Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host

Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquitoborne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a hig...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 3; pp. 1 - 9
Main Authors Xiang, Benjamin Wong Wei, Saron, Wilfried A. A., Stewart, James C., Hain, Arthur, Walvekar, Varsha, Missé, Dorothée, Thomas, Fréderic, Kini, R. Manjunatha, Roche, Benjamin, Claridge-Chang, Adam, St. John, Ashley L., Pompon, Julien
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.01.2022
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquitoborne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
AbstractList Because dengue viruses are spread by mosquitoes during biting, transmission capacity depends on mosquito-biting behavior. For this reason, it is critical to understand how infection in mosquitoes influences biting. To answer this question, we deployed a multidisciplinary approach including high-resolution, multivariate biting behavior monitoring on mice, in vivo transmission assay, and mathematical modeling. We demonstrated that infected mosquitoes are more attracted to mice and bite more often to get the same amount of blood as uninfected mosquitoes. While the effect of increased attraction to host on transmission capacity is trivial, we showed that increased number of bites results in successive transmission. Eventually, we calculated that the infection-induced behavior changes tripled transmission capacity of mosquitoes. Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquitoborne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.
Author Pompon, Julien
Xiang, Benjamin Wong Wei
Kini, R. Manjunatha
Thomas, Fréderic
Stewart, James C.
St. John, Ashley L.
Walvekar, Varsha
Missé, Dorothée
Roche, Benjamin
Saron, Wilfried A. A.
Hain, Arthur
Claridge-Chang, Adam
Author_xml – sequence: 1
  givenname: Benjamin Wong Wei
  surname: Xiang
  fullname: Xiang, Benjamin Wong Wei
– sequence: 2
  givenname: Wilfried A. A.
  surname: Saron
  fullname: Saron, Wilfried A. A.
– sequence: 3
  givenname: James C.
  surname: Stewart
  fullname: Stewart, James C.
– sequence: 4
  givenname: Arthur
  surname: Hain
  fullname: Hain, Arthur
– sequence: 5
  givenname: Varsha
  surname: Walvekar
  fullname: Walvekar, Varsha
– sequence: 6
  givenname: Dorothée
  surname: Missé
  fullname: Missé, Dorothée
– sequence: 7
  givenname: Fréderic
  surname: Thomas
  fullname: Thomas, Fréderic
– sequence: 8
  givenname: R. Manjunatha
  surname: Kini
  fullname: Kini, R. Manjunatha
– sequence: 9
  givenname: Benjamin
  surname: Roche
  fullname: Roche, Benjamin
– sequence: 10
  givenname: Adam
  surname: Claridge-Chang
  fullname: Claridge-Chang, Adam
– sequence: 11
  givenname: Ashley L.
  surname: St. John
  fullname: St. John, Ashley L.
– sequence: 12
  givenname: Julien
  surname: Pompon
  fullname: Pompon, Julien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35012987$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03521021$$DView record in HAL
BookMark eNp9kk1r3DAQhkVJaTZpzz21GHpJD070YVvSJRDStCks9JK78ErjtRavtJHshf77jtl02-6hIJCYed750lyQsxADEPKe0WtGpbjZhTZfc8ZkrTRj-hVZMKpZ2VSanpEFpVyWquLVObnIeUMp1bWib8i5qCnjWskFcV8grCco9j5NufChAzv6GIptdL7zkPGRnyc_xmI1xOjKDsD5sC5W0Ld7H1OBHh9sgjZDMaY25K3PeY6AjrGHoo95fEted-2Q4d3LfUmevj483T-Wyx_fvt_fLUtbV2IsnXVCO6xZdkJbSp1WeCR1qw6YqoRysukEB26ZrJqOt41Eu7C0q2UjQFyS20PY3bTagrMQsKDB7JLftumnia03_3qC78067o2SqsbJYIDPhwD9iezxbmlmGxU1Z5SzPUf26iVZis8T5NFg4xaGoQ0Qp2x4w5SmFWtqRD-doJs4pYCTQIoj2Ki6Qerj39Uf8__-KwRuDoBNMecE3RFh1MzbYOZtMH-2ARX1icL6sZ3_F9v3w390Hw66TR5jOqbhkmElOOpfrVHD6A
CitedBy_id crossref_primary_10_1098_rspb_2024_1105
crossref_primary_10_1016_j_cois_2024_101239
crossref_primary_10_3390_biology13030188
crossref_primary_10_1016_j_isci_2024_111198
crossref_primary_10_1038_s41598_023_47277_4
crossref_primary_10_1101_pdb_top107658
crossref_primary_10_3390_jcm11113026
crossref_primary_10_1007_s42452_024_06302_5
crossref_primary_10_1016_j_cell_2022_06_019
crossref_primary_10_1098_rsos_231373
crossref_primary_10_1093_jme_tjae134
crossref_primary_10_1093_jme_tjad130
crossref_primary_10_1016_j_pt_2024_02_004
crossref_primary_10_1007_s11427_022_2231_7
crossref_primary_10_1007_s12190_024_02015_5
crossref_primary_10_1016_j_jid_2023_09_287
crossref_primary_10_1016_j_jiph_2023_04_021
crossref_primary_10_5005_jp_journals_10070_8024
crossref_primary_10_1111_mmi_15269
crossref_primary_10_1186_s13071_022_05367_8
crossref_primary_10_1016_j_cois_2024_101221
crossref_primary_10_1016_j_pt_2025_01_009
crossref_primary_10_3390_pathogens13090756
crossref_primary_10_1111_1744_7917_13292
Cites_doi 10.1371/journal.pmed.0050205
10.1371/journal.pone.0050464
10.1086/315215
10.7554/eLife.56829
10.1007/978-3-319-93177-7_2
10.1046/j.1365-2915.1999.00163.x
10.1016/j.jmbbm.2018.05.025
10.4269/ajtmh.1978.27.827
10.3389/fimmu.2021.681950
10.1371/journal.ppat.0020072
10.1016/j.pt.2017.04.003
10.1186/s13071-015-0863-9
10.1016/j.meegid.2011.06.009
10.1079/9780851993744.0000
10.1371/journal.ppat.1005676
10.1038/s41564-020-0714-0
10.1371/journal.pone.0059933
10.1016/j.neuron.2020.09.019
10.4269/ajtmh.1997.57.119
10.4269/ajtmh.1992.47.190
10.1093/jmedent/30.1.94
10.1186/1471-2180-7-9
10.1016/j.jid.2017.10.018
10.1038/s41598-018-31608-x
10.1371/journal.pntd.0008531
10.1080/00034983.1998.11813295
10.1038/nm0204-129
10.1128/JVI.02692-10
10.3389/fimmu.2014.00151
10.1371/journal.pntd.0001420
10.1371/journal.pntd.0000920
10.1371/journal.pntd.0001472
10.1038/nature12060
10.4269/ajtmh.1985.34.625
10.1111/j.1570-7458.2010.01039.x
10.1016/j.coviro.2016.05.007
10.1093/jmedent/42.5.844
10.1088/1748-3182/3/4/046001
10.1038/232485a0
10.3201/eid1206.051210
10.1017/CBO9780511806384
10.1016/j.gloenvcha.2018.02.009
10.1016/j.pt.2012.01.001
10.1093/jmedent/22.4.370
10.1016/j.cell.2013.12.044
10.1093/jmedent/32.4.563
10.1016/j.envres.2020.109114
10.1016/j.cub.2015.06.046
10.1016/j.immuni.2016.06.002
10.1126/scitranslmed.aax2421
10.4269/ajtmh.1995.52.225
10.1073/pnas.1213349110
10.7554/eLife.11750
10.1242/jeb.01736
10.1128/CMR.11.3.480
10.1016/0022-1910(69)90071-7
10.1371/journal.ppat.1002631
10.2307/3283915
10.1371/journal.ppat.0030132
10.1186/1756-3305-7-252
10.1371/journal.ppat.1008754
10.1371/journal.pone.0065252
10.1073/pnas.1105079108
10.1371/journal.pone.0017690
10.1186/1471-2164-8-6
10.1016/j.meegid.2007.05.008
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jan 18, 2022
Attribution - NonCommercial - NoDerivatives
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jan 18, 2022
– notice: Attribution - NonCommercial - NoDerivatives
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2117589119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9
ExternalDocumentID PMC8785958
oai_HAL_hal_03521021v2
35012987
10_1073_pnas_2117589119
27112976
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-20-CE15-0006
– fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE2019-T2-1-133
– fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE 2015-T3-1-003
– fundername: Ministry of Education - Singapore (MOE)
  grantid: T2EP30120-0011
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c543t-dcd39d0277f39c00d98d9870dbfe18438d76f32e2c1746f2a67e183c0f5763e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:59:51 EDT 2025
Thu May 08 06:32:23 EDT 2025
Sun Aug 24 03:57:40 EDT 2025
Mon Jun 30 08:10:52 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Tue Jul 01 01:03:08 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Thu May 29 08:49:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epidemiology
transmission
blood-feeding behavior
dengue virus
mosquito
Dengue virus
Mosquito
Epidemiology
Blood-feeding behavior
Transmission
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c543t-dcd39d0277f39c00d98d9870dbfe18438d76f32e2c1746f2a67e183c0f5763e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8785958
Edited by Anthony James, Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA; received October 15, 2021; accepted November 23, 2021
Author contributions: B.W.W.X., W.A.A.S., J.C.S., F.T., R.M.K., B.R., A.C.-C., A.L.S., and J.P. designed research; B.W.W.X., W.A.A.S., A.H., V.W., B.R., A.C.-C., and A.L.S. performed research; B.W.W.X., W.A.A.S., R.M.K., B.R., A.C.-C., A.L.S., and J.P. analyzed data; J.C.S., D.M., A.C.-C., and A.L.S. contributed new reagents/analytic tools; R.M.K., B.R., A.C.-C., and A.L.S. reviewed and edited the paper; and J.P. wrote the paper.
ORCID 0000-0001-5098-1044
0000-0002-4583-3650
0000-0002-7974-5288
0000-0002-1394-484X
0000-0002-6100-3251
0000-0002-6485-3841
0000-0003-2238-1978
0000-0001-7975-4232
0000-0003-1110-9039
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8785958
PMID 35012987
PQID 2622616856
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8785958
hal_primary_oai_HAL_hal_03521021v2
proquest_miscellaneous_2618904165
proquest_journals_2622616856
pubmed_primary_35012987
crossref_primary_10_1073_pnas_2117589119
crossref_citationtrail_10_1073_pnas_2117589119
jstor_primary_27112976
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-18
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
Clements A. N. (e_1_3_4_6_2) 1992
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
Yoo W. (e_1_3_4_42_2) 2014; 4
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
Yasuno M. (e_1_3_4_62_2) 1970; 43
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_67_2
  doi: 10.1371/journal.pmed.0050205
– ident: e_1_3_4_18_2
  doi: 10.1371/journal.pone.0050464
– ident: e_1_3_4_37_2
  doi: 10.1086/315215
– ident: e_1_3_4_12_2
  doi: 10.7554/eLife.56829
– ident: e_1_3_4_39_2
  doi: 10.1007/978-3-319-93177-7_2
– ident: e_1_3_4_7_2
  doi: 10.1046/j.1365-2915.1999.00163.x
– ident: e_1_3_4_15_2
  doi: 10.1016/j.jmbbm.2018.05.025
– ident: e_1_3_4_63_2
  doi: 10.4269/ajtmh.1978.27.827
– ident: e_1_3_4_45_2
  doi: 10.3389/fimmu.2021.681950
– ident: e_1_3_4_58_2
  doi: 10.1371/journal.ppat.0020072
– ident: e_1_3_4_47_2
  doi: 10.1016/j.pt.2017.04.003
– ident: e_1_3_4_43_2
  doi: 10.1186/s13071-015-0863-9
– ident: e_1_3_4_24_2
  doi: 10.1016/j.meegid.2011.06.009
– volume-title: Biology of Mosquitoes: Development Nutrition and Reproduction
  year: 1992
  ident: e_1_3_4_6_2
  doi: 10.1079/9780851993744.0000
– ident: e_1_3_4_48_2
  doi: 10.1371/journal.ppat.1005676
– ident: e_1_3_4_2_2
  doi: 10.1038/s41564-020-0714-0
– ident: e_1_3_4_35_2
  doi: 10.1371/journal.pone.0059933
– ident: e_1_3_4_13_2
  doi: 10.1016/j.neuron.2020.09.019
– ident: e_1_3_4_34_2
  doi: 10.4269/ajtmh.1997.57.119
– ident: e_1_3_4_21_2
  doi: 10.4269/ajtmh.1992.47.190
– ident: e_1_3_4_61_2
  doi: 10.1093/jmedent/30.1.94
– ident: e_1_3_4_54_2
  doi: 10.1186/1471-2180-7-9
– ident: e_1_3_4_26_2
  doi: 10.1016/j.jid.2017.10.018
– ident: e_1_3_4_32_2
  doi: 10.1038/s41598-018-31608-x
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pntd.0008531
– ident: e_1_3_4_51_2
  doi: 10.1080/00034983.1998.11813295
– ident: e_1_3_4_4_2
  doi: 10.1038/nm0204-129
– ident: e_1_3_4_23_2
  doi: 10.1128/JVI.02692-10
– ident: e_1_3_4_46_2
  doi: 10.3389/fimmu.2014.00151
– ident: e_1_3_4_25_2
  doi: 10.1371/journal.pntd.0001420
– ident: e_1_3_4_66_2
  doi: 10.1371/journal.pntd.0000920
– volume: 43
  start-page: 319
  year: 1970
  ident: e_1_3_4_62_2
  article-title: A study of biting habits of Aedes aegypti in Bangkok, Thailand
  publication-title: Bull. World Health Organ.
– ident: e_1_3_4_64_2
  doi: 10.1371/journal.pntd.0001472
– ident: e_1_3_4_1_2
  doi: 10.1038/nature12060
– ident: e_1_3_4_68_2
  doi: 10.4269/ajtmh.1985.34.625
– ident: e_1_3_4_41_2
  doi: 10.1111/j.1570-7458.2010.01039.x
– ident: e_1_3_4_57_2
  doi: 10.1016/j.coviro.2016.05.007
– ident: e_1_3_4_59_2
  doi: 10.1093/jmedent/42.5.844
– ident: e_1_3_4_14_2
  doi: 10.1088/1748-3182/3/4/046001
– ident: e_1_3_4_60_2
  doi: 10.1038/232485a0
– ident: e_1_3_4_5_2
  doi: 10.3201/eid1206.051210
– ident: e_1_3_4_38_2
  doi: 10.1017/CBO9780511806384
– ident: e_1_3_4_40_2
  doi: 10.1016/j.gloenvcha.2018.02.009
– ident: e_1_3_4_29_2
  doi: 10.1016/j.pt.2012.01.001
– ident: e_1_3_4_50_2
  doi: 10.1093/jmedent/22.4.370
– ident: e_1_3_4_9_2
  doi: 10.1016/j.cell.2013.12.044
– ident: e_1_3_4_22_2
  doi: 10.1093/jmedent/32.4.563
– volume: 4
  start-page: 9
  year: 2014
  ident: e_1_3_4_42_2
  article-title: A study of effects of multiCollinearity in the multivariable analysis
  publication-title: Int. J. Appl. Sci. Technol.
– ident: e_1_3_4_52_2
  doi: 10.1016/j.envres.2020.109114
– ident: e_1_3_4_10_2
  doi: 10.1016/j.cub.2015.06.046
– ident: e_1_3_4_27_2
  doi: 10.1016/j.immuni.2016.06.002
– ident: e_1_3_4_28_2
  doi: 10.1126/scitranslmed.aax2421
– ident: e_1_3_4_36_2
  doi: 10.4269/ajtmh.1995.52.225
– ident: e_1_3_4_65_2
  doi: 10.1073/pnas.1213349110
– ident: e_1_3_4_11_2
  doi: 10.7554/eLife.11750
– ident: e_1_3_4_8_2
  doi: 10.1242/jeb.01736
– ident: e_1_3_4_3_2
  doi: 10.1128/CMR.11.3.480
– ident: e_1_3_4_19_2
  doi: 10.1016/0022-1910(69)90071-7
– ident: e_1_3_4_17_2
  doi: 10.1371/journal.ppat.1002631
– ident: e_1_3_4_49_2
  doi: 10.2307/3283915
– ident: e_1_3_4_20_2
  doi: 10.1371/journal.ppat.0030132
– ident: e_1_3_4_55_2
  doi: 10.1186/1756-3305-7-252
– ident: e_1_3_4_56_2
  doi: 10.1371/journal.ppat.1008754
– ident: e_1_3_4_33_2
  doi: 10.1371/journal.pone.0065252
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1105079108
– ident: e_1_3_4_30_2
  doi: 10.1371/journal.pone.0017690
– ident: e_1_3_4_16_2
  doi: 10.1186/1471-2164-8-6
– ident: e_1_3_4_53_2
  doi: 10.1016/j.meegid.2007.05.008
SSID ssj0009580
Score 2.539459
Snippet Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquitoborne viruses. However, despite...
Because dengue viruses are spread by mosquitoes during biting, transmission capacity depends on mosquito-biting behavior. For this reason, it is critical to...
Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Aedes - virology
Animal biology
Animals
Animals Behavior, Animal / physiology
Aquatic insects
Behavior
Behavior, Animal - physiology
Biological Sciences
Biting
Blood
Culicidae
Dengue - transmission
Dengue - virology
Dengue fever
Dengue Virus - physiology
Disease transmission
Ecology, environment
Epidemic models
Epidemiology
Feeding behavior
Feeding Behavior - physiology
Food and Nutrition
Host searching behavior
Host-Pathogen Interactions - physiology
Human health and pathology
Infections
Infectious diseases
Invertebrate Zoology
Life Sciences
Mathematical models
Mosquitoes
Multidisciplinary research
Multivariate Analysis
Santé publique et épidémiologie
Symbiosis
Vector-borne diseases
Viruses
Title Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host
URI https://www.jstor.org/stable/27112976
https://www.ncbi.nlm.nih.gov/pubmed/35012987
https://www.proquest.com/docview/2622616856
https://www.proquest.com/docview/2618904165
https://hal.science/hal-03521021
https://pubmed.ncbi.nlm.nih.gov/PMC8785958
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6lRUK9IAoUDAUZxKHIsuvYjr0-hgCKEI1yCKI3y49dYkTdEsc98G_5J8x4H7ZLkKCSZUW760c8n2dnxt_MEvI6dWnK8jSwc5gM7YAWqZ3lcQA-D_M8XmBmCMY7zhbh_HPw8XxyPhr96rGWmm3m5D935pXcRqrQBnLFLNn_kKw-KTTAb5Av7EHCsP8nGb9j1deGWdflpuloVRWublNy8IDhR_2jgVdW0tO5mKl0aj7anWWFZmPNcK2IqgahY_RMGaSYAdK3Xpd6tqsVt2ChgonTLjVF6ovasq3lolvo-AsrrfNSxqffsupbelFWFnKCdZgn3QgSAOgqvkHjeOrAprsx0CdSjFpyrzVzOgUqayFstutG8I1RAqzGtBaRPzNDsmo_yOEhW8SWerlXI3znf-lrdw9m3EDkZDtMKHSwh-wwEEuSao0vtXTZRQT-mElA9eHyx1VaOx6WM6WxPKqHq6uLFlj4bdaLpd0wLN69PJvRCEvI0T1yxwNPpuWezvt1oanIkpK3rqpPRf7pjWsfkLvqQgMbam-NDF5Bpt3lJt1k-_bMp9V9ck_6PeZUgPiQjFj1gByqp2ueyPLnbx6SQqDabFFtalSbCtWmQrU5QLWpUG1Cj0K12Uc1dgAQTET1I7L68H41m9tyLRA7nwT-1i7ywo8LJBxwP85dt4gpbJFbZJzhkkW0iELug4LJwcUOuZeGEbT7ucvBofaZf0T2q8uKPSEm4wUFt9KnHGzv3A_jNB7HLC68LONg0gUGcdTDTXJZJx-Xa_metHyNyE9QMEknGIOc6AOuRImYvw99BdLSo7C0-3z6KcE2rEsMxv742jPIUStMPcyL0CmKQoMcK-kmUgvByUNwoMYhnUD3S90NDxY__KUVu2xwzJjGLrheE4M8FmDQJ1eYMkg0gMngJoc9Vblu69BLZD-99ZHPyEH3sh-T_e2mYc_Bxt9mL9q35De-hgES
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dengue+virus+infection+modifies+mosquito+blood-feeding+behavior+to+increase+transmission+to+the+host&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wei+Xiang%2C+Benjamin+Wong&rft.au=Saron%2C+Wilfried+A.+A.&rft.au=Stewart%2C+James+C.&rft.au=Hain%2C+Arthur&rft.series=From+the+Cover&rft.date=2022-01-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=3&rft_id=info:doi/10.1073%2Fpnas.2117589119&rft_id=info%3Apmid%2F35012987&rft.externalDocID=PMC8785958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon