, development, and stress responses. In this study, 13 maize ME genes were identified by performing homologous sequence alignment using the sequences of the Arabidopsis ME gene family as references. Chromosomal localization analysis demonstrated that ME genes were not detected on chromosomes 9 and 10, whereas the remaining eight chromosomes exhibited an uneven distribution of these genes. Phylogenetic analysis indicated a high degree of conservation between maize ME genes and their orthologs in teosinte (Zea luxurians L.) throughout the evolutionary history of Poaceae crops. Furthermore, cis-acting element analysis of promoters demonstrated that members of the maize ME gene family harbor regulatory elements associated with stress responses, phytohormones signaling, and light responsiveness, which suggests their potential role in abiotic stress adaptation. Expression profiling under stress conditions revealed differential expression levels of maize ME genes, with ZmME13 emerging as a promising candidate gene for enhancing stress resistance. These results lay a solid foundation for further investigation into the biological functions of the maize ME gene family.
Audience Academic
Author Wang, Ruihong
Ma, Zengke
Dong, Xiaoyun
Zhou, Yuqian
He, Haijun
Yao, Lirong
Lian, Xiaorong
Zhou, Wenqi
Li, Yongsheng
Wang, Xiaojuan
Yan, Haishan
AuthorAffiliation 2 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; zengkema@sina.com (Z.M.); zhouyuqian@gsagr.cn (Y.Z.); zhouwenqi850202@163.com (W.Z.); hhj007@sina.com (H.H.); wangxj839@sina.com (X.W.); lianxr@126.com (X.L.); dongxy@st.gsau.edu.cn (X.D.)
1 College of Agriculture, Gansu Agricultural University, Lanzhou 730070, China; 18846301250@163.com (H.Y.); 17339902200@163.com (R.W.)
AuthorAffiliation_xml – name: 2 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; zengkema@sina.com (Z.M.); zhouyuqian@gsagr.cn (Y.Z.); zhouwenqi850202@163.com (W.Z.); hhj007@sina.com (H.H.); wangxj839@sina.com (X.W.); lianxr@126.com (X.L.); dongxy@st.gsau.edu.cn (X.D.)
– name: 1 College of Agriculture, Gansu Agricultural University, Lanzhou 730070, China; 18846301250@163.com (H.Y.); 17339902200@163.com (R.W.)
Author_xml – sequence: 1
  givenname: Haishan
  surname: Yan
  fullname: Yan, Haishan
– sequence: 2
  givenname: Yongsheng
  surname: Li
  fullname: Li, Yongsheng
– sequence: 3
  givenname: Zengke
  surname: Ma
  fullname: Ma, Zengke
– sequence: 4
  givenname: Ruihong
  surname: Wang
  fullname: Wang, Ruihong
– sequence: 5
  givenname: Yuqian
  surname: Zhou
  fullname: Zhou, Yuqian
– sequence: 6
  givenname: Wenqi
  orcidid: 0000-0002-1773-6175
  surname: Zhou
  fullname: Zhou, Wenqi
– sequence: 7
  givenname: Haijun
  surname: He
  fullname: He, Haijun
– sequence: 8
  givenname: Xiaojuan
  surname: Wang
  fullname: Wang, Xiaojuan
– sequence: 9
  givenname: Xiaorong
  surname: Lian
  fullname: Lian, Xiaorong
– sequence: 10
  givenname: Xiaoyun
  surname: Dong
  fullname: Dong, Xiaoyun
– sequence: 11
  givenname: Lirong
  surname: Yao
  fullname: Yao, Lirong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40508276$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiJbQK0e0Epf2kODPtXNCURVKpCAQhQsXa-IdB0e7dlhvUNNfj9OWtouwLdnyPH7H8_GyOAoxYFG8pmTC-ZS82zYQ-kQFpbQi_FlxwhjjY6WEOnpyPi5OU9qQPHRetHpRHAsiiWaqOinCosbQe-ct9D6GEkJdzlY-9t6WV32HKZXz6-1hP1i_dNH5xod1GV35CZoMzcPNvsXxLKVoPfRYl5cYMJU-ZMDfYHn2A6FsYZ_K5eT8VfHcQZPw9H4fFd8_zL9dfBwvP18uLmbLsZWC92NkTEmyEkqjlBoIobyaAnVOWhCkFpZLyWsN4JSsuAI7tVMmgTPFNONuxUfF4k63jrAx28630O1NBG9uL2K3NtDlGBs0Va011rRGq7hwuJqCQEukAEosd7rKWu_vtLa7VYu1zfnqoBmIDi3B_zTr-NtQRqWi-UOj4uxeoYu_dph60_pkscnlw7hLhjOqheLVrbO3_6CbuOtCztWByuVkWrJHag05Ah9czI7tQdTMtJBCZXSaqcl_qDxrbL3NrZRricMH54MHmenxul_DLiWzuPo6ZN88zcpDOv621qN328WUOnQPCCXm0L5m2L78D-u2360
Cites_doi 10.1080/15592324.2020.1773664
10.1111/gcb.14628
10.1111/ppl.12540
10.3390/ijms24076603
10.1073/pnas.1109047109
10.1111/j.1365-3040.2007.01712.x
10.1093/jxb/err024
10.1111/pbi.13127
10.1186/s12870-021-03206-z
10.20944/preprints202305.1587.v1
10.1073/pnas.0807026105
10.3389/fpls.2025.1525193
10.1016/j.plantsci.2019.01.010
10.1016/j.plaphy.2006.06.010
10.1007/BF00221905
10.3390/bioengineering11050480
10.3390/plants12203548
10.1016/j.crvi.2009.03.002
10.1023/A:1010665910095
10.1146/annurev.genet.30.1.371
10.1071/FP16430
10.1105/tpc.9.6.841
10.1080/15592324.2019.1644596
10.1016/B978-0-12-152809-6.50012-3
10.1128/mbio.02187-22
10.1093/treephys/tpac149
10.1104/pp.105.065953
10.1093/jxb/erg101
10.3390/ijms241813876
10.1111/j.1469-8137.2012.04129.x
10.3390/plants11081009
10.1016/j.plaphy.2013.12.022
10.1126/science.1251423
10.1186/s12864-018-4469-4
10.1111/j.1432-1033.1992.tb17181.x
10.1007/s00425-019-03171-w
10.1007/s10529-007-9347-0
10.1016/j.ecoenv.2017.03.018
10.9755/ejfa.v22i4.4872
10.1007/BF00402925
10.1007/s12041-015-0526-9
10.1016/j.jplph.2013.10.017
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants14111603
DatabaseName CrossRef
PubMed
Science (Gale In Context)
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
PubMed


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_6d88ed1dec734feb9a4ec054a10c3f86
PMC12157182
A845472179
40508276
10_3390_plants14111603
Genre Journal Article
GrantInformation_xml – fundername: Biological Breeding Project of Gansu Academy of Agricultural Sciences
  grantid: 2024GAAS24
– fundername: Natural Science Foundation of China
  grantid: 31960406
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
M48
NPM
PQGLB
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c543t-e22750b478e558a001369a1ff5ca40d4c3553d8aaf75637ac9c925a3272823fb3
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:26:51 EDT 2025
Thu Aug 21 18:24:45 EDT 2025
Fri Jul 11 17:04:56 EDT 2025
Fri Jul 25 09:50:19 EDT 2025
Thu Jul 03 03:20:26 EDT 2025
Tue Jul 01 05:41:56 EDT 2025
Fri Jun 27 03:22:18 EDT 2025
Mon Jul 21 05:36:15 EDT 2025
Thu Jul 03 08:43:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords gene family identification
malic enzyme
maize
gene expression
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-e22750b478e558a001369a1ff5ca40d4c3553d8aaf75637ac9c925a3272823fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1773-6175
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants14111603
PMID 40508276
PQID 3217742852
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_6d88ed1dec734feb9a4ec054a10c3f86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12157182
proquest_miscellaneous_3218473686
proquest_journals_3217742852
gale_infotracmisc_A845472179
gale_infotracacademiconefile_A845472179
gale_incontextgauss_ISR_A845472179
pubmed_primary_40508276
crossref_primary_10_3390_plants14111603
PublicationCentury 2000
PublicationDate 2025-05-24
PublicationDateYYYYMMDD 2025-05-24
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jwa (ref_43) 2006; 44
Wen (ref_24) 2017; 44
Farris (ref_48) 1996; 12
ref_14
Li (ref_21) 2012; 31
Babayev (ref_47) 2014; 81
ref_34
ref_33
Yue (ref_42) 2019; 250
Aida (ref_1) 1997; 9
Shao (ref_23) 2011; 10
Girin (ref_40) 2007; 30
Li (ref_6) 2019; 25
Maurino (ref_11) 2001; 45
Xu (ref_26) 2003; 10
ref_38
Li (ref_41) 2020; 15
Wheeler (ref_36) 2005; 139
Wang (ref_13) 2023; 43
Xu (ref_37) 2012; 109
Maier (ref_15) 2011; 62
Frenkel (ref_29) 1975; 9
Liang (ref_4) 2019; 17
Zandalinas (ref_8) 2018; 162
Lobell (ref_5) 2014; 344
Sun (ref_45) 2003; 35
ref_25
ref_44
Guo (ref_12) 2017; 141
Ribaut (ref_3) 1996; 92
Nei (ref_30) 1996; 30
Xu (ref_32) 2008; 105
Crecelius (ref_46) 2003; 54
Chen (ref_18) 2019; 281
Finer (ref_39) 2014; 217–218
Sun (ref_17) 2019; 14
Holtum (ref_20) 1982; 155
Peng (ref_31) 2015; 94
Liu (ref_27) 2010; 22
ref_2
ref_28
Voll (ref_10) 2012; 195
Vankova (ref_16) 2014; 171
ref_9
Fu (ref_35) 2009; 332
Cheng (ref_22) 2007; 29
ref_7
Cushman (ref_19) 1992; 208
References_xml – volume: 10
  start-page: 4947
  year: 2011
  ident: ref_23
  article-title: Biological roles of crop NADP malic enzymes and molecular mechanisms involved in abiotic stress
  publication-title: Afr. J. Biotechnol.
– volume: 15
  start-page: 1773664
  year: 2020
  ident: ref_41
  article-title: Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15
  publication-title: Plant Signal Behav.
  doi: 10.1080/15592324.2020.1773664
– volume: 25
  start-page: 2325
  year: 2019
  ident: ref_6
  article-title: Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14628
– volume: 162
  start-page: 2
  year: 2018
  ident: ref_8
  article-title: Plant adaptations to the combination of drought and high temperatures
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12540
– ident: ref_2
  doi: 10.3390/ijms24076603
– volume: 109
  start-page: 1187
  year: 2012
  ident: ref_37
  article-title: Divergence of duplicate genes in exon-intron structure
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1109047109
– volume: 30
  start-page: 1366
  year: 2007
  ident: ref_40
  article-title: Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01712.x
– volume: 62
  start-page: 3061
  year: 2011
  ident: ref_15
  article-title: Malate decarboxylases: Evolution and roles of NAD(P)-ME isoforms in species performing C4 and C3 photosynthesis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err024
– volume: 17
  start-page: 2123
  year: 2019
  ident: ref_4
  article-title: Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in brassica napus and arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13127
– ident: ref_44
  doi: 10.1186/s12870-021-03206-z
– ident: ref_34
  doi: 10.20944/preprints202305.1587.v1
– volume: 105
  start-page: 14330
  year: 2008
  ident: ref_32
  article-title: Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807026105
– ident: ref_33
  doi: 10.3389/fpls.2025.1525193
– volume: 281
  start-page: 206
  year: 2019
  ident: ref_18
  article-title: Review: The role of NADP-malic enzyme in plants under stress
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.01.010
– volume: 44
  start-page: 261
  year: 2006
  ident: ref_43
  article-title: Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.06.010
– volume: 92
  start-page: 905
  year: 1996
  ident: ref_3
  article-title: Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00221905
– ident: ref_28
  doi: 10.3390/bioengineering11050480
– ident: ref_7
  doi: 10.3390/plants12203548
– volume: 332
  start-page: 591
  year: 2009
  ident: ref_35
  article-title: Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat
  publication-title: Comptes Rendus Biol.
  doi: 10.1016/j.crvi.2009.03.002
– volume: 45
  start-page: 409
  year: 2001
  ident: ref_11
  article-title: Non-photosynthetic ‘malic enzyme’ from maize: A constituvely expressed enzyme that responds to plant defence inducers
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1010665910095
– volume: 30
  start-page: 371
  year: 1996
  ident: ref_30
  article-title: Phylogenetic analysis in molecular evolutionary genetics
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.30.1.371
– volume: 44
  start-page: 1219
  year: 2017
  ident: ref_24
  article-title: Possible involvement of phosphoenolpyruvate carboxylase and NAD-malic enzyme in response to drought stress. A case study: A succulent nature of the C4-NAD-ME type desert plant, Salsola lanata (Chenopodiaceae)
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16430
– volume: 9
  start-page: 841
  year: 1997
  ident: ref_1
  article-title: Genes involved in organ separation in arabidopsis: An analysis of the cup-shaped cotyledon mutant
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.6.841
– volume: 14
  start-page: e1644596
  year: 2019
  ident: ref_17
  article-title: Roles of malic enzymes in plant development and stress responses
  publication-title: Plant Signal Behav.
  doi: 10.1080/15592324.2019.1644596
– volume: 9
  start-page: 157
  year: 1975
  ident: ref_29
  article-title: Regulation and physiological functions of malic enzymes
  publication-title: Curr. Top. Cell Regul.
  doi: 10.1016/B978-0-12-152809-6.50012-3
– volume: 12
  start-page: 99
  year: 1996
  ident: ref_48
  article-title: Parsimony jackknifing outperforms neighbor-joining
  publication-title: Cladistics
– ident: ref_14
  doi: 10.1128/mbio.02187-22
– volume: 43
  start-page: 851
  year: 2023
  ident: ref_13
  article-title: Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpac149
– volume: 139
  start-page: 39
  year: 2005
  ident: ref_36
  article-title: A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.065953
– volume: 54
  start-page: 1075
  year: 2003
  ident: ref_46
  article-title: Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg101
– ident: ref_25
  doi: 10.3390/ijms241813876
– volume: 195
  start-page: 189
  year: 2012
  ident: ref_10
  article-title: Loss of cytosolic NADP-malic enzyme 2 in arabidopsis thaliana is associated with enhanced susceptibility tocolletotrichum higginsianum
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04129.x
– ident: ref_9
  doi: 10.3390/plants11081009
– volume: 81
  start-page: 84
  year: 2014
  ident: ref_47
  article-title: The study of NAD-malic enzyme in Amaranthus cruentus L. under drought
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.12.022
– volume: 344
  start-page: 516
  year: 2014
  ident: ref_5
  article-title: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest
  publication-title: Science
  doi: 10.1126/science.1251423
– ident: ref_38
  doi: 10.1186/s12864-018-4469-4
– volume: 208
  start-page: 259
  year: 1992
  ident: ref_19
  article-title: Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1992.tb17181.x
– volume: 250
  start-page: 281
  year: 2019
  ident: ref_42
  article-title: Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments
  publication-title: Planta
  doi: 10.1007/s00425-019-03171-w
– volume: 29
  start-page: 1129
  year: 2007
  ident: ref_22
  article-title: A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-007-9347-0
– volume: 35
  start-page: 423
  year: 2003
  ident: ref_45
  article-title: Induced expression of the gene for NADP-malic enzyme in leaves of Aloe vera L. under salt stress
  publication-title: Acta Biochim. Biophys. Sin.
– volume: 141
  start-page: 119
  year: 2017
  ident: ref_12
  article-title: Exogenous malic acid alleviates cadmium toxicity in miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.03.018
– volume: 22
  start-page: 239
  year: 2010
  ident: ref_27
  article-title: The corresponding relationship between roles of NADP-malic enzymes and abiotic stress in plants
  publication-title: Emir. J. Food Arg.
  doi: 10.9755/ejfa.v22i4.4872
– volume: 155
  start-page: 8
  year: 1982
  ident: ref_20
  article-title: Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum L.
  publication-title: Planta
  doi: 10.1007/BF00402925
– volume: 31
  start-page: 327
  year: 2012
  ident: ref_21
  article-title: Expression characteristics of Rice (Oryza sativa L.) malic enzyme (OsNADP-ME3) gene under environmental stress
  publication-title: Genom. Appl. Biol.
– volume: 10
  start-page: 8
  year: 2003
  ident: ref_26
  article-title: Advances in the research of cold resistance in sugarcane
  publication-title: Sugarcane
– volume: 94
  start-page: 377
  year: 2015
  ident: ref_31
  article-title: Genomewide identification, classification and analysis of NAC type gene family in maize
  publication-title: J. Genet.
  doi: 10.1007/s12041-015-0526-9
– volume: 171
  start-page: 19
  year: 2014
  ident: ref_16
  article-title: Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.10.017
– volume: 217–218
  start-page: 109
  year: 2014
  ident: ref_39
  article-title: Identification and validation of promoters and cis-acting regulatory elements
  publication-title: Plant Sci.
SSID ssj0000800816
Score 2.2925007
Snippet Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO2, and NADPH....
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO , and NADPH....
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO[sub.2], and...
Malic enzyme (ME), a key enzyme involved in various metabolic pathways, catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO 2 , and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1603
SubjectTerms Abiotic stress
Agricultural production
Amino acids
Analysis
Arabidopsis thaliana
Bioinformatics
Carbon dioxide
Cellular stress response
Chromosomes
Corn
Decarboxylation
Drought
Enzymes
Gene expression
gene family identification
Genes
Gibberellins
Localization
maize
Malic enzyme
ME gene
Metabolic pathways
Metabolism
Nucleotide sequence
Oxidation
Phylogenetics
Phylogeny
Physiology
Plant growth
Plant hormones
Proteins
Pyruvic acid
Regulatory sequences
Sorghum
Temperature
Zea luxurians
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5k8eBFfDu6SiuCeog76UfSfZyVWVZREdeFxUvT6cc64nYWMwPO_nqrkp5hggcv3kKqAp2q6tRXoforQl5477m2TheN9hoKFKeKpowQyxbJv3yNBJzYbfGpOj4V78_k2c6oL-wJG-iBB8MdVF6p4EsfXM1FDI22IjjAGbacOh5VT7YNOW-nmPqRcZAqq4GlkUNdf3D5E_tKSgF7u9pMyMpZqCfr__uTvJOTxv2SOwno6Ba5mZEjnQ0rvk2uhXSHXD9sAd2t75I0nLiN-RcctcnTWbNoQZme9OdB6Px3bnpN9HM_qRuyFm0j_QhQ3NF5ulpfhGLjruApMlJ3dJFAYXEV6KtvwdILu-7ohzev75HTo_nXt8dFnqVQOCn4sggMidwbUasgpbI9VZu2ZYzSWTH1wgHu4F5ZG2tZ8Rq85zSTlrMaajIeG36f7KU2hYeECieYi8KGCFexZpbrCP5WtppCPLgwIS83tjWXA2WGgVIDvWDGXpiQQzT9VguprvsbEAAmB4D5VwBMyHN0nEEyi4TdMud21XXm3ckXM1NIVwZFl4Y1ZaXYggudzYcP4I2Q_2qkuT_ShN3mxuJNfJi82zvDQVJDHSfZhDzbivFJ7GBLoV31OgAEeIULfjCE0_a9ATQDEqtBokaBNjLMWJIW33sucCQHAXjBHv0PUz4mNxiON57Kgol9srf8tQpPAHMtm6f99voDhGErqg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8WZLQQYhAYfQTWwnzgntoq0KgqpqqVRxsRw_ykrU2Ta7Ettfz0ziLI2QuEXxRLI9M_Y3zvgbQt5Ya1mpTZlUpS0hQDEyqVIPtqyR_MsWSMCJ2RaH-cEp_3ImzuKBWxPTKvs1sV2obW3wjHyPAXaGME6K7OPiMsGqUfh3NZbQuE22YQmWEHxtT2eHR8ebUxbEQzLNO7ZGBvH93uIX5pekHHw87ytlxd2oJe3_d2m-sTcN8yZvbET798m9iCDppFP5A3LLhYfkzrQGlLd-REJ389bHoziqg6WTal6DMD1p74XQ2e-Y_BroUVuxG3YvWnv6DSC5obNwvb5wSa82ZykyUzd0HkBgfu3oux9O0wu9bujXD-8fk9P92fdPB0msqZAYwdkycRkSule8kE4IqVvKtlKn3guj-dhyA_iDWam1L0TOCtCiKTOhWVZAbMZ8xZ6QrVAH94xQbnhmPNfOw5MvMs1KD3qXOh-DXRg3Im_7uVWLjjpDQciBWlBDLYzIFKd-I4WU1-2L-upcRQ9SuZXS2dQ6UzDuXVVq7gwATp2ODfMyH5HXqDiFpBYBs2bO9app1OeTYzWRSFsGBlRCn6KQr0GFRsdLCDAi5MEaSO4OJMHrzLC5tw8Vvb5Rf210RF5tmvFLzGQLrl61MgAIWI4dftqZ02bcAJ4BkRXQIgeGNpiYYUuY_2w5wZEkBGBGtvP_fj0ndzMsYDwWScZ3ydbyauVeAKpaVi-j6_wBn84jTQ
  priority: 102
  providerName: ProQuest
Title Identification and Abiotic Stress Expression Profiling of Malic Enzyme-Associated Genes in Maize (Zea mays L.)
URI https://www.ncbi.nlm.nih.gov/pubmed/40508276
https://www.proquest.com/docview/3217742852
https://www.proquest.com/docview/3218473686
https://pubmed.ncbi.nlm.nih.gov/PMC12157182
https://doaj.org/article/6d88ed1dec734feb9a4ec054a10c3f86
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQxgMviPFZGJVBSMBDRhM7sfOAUIs6DcSmaaPSxEvk-GMr2pytaaV1fz13iVsWsSfeotxZcnx3ud9Z558JeWeMYbnSeVTmJocCRcuojB34skLyLyOQgBO7LQ6yvQn_fpKe_O1_CgtY31na4X1Sk9n5zvXV8gsE_GesOKFk_3R5ji0jMYewzZD4cxOyksAg3Q9Q_3dARjLOWt7GO4Z18lJD3__vT_pWlup2UN5KSbuPyMOAJemwNf4WuWf9Y3J_VAHeWz4hvj2D68KmHFXe0GE5rUCZHjcnROj4OrTBenrY3N0NeYxWju4DONd07G-WFzZaGdAaihzVNZ16UJjeWPrhl1X0Qi1r-mPn41My2R3__LoXhdsVIp1yNo9sgtTuJRfSpqlUDXlbrmLnUq34wHANSIQZqZQTacYE2FPnSapYIqBKY65kz8iGr7x9QSjXPNGOK-vgyYlEsdyBB0iVDcBDtO2R96u1LS5bEo0Cig-0QtG1Qo-McOnXWkh-3byoZqdFiKUiM1JaExurBePOlrniVgP0VPFAMyezHnmLhiuQ3sJj_8ypWtR18e34qBhKJDCDMiyHOQUlV4EJtQrHEeCLkBGro7nd0YT4013xyj-KlfsWDCQCKrs06ZE3azGOxJ42b6tFowPQgGU44eetO62_G2A0YDMBEtlxtM7CdCV-etawgyNdCACO5OX_D31FHiR4zfEgjRK-TTbms4V9DdhrXvbJ5mh8cHjUb_Yu-k2I_QH0qzPG
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhwQviG8KAwwCwR7CmthJnAeEWujUsm6a9iFNvATHH6MSc8rSCro_ir-Ru3yURUi87S2qr5Ht-9l355x_R8grrTVLpEq8LNEJBChKeJlvAcsSyb90jAScmG2xF42O-eeT8GSN_G7uwmBaZbMnlhu1zhWekW8x8J0hjBNh8GH2w8OqUfh1tSmhUcFixyx_QshWvB9_Av2-DoLt4dHHkVdXFfBUyNncMwFSmmc8FiYMhSxJyxLpWxsqyXuaK7DATAspbRxGLIZxqCQIJQtiiE6YzRi89xpZ5wxCmQ5ZHwz39g9Wpzrofwk_qtghGUt6W7PvmM_ic9hToqYyV239yiIB_5qCS7awnad5yfBt3ya3ao-V9iuI3SFrxt0l1wc5eJXLe8RVN31tffRHpdO0n01zEKaH5T0UOvxVJ9s6ul9WCAdrSXNLdyEEUHToLpZnxmtgYjRFJuyCTh0ITC8MffvFSHomlwWdvNu8T46vZLYfkI7LnXlEKFc8UJZLY-HJxoFkiQWcCRn1AIfKdMmbZm7TWUXVkUKIg1pI21rokgFO_UoKKbbLH_Lz07ResWmkhTDa10bFjFuTJZIbBQ6u9HuKWRF1yUtUXIokGg6zdE7loijS8eFB2hdIkwaATaBPtZDNQYVK1pceYETIu9WS3GhJwipX7eYGH2m9yxTp3zXRJS9WzfhPzJxzJl-UMuCAsAg7_LCC02rc4KyDBxhDi2gBrTUx7RY3_VZykCMpCbg1weP_9-s5uTE62p2kk_HezhNyM8Diyb3QC_gG6czPF-YpeHTz7Fm9jCj5etUr9w-WFV7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFKFeEO8GCiwIBBxMbO_aXh8QSmiihpYoaqlUcTHrfZRI1A51Ikh_Gr-OGT9CLSRuvVnZibWPb3Zm1rPfEPJCa81iqWInjXUMAYoSTupZwLJE8i8dIQEnZltMwr1j_vEkONkgv5u7MJhW2eyJ5Uatc4Vn5D0GvjOEcSLwe7ZOi5jujt7PfzhYQQq_tDblNCqI7JvVTwjfinfjXVjrl74_Gn7-sOfUFQYcFXC2cIyP9OYpj4QJAiFLArNYetYGSnJXcwXWmGkhpY2CkEUwJhX7gWR-BJEKsymD914jmxFERW6HbA6Gk-nh-oQHfTHhhRVTJGOx25t_x9wWj8P-EjZVumpLWBYM-NcsXLKL7ZzNS0ZwdIvcrL1X2q_gdptsmOwOuT7IwcNc3SVZdevX1seAVGaa9tNZDsL0qLyTQoe_6sTbjE7LauFgOWlu6ScIBxQdZherM-M0kDGaIit2QWcZCMwuDH39xUh6JlcFPXj75h45vpLZvk86WZ6ZbUK54r6yXBoLTzbyJYstYE7I0AVMKtMlr5q5TeYVbUcC4Q6uQtJehS4Z4NSvpZBuu_whPz9Nau1NQi2E0Z42KmLcmjSW3ChwdqXnKmZF2CXPceESJNTIEJqnclkUyfjoMOkLpEwD8MbQp1rI5rCEStYXIGBEyMHVktxpSYLGq3Zzg4-k3nGK5K9-dMmzdTP-E7PoMpMvSxlwRliIHX5QwWk9bnDcwRuMoEW0gNaamHZLNvtW8pEjQQm4OP7D__frKbkBGpscjCf7j8iWj3WU3cDx-Q7pLM6X5jE4d4v0Sa1FlHy9asX9A-sKYvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+Abiotic+Stress+Expression+Profiling+of+Malic+Enzyme-Associated+Genes+in+Maize+%28Zea+mays+L.%29&rft.jtitle=Plants+%28Basel%29&rft.au=Yan%2C+Haishan&rft.au=Li%2C+Yongsheng&rft.au=Ma%2C+Zengke&rft.au=Wang%2C+Ruihong&rft.date=2025-05-24&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fplants14111603&rft.externalDocID=PMC12157182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon