Modeling the Duration of the Impact of Unplanned Disruptions on Passenger Trips Using Smartcard Data in Urban Rail Systems

Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have foc...

Full description

Saved in:
Bibliographic Details
Published inUrban rail transit Vol. 9; no. 3; pp. 266 - 279
Main Authors Liu, Tianyou, Koutsopoulos, Haris N., Ma, Zhenliang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions.
AbstractList Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions.
Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions.
Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions.
Author Ma, Zhenliang
Koutsopoulos, Haris N.
Liu, Tianyou
Author_xml – sequence: 1
  givenname: Tianyou
  surname: Liu
  fullname: Liu, Tianyou
  organization: Microsoft Corporation, Department of Civil and Environmental Engineering, Northeastern University
– sequence: 2
  givenname: Haris N.
  surname: Koutsopoulos
  fullname: Koutsopoulos, Haris N.
  organization: Department of Civil and Environmental Engineering, Northeastern University
– sequence: 3
  givenname: Zhenliang
  orcidid: 0000-0002-2141-0389
  surname: Ma
  fullname: Ma, Zhenliang
  email: zhema@kth.se
  organization: Department of Civil and Architectural Engineering, KTH Royal Institute of Technology
BookMark eNp9kc1u3CAUhVGVSk3SvEBXSFk75c_YLKOkSUeaqlWTWaNrDFNGHnDBs5g8ffG4SnZZwUXfOfeIc4HOQgwWoS-U3FBCmq9ZkFaKijBeEUJVUx0_oHNGlaqkbNTZ671tPqGrnHeEEEZpK1h9jl5-xN4OPmzx9Mfi-0OCyceAozvNq_0IZpqnTRgHCMH2-N7ndBhnKuNC_oKcbdjahJ-THzPe5NnsaQ9pMpAKDhNgH_AmdRDwb_ADfjrmye7zZ_TRwZDt1f_zEm0evj3ffa_WPx9Xd7frytSCT5WxICX0itbghDSSC0s7yihnvDatNR3hEmoDsnFArexrZlQvSMcb1kvTGH6JVotvH2Gnx-RLtqOO4PXpIaatLmG9Gax23PWsAysU7YRrJXDXWkooUMFlw0Xxul68xhT_Hmye9C4eUijxNWulVJKqui0UWyiTYs7JutetlOi5Mr1Upktl-lSZPhYRX0S5wPOHvlm_o_oHmy-cOg
CitedBy_id crossref_primary_10_1177_03611981241252831
Cites_doi 10.3141/2595-09
10.1080/23249935.2020.1733132
10.1007/s12469-020-00229-x
10.1007/s12544-010-0031-4
10.1016/j.multra.2022.100017
10.1007/s40864-021-00150-x
10.1155/2018/7191549
10.1016/j.neucom.2019.04.075
10.1016/j.trpro.2017.05.322
10.1016/j.trc.2015.06.003
10.1016/j.aap.2006.12.017
10.1016/j.physa.2018.03.028
10.1016/j.aap.2005.11.012
10.3354/cr01359
10.1016/S0965-8564(98)00065-2
10.1016/S0034-4257(97)00083-7
10.1016/j.aap.2014.07.029
10.1093/tse/tdy001
10.1109/OJITS.2022.3194879
10.1007/s11116-020-10109-9
10.1155/2015/876862
10.1061/JTEPBS.0000333
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L6V
M0C
M7S
PIMPY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PTHSS
PYYUZ
Q9U
DOA
DOI 10.1007/s40864-023-00197-y
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global (ProQuest)
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-6679
EndPage 279
ExternalDocumentID oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734
10_1007_s40864_023_00197_y
GroupedDBID 7WY
8FE
8FG
8FL
AAFWJ
AAKKN
AAPBV
AAYZJ
ABJCF
ABUWG
ACACY
ACGFS
ACIWK
ADBBV
ADINQ
AFGXO
AFKRA
AFNRJ
AFPKN
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBS
EJD
FRNLG
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
K60
K6~
L6V
M0C
M7S
M~E
N95
OK1
PIMPY
PQBIZ
PQQKQ
PTHSS
RIG
RSV
SOJ
0R~
AAYXX
ABEEZ
ACULB
CITATION
ITC
PQBZA
3V.
7XB
8FK
AZQEC
L.-
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c543t-cea66ad915af46c634e1b1213235c8ecb036a5ca67fa1e6d52c9d40b372d6c7c3
IEDL.DBID DOA
ISSN 2199-6687
IngestDate Tue Oct 22 15:12:52 EDT 2024
Thu Oct 10 15:52:44 EDT 2024
Thu Sep 26 18:23:40 EDT 2024
Fri Sep 22 01:18:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Urban rail systems
Impact duration on passenger trips
Smartcard data
Unplanned disruptions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-cea66ad915af46c634e1b1213235c8ecb036a5ca67fa1e6d52c9d40b372d6c7c3
ORCID 0000-0002-2141-0389
OpenAccessLink https://doaj.org/article/f3fd2bae491b4f86a3f8e101a1436734
PQID 2866961958
PQPubID 2044373
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734
proquest_journals_2866961958
crossref_primary_10_1007_s40864_023_00197_y
springer_journals_10_1007_s40864_023_00197_y
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Urban rail transit
PublicationTitleAbbrev Urban Rail Transit
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Wang, Zhang, Liu, Wang, Wang, Yin (CR14) 2018; 2018
Hamad, Ai-Ruzouq, Zeiada Dabous, Khalil (CR21) 2020; 16
Currie, Muir (CR1) 2017; 25
CR18
Lapamonpinyo, Derrible, Corman (CR10) 2022; 3
Webb, Kumar, Khani (CR17) 2020; 12
Monjo (CR23) 2016; 67
CR13
CR12
Valenti, Lelli, Cucina (CR3) 2010; 2
Wang, Li, Pan, Wang, Jin (CR9) 2019; 359
Yap, Cats (CR16) 2021; 48
Ozbay, Noyan (CR4) 2006; 38
Liu, Ma, Koutsopoulos (CR2) 2021; 7
Stehman (CR24) 1997; 62
Weng, Zheng, Qu, Yan (CR8) 2015; 57
Weng, Zheng, Yan, Meng (CR7) 2014; 73
Wang, Zhang (CR25) 2019; 1
Shi, Zhang, Zhang (CR11) 2016; 2595
Nam, Mannering (CR5) 2000; 34
Zhou, Cheng, Wu, Li, Belezamo, Lu (CR19) 2022
Chow, Qu, Pang (CR20) 2004; 10
CR22
Malandri, Fonzone, Cats (CR15) 2018; 505
Wei, Lee (CR6) 2007; 39
K Ozbay (197_CR4) 2006; 38
SV Stehman (197_CR24) 1997; 62
G Currie (197_CR1) 2017; 25
JX Weng (197_CR7) 2014; 73
XH Wang (197_CR14) 2018; 2018
TY Liu (197_CR2) 2021; 7
197_CR22
197_CR13
197_CR12
JX Weng (197_CR8) 2015; 57
197_CR18
C-H Wei (197_CR6) 2007; 39
HY Wang (197_CR9) 2019; 359
XS Zhou (197_CR19) 2022
M Yap (197_CR16) 2021; 48
D Nam (197_CR5) 2000; 34
C Malandri (197_CR15) 2018; 505
K Hamad (197_CR21) 2020; 16
A Webb (197_CR17) 2020; 12
WK Chow (197_CR20) 2004; 10
R Monjo (197_CR23) 2016; 67
S Lapamonpinyo (197_CR10) 2022; 3
P Wang (197_CR25) 2019; 1
G Valenti (197_CR3) 2010; 2
ZB Shi (197_CR11) 2016; 2595
References_xml – volume: 2595
  start-page: 78
  year: 2016
  end-page: 87
  ident: CR11
  article-title: Hazard-based model for estimation of congestion duration in urban rail transit considering loss minimization
  publication-title: Transp Res Record J Transp Res Board
  doi: 10.3141/2595-09
  contributor:
    fullname: Zhang
– ident: CR22
– ident: CR18
– volume: 16
  start-page: 1269
  issue: 3
  year: 2020
  end-page: 1293
  ident: CR21
  article-title: Predicting incident duration using random forests
  publication-title: Transportmetrica A
  doi: 10.1080/23249935.2020.1733132
  contributor:
    fullname: Khalil
– volume: 12
  start-page: 299
  year: 2020
  end-page: 311
  ident: CR17
  article-title: Estimation of passenger waiting time using automatically collected transit data
  publication-title: Public Transport
  doi: 10.1007/s12469-020-00229-x
  contributor:
    fullname: Khani
– ident: CR12
– volume: 2
  start-page: 103
  year: 2010
  end-page: 111
  ident: CR3
  article-title: A comparative study of models for the incident duration prediction
  publication-title: Eur Transp Res Rev
  doi: 10.1007/s12544-010-0031-4
  contributor:
    fullname: Cucina
– year: 2022
  ident: CR19
  article-title: A meso-to-macro cross-resolution performance approach for connecting polynomial arrival queue model to volume-delay function with inflow demand-to-capacity ratio
  publication-title: Multimodal Transp
  doi: 10.1016/j.multra.2022.100017
  contributor:
    fullname: Lu
– volume: 10
  start-page: 41
  issue: 3
  year: 2004
  end-page: 47
  ident: CR20
  article-title: Incidents on fire and ventilation provision in subway systems in Hong Kong
  publication-title: Int J Eng Perform Based Fire Codes
  contributor:
    fullname: Pang
– volume: 7
  start-page: 177
  year: 2021
  end-page: 190
  ident: CR2
  article-title: Unplanned disruption analysis in urban railway systems using smart card data
  publication-title: Urban Rail Transit. Urban Rail Transit
  doi: 10.1007/s40864-021-00150-x
  contributor:
    fullname: Koutsopoulos
– volume: 2018
  start-page: 12
  year: 2018
  ident: CR14
  article-title: An improved robust principal component analysis model for anomalies detection of subway passenger flow
  publication-title: Journal of Adv Transp
  doi: 10.1155/2018/7191549
  contributor:
    fullname: Yin
– volume: 359
  start-page: 327
  year: 2019
  end-page: 340
  ident: CR9
  article-title: Online detection of abnormal passenger out-flow in urban metro system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.075
  contributor:
    fullname: Jin
– volume: 25
  start-page: 4392
  year: 2017
  end-page: 4402
  ident: CR1
  article-title: Understanding passenger perceptions and behaviors during unplanned rail disruptions
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2017.05.322
  contributor:
    fullname: Muir
– volume: 57
  start-page: 30
  year: 2015
  end-page: 41
  ident: CR8
  article-title: Development of a maximum likelihood regression tree-based model for predicting subway incident delay
  publication-title: Transp Res C
  doi: 10.1016/j.trc.2015.06.003
  contributor:
    fullname: Yan
– volume: 39
  start-page: 944
  issue: 5
  year: 2007
  end-page: 954
  ident: CR6
  article-title: Sequential forecast of incident duration using artificial neural network models
  publication-title: Accident Analysis Prevention
  doi: 10.1016/j.aap.2006.12.017
  contributor:
    fullname: Lee
– volume: 505
  start-page: 7
  year: 2018
  end-page: 17
  ident: CR15
  article-title: Recovery time and propagation effects of passenger transport disruptions
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.03.028
  contributor:
    fullname: Cats
– volume: 38
  start-page: 542
  issue: 3
  year: 2006
  end-page: 555
  ident: CR4
  article-title: Estimation of incident clearance times using Bayesian Networks approach
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2005.11.012
  contributor:
    fullname: Noyan
– volume: 67
  start-page: 71
  issue: 1
  year: 2016
  end-page: 86
  ident: CR23
  article-title: Measure of rainfall time structure using the dimensionless n-index
  publication-title: Climate Res
  doi: 10.3354/cr01359
  contributor:
    fullname: Monjo
– volume: 34
  start-page: 85
  issue: 2
  year: 2000
  end-page: 102
  ident: CR5
  article-title: An exploratory hazard-based analysis of highway incident duration
  publication-title: Transp Res A Policy Pract
  doi: 10.1016/S0965-8564(98)00065-2
  contributor:
    fullname: Mannering
– volume: 62
  start-page: 77
  issue: 1
  year: 1997
  end-page: 89
  ident: CR24
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(97)00083-7
  contributor:
    fullname: Stehman
– ident: CR13
– volume: 73
  start-page: 12
  year: 2014
  end-page: 19
  ident: CR7
  article-title: Development of a subway operation incident delay model using accelerated failure approaches
  publication-title: Accident Anal Prevent
  doi: 10.1016/j.aap.2014.07.029
  contributor:
    fullname: Meng
– volume: 1
  start-page: 79
  issue: 1
  year: 2019
  end-page: 88
  ident: CR25
  article-title: Train delay analysis and prediction based on bid data fusion
  publication-title: Transp Saf Environ
  doi: 10.1093/tse/tdy001
  contributor:
    fullname: Zhang
– volume: 3
  start-page: 539
  year: 2022
  end-page: 550
  ident: CR10
  article-title: Real-time passenger train delay prediction using machine learning: a case study with Amtrak passenger train routes
  publication-title: IEEE Open J Intell Transp Syst
  doi: 10.1109/OJITS.2022.3194879
  contributor:
    fullname: Corman
– volume: 48
  start-page: 1703
  year: 2021
  end-page: 1731
  ident: CR16
  article-title: Predicting disruptions and their passenger delay impacts for public transport stops
  publication-title: Transportation
  doi: 10.1007/s11116-020-10109-9
  contributor:
    fullname: Cats
– volume: 73
  start-page: 12
  year: 2014
  ident: 197_CR7
  publication-title: Accident Anal Prevent
  doi: 10.1016/j.aap.2014.07.029
  contributor:
    fullname: JX Weng
– volume: 2
  start-page: 103
  year: 2010
  ident: 197_CR3
  publication-title: Eur Transp Res Rev
  doi: 10.1007/s12544-010-0031-4
  contributor:
    fullname: G Valenti
– volume: 16
  start-page: 1269
  issue: 3
  year: 2020
  ident: 197_CR21
  publication-title: Transportmetrica A
  doi: 10.1080/23249935.2020.1733132
  contributor:
    fullname: K Hamad
– volume: 2018
  start-page: 12
  year: 2018
  ident: 197_CR14
  publication-title: Journal of Adv Transp
  doi: 10.1155/2018/7191549
  contributor:
    fullname: XH Wang
– volume: 38
  start-page: 542
  issue: 3
  year: 2006
  ident: 197_CR4
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2005.11.012
  contributor:
    fullname: K Ozbay
– volume: 34
  start-page: 85
  issue: 2
  year: 2000
  ident: 197_CR5
  publication-title: Transp Res A Policy Pract
  doi: 10.1016/S0965-8564(98)00065-2
  contributor:
    fullname: D Nam
– volume: 62
  start-page: 77
  issue: 1
  year: 1997
  ident: 197_CR24
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(97)00083-7
  contributor:
    fullname: SV Stehman
– ident: 197_CR18
  doi: 10.1155/2015/876862
– volume: 359
  start-page: 327
  year: 2019
  ident: 197_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.075
  contributor:
    fullname: HY Wang
– volume: 12
  start-page: 299
  year: 2020
  ident: 197_CR17
  publication-title: Public Transport
  doi: 10.1007/s12469-020-00229-x
  contributor:
    fullname: A Webb
– volume: 2595
  start-page: 78
  year: 2016
  ident: 197_CR11
  publication-title: Transp Res Record J Transp Res Board
  doi: 10.3141/2595-09
  contributor:
    fullname: ZB Shi
– volume: 25
  start-page: 4392
  year: 2017
  ident: 197_CR1
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2017.05.322
  contributor:
    fullname: G Currie
– volume: 48
  start-page: 1703
  year: 2021
  ident: 197_CR16
  publication-title: Transportation
  doi: 10.1007/s11116-020-10109-9
  contributor:
    fullname: M Yap
– ident: 197_CR22
– volume: 67
  start-page: 71
  issue: 1
  year: 2016
  ident: 197_CR23
  publication-title: Climate Res
  doi: 10.3354/cr01359
  contributor:
    fullname: R Monjo
– volume: 39
  start-page: 944
  issue: 5
  year: 2007
  ident: 197_CR6
  publication-title: Accident Analysis Prevention
  doi: 10.1016/j.aap.2006.12.017
  contributor:
    fullname: C-H Wei
– year: 2022
  ident: 197_CR19
  publication-title: Multimodal Transp
  doi: 10.1016/j.multra.2022.100017
  contributor:
    fullname: XS Zhou
– ident: 197_CR13
– volume: 10
  start-page: 41
  issue: 3
  year: 2004
  ident: 197_CR20
  publication-title: Int J Eng Perform Based Fire Codes
  contributor:
    fullname: WK Chow
– volume: 3
  start-page: 539
  year: 2022
  ident: 197_CR10
  publication-title: IEEE Open J Intell Transp Syst
  doi: 10.1109/OJITS.2022.3194879
  contributor:
    fullname: S Lapamonpinyo
– volume: 505
  start-page: 7
  year: 2018
  ident: 197_CR15
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.03.028
  contributor:
    fullname: C Malandri
– volume: 1
  start-page: 79
  issue: 1
  year: 2019
  ident: 197_CR25
  publication-title: Transp Saf Environ
  doi: 10.1093/tse/tdy001
  contributor:
    fullname: P Wang
– ident: 197_CR12
  doi: 10.1061/JTEPBS.0000333
– volume: 57
  start-page: 30
  year: 2015
  ident: 197_CR8
  publication-title: Transp Res C
  doi: 10.1016/j.trc.2015.06.003
  contributor:
    fullname: JX Weng
– volume: 7
  start-page: 177
  year: 2021
  ident: 197_CR2
  publication-title: Urban Rail Transit. Urban Rail Transit
  doi: 10.1007/s40864-021-00150-x
  contributor:
    fullname: TY Liu
SSID ssj0002118425
Score 2.2851706
Snippet Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger...
Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a...
Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 266
SubjectTerms Automation
Automotive Engineering
Computational Intelligence
Decision making
Decision trees
Disruption
Engineering
Failure times
Fares
Foundations
Geoengineering
Hydraulics
Impact duration on passenger trips
Machine learning
Neural networks
Original Research Papers
Passengers
Probabilistic methods
Regression analysis
Signalling systems
Smart cards
Smartcard data
Statistical analysis
Travel demand
Unplanned disruptions
Urban rail
Urban rail systems
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgvcCh4ilCC_KBG1iwfsx6T4iSVgWJqiqN1JvlJ4oEm7BJDuXXM3aclCLB0bveleUZz3y2Z74h5BWqRbABd6oaHDCpQmRORM-UcuguIupQ4S34cganU_n5Sl3VA7dlDavc2sRiqMPc5zPyt1wDdJCpUd4vfrJcNSrfrtYSGnfJHsedAh-RvaPjs_OL3SkLbm_yPVOuMNd0HQPQbc2cKflzEgG9ZOi2WIY6Lbu-5Z0Kif8t5PnXZWnxQScPyH4Fj_TDRtoPyZ3YPyL3_6AUfEx-5eJmOcWcIrKjk_VGwHSeSvtTyYnMrWm_yOWKYqCT2XJYb0JbKPY8RzSdI10Heon2ZElLTAH9-gNVzKM20YldWTrr6XRwtqcXdvadVtbzJ2R6cnz58ZTV-grMKylWzEcLYEPXKJskeBAyNi5TvHGhvI7eoXezyltok20iBMV9F-Q7J1oewLdePCWjft7HZ4Qm7YAH6xLiNylicvix0m3U0jplhR6T19t5NYsNjYbZESYXKRiUgilSMNdjcpSnftczU2CXB_Phm6kryiSRAnc2yq5xMmmwIumIBsbiAKAVckwOt4IzdV0uzY0WjcmbrTBvXv97SM___7cDco8XNcrBZ4dktBrW8QWilZV7WVXyN_wH51M
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKe4FDRQuILaXyoTewRGJ74hyhS1WQQFXpSr1Z4y-0Es1W2d1D-fUde7NbiuiBoxMnsjzjmWfNzBvGjkktAga6qRpwIJQOUTgZvdDakbuIpEOFt-DbdzibqK9X-uq-jrsku68jksVQb2rdFIFvJcjFiAxLGnH7hO0QeFD5xnUylDhk80s3mhxayk3lqrYVAKYZimX-_ZsHDqnw9j8Am3_FR4vbOX3Odge8yD-uBLzHtmK3z579wSL4gv3O_cxyVTknMMfHy5VM-SyV8ZdSBplHk-4mdyiKgY-n8365ymbhNPOcAHRObu35JZmQOS9pBPzHNWmVJwXiY1wgn3Z80jvs-AVOf_GB6Pwlm5x-vjw5E0NLBeG1kgvhIwJgaCuNSYEHqWLlMqtbLbU30TtyaKg9QpOwihB07dugPjjZ1AF84-Urtt3Nuvia8WQc1AFdIsimZEyOPtamiUah0yjNiL1b76u9WTFn2A1HcpGCJSnYIgV7O2Kf8tZvZmbW6_Jg1v-0wyGySaZQO4yqrZxKBlAmE8mmIC0AGqlG7HAtODscxbmtDUALmVNnxN6vhXn_-vElHfzf9DfsaV3UKuefHbLtRb-MbwmwLNxRUdA7zurioQ
  priority: 102
  providerName: Springer Nature
Title Modeling the Duration of the Impact of Unplanned Disruptions on Passenger Trips Using Smartcard Data in Urban Rail Systems
URI https://link.springer.com/article/10.1007/s40864-023-00197-y
https://www.proquest.com/docview/2866961958
https://doaj.org/article/f3fd2bae491b4f86a3f8e101a1436734
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RQLZeUDN7BoYnviHOlul4JEVZWu1Jvlp7RSSat9HMqvZ-xkyxYJceESyYkjWTNfMp_lmW8A3hEsgg20U9XokEsVIncieq6Uo3ARCUNFt-DbCR7P5dcLdbHT6ivnhPXywL3hPiaRQu1slG3lZNJoRdKRcGQp0GMjeiXQg3ZnM5X_wbStyedLubNc1bYcUTdDxUypm5NE5CWncMUzxWn4zZ2oVMT77zDOPw5JS-yZPYHHA2lkn_rFPoV7sXsGj3akBJ_Dz9zULJeWM2J0bLrpHcuuUhl_KbWQeTTvrnObohjYdLFabvqUFkYzT4lF5wzXJTun_8iKlVwC9v0HWcgTitjUri1bdGy-dLZjZ3ZxyQa18xcwnx2dT4750FeBeyXFmvtoEW1oK2WTRI9CxsplabdaKK-jdxTVrPIWm2SriEHVvg3ywImmDugbL17CXnfVxVfAknZYB-sS8TYpYnL0stJN1NI6ZYUewfutXc11L59hboWSixcMecEUL5ibERxm09_OzNLX5QYBwgyAMP8CxAj2t44zw_e4MrVGbDEL64zgw9aZvx__fUmv_8eS3sDDuoAtp6btw956uYlvicus3Rju69nnMTw4PDo5PaPRpJb5ipNxAfQvCL_yhg
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,41133,41134,42202,42203,43614,43819,51590,52247
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHIBDxVMNLeADN7Bg1_as94SAEFJoKwSJ1JvlJ4oEm7BJDuXXM3aclCLB0bveleUZz3y2Z74h5BmqhTced6oKLDAhfWCWB8ektOguAupQ5i04PYPxVHw8l-flwG1Zwiq3NjEbaj936Yz8Za0AWkjUKK8XP1mqGpVuV0sJjevkhuDoaFKm-OjD7owFNzfplinVl6valgGopuTN5Ow5gXBeMHRaLAGdhl1c8U2Zwv8K7vzrqjR7oNEdsl-gI32zkfVdci1098jtPwgF75NfqbRZSjCniOvocL0RL53H3D7OGZGpNe0WqVhR8HQ4W_brTWALxZ6fEUunONeeTtCaLGmOKKBff6CCOdQlOjQrQ2cdnfbWdPSLmX2nhfP8AZmO3k_ejVmprsCcFHzFXDAAxreVNFGAAy5CZRPBW82lU8FZ9G1GOgNNNFUAL2vXevHK8qb24BrHH5K9bt6FA0KjslB7YyOiN8FDtPixVE1QwlhpuBqQ59t51YsNiYbe0SVnKWiUgs5S0BcD8jZN_a5nIsDOD-b9N13Wk448-tqaINrKiqjA8KgCmheDA4CGiwE52gpOl1W51Jc6NCAvtsK8fP3vIT36_9-ekpvjyemJPjk--3RIbtVZpVIY2hHZW_Xr8Bhxy8o-ycr5GxZY6N4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeEE-xpYAP3MAqie2Jc2x3WbU8qgq6Um-Wn2ilNrvKZg_l1zN2skuL4MDRiRNF_saez_HMN4S8RbPwxuNOVYEFJqQPzPLgmJQW3UVAG8q6BV9P4XgmPl3IixtZ_DnafXMk2ec0JJWmpjtY-niwTXwTyMQFQ3_DEkep2PVdck8UBU_q-WMYb_-y4PYmnTOlCnNFXTMAVQ2ZM39_zS3vlEX8bzHPPw5Lsw-aPiIPB_JID3u0H5M7oXlCdm9ICj4lP1Nxs5RiTpHZ0cm6B5guYm6f5JzI1Jo1y1SuKHg6ma_adR_aQrHnGbLpFOna0nNcT1Y0xxTQ71doYg6tiU5MZ-i8obPWmoZ-M_NLOqiePyOz6cfz8TEb6iswJwXvmAsGwPi6kCYKcMBFKGySeCu5dCo4i97NSGegiqYI4GXpai8-WF6VHlzl-HOy0yya8ILQqCyU3tiI_E3wEC0-LFUVlDBWGq5G5N1mXPWyl9HQW8HkjIJGFHRGQV-PyFEa-m3PJIGdLyzaH3qYUTry6EtrgqgLK6ICw6MKuMAY_ACouBiR_Q1wepiXK10qgBqSwM6IvN-A-fv2vz9p7_-6vyH3zyZT_eXk9PNL8qDMFpbi0vbJTteuwyskMp19nW31F2TH6mE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Duration+of+the+Impact+of+Unplanned+Disruptions+on+Passenger+Trips+Using+Smartcard+Data+in+Urban+Rail+Systems&rft.jtitle=Urban+rail+transit&rft.au=Tianyou+Liu&rft.au=Haris+N.+Koutsopoulos&rft.au=Zhenliang+Ma&rft.date=2023-09-01&rft.pub=SpringerOpen&rft.issn=2199-6687&rft.eissn=2199-6679&rft.volume=9&rft.issue=3&rft.spage=266&rft.epage=279&rft_id=info:doi/10.1007%2Fs40864-023-00197-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-6687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-6687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-6687&client=summon