Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes
As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for spec...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 366; no. 6463; p. 324 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
18.10.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh
et al.
characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes.
Science
, this issue p.
eaax2083
Melanesians carry adaptive DNA variants derived from archaic hominins.
Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation. |
---|---|
AbstractList | Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotidevariants, but their roles in archaic introgression and adaptation have not been systematicallyinvestigated. We show that stratified CNVs are significantly associated with signatures of positiveselection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data,we reconstruct the structure and complex evolutionary history of these polymorphisms and show thatboth encode positively selected genes absent from most human populations. Our results collectivelysuggest that large CNVs originating in archaic hominins and introgressed into modern humans haveplayed an important role in local population adaptation and represent an insufficiently studied source oflarge-scale genetic variation Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation. Adaptive archaic hominin genesAs they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes.Science, this issue p. eaax2083INTRODUCTIONCharacterizing genetic variants underlying local adaptations in human populations is one of the central goals of evolutionary research. Most studies have focused on adaptive single-nucleotide variants that either arose as new beneficial mutations or were introduced after interbreeding with our now-extinct relatives, including Neanderthals and Denisovans. The adaptive role of copy number variants (CNVs), another well-known form of genomic variation generated through deletions or duplications that affect more base pairs in the genome, is less well understood, despite evidence that such mutations are subject to stronger selective pressures.RATIONALEThis study focuses on the discovery of introgressed and adaptive CNVs that have become enriched in specific human populations. We combine whole-genome CNV calling and population genetic inference methods to discover CNVs and then assess signals of selection after controlling for demographic history. We examine 266 publicly available modern human genomes from the Simons Genome Diversity Project and genomes of three ancient hominins—a Denisovan, a Neanderthal from the Altai Mountains in Siberia, and a Neanderthal from Croatia. We apply long-read sequencing methods to sequence-resolve complex CNVs of interest specifically in the Melanesians—an Oceanian population distributed from Papua New Guinea to as far east as the islands of Fiji and known to harbor some of the greatest amounts of Neanderthal and Denisovan ancestry.RESULTSConsistent with the hypothesis of archaic introgression outside Africa, we find a significant excess of CNV sharing between modern non-African populations and archaic hominins (P = 0.039). Among Melanesians, we observe an enrichment of CNVs with potential signals of positive selection (n = 37 CNVs), of which 19 CNVs likely introgressed from archaic hominins. We show that Melanesian-stratified CNVs are significantly associated with signals of positive selection (P = 0.0323). Many map near or within genes associated with metabolism (e.g., ACOT1 and ACOT2), development and cell cycle or signaling (e.g., TNFRSF10D and CDK11A and CDK11B), or immune response (e.g., IFNLR1). We characterize two of the largest and most complex CNVs on chromosomes 16p11.2 and 8p21.3 that introgressed from Denisovans and Neanderthals, respectively, and are absent from most other human populations. At chromosome 16p11.2, we sequence-resolve a large duplication of >383 thousand base pairs (kbp) that originated from Denisovans and introgressed into the ancestral Melanesian population 60,000 to 170,000 years ago. This large duplication occurs at high frequency (>79%) in diverse Melanesian groups, shows signatures of positive selection, and maps adjacent to Homo sapiens–specific duplications that predispose to rearrangements associated with autism. On chromosome 8p21.3, we identify a Melanesian haplotype that carries two CNVs, a ~6-kbp deletion, and a ~38-kbp duplication, with a Neanderthal origin and that introgressed into non-Africans 40,000 to 120,000 years ago. This CNV haplotype occurs at high frequency (44%) and shows signals consistent with a partial selective sweep in Melanesians. Using long-read sequencing genomic and transcriptomic data, we reconstruct the structure and complex evolutionary history for these two CNVs and discover previously undescribed duplicated genes (TNFRSF10D1, TNFRSF10D2, and NPIPB16) that show an excess of amino acid replacements consistent with the action of positive selection.CONCLUSIONOur results suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation that is absent from current reference genomes.Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation. As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes. Science , this issue p. eaax2083 Melanesians carry adaptive DNA variants derived from archaic hominins. Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation. Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation. |
Author | Sorensen, Melanie Hoekzema, Kendra Murali, Shwetha Munson, Katherine M. Lewis, Alexandra P. Nelson, Bradley J. Dang, Vy Chiatante, Giorgia Eichler, Evan E. Porubsky, David Antonacci, Francesca Vollger, Mitchell R. Maggiolini, Flavia Angela Maria Kronenberg, Zev N. Deleuze, Jean-François Underwood, Jason G. Cantsilieris, Stuart Blanché, Hélène Hsieh, PingHsun Baker, Carl |
AuthorAffiliation | 3 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro,” Bari, Italy 1 Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA 2 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA 4 Fondation Jean Dausset–Centre d’Etude du Polymorphisme Humain, Paris, France 5 Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA |
AuthorAffiliation_xml | – name: 3 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro,” Bari, Italy – name: 5 Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA – name: 1 Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA – name: 4 Fondation Jean Dausset–Centre d’Etude du Polymorphisme Humain, Paris, France – name: 2 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA |
Author_xml | – sequence: 1 givenname: PingHsun surname: Hsieh fullname: Hsieh, PingHsun – sequence: 2 givenname: Mitchell R. surname: Vollger fullname: Vollger, Mitchell R. – sequence: 3 givenname: Vy surname: Dang fullname: Dang, Vy – sequence: 4 givenname: David surname: Porubsky fullname: Porubsky, David – sequence: 5 givenname: Carl surname: Baker fullname: Baker, Carl – sequence: 6 givenname: Stuart surname: Cantsilieris fullname: Cantsilieris, Stuart – sequence: 7 givenname: Kendra surname: Hoekzema fullname: Hoekzema, Kendra – sequence: 8 givenname: Alexandra P. surname: Lewis fullname: Lewis, Alexandra P. – sequence: 9 givenname: Katherine M. surname: Munson fullname: Munson, Katherine M. – sequence: 10 givenname: Melanie surname: Sorensen fullname: Sorensen, Melanie – sequence: 11 givenname: Zev N. surname: Kronenberg fullname: Kronenberg, Zev N. – sequence: 12 givenname: Shwetha surname: Murali fullname: Murali, Shwetha – sequence: 13 givenname: Bradley J. surname: Nelson fullname: Nelson, Bradley J. – sequence: 14 givenname: Giorgia surname: Chiatante fullname: Chiatante, Giorgia – sequence: 15 givenname: Flavia Angela Maria surname: Maggiolini fullname: Maggiolini, Flavia Angela Maria – sequence: 16 givenname: Hélène surname: Blanché fullname: Blanché, Hélène – sequence: 17 givenname: Jason G. surname: Underwood fullname: Underwood, Jason G. – sequence: 18 givenname: Francesca surname: Antonacci fullname: Antonacci, Francesca – sequence: 19 givenname: Jean-François surname: Deleuze fullname: Deleuze, Jean-François – sequence: 20 givenname: Evan E. surname: Eichler fullname: Eichler, Evan E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31624180$$D View this record in MEDLINE/PubMed https://cea.hal.science/cea-04457184$$DView record in HAL |
BookMark | eNp1ks1vEzEQxS1URNPCmRPIEhc4pB3b6_24VIoqoEiRuMDZmtjerMPGDvbuQv57HCWtIBInH-b33njezBW58MFbQl4zuGGMl7dJO-u1vUH8zaEWz8iMQSPnDQdxQWYAopzXUMlLcpXSBiDXGvGCXApW8oLVMCObhcHd4CZLMeoOnabODzGso03JBU9DS3XY7akftysb6YTRoR8SRW_o0FlqXNJhsnF_IHfRTi6Mqd_T0f_w4Zen3bhFT9fW2_SSPG-xT_bV6b0m3z99_Hb_MF9-_fzlfrGca1mIYb5quNGIxuhC61WFjZACkJnGyhKqumUSBRfY1DIjYAxvmSkZMl5oUUC1Etfk7ui7G1dba7TNA2GvdtFtMe5VQKf-rXjXqXWYVFmX0FQsG3w4GnRnsofFUmmLCopCVqwupgP7_tQshp-jTYPa5kRs36O3OQnFBVSMV1DIjL47QzdhjD5HcaBKyRsJIlNv__79U__HlWVAHgEdQ0rRtkq7AYe8rDyM6xUDdTgNdToNdTqNrLs90z1a_1_x5qjYpCHEJ5yXdSHKCsQfmhrKmg |
CitedBy_id | crossref_primary_10_3390_genes14061256 crossref_primary_10_1093_molbev_msab313 crossref_primary_10_1146_annurev_genom_111521_121903 crossref_primary_10_1093_nar_gkac905 crossref_primary_10_7554_eLife_67615 crossref_primary_10_1007_s13205_020_02368_1 crossref_primary_10_1038_s41576_022_00568_4 crossref_primary_10_3389_fvets_2023_1334434 crossref_primary_10_1016_j_cub_2022_08_027 crossref_primary_10_1093_jhered_esaa057 crossref_primary_10_1146_annurev_animal_061220_023149 crossref_primary_10_1186_s13059_021_02382_3 crossref_primary_10_1016_j_semcdb_2020_12_007 crossref_primary_10_3390_genes11020141 crossref_primary_10_1093_molbev_msac274 crossref_primary_10_1016_j_ajhg_2024_08_015 crossref_primary_10_3389_fcell_2022_807289 crossref_primary_10_3389_fpls_2021_581704 crossref_primary_10_1186_s13059_020_02074_4 crossref_primary_10_1186_s13100_021_00250_2 crossref_primary_10_3389_fgene_2022_1060898 crossref_primary_10_1038_s41467_021_25435_4 crossref_primary_10_1016_j_cell_2024_01_052 crossref_primary_10_1093_cercor_bhaa365 crossref_primary_10_1126_science_abf7117 crossref_primary_10_1186_s12864_022_08804_1 crossref_primary_10_1111_mec_17277 crossref_primary_10_1016_j_tree_2020_03_002 crossref_primary_10_1016_j_cell_2024_10_005 crossref_primary_10_1161_HCG_0000000000000084 crossref_primary_10_3390_genes11010088 crossref_primary_10_1093_gbe_evab115 crossref_primary_10_1038_s41588_021_00899_8 crossref_primary_10_1098_rstb_2020_0411 crossref_primary_10_1002_ajpa_24713 crossref_primary_10_1016_j_cell_2020_05_024 crossref_primary_10_1111_aman_13410 crossref_primary_10_1038_s41576_023_00643_4 crossref_primary_10_1038_d41586_022_00726_y crossref_primary_10_1038_s41588_024_02051_8 crossref_primary_10_1128_AEM_00626_21 crossref_primary_10_1371_journal_pgen_1010615 crossref_primary_10_1016_j_csbj_2022_05_047 crossref_primary_10_1101_gr_277481_122 crossref_primary_10_1038_s41598_022_08663_6 crossref_primary_10_1126_science_abj6965 crossref_primary_10_1093_molbev_msad074 crossref_primary_10_5294_pebi_2023_27_2_1 crossref_primary_10_3389_fgene_2020_00471 crossref_primary_10_1002_ijc_33153 crossref_primary_10_1016_j_tig_2021_06_015 crossref_primary_10_1016_j_xgen_2025_100782 crossref_primary_10_1371_journal_pcbi_1010788 |
Cites_doi | 10.1093/oxfordjournals.molbev.a025957 10.1101/gr.237610.118 10.1038/nature18964 10.1038/gene.2015.1 10.1093/bioinformatics/bts378 10.1126/science.1197005 10.1371/journal.pgen.0020105 10.1038/nature01140 10.1002/humu.21491 10.1016/j.gde.2016.07.008 10.1126/science.aao1887 10.1038/nature12886 10.1016/j.tem.2017.03.001 10.1126/science.aad9416 10.1126/science.aan3842 10.1038/nature06258 10.1073/pnas.97.13.7360 10.1101/gr.192971.115 10.1126/science.1224344 10.1038/nature05329 10.1038/ng.2335 10.1038/nature15394 10.1101/gr.094052.109 10.1016/j.cell.2018.12.019 10.1016/j.ajhg.2008.08.004 10.1038/nature13408 10.1086/605644 10.1073/pnas.87.17.6634 10.1093/hmg/ddp187 10.1093/molbev/msm088 10.1016/S0014-5793(98)00135-5 10.1371/journal.pcbi.1003537 10.1038/nature19844 10.1371/journal.pcbi.1004572 10.1093/genetics/123.3.585 10.1016/j.ajhg.2012.06.015 10.1038/nature09710 10.1126/science.aar6343 10.1186/gb-2014-15-6-r84 10.1093/bioinformatics/btl446 10.1038/ng1508 10.1371/journal.pgen.0030063 10.1101/gr.211284.116 10.1038/nature10842 10.1126/science.aab2319 10.1007/BF02522614 10.1038/35097067 10.1038/ng.643 10.1093/molbev/msm092 10.1126/science.1190371 10.1038/ng2123 10.1038/321744a0 10.1038/nature18299 10.1371/journal.pgen.0020173 10.1038/s41592-018-0236-3 10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K 10.1530/JME-19-0011 10.1371/journal.pgen.1000695 10.1038/s41564-018-0297-1 10.1093/nar/gkl315 10.1016/j.cell.2018.03.054 10.1038/nature08516 10.1038/nature12228 10.1093/molbev/msv255 10.1101/gr.083634.108 10.1086/521987 10.1093/molbev/mst010 10.1093/molbev/msu269 10.1038/s41588-018-0288-4 10.7554/eLife.32332 10.1038/ng.3200 10.1126/science.aab3761 10.1038/nature19075 10.1038/nmeth0810-576 10.1073/pnas.1211740109 10.1038/ng1946 10.1056/NEJMoa075974 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.1126/science.aax2083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 324 |
ExternalDocumentID | PMC6860971 oai_HAL_cea_04457184v1 31624180 10_1126_science_aax2083 26843670 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Melanesia Africa |
GeographicLocations_xml | – name: Melanesia – name: Africa |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01 HG002385 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 .GJ .GO .HR 0-V 186 1XC 3EH 4.4 41~ 42X 4R4 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAJYS AAKAS AAYJJ AAYOK ABBHK ABDPE ABJCF ABPMR ABUWG ABXSQ ACHIC ACQAM ACTDY ADBBV ADMHC ADQXQ ADULT ADZCM AEUYN AEXZC AFCHL AFKRA AFQQW AJUXI AQVQM ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- C51 CCPQU CJNVE D0S D1I D1J D1K DCCCD DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IPSME ISN ITC J5H J9C JAAYA JBMMH JHFFW JKQEH JLXEF JPM K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QJJ R05 RNS RZL SA0 SJFOW SKT UBY UHU UKHRP UMC VOH VOOES WOQ WOW X7L XIH XKJ XOL YJ6 YXB YYQ ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~H1 5PM |
ID | FETCH-LOGICAL-c543t-b92dcaaddc4ccb7a93530a1d9e56078f15a323a985ddc0dd2f1d61a124c3407b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:24:58 EDT 2025 Fri May 09 12:09:27 EDT 2025 Fri Jul 11 08:33:17 EDT 2025 Fri Jul 25 19:15:05 EDT 2025 Mon Jul 21 05:42:55 EDT 2025 Thu Apr 24 23:02:19 EDT 2025 Tue Jul 01 01:51:35 EDT 2025 Thu Jul 03 21:38:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6463 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c543t-b92dcaaddc4ccb7a93530a1d9e56078f15a323a985ddc0dd2f1d61a124c3407b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 P.H., M.R.V., Z.N.K., J.G.U., and E.E.E. designed and planned experiments. V.D., C.B., S.C., K.H., A.P.L., K.M.M., M.S., and J.G.U. prepared libraries and generated and analyzed sequencing data. P.H., M.R.V., V.D., Z.N.K., S.M., and B.J.N. performed variant calling and bioinformatics analyses. P.H., M.R.V., and D.P. analyzed long-read sequencing data and assembled contigs. P.H. performed population genetic and phylogenetic inferences. G.C., F.A.M.M, and F.A. generated and analyzed FISH experiment data. A.P.L., K.M.M., and J.G.U. generated Iso-Seq transcript data. K.H. performed PCR assays for CNV validations. H.B. and J.-F.D. provided Melanesian genome DNA materials. P.H. and E.E.E. wrote the manuscript. Present address: Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia. Present address: Phase Genomics, Inc., Seattle, WA, USA. Present address: Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA. Author contributions |
ORCID | 0000-0003-2115-575X 0000-0002-8651-1615 0000-0001-6832-9388 0000-0002-6195-4786 0000-0002-1525-9707 0000-0001-8413-6498 0000-0001-8294-6227 0000-0002-8754-4064 0000-0002-8246-4014 |
OpenAccessLink | https://cea.hal.science/cea-04457184 |
PMID | 31624180 |
PQID | 2306529503 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6860971 hal_primary_oai_HAL_cea_04457184v1 proquest_miscellaneous_2307127045 proquest_journals_2306529503 pubmed_primary_31624180 crossref_citationtrail_10_1126_science_aax2083 crossref_primary_10_1126_science_aax2083 jstor_primary_26843670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-18 |
PublicationDateYYYYMMDD | 2019-10-18 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 Weir B. S. (e_1_3_3_79_2) 1984; 38 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 Racimo F. (e_1_3_3_8_2) 2017; 34 e_1_3_3_6_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_77_2 doi: 10.1093/oxfordjournals.molbev.a025957 – ident: e_1_3_3_53_2 doi: 10.1101/gr.237610.118 – ident: e_1_3_3_28_2 doi: 10.1038/nature18964 – ident: e_1_3_3_36_2 doi: 10.1038/gene.2015.1 – ident: e_1_3_3_58_2 doi: 10.1093/bioinformatics/bts378 – ident: e_1_3_3_55_2 doi: 10.1126/science.1197005 – ident: e_1_3_3_50_2 doi: 10.1371/journal.pgen.0020105 – ident: e_1_3_3_68_2 doi: 10.1038/nature01140 – ident: e_1_3_3_15_2 doi: 10.1002/humu.21491 – ident: e_1_3_3_62_2 doi: 10.1016/j.gde.2016.07.008 – ident: e_1_3_3_25_2 doi: 10.1126/science.aao1887 – ident: e_1_3_3_27_2 doi: 10.1038/nature12886 – ident: e_1_3_3_32_2 doi: 10.1016/j.tem.2017.03.001 – ident: e_1_3_3_24_2 doi: 10.1126/science.aad9416 – ident: e_1_3_3_21_2 doi: 10.1126/science.aan3842 – ident: e_1_3_3_65_2 doi: 10.1038/nature06258 – ident: e_1_3_3_70_2 doi: 10.1073/pnas.97.13.7360 – ident: e_1_3_3_64_2 doi: 10.1101/gr.192971.115 – ident: e_1_3_3_26_2 doi: 10.1126/science.1224344 – ident: e_1_3_3_67_2 doi: 10.1038/nature05329 – ident: e_1_3_3_38_2 doi: 10.1038/ng.2335 – ident: e_1_3_3_11_2 doi: 10.1038/nature15394 – ident: e_1_3_3_52_2 doi: 10.1101/gr.094052.109 – ident: e_1_3_3_12_2 doi: 10.1016/j.cell.2018.12.019 – ident: e_1_3_3_14_2 doi: 10.1016/j.ajhg.2008.08.004 – ident: e_1_3_3_7_2 doi: 10.1038/nature13408 – ident: e_1_3_3_34_2 doi: 10.1086/605644 – volume: 38 start-page: 1358 year: 1984 ident: e_1_3_3_79_2 article-title: Estimating F-Statistics for the Analysis of Population Structure publication-title: Evolution – ident: e_1_3_3_78_2 doi: 10.1073/pnas.87.17.6634 – ident: e_1_3_3_81_2 doi: 10.1093/hmg/ddp187 – ident: e_1_3_3_44_2 doi: 10.1093/molbev/msm088 – ident: e_1_3_3_46_2 doi: 10.1016/S0014-5793(98)00135-5 – ident: e_1_3_3_72_2 doi: 10.1371/journal.pcbi.1003537 – ident: e_1_3_3_23_2 doi: 10.1038/nature19844 – volume: 34 start-page: 509 year: 2017 ident: e_1_3_3_8_2 article-title: Archaic Adaptive Introgression in TBX15/WARS2 publication-title: Mol. Biol. Evol. – ident: e_1_3_3_56_2 doi: 10.1371/journal.pcbi.1004572 – ident: e_1_3_3_80_2 doi: 10.1093/genetics/123.3.585 – ident: e_1_3_3_6_2 doi: 10.1016/j.ajhg.2012.06.015 – ident: e_1_3_3_22_2 doi: 10.1038/nature09710 – ident: e_1_3_3_54_2 doi: 10.1126/science.aar6343 – ident: e_1_3_3_57_2 doi: 10.1186/gb-2014-15-6-r84 – ident: e_1_3_3_71_2 doi: 10.1093/bioinformatics/btl446 – ident: e_1_3_3_39_2 doi: 10.1038/ng1508 – ident: e_1_3_3_33_2 doi: 10.1371/journal.pgen.0030063 – ident: e_1_3_3_37_2 doi: 10.1101/gr.211284.116 – ident: e_1_3_3_47_2 doi: 10.1038/nature10842 – ident: e_1_3_3_4_2 doi: 10.1126/science.aab2319 – ident: e_1_3_3_17_2 doi: 10.1007/BF02522614 – ident: e_1_3_3_43_2 doi: 10.1038/35097067 – ident: e_1_3_3_40_2 doi: 10.1038/ng.643 – ident: e_1_3_3_75_2 doi: 10.1093/molbev/msm092 – ident: e_1_3_3_3_2 doi: 10.1126/science.1190371 – ident: e_1_3_3_13_2 doi: 10.1038/ng2123 – ident: e_1_3_3_18_2 doi: 10.1038/321744a0 – ident: e_1_3_3_20_2 doi: 10.1038/nature18299 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pgen.0020173 – ident: e_1_3_3_42_2 doi: 10.1038/s41592-018-0236-3 – ident: e_1_3_3_19_2 doi: 10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K – ident: e_1_3_3_35_2 doi: 10.1530/JME-19-0011 – ident: e_1_3_3_51_2 doi: 10.1371/journal.pgen.1000695 – ident: e_1_3_3_76_2 doi: 10.1038/s41564-018-0297-1 – ident: e_1_3_3_74_2 doi: 10.1093/nar/gkl315 – ident: e_1_3_3_5_2 doi: 10.1016/j.cell.2018.03.054 – ident: e_1_3_3_9_2 doi: 10.1038/nature08516 – ident: e_1_3_3_29_2 doi: 10.1038/nature12228 – ident: e_1_3_3_61_2 doi: 10.1093/molbev/msv255 – ident: e_1_3_3_63_2 doi: 10.1101/gr.083634.108 – ident: e_1_3_3_69_2 doi: 10.1086/521987 – ident: e_1_3_3_73_2 doi: 10.1093/molbev/mst010 – ident: e_1_3_3_31_2 doi: 10.1093/molbev/msu269 – ident: e_1_3_3_45_2 doi: 10.1038/s41588-018-0288-4 – ident: e_1_3_3_49_2 doi: 10.7554/eLife.32332 – ident: e_1_3_3_59_2 doi: 10.1038/ng.3200 – ident: e_1_3_3_10_2 doi: 10.1126/science.aab3761 – ident: e_1_3_3_16_2 doi: 10.1038/nature19075 – ident: e_1_3_3_60_2 doi: 10.1038/nmeth0810-576 – ident: e_1_3_3_66_2 doi: 10.1073/pnas.1211740109 – ident: e_1_3_3_2_2 doi: 10.1038/ng1946 – ident: e_1_3_3_41_2 doi: 10.1056/NEJMoa075974 |
SSID | ssj0009593 |
Score | 2.5220659 |
Snippet | As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The... Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation... Adaptive archaic hominin genesAs they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as... Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotidevariants, but their roles in archaic introgression and adaptation... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 324 |
SubjectTerms | Adaptation Amino acids Animals Autism Base pairs Biochemistry, Molecular Biology Biological evolution Cell cycle Chromosome 16 Chromosome 8 Chromosome Duplication Chromosomes Chromosomes, Human, Pair 16 - genetics Chromosomes, Human, Pair 8 - genetics Clonal deletion Copy number Demographics DNA Copy Number Variations Duplication Evidence Evolution, Molecular Evolutionary genetics Gene duplication Gene mapping Genes Genetic diversity Genetic Introgression Genetic variance Genetics Genome, Human Genomes Genomics Haplotypes High frequencies Hominidae - genetics Hominids Homo sapiens denisova Human populations Humans Immune response Individualized Instruction Life Sciences Local population Melanesia Models, Genetic Mountains Mutation Neanderthals - genetics Nucleotides Polymorphism, Genetic Population Population genetics Populations Positive selection Reproduction (copying) RESEARCH ARTICLE SUMMARY Selection, Genetic Signatures Whole Genome Sequencing |
Title | Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes |
URI | https://www.jstor.org/stable/26843670 https://www.ncbi.nlm.nih.gov/pubmed/31624180 https://www.proquest.com/docview/2306529503 https://www.proquest.com/docview/2307127045 https://cea.hal.science/cea-04457184 https://pubmed.ncbi.nlm.nih.gov/PMC6860971 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6TqC9IDbYCAxkEA9DVarEdr4eu8FUIYYmtE17ixzH3YpGWq3tRPlB_E6uP-ImY5NgL1EVO0mVe3J9fX18LkLvZRGl5UhEPrSWPiNB4fOyKHwRZCllCYxxen_F0dd4eMo-n0fnnc7vBmtpMS_64ted-0oeYlU4B3ZVu2T_w7LupnACfoN94QgWhuM_2XhQ8qmm_mjFo7FQ4g-Kb2W0NgxjfLrsmaofvRuYFmvWS02aVDtyFYNTL7JPFd93sphdLXuLSmXaKlu_70J5w2YMW7sDiE3dek_Dyo64ODD0gpptYC9rpB6Gs7E0WR0YP4ezhcPpGYDzwmDpaDzXXNXet_4qqW7805lbDTieXIP_M1ngFUnf5jLCTA0CTffr5JHN6GRccqCqSZKANn02NaVaLDhjZpzk38NBo4Cl7HP-kwRpqyfYc_pDo4OGMQQzpqrULQXu46ODOI2V2NYaWicwHSFdtD7Y_7h_eK-8sxWRamzPqp--gR7Xj2qFQmuXiohrOLF3zXZuk3YbUdDJU_TETl_wwGBxE3VktYUemYKmyy20aY08w3tWz_zDM_S9him2MMUtmOLJCCuYYgNTXMMUA0wx4Ag7mKqeK5hiC1OsYYo1TJ-j08NPJwdD35b48EXE6NwvMlIKDmOsYEIUCc9oRAMelpmESDxJR2HEKaE8SyPoEpQlGYVlHHIISgU4kaSg26hbTSr5AmEqUi54SmRMExaBwxkJkSUlYTyWUobUQ_36befC6t-rMixXuZ4Hkzi3lsqtpTy05y6YGumX-7u-A_O5XkqyfTj4kgvJ84CxCOI_dhN6aFtb13VTQktKP9FDu7W5c-tdZrlKDahF-ABu_tY1g-9XC3q8kvCmVZ9EMUdY5KEdgw538xpkHkpauGn9yXZLNb7U-vIW7C8ffOUrtLH6undRd369kK8hdp8Xb-yH8wdxQPjz |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+archaic+introgression+of+copy+number+variants+and+the+discovery+of+previously+unknown+human+genes&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hsieh%2C+PingHsun&rft.au=Vollger%2C+Mitchell+R.&rft.au=Dang%2C+Vy&rft.au=Porubsky%2C+David&rft.date=2019-10-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6463&rft_id=info:doi/10.1126%2Fscience.aax2083&rft_id=info%3Apmid%2F31624180&rft.externalDocID=PMC6860971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |