Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral f...
Saved in:
Published in | American journal of human genetics Vol. 88; no. 2; pp. 226 - 231 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, MA
Elsevier Inc
11.02.2011
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (
DHFR) locus. DHFR sequencing revealed a homozygous
DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of
DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. |
---|---|
AbstractList | The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. [PUBLICATION ABSTRACT] The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase ( DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase ( DHFR ) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. |
Author | Kohne, Elisabeth Blom, Henk Bode, Harald Schwarz, Klaus Holzmann, Karlheinz Pannicke, Ulrich Rump, Eva-Maria Hopfner, Karl-Peter Ayric, Zuleya Cario, Holger Blau, Nenad Smulders, Yvo Smith, Desirée E.C. Debatin, Klaus-Michael |
AuthorAffiliation | 3 Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland 7 Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany 8 Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany 5 Research Center for Children (RCC), 8032 Zurich, Switzerland 9 Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany 1 Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany 11 Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands 10 Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany 2 Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands 6 Interdisciplinary Center for Clinical |
AuthorAffiliation_xml | – name: 2 Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands – name: 6 Interdisciplinary Center for Clinical Research, University Hospital, 89081 Ulm, Germany – name: 5 Research Center for Children (RCC), 8032 Zurich, Switzerland – name: 3 Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland – name: 10 Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany – name: 1 Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany – name: 9 Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany – name: 4 Zurich Center for Integrative Human Physiology (ZIHP), 8032 Zurich, Switzerland – name: 7 Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany – name: 8 Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany – name: 11 Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands |
Author_xml | – sequence: 1 givenname: Holger surname: Cario fullname: Cario, Holger email: holger.cario@uniklinik-ulm.de organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany – sequence: 2 givenname: Desirée E.C. surname: Smith fullname: Smith, Desirée E.C. organization: Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands – sequence: 3 givenname: Henk surname: Blom fullname: Blom, Henk organization: Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands – sequence: 4 givenname: Nenad surname: Blau fullname: Blau, Nenad organization: Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland – sequence: 5 givenname: Harald surname: Bode fullname: Bode, Harald organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany – sequence: 6 givenname: Karlheinz surname: Holzmann fullname: Holzmann, Karlheinz organization: Interdisciplinary Center for Clinical Research, University Hospital, 89081 Ulm, Germany – sequence: 7 givenname: Ulrich surname: Pannicke fullname: Pannicke, Ulrich organization: Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany – sequence: 8 givenname: Karl-Peter surname: Hopfner fullname: Hopfner, Karl-Peter organization: Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany – sequence: 9 givenname: Eva-Maria surname: Rump fullname: Rump, Eva-Maria organization: Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany – sequence: 10 givenname: Zuleya surname: Ayric fullname: Ayric, Zuleya organization: Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany – sequence: 11 givenname: Elisabeth surname: Kohne fullname: Kohne, Elisabeth organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany – sequence: 12 givenname: Klaus-Michael surname: Debatin fullname: Debatin, Klaus-Michael organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany – sequence: 13 givenname: Yvo surname: Smulders fullname: Smulders, Yvo organization: Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands – sequence: 14 givenname: Klaus surname: Schwarz fullname: Schwarz, Klaus organization: Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23865736$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21310277$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt-K1DAUxousuH_0BbyQIIhXMyZN06QgwjLjOMKswqrX4TQ97WToNGvSDozP44OaOuO67sUKgVzkd77z5ZzvPDnpXIdJ8pzRKaMsf7OZwmbdTFPK2JTGQ-Wj5IwJLid5TsVJckYpTSdFWsjT5DyEDY2govxJcpoyzmgq5Vnyc27X-8q72rXQI7nGajA9BCRzrK2x2Jk9mQ9IekeALN3W_dg3bghkvlxck6uhh966jsxgCBjIFTbQurKF0FtDLjvcWiDQVWSGHksPLVkc2twRXyFUtmvGBl9wFznyCQfvWtdEibkNGM08TR7X0AZ8drwvkm-L919ny8nq84ePs8vVxIiM95NSUOB1LRTmqDLgoiyhzvJCqpJmqJDVnKemKoApoWheMy6LDI1gpapyEMAvkncH3Zuh3GJlsOujaX3j7Rb8Xjuw-t-Xzq5143aaUy4kzaPA66OAd98HDL3e2mCwbaHDODVdUMmEYmn6X1IJlkmZpiKSL--RGzf4Ls5hhKTKmGARenHX-a3lP4uOwKsjAMFAW3vojA1_Oa5yIfn4g_TAGe9C8FjfIozqMXV6o8fU6TF1msZDR3F1r8jYQzLilGz7cOnbQynGve4seh1-BwMr69H0unL2ofJfYoj0Gg |
CODEN | AJHGAG |
CitedBy_id | crossref_primary_10_1080_07391102_2020_1861985 crossref_primary_10_1007_s12031_020_01561_4 crossref_primary_10_1016_j_ymgme_2023_107735 crossref_primary_10_1371_journal_pone_0096471 crossref_primary_10_3389_fgene_2025_1527884 crossref_primary_10_1016_j_dnarep_2019_02_014 crossref_primary_10_1016_j_jbc_2023_104909 crossref_primary_10_1016_j_celrep_2018_05_005 crossref_primary_10_1111_j_1399_0004_2011_01662_x crossref_primary_10_1186_s42494_024_00169_0 crossref_primary_10_1016_j_bioorg_2023_106874 crossref_primary_10_1002_aur_1780 crossref_primary_10_1017_S1047951116001487 crossref_primary_10_1038_s41598_017_01732_1 crossref_primary_10_1586_14737175_2015_1055322 crossref_primary_10_3389_fcvm_2021_763851 crossref_primary_10_1016_j_str_2022_05_016 crossref_primary_10_1136_jmedgenet_2020_106987 crossref_primary_10_3390_life11090983 crossref_primary_10_1097_MD_0000000000031892 crossref_primary_10_3390_nu14153096 crossref_primary_10_3746_pnf_2014_19_4_247 crossref_primary_10_1007_s10545_011_9418_1 crossref_primary_10_3945_ajcn_115_111054 crossref_primary_10_1182_bloodadvances_2022007233 crossref_primary_10_3390_molecules23112929 crossref_primary_10_1016_j_mam_2016_11_005 crossref_primary_10_1097_RD9_0000000000000034 crossref_primary_10_1007_s00221_025_07016_9 crossref_primary_10_1016_j_drudis_2012_07_008 crossref_primary_10_3389_fnagi_2022_749991 crossref_primary_10_3945_jn_115_216101 crossref_primary_10_3390_metabo12060475 crossref_primary_10_1002_jmd2_12409 crossref_primary_10_1016_j_biochi_2016_02_012 crossref_primary_10_3390_antiox10111645 crossref_primary_10_1515_pterid_2015_0005 crossref_primary_10_1515_cclm_2012_0543 crossref_primary_10_1016_j_ejpn_2025_02_008 crossref_primary_10_1016_j_jns_2018_11_014 crossref_primary_10_3389_fmicb_2017_00561 crossref_primary_10_1007_s12035_021_02591_8 crossref_primary_10_1186_s13023_024_03074_4 crossref_primary_10_1179_1476830511Y_0000000016 crossref_primary_10_1016_j_ymgme_2017_06_014 crossref_primary_10_7868_S001667581704004X crossref_primary_10_1016_j_ymgme_2011_06_004 crossref_primary_10_1146_annurev_nutr_071714_034441 crossref_primary_10_1002_jimd_12092 crossref_primary_10_3389_fped_2024_1434209 crossref_primary_10_1016_j_jep_2019_01_027 crossref_primary_10_1093_brain_aws122 crossref_primary_10_1007_s00894_012_1635_5 crossref_primary_10_1111_j_1469_8749_2012_04406_x crossref_primary_10_1128_MCB_01035_15 crossref_primary_10_1016_j_micpath_2020_104680 crossref_primary_10_1134_S1022795417040044 crossref_primary_10_1016_j_ymgme_2011_05_019 crossref_primary_10_1038_s41388_021_01695_8 crossref_primary_10_1515_cclm_2012_0673 crossref_primary_10_1016_j_csbj_2020_01_011 crossref_primary_10_1016_j_compbiolchem_2021_107587 crossref_primary_10_1002_adma_201104330 crossref_primary_10_1016_j_ymgmr_2016_09_006 crossref_primary_10_3390_nu9040382 crossref_primary_10_1371_journal_pgen_1003242 crossref_primary_10_1016_j_bioorg_2024_107538 crossref_primary_10_1139_cjpp_2016_0681 crossref_primary_10_3390_ijms232315222 crossref_primary_10_1242_dev_201696 crossref_primary_10_1084_jem_20181965 crossref_primary_10_3390_brainsci10110762 |
Cites_doi | 10.1136/pgmj.62.724.113 10.1056/NEJM197602262940903 10.1515/CCLM.2006.085 10.2174/1389200024605163 10.1056/NEJMoa043160 10.1056/NEJM198403223101217 10.1007/978-3-540-76698-8_28 10.1111/j.1471-4159.1978.tb12439.x 10.1111/j.1365-2141.2006.06133.x 10.1056/NEJM197510162931606 10.1073/pnas.0800940105 10.1515/CCLM.2007.137 10.1016/j.jnutbio.2006.11.010 10.1146/annurev.biophys.33.110502.133613 10.1007/BF00965847 10.1212/WNL.0b013e3181c679df |
ContentType | Journal Article |
Copyright | 2011 The American Society of Human Genetics 2015 INIST-CNRS Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. Copyright Cell Press Feb 11, 2011 2011 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2011 The American Society of Human Genetics |
Copyright_xml | – notice: 2011 The American Society of Human Genetics – notice: 2015 INIST-CNRS – notice: Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. – notice: Copyright Cell Press Feb 11, 2011 – notice: 2011 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2011 The American Society of Human Genetics |
DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7TK 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.ajhg.2011.01.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 231 |
ExternalDocumentID | PMC3035706 2267864201 21310277 23865736 10_1016_j_ajhg_2011_01_007 S0002929711000085 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --K --Z -~X .55 .GJ 0R~ 123 1~5 23M 2WC 34R 3O- 4.4 41~ 457 4G. 53G 5GY 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQXK AAUCE AAVLU AAWTL AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACKIV ACNCT ACPRK ADBBV ADEZE ADJPV ADMUD AENEX AEXQZ AFMIJ AFRAH AFTJW AGCDD AGHFR AGKMS AHMBA AI. AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL C1A CS3 D0L DIK E3Z EBS ECV EJD F20 F5P FA8 FCP FDB FEDTE FGOYB GX1 HVGLF HYE HZ~ IH2 IHE IXB JIG KQ8 L7B M41 MVM NCXOZ NEJ O-L O9- OHT OK1 OZT P2P PQQKQ R2- RCE RIG RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VH1 VQA WH7 WOQ WQ6 X7M XOL ZA5 ZCA ZCG ZGI ZXP AAFWJ AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7QP 7TK 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c543t-b50a3ff58e6e84a35bbaf46978b04e8e1f332cd9a185806f13794ec51b8d6a5a3 |
IEDL.DBID | IXB |
ISSN | 0002-9297 1537-6605 |
IngestDate | Thu Aug 21 18:10:57 EDT 2025 Fri Jul 11 03:42:32 EDT 2025 Fri Jul 11 09:59:14 EDT 2025 Fri Jul 25 10:56:40 EDT 2025 Mon Jul 21 05:49:43 EDT 2025 Mon Jul 21 09:14:19 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Tue Jul 01 03:39:08 EDT 2025 Fri Feb 23 02:29:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Nervous system diseases Megaloblastic anemia Enzyme Critically ill Deficiency Hemopathy Homozygosity Folate Encephalon Genetics Oxidoreductases Dihydrofolate reductase Mutation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-b50a3ff58e6e84a35bbaf46978b04e8e1f332cd9a185806f13794ec51b8d6a5a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0002929711000085 |
PMID | 21310277 |
PQID | 851784151 |
PQPubID | 24320 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3035706 proquest_miscellaneous_907158122 proquest_miscellaneous_851477225 proquest_journals_851784151 pubmed_primary_21310277 pascalfrancis_primary_23865736 crossref_primary_10_1016_j_ajhg_2011_01_007 crossref_citationtrail_10_1016_j_ajhg_2011_01_007 elsevier_sciencedirect_doi_10_1016_j_ajhg_2011_01_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-11 |
PublicationDateYYYYMMDD | 2011-02-11 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, MA |
PublicationPlace_xml | – name: Cambridge, MA – name: United States – name: Chicago |
PublicationTitle | American journal of human genetics |
PublicationTitleAlternate | Am J Hum Genet |
PublicationYear | 2011 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Walters (bib4) 1967; 70 Blau, N., and Thöny, B. (2008). Pterins and related enzymes. In N. Blau MD, K.M. Gibson, ed. (Berlin, Heidelberg: Laboratory Guide to the Methods in Biochemical Genetics. Springer-Verlag), pp. 665–702. Santiago, Chan, Liu, Orlando, Zhang, Urnov, Holmes, Guschin, Waite, Miller (bib13) 2008; 105 Cario, Bode, Debatin, Opladen, Schwarz (bib8) 2009; 73 Ramaekers, Rothenberg, Sequeira, Opladen, Blau, Quadros, Selhub (bib18) 2005; 352 Kok, Smith, Barto, Spijkerman, Teerlink, Gellekink, Jakobs, Smulders (bib12) 2007; 45 Smith, Kok, Teerlink, Jakobs, Smulders (bib10) 2006; 44 Tauro, Danks, Rowe, Van der Weyden, Schwarz, Collins, Neal (bib3) 1976; 294 Hoffbrand, Tripp, Jackson, Luck, Frater-Schroder (bib6) 1984; 310 Whitehead (bib2) 2006; 134 Smulders, Smith, Kok, Teerlink, Gellekink, Vaes, Stehouwer, Jakobs (bib11) 2007; 18 Stanger (bib1) 2002; 3 Erbe (bib5) 1975; 293 Kaufman (bib17) 1991; 16 Blau, Opladen (bib7) 2008 Schnell, Dyson, Wright (bib9) 2004; 33 Smith, Howells, Hyland (bib15) 1986; 62 Pollock, Kaufman (bib14) 1978; 31 Walters (10.1016/j.ajhg.2011.01.007_bib4) 1967; 70 10.1016/j.ajhg.2011.01.007_bib16 Blau (10.1016/j.ajhg.2011.01.007_bib7) 2008 Smulders (10.1016/j.ajhg.2011.01.007_bib11) 2007; 18 Smith (10.1016/j.ajhg.2011.01.007_bib10) 2006; 44 Pollock (10.1016/j.ajhg.2011.01.007_bib14) 1978; 31 Tauro (10.1016/j.ajhg.2011.01.007_bib3) 1976; 294 Whitehead (10.1016/j.ajhg.2011.01.007_bib2) 2006; 134 Kok (10.1016/j.ajhg.2011.01.007_bib12) 2007; 45 Kaufman (10.1016/j.ajhg.2011.01.007_bib17) 1991; 16 Cario (10.1016/j.ajhg.2011.01.007_bib8) 2009; 73 Santiago (10.1016/j.ajhg.2011.01.007_bib13) 2008; 105 Smith (10.1016/j.ajhg.2011.01.007_bib15) 1986; 62 Erbe (10.1016/j.ajhg.2011.01.007_bib5) 1975; 293 Ramaekers (10.1016/j.ajhg.2011.01.007_bib18) 2005; 352 Stanger (10.1016/j.ajhg.2011.01.007_bib1) 2002; 3 Schnell (10.1016/j.ajhg.2011.01.007_bib9) 2004; 33 Hoffbrand (10.1016/j.ajhg.2011.01.007_bib6) 1984; 310 16599840 - Clin Chem Lab Med. 2006;44(4):450-9 12003352 - Curr Drug Metab. 2002 Apr;3(2):211-23 1784330 - Neurochem Res. 1991 Sep;16(9):1031-6 1099450 - N Engl J Med. 1975 Oct 16;293(16):807-12 3540926 - Postgrad Med J. 1986 Feb;62(724):113-23 6700662 - N Engl J Med. 1984 Mar 22;310(12):789-90 15139807 - Annu Rev Biophys Biomol Struct. 2004;33:119-40 20018644 - Neurology. 2009 Dec 15;73(24):2127-9 15888699 - N Engl J Med. 2005 May 12;352(19):1985-91 1060915 - N Engl J Med. 1976 Feb 26;294(9):466-70 17418558 - J Nutr Biochem. 2007 Oct;18(10):693-9 17617036 - Clin Chem Lab Med. 2007;45(7):903-11 18359850 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5809-14 209138 - J Neurochem. 1978 Jul;31(1):115-23 16846473 - Br J Haematol. 2006 Jul;134(2):125-36 21388369 - Clin Genet. 2011 Jun;79(6):507-8 |
References_xml | – volume: 73 start-page: 2127 year: 2009 end-page: 2129 ident: bib8 article-title: Congenital null mutations of the publication-title: Neurology – volume: 352 start-page: 1985 year: 2005 end-page: 1991 ident: bib18 article-title: Autoantibodies to folate receptors in the cerebral folate deficiency syndrome publication-title: N. Engl. J. Med. – reference: Blau, N., and Thöny, B. (2008). Pterins and related enzymes. In N. Blau MD, K.M. Gibson, ed. (Berlin, Heidelberg: Laboratory Guide to the Methods in Biochemical Genetics. Springer-Verlag), pp. 665–702. – volume: 62 start-page: 113 year: 1986 end-page: 123 ident: bib15 article-title: Pteridines and mono-amines: relevance to neurological damage publication-title: Postgrad. Med. J. – volume: 70 start-page: 686 year: 1967 end-page: 687 ident: bib4 article-title: Congenital megaloblastic anemia responsive to N5-formyl tetrafolic acid administration publication-title: J. Pediatr. – volume: 294 start-page: 466 year: 1976 end-page: 470 ident: bib3 article-title: Dihydrofolate reductase deficiency causing megaloblastic anemia in two families publication-title: N. Engl. J. Med. – volume: 310 start-page: 789 year: 1984 end-page: 790 ident: bib6 article-title: Hereditary abnormal transcobalamin II previously diagnosed as congenital dihydrofolate reductase deficiency publication-title: N. Engl. J. Med. – volume: 18 start-page: 693 year: 2007 end-page: 699 ident: bib11 article-title: Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status publication-title: J. Nutr. Biochem. – volume: 33 start-page: 119 year: 2004 end-page: 140 ident: bib9 article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 31 start-page: 115 year: 1978 end-page: 123 ident: bib14 article-title: Dihydropteridine reductase may function in tetrahydrofolate metabolism publication-title: J. Neurochem. – volume: 293 start-page: 807 year: 1975 end-page: 812 ident: bib5 article-title: Inborn errors of folate metabolism (second of two parts) publication-title: N. Engl. J. Med. – volume: 3 start-page: 211 year: 2002 end-page: 223 ident: bib1 article-title: Physiology of folic acid in health and disease publication-title: Curr. Drug Metab. – volume: 134 start-page: 125 year: 2006 end-page: 136 ident: bib2 article-title: Acquired and inherited disorders of cobalamin and folate in children publication-title: Br. J. Haematol. – start-page: 717 year: 2008 end-page: 724 ident: bib7 article-title: Folates publication-title: Laboratory Guide to the Methods in Biochemical Genetics – volume: 16 start-page: 1031 year: 1991 end-page: 1036 ident: bib17 article-title: Some metabolic relationships between biopterin and folate: implications for the “methyl trap hypothesis” publication-title: Neurochem. Res. – volume: 105 start-page: 5809 year: 2008 end-page: 5814 ident: bib13 article-title: Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 450 year: 2006 end-page: 459 ident: bib10 article-title: Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry publication-title: Clin. Chem. Lab. Med. – volume: 45 start-page: 903 year: 2007 end-page: 911 ident: bib12 article-title: Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects publication-title: Clin. Chem. Lab. Med. – volume: 62 start-page: 113 year: 1986 ident: 10.1016/j.ajhg.2011.01.007_bib15 article-title: Pteridines and mono-amines: relevance to neurological damage publication-title: Postgrad. Med. J. doi: 10.1136/pgmj.62.724.113 – volume: 294 start-page: 466 year: 1976 ident: 10.1016/j.ajhg.2011.01.007_bib3 article-title: Dihydrofolate reductase deficiency causing megaloblastic anemia in two families publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197602262940903 – volume: 44 start-page: 450 year: 2006 ident: 10.1016/j.ajhg.2011.01.007_bib10 article-title: Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry publication-title: Clin. Chem. Lab. Med. doi: 10.1515/CCLM.2006.085 – volume: 3 start-page: 211 year: 2002 ident: 10.1016/j.ajhg.2011.01.007_bib1 article-title: Physiology of folic acid in health and disease publication-title: Curr. Drug Metab. doi: 10.2174/1389200024605163 – start-page: 717 year: 2008 ident: 10.1016/j.ajhg.2011.01.007_bib7 article-title: Folates – volume: 352 start-page: 1985 year: 2005 ident: 10.1016/j.ajhg.2011.01.007_bib18 article-title: Autoantibodies to folate receptors in the cerebral folate deficiency syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa043160 – volume: 310 start-page: 789 year: 1984 ident: 10.1016/j.ajhg.2011.01.007_bib6 article-title: Hereditary abnormal transcobalamin II previously diagnosed as congenital dihydrofolate reductase deficiency publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198403223101217 – ident: 10.1016/j.ajhg.2011.01.007_bib16 doi: 10.1007/978-3-540-76698-8_28 – volume: 31 start-page: 115 year: 1978 ident: 10.1016/j.ajhg.2011.01.007_bib14 article-title: Dihydropteridine reductase may function in tetrahydrofolate metabolism publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1978.tb12439.x – volume: 134 start-page: 125 year: 2006 ident: 10.1016/j.ajhg.2011.01.007_bib2 article-title: Acquired and inherited disorders of cobalamin and folate in children publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2006.06133.x – volume: 293 start-page: 807 year: 1975 ident: 10.1016/j.ajhg.2011.01.007_bib5 article-title: Inborn errors of folate metabolism (second of two parts) publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197510162931606 – volume: 70 start-page: 686 year: 1967 ident: 10.1016/j.ajhg.2011.01.007_bib4 article-title: Congenital megaloblastic anemia responsive to N5-formyl tetrafolic acid administration publication-title: J. Pediatr. – volume: 105 start-page: 5809 year: 2008 ident: 10.1016/j.ajhg.2011.01.007_bib13 article-title: Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0800940105 – volume: 45 start-page: 903 year: 2007 ident: 10.1016/j.ajhg.2011.01.007_bib12 article-title: Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects publication-title: Clin. Chem. Lab. Med. doi: 10.1515/CCLM.2007.137 – volume: 18 start-page: 693 year: 2007 ident: 10.1016/j.ajhg.2011.01.007_bib11 article-title: Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2006.11.010 – volume: 33 start-page: 119 year: 2004 ident: 10.1016/j.ajhg.2011.01.007_bib9 article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.33.110502.133613 – volume: 16 start-page: 1031 year: 1991 ident: 10.1016/j.ajhg.2011.01.007_bib17 article-title: Some metabolic relationships between biopterin and folate: implications for the “methyl trap hypothesis” publication-title: Neurochem. Res. doi: 10.1007/BF00965847 – volume: 73 start-page: 2127 year: 2009 ident: 10.1016/j.ajhg.2011.01.007_bib8 article-title: Congenital null mutations of the FOLR1 gene-a progressive neurologic disease and its treatment publication-title: Neurology doi: 10.1212/WNL.0b013e3181c679df – reference: 15139807 - Annu Rev Biophys Biomol Struct. 2004;33:119-40 – reference: 3540926 - Postgrad Med J. 1986 Feb;62(724):113-23 – reference: 17418558 - J Nutr Biochem. 2007 Oct;18(10):693-9 – reference: 12003352 - Curr Drug Metab. 2002 Apr;3(2):211-23 – reference: 15888699 - N Engl J Med. 2005 May 12;352(19):1985-91 – reference: 20018644 - Neurology. 2009 Dec 15;73(24):2127-9 – reference: 1060915 - N Engl J Med. 1976 Feb 26;294(9):466-70 – reference: 209138 - J Neurochem. 1978 Jul;31(1):115-23 – reference: 16599840 - Clin Chem Lab Med. 2006;44(4):450-9 – reference: 6700662 - N Engl J Med. 1984 Mar 22;310(12):789-90 – reference: 18359850 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5809-14 – reference: 1099450 - N Engl J Med. 1975 Oct 16;293(16):807-12 – reference: 1784330 - Neurochem Res. 1991 Sep;16(9):1031-6 – reference: 17617036 - Clin Chem Lab Med. 2007;45(7):903-11 – reference: 21388369 - Clin Genet. 2011 Jun;79(6):507-8 – reference: 16846473 - Br J Haematol. 2006 Jul;134(2):125-36 |
SSID | ssj0011803 |
Score | 2.3678122 |
Snippet | The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 226 |
SubjectTerms | Anemia Anemia, Megaloblastic - diagnosis Anemia, Megaloblastic - genetics Biological and medical sciences Cells Child Child, Preschool Chromatography Chromosomes Epilepsy Erythrocytes - metabolism Female Fluoresceins - metabolism Folic Acid - blood Folic Acid - cerebrospinal fluid Folic Acid Deficiency - blood Folic Acid Deficiency - cerebrospinal fluid Folic Acid Deficiency - diagnosis Fundamental and applied biological sciences. Psychology General aspects. Genetic counseling Genetics of eukaryotes. Biological and molecular evolution Homozygote Humans Male Medical genetics Medical sciences Metabolism Methotrexate - analogs & derivatives Methotrexate - metabolism Models, Molecular Molecular and cellular biology Mutation Mutation - genetics Nervous System Diseases - diagnosis Nervous System Diseases - genetics Pedigree Protein Conformation Tetrahydrofolate Dehydrogenase - chemistry Tetrahydrofolate Dehydrogenase - deficiency Tetrahydrofolate Dehydrogenase - genetics Vitamin B Vitamin deficiency |
Title | Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease |
URI | https://dx.doi.org/10.1016/j.ajhg.2011.01.007 https://www.ncbi.nlm.nih.gov/pubmed/21310277 https://www.proquest.com/docview/851784151 https://www.proquest.com/docview/851477225 https://www.proquest.com/docview/907158122 https://pubmed.ncbi.nlm.nih.gov/PMC3035706 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5FkSpVqqq-S9Jae-itQmFZFpZjamq5D_eQNpJvaBeGmCgBK8DB_T39oZ1lgcZVk0MlTmZg7Z3ZmW88L0LeIV6LfakjN1Q5uEGmwY0jkG6kmAwVQmzVZ1WuvoXL8-DzWqwPyHyshTFplYPutzq919bDJyfDbp5sy9LU-Ho-GveIMZtuhXqYB7Iv4lt_mCIJTHp8hMCGeiicsTle6nJzMbTxZKaJ9l3G6dFWNbhlhZ118S8w-ndO5S0jtXhCHg_okp7aH_CUHED1jDyw8yZ3z8mvpNzsctS86M-2QM9M29YWzRhNwDSSMFWYNOmAtjVVdFlf1z93F3XX0GS5OKOrzkbt6Vx1DTR0BWhcao3oGxejpxVcl4qqKqdzuDHR6Cu6sMvcevlXm7JvFvgOeIiA9s1Bev1LExsrekHOFx9_zJfuMKbBzUTAW1cLT_GiEBJCkIHiQmtVoNcdSe0FIIEVnPtZHiP3hfTCgnHUAZAJpmUeKqH4S3JY1RW8JlQhWEAVpNAnzINYi1hJ7nlFAMLXiFyEQ9jInzQbepibURpX6ZisdpkanqaGp6mHlxc55P30zNZ28LiXWoxsT_fkMEUTc-9zsz0ZmZbyzVDViIcOOR6FJh3URJMi3DVxX8EcQqe7eL5N0EZVgBw2JAF6QL64myRGmCgQqPkOeWWF8M_qDOG7H-HXi_bEcyIw3cX371Tlpu8yjthGRF549J8bckwe2r_ffZexN-SwvengLeK3Vs_Qc_n0ZdYf09_RxEYU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIgQSQvwV0kLZA5yQVe_aa68PHEpMlNCkh9JKuZndeNykau2odlSF5-ENeEFmvXZoEO0BqVJO8dqz2hnPfOP5I-Q94rWISx06gUrB8ScanCgE6YSKyUAhxFZ1VuXoMOif-F_HYrxBfrW1MCatstH9VqfX2rr5Z685zb35bGZqfF2Oxj1kzKZbNZmVB7C8Qr-t_DSIkckfOO99Oe72nWa0gDMRvlc5WrjKyzIhIQDpK09orTL0FEOpXR8ksMzz-CSNcMdCukHGPJRbmAimZRoooTx87j1yH9FHaLTBYPx5Fbpg0vVazG2211Tq2KQydTY9bfqGMtO1-yZr-HiuSuRRZodr_Av9_p3Eec0q9p6SJw2cpfv2xJ6RDcifkwd2wOXyBfkZz6bLFFU9OtAV0CPTJ7ZCu0ljMJ0rTNknjRdAq4Iq2i8uih_L02JR0rjfO6KjhU0ToF21KKGkI0BrVmiE-0iM7udwMVNU5SntwqUJf5_TniVz7eFDWyNgCHwDfGuB1t1IaoVPYxuceklO7oR5W2QzL3J4TahCdII6T6ETmvqRFpGSnutmPgiuESqJDmEtf5JJ0zTdzO44T9rsuLPE8DQxPE1c_Llhh3xc3TO3LUNuXS1atidrgp-gTbv1vt01GVmR4maKa-gFHbLTCk3S6KUyQXxtAs2CdQhdXUWFYqJEKgfksFnio8vFxc1LIsSlApEh75BXVgj_UGfoL_AQtxeuiedqgWlnvn4ln03rtuYIpkToBtv_eSDvyMP-8WiYDAeHBzvkkf32zx3G3pDN6nIBbxE8Vnq3flkp-X7X2uE3XYCCiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dihydrofolate+Reductase+Deficiency+Due+to+a+Homozygous+DHFR+Mutation+Causes+Megaloblastic+Anemia+and+Cerebral+Folate+Deficiency+Leading+to+Severe+Neurologic+Disease&rft.jtitle=American+journal+of+human+genetics&rft.au=Cario%2C+Holger&rft.au=Smith%2C+Desiree+EC&rft.au=Blom%2C+Henk&rft.au=Blau%2C+Nenad&rft.date=2011-02-11&rft.issn=0002-9297&rft.volume=88&rft.issue=2&rft.spage=226&rft.epage=231&rft_id=info:doi/10.1016%2Fj.ajhg.2011.01.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |