Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes

As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for spec...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 366; no. 6463; p. 324
Main Authors Hsieh, PingHsun, Vollger, Mitchell R., Dang, Vy, Porubsky, David, Baker, Carl, Cantsilieris, Stuart, Hoekzema, Kendra, Lewis, Alexandra P., Munson, Katherine M., Sorensen, Melanie, Kronenberg, Zev N., Murali, Shwetha, Nelson, Bradley J., Chiatante, Giorgia, Maggiolini, Flavia Angela Maria, Blanché, Hélène, Underwood, Jason G., Antonacci, Francesca, Deleuze, Jean-François, Eichler, Evan E.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 18.10.2019
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes. Science , this issue p. eaax2083 Melanesians carry adaptive DNA variants derived from archaic hominins. Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.
AbstractList Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotidevariants, but their roles in archaic introgression and adaptation have not been systematicallyinvestigated. We show that stratified CNVs are significantly associated with signatures of positiveselection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data,we reconstruct the structure and complex evolutionary history of these polymorphisms and show thatboth encode positively selected genes absent from most human populations. Our results collectivelysuggest that large CNVs originating in archaic hominins and introgressed into modern humans haveplayed an important role in local population adaptation and represent an insufficiently studied source oflarge-scale genetic variation
Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.
Adaptive archaic hominin genesAs they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes.Science, this issue p. eaax2083INTRODUCTIONCharacterizing genetic variants underlying local adaptations in human populations is one of the central goals of evolutionary research. Most studies have focused on adaptive single-nucleotide variants that either arose as new beneficial mutations or were introduced after interbreeding with our now-extinct relatives, including Neanderthals and Denisovans. The adaptive role of copy number variants (CNVs), another well-known form of genomic variation generated through deletions or duplications that affect more base pairs in the genome, is less well understood, despite evidence that such mutations are subject to stronger selective pressures.RATIONALEThis study focuses on the discovery of introgressed and adaptive CNVs that have become enriched in specific human populations. We combine whole-genome CNV calling and population genetic inference methods to discover CNVs and then assess signals of selection after controlling for demographic history. We examine 266 publicly available modern human genomes from the Simons Genome Diversity Project and genomes of three ancient hominins—a Denisovan, a Neanderthal from the Altai Mountains in Siberia, and a Neanderthal from Croatia. We apply long-read sequencing methods to sequence-resolve complex CNVs of interest specifically in the Melanesians—an Oceanian population distributed from Papua New Guinea to as far east as the islands of Fiji and known to harbor some of the greatest amounts of Neanderthal and Denisovan ancestry.RESULTSConsistent with the hypothesis of archaic introgression outside Africa, we find a significant excess of CNV sharing between modern non-African populations and archaic hominins (P = 0.039). Among Melanesians, we observe an enrichment of CNVs with potential signals of positive selection (n = 37 CNVs), of which 19 CNVs likely introgressed from archaic hominins. We show that Melanesian-stratified CNVs are significantly associated with signals of positive selection (P = 0.0323). Many map near or within genes associated with metabolism (e.g., ACOT1 and ACOT2), development and cell cycle or signaling (e.g., TNFRSF10D and CDK11A and CDK11B), or immune response (e.g., IFNLR1). We characterize two of the largest and most complex CNVs on chromosomes 16p11.2 and 8p21.3 that introgressed from Denisovans and Neanderthals, respectively, and are absent from most other human populations. At chromosome 16p11.2, we sequence-resolve a large duplication of >383 thousand base pairs (kbp) that originated from Denisovans and introgressed into the ancestral Melanesian population 60,000 to 170,000 years ago. This large duplication occurs at high frequency (>79%) in diverse Melanesian groups, shows signatures of positive selection, and maps adjacent to Homo sapiens–specific duplications that predispose to rearrangements associated with autism. On chromosome 8p21.3, we identify a Melanesian haplotype that carries two CNVs, a ~6-kbp deletion, and a ~38-kbp duplication, with a Neanderthal origin and that introgressed into non-Africans 40,000 to 120,000 years ago. This CNV haplotype occurs at high frequency (44%) and shows signals consistent with a partial selective sweep in Melanesians. Using long-read sequencing genomic and transcriptomic data, we reconstruct the structure and complex evolutionary history for these two CNVs and discover previously undescribed duplicated genes (TNFRSF10D1, TNFRSF10D2, and NPIPB16) that show an excess of amino acid replacements consistent with the action of positive selection.CONCLUSIONOur results suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation that is absent from current reference genomes.Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.
As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The result of this genetic introgression on the recipient populations has been of considerable interest, especially in cases of selection for specific archaic genetic variants. Hsieh et al. characterized adaptive structural variants and copy number variants that are likely targets of positive selection in Melanesians. Focusing on population-specific regions of the genome that carry duplicated genes and show an excess of amino acid replacements provides evidence for one of the mechanisms by which genetic novelty can arise and result in differentiation between human genomes. Science , this issue p. eaax2083 Melanesians carry adaptive DNA variants derived from archaic hominins. Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.
Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.
Author Sorensen, Melanie
Hoekzema, Kendra
Murali, Shwetha
Munson, Katherine M.
Lewis, Alexandra P.
Nelson, Bradley J.
Dang, Vy
Chiatante, Giorgia
Eichler, Evan E.
Porubsky, David
Antonacci, Francesca
Vollger, Mitchell R.
Maggiolini, Flavia Angela Maria
Kronenberg, Zev N.
Deleuze, Jean-François
Underwood, Jason G.
Cantsilieris, Stuart
Blanché, Hélène
Hsieh, PingHsun
Baker, Carl
AuthorAffiliation 3 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
1 Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
2 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
4 Fondation Jean Dausset–Centre d’Etude du Polymorphisme Humain, Paris, France
5 Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA
AuthorAffiliation_xml – name: 3 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro,” Bari, Italy
– name: 5 Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA
– name: 1 Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
– name: 4 Fondation Jean Dausset–Centre d’Etude du Polymorphisme Humain, Paris, France
– name: 2 Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
Author_xml – sequence: 1
  givenname: PingHsun
  surname: Hsieh
  fullname: Hsieh, PingHsun
– sequence: 2
  givenname: Mitchell R.
  surname: Vollger
  fullname: Vollger, Mitchell R.
– sequence: 3
  givenname: Vy
  surname: Dang
  fullname: Dang, Vy
– sequence: 4
  givenname: David
  surname: Porubsky
  fullname: Porubsky, David
– sequence: 5
  givenname: Carl
  surname: Baker
  fullname: Baker, Carl
– sequence: 6
  givenname: Stuart
  surname: Cantsilieris
  fullname: Cantsilieris, Stuart
– sequence: 7
  givenname: Kendra
  surname: Hoekzema
  fullname: Hoekzema, Kendra
– sequence: 8
  givenname: Alexandra P.
  surname: Lewis
  fullname: Lewis, Alexandra P.
– sequence: 9
  givenname: Katherine M.
  surname: Munson
  fullname: Munson, Katherine M.
– sequence: 10
  givenname: Melanie
  surname: Sorensen
  fullname: Sorensen, Melanie
– sequence: 11
  givenname: Zev N.
  surname: Kronenberg
  fullname: Kronenberg, Zev N.
– sequence: 12
  givenname: Shwetha
  surname: Murali
  fullname: Murali, Shwetha
– sequence: 13
  givenname: Bradley J.
  surname: Nelson
  fullname: Nelson, Bradley J.
– sequence: 14
  givenname: Giorgia
  surname: Chiatante
  fullname: Chiatante, Giorgia
– sequence: 15
  givenname: Flavia Angela Maria
  surname: Maggiolini
  fullname: Maggiolini, Flavia Angela Maria
– sequence: 16
  givenname: Hélène
  surname: Blanché
  fullname: Blanché, Hélène
– sequence: 17
  givenname: Jason G.
  surname: Underwood
  fullname: Underwood, Jason G.
– sequence: 18
  givenname: Francesca
  surname: Antonacci
  fullname: Antonacci, Francesca
– sequence: 19
  givenname: Jean-François
  surname: Deleuze
  fullname: Deleuze, Jean-François
– sequence: 20
  givenname: Evan E.
  surname: Eichler
  fullname: Eichler, Evan E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31624180$$D View this record in MEDLINE/PubMed
https://cea.hal.science/cea-04457184$$DView record in HAL
BookMark eNp1ks1vEzEQxS1URNPCmRPIEhc4pB3b6_24VIoqoEiRuMDZmtjerMPGDvbuQv57HCWtIBInH-b33njezBW58MFbQl4zuGGMl7dJO-u1vUH8zaEWz8iMQSPnDQdxQWYAopzXUMlLcpXSBiDXGvGCXApW8oLVMCObhcHd4CZLMeoOnabODzGso03JBU9DS3XY7akftysb6YTRoR8SRW_o0FlqXNJhsnF_IHfRTi6Mqd_T0f_w4Zen3bhFT9fW2_SSPG-xT_bV6b0m3z99_Hb_MF9-_fzlfrGca1mIYb5quNGIxuhC61WFjZACkJnGyhKqumUSBRfY1DIjYAxvmSkZMl5oUUC1Etfk7ui7G1dba7TNA2GvdtFtMe5VQKf-rXjXqXWYVFmX0FQsG3w4GnRnsofFUmmLCopCVqwupgP7_tQshp-jTYPa5kRs36O3OQnFBVSMV1DIjL47QzdhjD5HcaBKyRsJIlNv__79U__HlWVAHgEdQ0rRtkq7AYe8rDyM6xUDdTgNdToNdTqNrLs90z1a_1_x5qjYpCHEJ5yXdSHKCsQfmhrKmg
CitedBy_id crossref_primary_10_3390_genes14061256
crossref_primary_10_1093_molbev_msab313
crossref_primary_10_1146_annurev_genom_111521_121903
crossref_primary_10_1093_nar_gkac905
crossref_primary_10_7554_eLife_67615
crossref_primary_10_1007_s13205_020_02368_1
crossref_primary_10_1038_s41576_022_00568_4
crossref_primary_10_3389_fvets_2023_1334434
crossref_primary_10_1016_j_cub_2022_08_027
crossref_primary_10_1093_jhered_esaa057
crossref_primary_10_1146_annurev_animal_061220_023149
crossref_primary_10_1186_s13059_021_02382_3
crossref_primary_10_1016_j_semcdb_2020_12_007
crossref_primary_10_3390_genes11020141
crossref_primary_10_1093_molbev_msac274
crossref_primary_10_1016_j_ajhg_2024_08_015
crossref_primary_10_3389_fcell_2022_807289
crossref_primary_10_3389_fpls_2021_581704
crossref_primary_10_1186_s13059_020_02074_4
crossref_primary_10_1186_s13100_021_00250_2
crossref_primary_10_3389_fgene_2022_1060898
crossref_primary_10_1038_s41467_021_25435_4
crossref_primary_10_1016_j_cell_2024_01_052
crossref_primary_10_1093_cercor_bhaa365
crossref_primary_10_1126_science_abf7117
crossref_primary_10_1186_s12864_022_08804_1
crossref_primary_10_1111_mec_17277
crossref_primary_10_1016_j_tree_2020_03_002
crossref_primary_10_1016_j_cell_2024_10_005
crossref_primary_10_1161_HCG_0000000000000084
crossref_primary_10_3390_genes11010088
crossref_primary_10_1093_gbe_evab115
crossref_primary_10_1038_s41588_021_00899_8
crossref_primary_10_1098_rstb_2020_0411
crossref_primary_10_1002_ajpa_24713
crossref_primary_10_1016_j_cell_2020_05_024
crossref_primary_10_1111_aman_13410
crossref_primary_10_1038_s41576_023_00643_4
crossref_primary_10_1038_d41586_022_00726_y
crossref_primary_10_1038_s41588_024_02051_8
crossref_primary_10_1128_AEM_00626_21
crossref_primary_10_1371_journal_pgen_1010615
crossref_primary_10_1016_j_csbj_2022_05_047
crossref_primary_10_1101_gr_277481_122
crossref_primary_10_1038_s41598_022_08663_6
crossref_primary_10_1126_science_abj6965
crossref_primary_10_1093_molbev_msad074
crossref_primary_10_5294_pebi_2023_27_2_1
crossref_primary_10_3389_fgene_2020_00471
crossref_primary_10_1002_ijc_33153
crossref_primary_10_1016_j_tig_2021_06_015
crossref_primary_10_1016_j_xgen_2025_100782
crossref_primary_10_1371_journal_pcbi_1010788
Cites_doi 10.1093/oxfordjournals.molbev.a025957
10.1101/gr.237610.118
10.1038/nature18964
10.1038/gene.2015.1
10.1093/bioinformatics/bts378
10.1126/science.1197005
10.1371/journal.pgen.0020105
10.1038/nature01140
10.1002/humu.21491
10.1016/j.gde.2016.07.008
10.1126/science.aao1887
10.1038/nature12886
10.1016/j.tem.2017.03.001
10.1126/science.aad9416
10.1126/science.aan3842
10.1038/nature06258
10.1073/pnas.97.13.7360
10.1101/gr.192971.115
10.1126/science.1224344
10.1038/nature05329
10.1038/ng.2335
10.1038/nature15394
10.1101/gr.094052.109
10.1016/j.cell.2018.12.019
10.1016/j.ajhg.2008.08.004
10.1038/nature13408
10.1086/605644
10.1073/pnas.87.17.6634
10.1093/hmg/ddp187
10.1093/molbev/msm088
10.1016/S0014-5793(98)00135-5
10.1371/journal.pcbi.1003537
10.1038/nature19844
10.1371/journal.pcbi.1004572
10.1093/genetics/123.3.585
10.1016/j.ajhg.2012.06.015
10.1038/nature09710
10.1126/science.aar6343
10.1186/gb-2014-15-6-r84
10.1093/bioinformatics/btl446
10.1038/ng1508
10.1371/journal.pgen.0030063
10.1101/gr.211284.116
10.1038/nature10842
10.1126/science.aab2319
10.1007/BF02522614
10.1038/35097067
10.1038/ng.643
10.1093/molbev/msm092
10.1126/science.1190371
10.1038/ng2123
10.1038/321744a0
10.1038/nature18299
10.1371/journal.pgen.0020173
10.1038/s41592-018-0236-3
10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K
10.1530/JME-19-0011
10.1371/journal.pgen.1000695
10.1038/s41564-018-0297-1
10.1093/nar/gkl315
10.1016/j.cell.2018.03.054
10.1038/nature08516
10.1038/nature12228
10.1093/molbev/msv255
10.1101/gr.083634.108
10.1086/521987
10.1093/molbev/mst010
10.1093/molbev/msu269
10.1038/s41588-018-0288-4
10.7554/eLife.32332
10.1038/ng.3200
10.1126/science.aab3761
10.1038/nature19075
10.1038/nmeth0810-576
10.1073/pnas.1211740109
10.1038/ng1946
10.1056/NEJMoa075974
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1126/science.aax2083
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 324
ExternalDocumentID PMC6860971
oai_HAL_cea_04457184v1
31624180
10_1126_science_aax2083
26843670
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Melanesia
Africa
GeographicLocations_xml – name: Melanesia
– name: Africa
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01 HG002385
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JENOY
JLS
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
.GJ
.GO
.HR
0-V
186
1XC
3EH
4.4
41~
42X
4R4
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAJYS
AAKAS
AAYJJ
AAYOK
ABBHK
ABDPE
ABJCF
ABPMR
ABUWG
ABXSQ
ACHIC
ACQAM
ACTDY
ADBBV
ADMHC
ADQXQ
ADULT
ADZCM
AEUYN
AEXZC
AFCHL
AFKRA
AFQQW
AJUXI
AQVQM
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DCCCD
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IPSME
ISN
ITC
J5H
J9C
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QJJ
R05
RNS
RZL
SA0
SJFOW
SKT
UBY
UHU
UKHRP
UMC
VOH
VOOES
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
YYQ
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~H1
5PM
ID FETCH-LOGICAL-c543t-b92dcaaddc4ccb7a93530a1d9e56078f15a323a985ddc0dd2f1d61a124c3407b3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:24:58 EDT 2025
Fri May 09 12:09:27 EDT 2025
Fri Jul 11 08:33:17 EDT 2025
Fri Jul 25 19:15:05 EDT 2025
Mon Jul 21 05:42:55 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
Tue Jul 01 01:51:35 EDT 2025
Thu Jul 03 21:38:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6463
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c543t-b92dcaaddc4ccb7a93530a1d9e56078f15a323a985ddc0dd2f1d61a124c3407b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
P.H., M.R.V., Z.N.K., J.G.U., and E.E.E. designed and planned experiments. V.D., C.B., S.C., K.H., A.P.L., K.M.M., M.S., and J.G.U. prepared libraries and generated and analyzed sequencing data. P.H., M.R.V., V.D., Z.N.K., S.M., and B.J.N. performed variant calling and bioinformatics analyses. P.H., M.R.V., and D.P. analyzed long-read sequencing data and assembled contigs. P.H. performed population genetic and phylogenetic inferences. G.C., F.A.M.M, and F.A. generated and analyzed FISH experiment data. A.P.L., K.M.M., and J.G.U. generated Iso-Seq transcript data. K.H. performed PCR assays for CNV validations. H.B. and J.-F.D. provided Melanesian genome DNA materials. P.H. and E.E.E. wrote the manuscript.
Present address: Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.
Present address: Phase Genomics, Inc., Seattle, WA, USA.
Present address: Pacific Biosciences (PacBio) of California, Inc., Menlo Park, CA, USA.
Author contributions
ORCID 0000-0003-2115-575X
0000-0002-8651-1615
0000-0001-6832-9388
0000-0002-6195-4786
0000-0002-1525-9707
0000-0001-8413-6498
0000-0001-8294-6227
0000-0002-8754-4064
0000-0002-8246-4014
OpenAccessLink https://cea.hal.science/cea-04457184
PMID 31624180
PQID 2306529503
PQPubID 1256
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6860971
hal_primary_oai_HAL_cea_04457184v1
proquest_miscellaneous_2307127045
proquest_journals_2306529503
pubmed_primary_31624180
crossref_citationtrail_10_1126_science_aax2083
crossref_primary_10_1126_science_aax2083
jstor_primary_26843670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-18
PublicationDateYYYYMMDD 2019-10-18
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Weir B. S. (e_1_3_3_79_2) 1984; 38
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
Racimo F. (e_1_3_3_8_2) 2017; 34
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_77_2
  doi: 10.1093/oxfordjournals.molbev.a025957
– ident: e_1_3_3_53_2
  doi: 10.1101/gr.237610.118
– ident: e_1_3_3_28_2
  doi: 10.1038/nature18964
– ident: e_1_3_3_36_2
  doi: 10.1038/gene.2015.1
– ident: e_1_3_3_58_2
  doi: 10.1093/bioinformatics/bts378
– ident: e_1_3_3_55_2
  doi: 10.1126/science.1197005
– ident: e_1_3_3_50_2
  doi: 10.1371/journal.pgen.0020105
– ident: e_1_3_3_68_2
  doi: 10.1038/nature01140
– ident: e_1_3_3_15_2
  doi: 10.1002/humu.21491
– ident: e_1_3_3_62_2
  doi: 10.1016/j.gde.2016.07.008
– ident: e_1_3_3_25_2
  doi: 10.1126/science.aao1887
– ident: e_1_3_3_27_2
  doi: 10.1038/nature12886
– ident: e_1_3_3_32_2
  doi: 10.1016/j.tem.2017.03.001
– ident: e_1_3_3_24_2
  doi: 10.1126/science.aad9416
– ident: e_1_3_3_21_2
  doi: 10.1126/science.aan3842
– ident: e_1_3_3_65_2
  doi: 10.1038/nature06258
– ident: e_1_3_3_70_2
  doi: 10.1073/pnas.97.13.7360
– ident: e_1_3_3_64_2
  doi: 10.1101/gr.192971.115
– ident: e_1_3_3_26_2
  doi: 10.1126/science.1224344
– ident: e_1_3_3_67_2
  doi: 10.1038/nature05329
– ident: e_1_3_3_38_2
  doi: 10.1038/ng.2335
– ident: e_1_3_3_11_2
  doi: 10.1038/nature15394
– ident: e_1_3_3_52_2
  doi: 10.1101/gr.094052.109
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cell.2018.12.019
– ident: e_1_3_3_14_2
  doi: 10.1016/j.ajhg.2008.08.004
– ident: e_1_3_3_7_2
  doi: 10.1038/nature13408
– ident: e_1_3_3_34_2
  doi: 10.1086/605644
– volume: 38
  start-page: 1358
  year: 1984
  ident: e_1_3_3_79_2
  article-title: Estimating F-Statistics for the Analysis of Population Structure
  publication-title: Evolution
– ident: e_1_3_3_78_2
  doi: 10.1073/pnas.87.17.6634
– ident: e_1_3_3_81_2
  doi: 10.1093/hmg/ddp187
– ident: e_1_3_3_44_2
  doi: 10.1093/molbev/msm088
– ident: e_1_3_3_46_2
  doi: 10.1016/S0014-5793(98)00135-5
– ident: e_1_3_3_72_2
  doi: 10.1371/journal.pcbi.1003537
– ident: e_1_3_3_23_2
  doi: 10.1038/nature19844
– volume: 34
  start-page: 509
  year: 2017
  ident: e_1_3_3_8_2
  article-title: Archaic Adaptive Introgression in TBX15/WARS2
  publication-title: Mol. Biol. Evol.
– ident: e_1_3_3_56_2
  doi: 10.1371/journal.pcbi.1004572
– ident: e_1_3_3_80_2
  doi: 10.1093/genetics/123.3.585
– ident: e_1_3_3_6_2
  doi: 10.1016/j.ajhg.2012.06.015
– ident: e_1_3_3_22_2
  doi: 10.1038/nature09710
– ident: e_1_3_3_54_2
  doi: 10.1126/science.aar6343
– ident: e_1_3_3_57_2
  doi: 10.1186/gb-2014-15-6-r84
– ident: e_1_3_3_71_2
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_3_3_39_2
  doi: 10.1038/ng1508
– ident: e_1_3_3_33_2
  doi: 10.1371/journal.pgen.0030063
– ident: e_1_3_3_37_2
  doi: 10.1101/gr.211284.116
– ident: e_1_3_3_47_2
  doi: 10.1038/nature10842
– ident: e_1_3_3_4_2
  doi: 10.1126/science.aab2319
– ident: e_1_3_3_17_2
  doi: 10.1007/BF02522614
– ident: e_1_3_3_43_2
  doi: 10.1038/35097067
– ident: e_1_3_3_40_2
  doi: 10.1038/ng.643
– ident: e_1_3_3_75_2
  doi: 10.1093/molbev/msm092
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1190371
– ident: e_1_3_3_13_2
  doi: 10.1038/ng2123
– ident: e_1_3_3_18_2
  doi: 10.1038/321744a0
– ident: e_1_3_3_20_2
  doi: 10.1038/nature18299
– ident: e_1_3_3_48_2
  doi: 10.1371/journal.pgen.0020173
– ident: e_1_3_3_42_2
  doi: 10.1038/s41592-018-0236-3
– ident: e_1_3_3_19_2
  doi: 10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K
– ident: e_1_3_3_35_2
  doi: 10.1530/JME-19-0011
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.pgen.1000695
– ident: e_1_3_3_76_2
  doi: 10.1038/s41564-018-0297-1
– ident: e_1_3_3_74_2
  doi: 10.1093/nar/gkl315
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cell.2018.03.054
– ident: e_1_3_3_9_2
  doi: 10.1038/nature08516
– ident: e_1_3_3_29_2
  doi: 10.1038/nature12228
– ident: e_1_3_3_61_2
  doi: 10.1093/molbev/msv255
– ident: e_1_3_3_63_2
  doi: 10.1101/gr.083634.108
– ident: e_1_3_3_69_2
  doi: 10.1086/521987
– ident: e_1_3_3_73_2
  doi: 10.1093/molbev/mst010
– ident: e_1_3_3_31_2
  doi: 10.1093/molbev/msu269
– ident: e_1_3_3_45_2
  doi: 10.1038/s41588-018-0288-4
– ident: e_1_3_3_49_2
  doi: 10.7554/eLife.32332
– ident: e_1_3_3_59_2
  doi: 10.1038/ng.3200
– ident: e_1_3_3_10_2
  doi: 10.1126/science.aab3761
– ident: e_1_3_3_16_2
  doi: 10.1038/nature19075
– ident: e_1_3_3_60_2
  doi: 10.1038/nmeth0810-576
– ident: e_1_3_3_66_2
  doi: 10.1073/pnas.1211740109
– ident: e_1_3_3_2_2
  doi: 10.1038/ng1946
– ident: e_1_3_3_41_2
  doi: 10.1056/NEJMoa075974
SSID ssj0009593
Score 2.5220659
Snippet As they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as Neanderthals and Denisovans. The...
Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation...
Adaptive archaic hominin genesAs they migrated out of Africa and into Europe and Asia, anatomically modern humans interbred with archaic hominins, such as...
Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotidevariants, but their roles in archaic introgression and adaptation...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 324
SubjectTerms Adaptation
Amino acids
Animals
Autism
Base pairs
Biochemistry, Molecular Biology
Biological evolution
Cell cycle
Chromosome 16
Chromosome 8
Chromosome Duplication
Chromosomes
Chromosomes, Human, Pair 16 - genetics
Chromosomes, Human, Pair 8 - genetics
Clonal deletion
Copy number
Demographics
DNA Copy Number Variations
Duplication
Evidence
Evolution, Molecular
Evolutionary genetics
Gene duplication
Gene mapping
Genes
Genetic diversity
Genetic Introgression
Genetic variance
Genetics
Genome, Human
Genomes
Genomics
Haplotypes
High frequencies
Hominidae - genetics
Hominids
Homo sapiens denisova
Human populations
Humans
Immune response
Individualized Instruction
Life Sciences
Local population
Melanesia
Models, Genetic
Mountains
Mutation
Neanderthals - genetics
Nucleotides
Polymorphism, Genetic
Population
Population genetics
Populations
Positive selection
Reproduction (copying)
RESEARCH ARTICLE SUMMARY
Selection, Genetic
Signatures
Whole Genome Sequencing
Title Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes
URI https://www.jstor.org/stable/26843670
https://www.ncbi.nlm.nih.gov/pubmed/31624180
https://www.proquest.com/docview/2306529503
https://www.proquest.com/docview/2307127045
https://cea.hal.science/cea-04457184
https://pubmed.ncbi.nlm.nih.gov/PMC6860971
Volume 366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6TqC9IDbYCAxkEA9DVarEdr4eu8FUIYYmtE17ixzH3YpGWq3tRPlB_E6uP-ImY5NgL1EVO0mVe3J9fX18LkLvZRGl5UhEPrSWPiNB4fOyKHwRZCllCYxxen_F0dd4eMo-n0fnnc7vBmtpMS_64ted-0oeYlU4B3ZVu2T_w7LupnACfoN94QgWhuM_2XhQ8qmm_mjFo7FQ4g-Kb2W0NgxjfLrsmaofvRuYFmvWS02aVDtyFYNTL7JPFd93sphdLXuLSmXaKlu_70J5w2YMW7sDiE3dek_Dyo64ODD0gpptYC9rpB6Gs7E0WR0YP4ezhcPpGYDzwmDpaDzXXNXet_4qqW7805lbDTieXIP_M1ngFUnf5jLCTA0CTffr5JHN6GRccqCqSZKANn02NaVaLDhjZpzk38NBo4Cl7HP-kwRpqyfYc_pDo4OGMQQzpqrULQXu46ODOI2V2NYaWicwHSFdtD7Y_7h_eK-8sxWRamzPqp--gR7Xj2qFQmuXiohrOLF3zXZuk3YbUdDJU_TETl_wwGBxE3VktYUemYKmyy20aY08w3tWz_zDM_S9him2MMUtmOLJCCuYYgNTXMMUA0wx4Ag7mKqeK5hiC1OsYYo1TJ-j08NPJwdD35b48EXE6NwvMlIKDmOsYEIUCc9oRAMelpmESDxJR2HEKaE8SyPoEpQlGYVlHHIISgU4kaSg26hbTSr5AmEqUi54SmRMExaBwxkJkSUlYTyWUobUQ_36befC6t-rMixXuZ4Hkzi3lsqtpTy05y6YGumX-7u-A_O5XkqyfTj4kgvJ84CxCOI_dhN6aFtb13VTQktKP9FDu7W5c-tdZrlKDahF-ABu_tY1g-9XC3q8kvCmVZ9EMUdY5KEdgw538xpkHkpauGn9yXZLNb7U-vIW7C8ffOUrtLH6undRd369kK8hdp8Xb-yH8wdxQPjz
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+archaic+introgression+of+copy+number+variants+and+the+discovery+of+previously+unknown+human+genes&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hsieh%2C+PingHsun&rft.au=Vollger%2C+Mitchell+R.&rft.au=Dang%2C+Vy&rft.au=Porubsky%2C+David&rft.date=2019-10-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6463&rft_id=info:doi/10.1126%2Fscience.aax2083&rft_id=info%3Apmid%2F31624180&rft.externalDocID=PMC6860971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon