Modeling the Duration of the Impact of Unplanned Disruptions on Passenger Trips Using Smartcard Data in Urban Rail Systems
Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have foc...
Saved in:
Published in | Urban rail transit Vol. 9; no. 3; pp. 266 - 279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions. |
---|---|
AbstractList | Abstract
Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions. Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions. Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions. |
Author | Ma, Zhenliang Koutsopoulos, Haris N. Liu, Tianyou |
Author_xml | – sequence: 1 givenname: Tianyou surname: Liu fullname: Liu, Tianyou organization: Microsoft Corporation, Department of Civil and Environmental Engineering, Northeastern University – sequence: 2 givenname: Haris N. surname: Koutsopoulos fullname: Koutsopoulos, Haris N. organization: Department of Civil and Environmental Engineering, Northeastern University – sequence: 3 givenname: Zhenliang orcidid: 0000-0002-2141-0389 surname: Ma fullname: Ma, Zhenliang email: zhema@kth.se organization: Department of Civil and Architectural Engineering, KTH Royal Institute of Technology |
BookMark | eNp9kc1u3CAUhVGVSk3SvEBXSFk75c_YLKOkSUeaqlWTWaNrDFNGHnDBs5g8ffG4SnZZwUXfOfeIc4HOQgwWoS-U3FBCmq9ZkFaKijBeEUJVUx0_oHNGlaqkbNTZ671tPqGrnHeEEEZpK1h9jl5-xN4OPmzx9Mfi-0OCyceAozvNq_0IZpqnTRgHCMH2-N7ndBhnKuNC_oKcbdjahJ-THzPe5NnsaQ9pMpAKDhNgH_AmdRDwb_ADfjrmye7zZ_TRwZDt1f_zEm0evj3ffa_WPx9Xd7frytSCT5WxICX0itbghDSSC0s7yihnvDatNR3hEmoDsnFArexrZlQvSMcb1kvTGH6JVotvH2Gnx-RLtqOO4PXpIaatLmG9Gax23PWsAysU7YRrJXDXWkooUMFlw0Xxul68xhT_Hmye9C4eUijxNWulVJKqui0UWyiTYs7JutetlOi5Mr1Upktl-lSZPhYRX0S5wPOHvlm_o_oHmy-cOg |
CitedBy_id | crossref_primary_10_1177_03611981241252831 |
Cites_doi | 10.3141/2595-09 10.1080/23249935.2020.1733132 10.1007/s12469-020-00229-x 10.1007/s12544-010-0031-4 10.1016/j.multra.2022.100017 10.1007/s40864-021-00150-x 10.1155/2018/7191549 10.1016/j.neucom.2019.04.075 10.1016/j.trpro.2017.05.322 10.1016/j.trc.2015.06.003 10.1016/j.aap.2006.12.017 10.1016/j.physa.2018.03.028 10.1016/j.aap.2005.11.012 10.3354/cr01359 10.1016/S0965-8564(98)00065-2 10.1016/S0034-4257(97)00083-7 10.1016/j.aap.2014.07.029 10.1093/tse/tdy001 10.1109/OJITS.2022.3194879 10.1007/s11116-020-10109-9 10.1155/2015/876862 10.1061/JTEPBS.0000333 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G HCIFZ K60 K6~ L.- L6V M0C M7S PIMPY PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS PYYUZ Q9U DOA |
DOI | 10.1007/s40864-023-00197-y |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) ABI-INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global (ProQuest) ProQuest Engineering Database Publicly Available Content Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ABI/INFORM Collection China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2199-6679 |
EndPage | 279 |
ExternalDocumentID | oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734 10_1007_s40864_023_00197_y |
GroupedDBID | 7WY 8FE 8FG 8FL AAFWJ AAKKN AAPBV AAYZJ ABJCF ABUWG ACACY ACGFS ACIWK ADBBV ADINQ AFGXO AFKRA AFNRJ AFPKN AHBXF AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS ASPBG AVWKF BAPOH BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBS EJD FRNLG GROUPED_DOAJ HCIFZ IAO IPNFZ K60 K6~ L6V M0C M7S M~E N95 OK1 PIMPY PQBIZ PQQKQ PTHSS RIG RSV SOJ 0R~ AAYXX ABEEZ ACULB CITATION ITC PQBZA 3V. 7XB 8FK AZQEC L.- PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c543t-cea66ad915af46c634e1b1213235c8ecb036a5ca67fa1e6d52c9d40b372d6c7c3 |
IEDL.DBID | DOA |
ISSN | 2199-6687 |
IngestDate | Tue Oct 22 15:12:52 EDT 2024 Thu Oct 10 15:52:44 EDT 2024 Thu Sep 26 18:23:40 EDT 2024 Fri Sep 22 01:18:01 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Urban rail systems Impact duration on passenger trips Smartcard data Unplanned disruptions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-cea66ad915af46c634e1b1213235c8ecb036a5ca67fa1e6d52c9d40b372d6c7c3 |
ORCID | 0000-0002-2141-0389 |
OpenAccessLink | https://doaj.org/article/f3fd2bae491b4f86a3f8e101a1436734 |
PQID | 2866961958 |
PQPubID | 2044373 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734 proquest_journals_2866961958 crossref_primary_10_1007_s40864_023_00197_y springer_journals_10_1007_s40864_023_00197_y |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Urban rail transit |
PublicationTitleAbbrev | Urban Rail Transit |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Wang, Zhang, Liu, Wang, Wang, Yin (CR14) 2018; 2018 Hamad, Ai-Ruzouq, Zeiada Dabous, Khalil (CR21) 2020; 16 Currie, Muir (CR1) 2017; 25 CR18 Lapamonpinyo, Derrible, Corman (CR10) 2022; 3 Webb, Kumar, Khani (CR17) 2020; 12 Monjo (CR23) 2016; 67 CR13 CR12 Valenti, Lelli, Cucina (CR3) 2010; 2 Wang, Li, Pan, Wang, Jin (CR9) 2019; 359 Yap, Cats (CR16) 2021; 48 Ozbay, Noyan (CR4) 2006; 38 Liu, Ma, Koutsopoulos (CR2) 2021; 7 Stehman (CR24) 1997; 62 Weng, Zheng, Qu, Yan (CR8) 2015; 57 Weng, Zheng, Yan, Meng (CR7) 2014; 73 Wang, Zhang (CR25) 2019; 1 Shi, Zhang, Zhang (CR11) 2016; 2595 Nam, Mannering (CR5) 2000; 34 Zhou, Cheng, Wu, Li, Belezamo, Lu (CR19) 2022 Chow, Qu, Pang (CR20) 2004; 10 CR22 Malandri, Fonzone, Cats (CR15) 2018; 505 Wei, Lee (CR6) 2007; 39 K Ozbay (197_CR4) 2006; 38 SV Stehman (197_CR24) 1997; 62 G Currie (197_CR1) 2017; 25 JX Weng (197_CR7) 2014; 73 XH Wang (197_CR14) 2018; 2018 TY Liu (197_CR2) 2021; 7 197_CR22 197_CR13 197_CR12 JX Weng (197_CR8) 2015; 57 197_CR18 C-H Wei (197_CR6) 2007; 39 HY Wang (197_CR9) 2019; 359 XS Zhou (197_CR19) 2022 M Yap (197_CR16) 2021; 48 D Nam (197_CR5) 2000; 34 C Malandri (197_CR15) 2018; 505 K Hamad (197_CR21) 2020; 16 A Webb (197_CR17) 2020; 12 WK Chow (197_CR20) 2004; 10 R Monjo (197_CR23) 2016; 67 S Lapamonpinyo (197_CR10) 2022; 3 P Wang (197_CR25) 2019; 1 G Valenti (197_CR3) 2010; 2 ZB Shi (197_CR11) 2016; 2595 |
References_xml | – volume: 2595 start-page: 78 year: 2016 end-page: 87 ident: CR11 article-title: Hazard-based model for estimation of congestion duration in urban rail transit considering loss minimization publication-title: Transp Res Record J Transp Res Board doi: 10.3141/2595-09 contributor: fullname: Zhang – ident: CR22 – ident: CR18 – volume: 16 start-page: 1269 issue: 3 year: 2020 end-page: 1293 ident: CR21 article-title: Predicting incident duration using random forests publication-title: Transportmetrica A doi: 10.1080/23249935.2020.1733132 contributor: fullname: Khalil – volume: 12 start-page: 299 year: 2020 end-page: 311 ident: CR17 article-title: Estimation of passenger waiting time using automatically collected transit data publication-title: Public Transport doi: 10.1007/s12469-020-00229-x contributor: fullname: Khani – ident: CR12 – volume: 2 start-page: 103 year: 2010 end-page: 111 ident: CR3 article-title: A comparative study of models for the incident duration prediction publication-title: Eur Transp Res Rev doi: 10.1007/s12544-010-0031-4 contributor: fullname: Cucina – year: 2022 ident: CR19 article-title: A meso-to-macro cross-resolution performance approach for connecting polynomial arrival queue model to volume-delay function with inflow demand-to-capacity ratio publication-title: Multimodal Transp doi: 10.1016/j.multra.2022.100017 contributor: fullname: Lu – volume: 10 start-page: 41 issue: 3 year: 2004 end-page: 47 ident: CR20 article-title: Incidents on fire and ventilation provision in subway systems in Hong Kong publication-title: Int J Eng Perform Based Fire Codes contributor: fullname: Pang – volume: 7 start-page: 177 year: 2021 end-page: 190 ident: CR2 article-title: Unplanned disruption analysis in urban railway systems using smart card data publication-title: Urban Rail Transit. Urban Rail Transit doi: 10.1007/s40864-021-00150-x contributor: fullname: Koutsopoulos – volume: 2018 start-page: 12 year: 2018 ident: CR14 article-title: An improved robust principal component analysis model for anomalies detection of subway passenger flow publication-title: Journal of Adv Transp doi: 10.1155/2018/7191549 contributor: fullname: Yin – volume: 359 start-page: 327 year: 2019 end-page: 340 ident: CR9 article-title: Online detection of abnormal passenger out-flow in urban metro system publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.075 contributor: fullname: Jin – volume: 25 start-page: 4392 year: 2017 end-page: 4402 ident: CR1 article-title: Understanding passenger perceptions and behaviors during unplanned rail disruptions publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2017.05.322 contributor: fullname: Muir – volume: 57 start-page: 30 year: 2015 end-page: 41 ident: CR8 article-title: Development of a maximum likelihood regression tree-based model for predicting subway incident delay publication-title: Transp Res C doi: 10.1016/j.trc.2015.06.003 contributor: fullname: Yan – volume: 39 start-page: 944 issue: 5 year: 2007 end-page: 954 ident: CR6 article-title: Sequential forecast of incident duration using artificial neural network models publication-title: Accident Analysis Prevention doi: 10.1016/j.aap.2006.12.017 contributor: fullname: Lee – volume: 505 start-page: 7 year: 2018 end-page: 17 ident: CR15 article-title: Recovery time and propagation effects of passenger transport disruptions publication-title: Physica A doi: 10.1016/j.physa.2018.03.028 contributor: fullname: Cats – volume: 38 start-page: 542 issue: 3 year: 2006 end-page: 555 ident: CR4 article-title: Estimation of incident clearance times using Bayesian Networks approach publication-title: Accid Anal Prev doi: 10.1016/j.aap.2005.11.012 contributor: fullname: Noyan – volume: 67 start-page: 71 issue: 1 year: 2016 end-page: 86 ident: CR23 article-title: Measure of rainfall time structure using the dimensionless n-index publication-title: Climate Res doi: 10.3354/cr01359 contributor: fullname: Monjo – volume: 34 start-page: 85 issue: 2 year: 2000 end-page: 102 ident: CR5 article-title: An exploratory hazard-based analysis of highway incident duration publication-title: Transp Res A Policy Pract doi: 10.1016/S0965-8564(98)00065-2 contributor: fullname: Mannering – volume: 62 start-page: 77 issue: 1 year: 1997 end-page: 89 ident: CR24 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(97)00083-7 contributor: fullname: Stehman – ident: CR13 – volume: 73 start-page: 12 year: 2014 end-page: 19 ident: CR7 article-title: Development of a subway operation incident delay model using accelerated failure approaches publication-title: Accident Anal Prevent doi: 10.1016/j.aap.2014.07.029 contributor: fullname: Meng – volume: 1 start-page: 79 issue: 1 year: 2019 end-page: 88 ident: CR25 article-title: Train delay analysis and prediction based on bid data fusion publication-title: Transp Saf Environ doi: 10.1093/tse/tdy001 contributor: fullname: Zhang – volume: 3 start-page: 539 year: 2022 end-page: 550 ident: CR10 article-title: Real-time passenger train delay prediction using machine learning: a case study with Amtrak passenger train routes publication-title: IEEE Open J Intell Transp Syst doi: 10.1109/OJITS.2022.3194879 contributor: fullname: Corman – volume: 48 start-page: 1703 year: 2021 end-page: 1731 ident: CR16 article-title: Predicting disruptions and their passenger delay impacts for public transport stops publication-title: Transportation doi: 10.1007/s11116-020-10109-9 contributor: fullname: Cats – volume: 73 start-page: 12 year: 2014 ident: 197_CR7 publication-title: Accident Anal Prevent doi: 10.1016/j.aap.2014.07.029 contributor: fullname: JX Weng – volume: 2 start-page: 103 year: 2010 ident: 197_CR3 publication-title: Eur Transp Res Rev doi: 10.1007/s12544-010-0031-4 contributor: fullname: G Valenti – volume: 16 start-page: 1269 issue: 3 year: 2020 ident: 197_CR21 publication-title: Transportmetrica A doi: 10.1080/23249935.2020.1733132 contributor: fullname: K Hamad – volume: 2018 start-page: 12 year: 2018 ident: 197_CR14 publication-title: Journal of Adv Transp doi: 10.1155/2018/7191549 contributor: fullname: XH Wang – volume: 38 start-page: 542 issue: 3 year: 2006 ident: 197_CR4 publication-title: Accid Anal Prev doi: 10.1016/j.aap.2005.11.012 contributor: fullname: K Ozbay – volume: 34 start-page: 85 issue: 2 year: 2000 ident: 197_CR5 publication-title: Transp Res A Policy Pract doi: 10.1016/S0965-8564(98)00065-2 contributor: fullname: D Nam – volume: 62 start-page: 77 issue: 1 year: 1997 ident: 197_CR24 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(97)00083-7 contributor: fullname: SV Stehman – ident: 197_CR18 doi: 10.1155/2015/876862 – volume: 359 start-page: 327 year: 2019 ident: 197_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.075 contributor: fullname: HY Wang – volume: 12 start-page: 299 year: 2020 ident: 197_CR17 publication-title: Public Transport doi: 10.1007/s12469-020-00229-x contributor: fullname: A Webb – volume: 2595 start-page: 78 year: 2016 ident: 197_CR11 publication-title: Transp Res Record J Transp Res Board doi: 10.3141/2595-09 contributor: fullname: ZB Shi – volume: 25 start-page: 4392 year: 2017 ident: 197_CR1 publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2017.05.322 contributor: fullname: G Currie – volume: 48 start-page: 1703 year: 2021 ident: 197_CR16 publication-title: Transportation doi: 10.1007/s11116-020-10109-9 contributor: fullname: M Yap – ident: 197_CR22 – volume: 67 start-page: 71 issue: 1 year: 2016 ident: 197_CR23 publication-title: Climate Res doi: 10.3354/cr01359 contributor: fullname: R Monjo – volume: 39 start-page: 944 issue: 5 year: 2007 ident: 197_CR6 publication-title: Accident Analysis Prevention doi: 10.1016/j.aap.2006.12.017 contributor: fullname: C-H Wei – year: 2022 ident: 197_CR19 publication-title: Multimodal Transp doi: 10.1016/j.multra.2022.100017 contributor: fullname: XS Zhou – ident: 197_CR13 – volume: 10 start-page: 41 issue: 3 year: 2004 ident: 197_CR20 publication-title: Int J Eng Perform Based Fire Codes contributor: fullname: WK Chow – volume: 3 start-page: 539 year: 2022 ident: 197_CR10 publication-title: IEEE Open J Intell Transp Syst doi: 10.1109/OJITS.2022.3194879 contributor: fullname: S Lapamonpinyo – volume: 505 start-page: 7 year: 2018 ident: 197_CR15 publication-title: Physica A doi: 10.1016/j.physa.2018.03.028 contributor: fullname: C Malandri – volume: 1 start-page: 79 issue: 1 year: 2019 ident: 197_CR25 publication-title: Transp Saf Environ doi: 10.1093/tse/tdy001 contributor: fullname: P Wang – ident: 197_CR12 doi: 10.1061/JTEPBS.0000333 – volume: 57 start-page: 30 year: 2015 ident: 197_CR8 publication-title: Transp Res C doi: 10.1016/j.trc.2015.06.003 contributor: fullname: JX Weng – volume: 7 start-page: 177 year: 2021 ident: 197_CR2 publication-title: Urban Rail Transit. Urban Rail Transit doi: 10.1007/s40864-021-00150-x contributor: fullname: TY Liu |
SSID | ssj0002118425 |
Score | 2.2851706 |
Snippet | Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger... Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a... Abstract Many urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 266 |
SubjectTerms | Automation Automotive Engineering Computational Intelligence Decision making Decision trees Disruption Engineering Failure times Fares Foundations Geoengineering Hydraulics Impact duration on passenger trips Machine learning Neural networks Original Research Papers Passengers Probabilistic methods Regression analysis Signalling systems Smart cards Smartcard data Statistical analysis Travel demand Unplanned disruptions Urban rail Urban rail systems |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgvcCh4ilCC_KBG1iwfsx6T4iSVgWJqiqN1JvlJ4oEm7BJDuXXM3aclCLB0bveleUZz3y2Z74h5BWqRbABd6oaHDCpQmRORM-UcuguIupQ4S34cganU_n5Sl3VA7dlDavc2sRiqMPc5zPyt1wDdJCpUd4vfrJcNSrfrtYSGnfJHsedAh-RvaPjs_OL3SkLbm_yPVOuMNd0HQPQbc2cKflzEgG9ZOi2WIY6Lbu-5Z0Kif8t5PnXZWnxQScPyH4Fj_TDRtoPyZ3YPyL3_6AUfEx-5eJmOcWcIrKjk_VGwHSeSvtTyYnMrWm_yOWKYqCT2XJYb0JbKPY8RzSdI10Heon2ZElLTAH9-gNVzKM20YldWTrr6XRwtqcXdvadVtbzJ2R6cnz58ZTV-grMKylWzEcLYEPXKJskeBAyNi5TvHGhvI7eoXezyltok20iBMV9F-Q7J1oewLdePCWjft7HZ4Qm7YAH6xLiNylicvix0m3U0jplhR6T19t5NYsNjYbZESYXKRiUgilSMNdjcpSnftczU2CXB_Phm6kryiSRAnc2yq5xMmmwIumIBsbiAKAVckwOt4IzdV0uzY0WjcmbrTBvXv97SM___7cDco8XNcrBZ4dktBrW8QWilZV7WVXyN_wH51M priority: 102 providerName: ProQuest – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKe4FDRQuILaXyoTewRGJ74hyhS1WQQFXpSr1Z4y-0Es1W2d1D-fUde7NbiuiBoxMnsjzjmWfNzBvGjkktAga6qRpwIJQOUTgZvdDakbuIpEOFt-DbdzibqK9X-uq-jrsku68jksVQb2rdFIFvJcjFiAxLGnH7hO0QeFD5xnUylDhk80s3mhxayk3lqrYVAKYZimX-_ZsHDqnw9j8Am3_FR4vbOX3Odge8yD-uBLzHtmK3z579wSL4gv3O_cxyVTknMMfHy5VM-SyV8ZdSBplHk-4mdyiKgY-n8365ymbhNPOcAHRObu35JZmQOS9pBPzHNWmVJwXiY1wgn3Z80jvs-AVOf_GB6Pwlm5x-vjw5E0NLBeG1kgvhIwJgaCuNSYEHqWLlMqtbLbU30TtyaKg9QpOwihB07dugPjjZ1AF84-Urtt3Nuvia8WQc1AFdIsimZEyOPtamiUah0yjNiL1b76u9WTFn2A1HcpGCJSnYIgV7O2Kf8tZvZmbW6_Jg1v-0wyGySaZQO4yqrZxKBlAmE8mmIC0AGqlG7HAtODscxbmtDUALmVNnxN6vhXn_-vElHfzf9DfsaV3UKuefHbLtRb-MbwmwLNxRUdA7zurioQ priority: 102 providerName: Springer Nature |
Title | Modeling the Duration of the Impact of Unplanned Disruptions on Passenger Trips Using Smartcard Data in Urban Rail Systems |
URI | https://link.springer.com/article/10.1007/s40864-023-00197-y https://www.proquest.com/docview/2866961958 https://doaj.org/article/f3fd2bae491b4f86a3f8e101a1436734 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RQLZeUDN7BoYnviHOlul4JEVZWu1Jvlp7RSSat9HMqvZ-xkyxYJceESyYkjWTNfMp_lmW8A3hEsgg20U9XokEsVIncieq6Uo3ARCUNFt-DbCR7P5dcLdbHT6ivnhPXywL3hPiaRQu1slG3lZNJoRdKRcGQp0GMjeiXQg3ZnM5X_wbStyedLubNc1bYcUTdDxUypm5NE5CWncMUzxWn4zZ2oVMT77zDOPw5JS-yZPYHHA2lkn_rFPoV7sXsGj3akBJ_Dz9zULJeWM2J0bLrpHcuuUhl_KbWQeTTvrnObohjYdLFabvqUFkYzT4lF5wzXJTun_8iKlVwC9v0HWcgTitjUri1bdGy-dLZjZ3ZxyQa18xcwnx2dT4750FeBeyXFmvtoEW1oK2WTRI9CxsplabdaKK-jdxTVrPIWm2SriEHVvg3ywImmDugbL17CXnfVxVfAknZYB-sS8TYpYnL0stJN1NI6ZYUewfutXc11L59hboWSixcMecEUL5ibERxm09_OzNLX5QYBwgyAMP8CxAj2t44zw_e4MrVGbDEL64zgw9aZvx__fUmv_8eS3sDDuoAtp6btw956uYlvicus3Rju69nnMTw4PDo5PaPRpJb5ipNxAfQvCL_yhg |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,41133,41134,42202,42203,43614,43819,51590,52247 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHIBDxVMNLeADN7Bg1_as94SAEFJoKwSJ1JvlJ4oEm7BJDuXXM3aclCLB0bveleUZz3y2Z74h5BmqhTced6oKLDAhfWCWB8ektOguAupQ5i04PYPxVHw8l-flwG1Zwiq3NjEbaj936Yz8Za0AWkjUKK8XP1mqGpVuV0sJjevkhuDoaFKm-OjD7owFNzfplinVl6valgGopuTN5Ow5gXBeMHRaLAGdhl1c8U2Zwv8K7vzrqjR7oNEdsl-gI32zkfVdci1098jtPwgF75NfqbRZSjCniOvocL0RL53H3D7OGZGpNe0WqVhR8HQ4W_brTWALxZ6fEUunONeeTtCaLGmOKKBff6CCOdQlOjQrQ2cdnfbWdPSLmX2nhfP8AZmO3k_ejVmprsCcFHzFXDAAxreVNFGAAy5CZRPBW82lU8FZ9G1GOgNNNFUAL2vXevHK8qb24BrHH5K9bt6FA0KjslB7YyOiN8FDtPixVE1QwlhpuBqQ59t51YsNiYbe0SVnKWiUgs5S0BcD8jZN_a5nIsDOD-b9N13Wk448-tqaINrKiqjA8KgCmheDA4CGiwE52gpOl1W51Jc6NCAvtsK8fP3vIT36_9-ekpvjyemJPjk--3RIbtVZpVIY2hHZW_Xr8Bhxy8o-ycr5GxZY6N4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeEE-xpYAP3MAqie2Jc2x3WbU8qgq6Um-Wn2ilNrvKZg_l1zN2skuL4MDRiRNF_saez_HMN4S8RbPwxuNOVYEFJqQPzPLgmJQW3UVAG8q6BV9P4XgmPl3IixtZ_DnafXMk2ec0JJWmpjtY-niwTXwTyMQFQ3_DEkep2PVdck8UBU_q-WMYb_-y4PYmnTOlCnNFXTMAVQ2ZM39_zS3vlEX8bzHPPw5Lsw-aPiIPB_JID3u0H5M7oXlCdm9ICj4lP1Nxs5RiTpHZ0cm6B5guYm6f5JzI1Jo1y1SuKHg6ma_adR_aQrHnGbLpFOna0nNcT1Y0xxTQ71doYg6tiU5MZ-i8obPWmoZ-M_NLOqiePyOz6cfz8TEb6iswJwXvmAsGwPi6kCYKcMBFKGySeCu5dCo4i97NSGegiqYI4GXpai8-WF6VHlzl-HOy0yya8ILQqCyU3tiI_E3wEC0-LFUVlDBWGq5G5N1mXPWyl9HQW8HkjIJGFHRGQV-PyFEa-m3PJIGdLyzaH3qYUTry6EtrgqgLK6ICw6MKuMAY_ACouBiR_Q1wepiXK10qgBqSwM6IvN-A-fv2vz9p7_-6vyH3zyZT_eXk9PNL8qDMFpbi0vbJTteuwyskMp19nW31F2TH6mE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Duration+of+the+Impact+of+Unplanned+Disruptions+on+Passenger+Trips+Using+Smartcard+Data+in+Urban+Rail+Systems&rft.jtitle=Urban+rail+transit&rft.au=Tianyou+Liu&rft.au=Haris+N.+Koutsopoulos&rft.au=Zhenliang+Ma&rft.date=2023-09-01&rft.pub=SpringerOpen&rft.issn=2199-6687&rft.eissn=2199-6679&rft.volume=9&rft.issue=3&rft.spage=266&rft.epage=279&rft_id=info:doi/10.1007%2Fs40864-023-00197-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f3fd2bae491b4f86a3f8e101a1436734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-6687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-6687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-6687&client=summon |