Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral f...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 88; no. 2; pp. 226 - 231
Main Authors Cario, Holger, Smith, Desirée E.C., Blom, Henk, Blau, Nenad, Bode, Harald, Holzmann, Karlheinz, Pannicke, Ulrich, Hopfner, Karl-Peter, Rump, Eva-Maria, Ayric, Zuleya, Kohne, Elisabeth, Debatin, Klaus-Michael, Smulders, Yvo, Schwarz, Klaus
Format Journal Article
LanguageEnglish
Published Cambridge, MA Elsevier Inc 11.02.2011
Cell Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase ( DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.
AbstractList The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. [PUBLICATION ABSTRACT]
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase ( DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.
The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase ( DHFR ) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.
Author Kohne, Elisabeth
Blom, Henk
Bode, Harald
Schwarz, Klaus
Holzmann, Karlheinz
Pannicke, Ulrich
Rump, Eva-Maria
Hopfner, Karl-Peter
Ayric, Zuleya
Cario, Holger
Blau, Nenad
Smulders, Yvo
Smith, Desirée E.C.
Debatin, Klaus-Michael
AuthorAffiliation 3 Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland
7 Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany
8 Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany
5 Research Center for Children (RCC), 8032 Zurich, Switzerland
9 Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany
1 Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
11 Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
10 Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany
2 Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
6 Interdisciplinary Center for Clinical
AuthorAffiliation_xml – name: 2 Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
– name: 6 Interdisciplinary Center for Clinical Research, University Hospital, 89081 Ulm, Germany
– name: 5 Research Center for Children (RCC), 8032 Zurich, Switzerland
– name: 3 Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland
– name: 10 Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany
– name: 1 Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
– name: 9 Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany
– name: 4 Zurich Center for Integrative Human Physiology (ZIHP), 8032 Zurich, Switzerland
– name: 7 Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany
– name: 8 Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany
– name: 11 Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Holger
  surname: Cario
  fullname: Cario, Holger
  email: holger.cario@uniklinik-ulm.de
  organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
– sequence: 2
  givenname: Desirée E.C.
  surname: Smith
  fullname: Smith, Desirée E.C.
  organization: Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
– sequence: 3
  givenname: Henk
  surname: Blom
  fullname: Blom, Henk
  organization: Department of Clinical Chemistry, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
– sequence: 4
  givenname: Nenad
  surname: Blau
  fullname: Blau, Nenad
  organization: Division of Clinical Chemistry and Biochemistry, University Children's Hospital, 8032 Zurich, Switzerland
– sequence: 5
  givenname: Harald
  surname: Bode
  fullname: Bode, Harald
  organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
– sequence: 6
  givenname: Karlheinz
  surname: Holzmann
  fullname: Holzmann, Karlheinz
  organization: Interdisciplinary Center for Clinical Research, University Hospital, 89081 Ulm, Germany
– sequence: 7
  givenname: Ulrich
  surname: Pannicke
  fullname: Pannicke, Ulrich
  organization: Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany
– sequence: 8
  givenname: Karl-Peter
  surname: Hopfner
  fullname: Hopfner, Karl-Peter
  organization: Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene Center, Department of Biochemistry, Ludwig-Maximilians-University, 81377 Munich, Germany
– sequence: 9
  givenname: Eva-Maria
  surname: Rump
  fullname: Rump, Eva-Maria
  organization: Institute for Clinical Transfusion Medicine and Immunogenetics, 89081 Ulm, Germany
– sequence: 10
  givenname: Zuleya
  surname: Ayric
  fullname: Ayric, Zuleya
  organization: Center for diagnostics and treatment of epilepsy in childhood and adolescence, 77694 Kehl-Kork, Germany
– sequence: 11
  givenname: Elisabeth
  surname: Kohne
  fullname: Kohne, Elisabeth
  organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
– sequence: 12
  givenname: Klaus-Michael
  surname: Debatin
  fullname: Debatin, Klaus-Michael
  organization: Department of Pediatrics and Adolescent Medicine, University Hospital, 89075 Ulm, Germany
– sequence: 13
  givenname: Yvo
  surname: Smulders
  fullname: Smulders, Yvo
  organization: Department of Internal Medicine and Institute for Cardiovascular Research, VU Free University Medical Center, 1081 HV Amsterdam, The Netherlands
– sequence: 14
  givenname: Klaus
  surname: Schwarz
  fullname: Schwarz, Klaus
  organization: Institute for Transfusion Medicine, University Hospital, 89081 Ulm, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23865736$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21310277$$D View this record in MEDLINE/PubMed
BookMark eNqFkt-K1DAUxousuH_0BbyQIIhXMyZN06QgwjLjOMKswqrX4TQ97WToNGvSDozP44OaOuO67sUKgVzkd77z5ZzvPDnpXIdJ8pzRKaMsf7OZwmbdTFPK2JTGQ-Wj5IwJLid5TsVJckYpTSdFWsjT5DyEDY2govxJcpoyzmgq5Vnyc27X-8q72rXQI7nGajA9BCRzrK2x2Jk9mQ9IekeALN3W_dg3bghkvlxck6uhh966jsxgCBjIFTbQurKF0FtDLjvcWiDQVWSGHksPLVkc2twRXyFUtmvGBl9wFznyCQfvWtdEibkNGM08TR7X0AZ8drwvkm-L919ny8nq84ePs8vVxIiM95NSUOB1LRTmqDLgoiyhzvJCqpJmqJDVnKemKoApoWheMy6LDI1gpapyEMAvkncH3Zuh3GJlsOujaX3j7Rb8Xjuw-t-Xzq5143aaUy4kzaPA66OAd98HDL3e2mCwbaHDODVdUMmEYmn6X1IJlkmZpiKSL--RGzf4Ls5hhKTKmGARenHX-a3lP4uOwKsjAMFAW3vojA1_Oa5yIfn4g_TAGe9C8FjfIozqMXV6o8fU6TF1msZDR3F1r8jYQzLilGz7cOnbQynGve4seh1-BwMr69H0unL2ofJfYoj0Gg
CODEN AJHGAG
CitedBy_id crossref_primary_10_1080_07391102_2020_1861985
crossref_primary_10_1007_s12031_020_01561_4
crossref_primary_10_1016_j_ymgme_2023_107735
crossref_primary_10_1371_journal_pone_0096471
crossref_primary_10_3389_fgene_2025_1527884
crossref_primary_10_1016_j_dnarep_2019_02_014
crossref_primary_10_1016_j_jbc_2023_104909
crossref_primary_10_1016_j_celrep_2018_05_005
crossref_primary_10_1111_j_1399_0004_2011_01662_x
crossref_primary_10_1186_s42494_024_00169_0
crossref_primary_10_1016_j_bioorg_2023_106874
crossref_primary_10_1002_aur_1780
crossref_primary_10_1017_S1047951116001487
crossref_primary_10_1038_s41598_017_01732_1
crossref_primary_10_1586_14737175_2015_1055322
crossref_primary_10_3389_fcvm_2021_763851
crossref_primary_10_1016_j_str_2022_05_016
crossref_primary_10_1136_jmedgenet_2020_106987
crossref_primary_10_3390_life11090983
crossref_primary_10_1097_MD_0000000000031892
crossref_primary_10_3390_nu14153096
crossref_primary_10_3746_pnf_2014_19_4_247
crossref_primary_10_1007_s10545_011_9418_1
crossref_primary_10_3945_ajcn_115_111054
crossref_primary_10_1182_bloodadvances_2022007233
crossref_primary_10_3390_molecules23112929
crossref_primary_10_1016_j_mam_2016_11_005
crossref_primary_10_1097_RD9_0000000000000034
crossref_primary_10_1007_s00221_025_07016_9
crossref_primary_10_1016_j_drudis_2012_07_008
crossref_primary_10_3389_fnagi_2022_749991
crossref_primary_10_3945_jn_115_216101
crossref_primary_10_3390_metabo12060475
crossref_primary_10_1002_jmd2_12409
crossref_primary_10_1016_j_biochi_2016_02_012
crossref_primary_10_3390_antiox10111645
crossref_primary_10_1515_pterid_2015_0005
crossref_primary_10_1515_cclm_2012_0543
crossref_primary_10_1016_j_ejpn_2025_02_008
crossref_primary_10_1016_j_jns_2018_11_014
crossref_primary_10_3389_fmicb_2017_00561
crossref_primary_10_1007_s12035_021_02591_8
crossref_primary_10_1186_s13023_024_03074_4
crossref_primary_10_1179_1476830511Y_0000000016
crossref_primary_10_1016_j_ymgme_2017_06_014
crossref_primary_10_7868_S001667581704004X
crossref_primary_10_1016_j_ymgme_2011_06_004
crossref_primary_10_1146_annurev_nutr_071714_034441
crossref_primary_10_1002_jimd_12092
crossref_primary_10_3389_fped_2024_1434209
crossref_primary_10_1016_j_jep_2019_01_027
crossref_primary_10_1093_brain_aws122
crossref_primary_10_1007_s00894_012_1635_5
crossref_primary_10_1111_j_1469_8749_2012_04406_x
crossref_primary_10_1128_MCB_01035_15
crossref_primary_10_1016_j_micpath_2020_104680
crossref_primary_10_1134_S1022795417040044
crossref_primary_10_1016_j_ymgme_2011_05_019
crossref_primary_10_1038_s41388_021_01695_8
crossref_primary_10_1515_cclm_2012_0673
crossref_primary_10_1016_j_csbj_2020_01_011
crossref_primary_10_1016_j_compbiolchem_2021_107587
crossref_primary_10_1002_adma_201104330
crossref_primary_10_1016_j_ymgmr_2016_09_006
crossref_primary_10_3390_nu9040382
crossref_primary_10_1371_journal_pgen_1003242
crossref_primary_10_1016_j_bioorg_2024_107538
crossref_primary_10_1139_cjpp_2016_0681
crossref_primary_10_3390_ijms232315222
crossref_primary_10_1242_dev_201696
crossref_primary_10_1084_jem_20181965
crossref_primary_10_3390_brainsci10110762
Cites_doi 10.1136/pgmj.62.724.113
10.1056/NEJM197602262940903
10.1515/CCLM.2006.085
10.2174/1389200024605163
10.1056/NEJMoa043160
10.1056/NEJM198403223101217
10.1007/978-3-540-76698-8_28
10.1111/j.1471-4159.1978.tb12439.x
10.1111/j.1365-2141.2006.06133.x
10.1056/NEJM197510162931606
10.1073/pnas.0800940105
10.1515/CCLM.2007.137
10.1016/j.jnutbio.2006.11.010
10.1146/annurev.biophys.33.110502.133613
10.1007/BF00965847
10.1212/WNL.0b013e3181c679df
ContentType Journal Article
Copyright 2011 The American Society of Human Genetics
2015 INIST-CNRS
Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Copyright Cell Press Feb 11, 2011
2011 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2011 The American Society of Human Genetics
Copyright_xml – notice: 2011 The American Society of Human Genetics
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Cell Press Feb 11, 2011
– notice: 2011 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2011 The American Society of Human Genetics
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.ajhg.2011.01.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium

Genetics Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
EndPage 231
ExternalDocumentID PMC3035706
2267864201
21310277
23865736
10_1016_j_ajhg_2011_01_007
S0002929711000085
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--K
--Z
-~X
.55
.GJ
0R~
123
1~5
23M
2WC
34R
3O-
4.4
41~
457
4G.
53G
5GY
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQXK
AAUCE
AAVLU
AAWTL
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACGOD
ACKIV
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
ADMUD
AENEX
AEXQZ
AFMIJ
AFRAH
AFTJW
AGCDD
AGHFR
AGKMS
AHMBA
AI.
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
C1A
CS3
D0L
DIK
E3Z
EBS
ECV
EJD
F20
F5P
FA8
FCP
FDB
FEDTE
FGOYB
GX1
HVGLF
HYE
HZ~
IH2
IHE
IXB
JIG
KQ8
L7B
M41
MVM
NCXOZ
NEJ
O-L
O9-
OHT
OK1
OZT
P2P
PQQKQ
R2-
RCE
RIG
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
VH1
VQA
WH7
WOQ
WQ6
X7M
XOL
ZA5
ZCA
ZCG
ZGI
ZXP
AAFWJ
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c543t-b50a3ff58e6e84a35bbaf46978b04e8e1f332cd9a185806f13794ec51b8d6a5a3
IEDL.DBID IXB
ISSN 0002-9297
1537-6605
IngestDate Thu Aug 21 18:10:57 EDT 2025
Fri Jul 11 03:42:32 EDT 2025
Fri Jul 11 09:59:14 EDT 2025
Fri Jul 25 10:56:40 EDT 2025
Mon Jul 21 05:49:43 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Tue Jul 01 03:39:08 EDT 2025
Fri Feb 23 02:29:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
Nervous system diseases
Megaloblastic anemia
Enzyme
Critically ill
Deficiency
Hemopathy
Homozygosity
Folate
Encephalon
Genetics
Oxidoreductases
Dihydrofolate reductase
Mutation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-b50a3ff58e6e84a35bbaf46978b04e8e1f332cd9a185806f13794ec51b8d6a5a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0002929711000085
PMID 21310277
PQID 851784151
PQPubID 24320
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3035706
proquest_miscellaneous_907158122
proquest_miscellaneous_851477225
proquest_journals_851784151
pubmed_primary_21310277
pascalfrancis_primary_23865736
crossref_primary_10_1016_j_ajhg_2011_01_007
crossref_citationtrail_10_1016_j_ajhg_2011_01_007
elsevier_sciencedirect_doi_10_1016_j_ajhg_2011_01_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-11
PublicationDateYYYYMMDD 2011-02-11
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-11
  day: 11
PublicationDecade 2010
PublicationPlace Cambridge, MA
PublicationPlace_xml – name: Cambridge, MA
– name: United States
– name: Chicago
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2011
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Walters (bib4) 1967; 70
Blau, N., and Thöny, B. (2008). Pterins and related enzymes. In N. Blau MD, K.M. Gibson, ed. (Berlin, Heidelberg: Laboratory Guide to the Methods in Biochemical Genetics. Springer-Verlag), pp. 665–702.
Santiago, Chan, Liu, Orlando, Zhang, Urnov, Holmes, Guschin, Waite, Miller (bib13) 2008; 105
Cario, Bode, Debatin, Opladen, Schwarz (bib8) 2009; 73
Ramaekers, Rothenberg, Sequeira, Opladen, Blau, Quadros, Selhub (bib18) 2005; 352
Kok, Smith, Barto, Spijkerman, Teerlink, Gellekink, Jakobs, Smulders (bib12) 2007; 45
Smith, Kok, Teerlink, Jakobs, Smulders (bib10) 2006; 44
Tauro, Danks, Rowe, Van der Weyden, Schwarz, Collins, Neal (bib3) 1976; 294
Hoffbrand, Tripp, Jackson, Luck, Frater-Schroder (bib6) 1984; 310
Whitehead (bib2) 2006; 134
Smulders, Smith, Kok, Teerlink, Gellekink, Vaes, Stehouwer, Jakobs (bib11) 2007; 18
Stanger (bib1) 2002; 3
Erbe (bib5) 1975; 293
Kaufman (bib17) 1991; 16
Blau, Opladen (bib7) 2008
Schnell, Dyson, Wright (bib9) 2004; 33
Smith, Howells, Hyland (bib15) 1986; 62
Pollock, Kaufman (bib14) 1978; 31
Walters (10.1016/j.ajhg.2011.01.007_bib4) 1967; 70
10.1016/j.ajhg.2011.01.007_bib16
Blau (10.1016/j.ajhg.2011.01.007_bib7) 2008
Smulders (10.1016/j.ajhg.2011.01.007_bib11) 2007; 18
Smith (10.1016/j.ajhg.2011.01.007_bib10) 2006; 44
Pollock (10.1016/j.ajhg.2011.01.007_bib14) 1978; 31
Tauro (10.1016/j.ajhg.2011.01.007_bib3) 1976; 294
Whitehead (10.1016/j.ajhg.2011.01.007_bib2) 2006; 134
Kok (10.1016/j.ajhg.2011.01.007_bib12) 2007; 45
Kaufman (10.1016/j.ajhg.2011.01.007_bib17) 1991; 16
Cario (10.1016/j.ajhg.2011.01.007_bib8) 2009; 73
Santiago (10.1016/j.ajhg.2011.01.007_bib13) 2008; 105
Smith (10.1016/j.ajhg.2011.01.007_bib15) 1986; 62
Erbe (10.1016/j.ajhg.2011.01.007_bib5) 1975; 293
Ramaekers (10.1016/j.ajhg.2011.01.007_bib18) 2005; 352
Stanger (10.1016/j.ajhg.2011.01.007_bib1) 2002; 3
Schnell (10.1016/j.ajhg.2011.01.007_bib9) 2004; 33
Hoffbrand (10.1016/j.ajhg.2011.01.007_bib6) 1984; 310
16599840 - Clin Chem Lab Med. 2006;44(4):450-9
12003352 - Curr Drug Metab. 2002 Apr;3(2):211-23
1784330 - Neurochem Res. 1991 Sep;16(9):1031-6
1099450 - N Engl J Med. 1975 Oct 16;293(16):807-12
3540926 - Postgrad Med J. 1986 Feb;62(724):113-23
6700662 - N Engl J Med. 1984 Mar 22;310(12):789-90
15139807 - Annu Rev Biophys Biomol Struct. 2004;33:119-40
20018644 - Neurology. 2009 Dec 15;73(24):2127-9
15888699 - N Engl J Med. 2005 May 12;352(19):1985-91
1060915 - N Engl J Med. 1976 Feb 26;294(9):466-70
17418558 - J Nutr Biochem. 2007 Oct;18(10):693-9
17617036 - Clin Chem Lab Med. 2007;45(7):903-11
18359850 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5809-14
209138 - J Neurochem. 1978 Jul;31(1):115-23
16846473 - Br J Haematol. 2006 Jul;134(2):125-36
21388369 - Clin Genet. 2011 Jun;79(6):507-8
References_xml – volume: 73
  start-page: 2127
  year: 2009
  end-page: 2129
  ident: bib8
  article-title: Congenital null mutations of the
  publication-title: Neurology
– volume: 352
  start-page: 1985
  year: 2005
  end-page: 1991
  ident: bib18
  article-title: Autoantibodies to folate receptors in the cerebral folate deficiency syndrome
  publication-title: N. Engl. J. Med.
– reference: Blau, N., and Thöny, B. (2008). Pterins and related enzymes. In N. Blau MD, K.M. Gibson, ed. (Berlin, Heidelberg: Laboratory Guide to the Methods in Biochemical Genetics. Springer-Verlag), pp. 665–702.
– volume: 62
  start-page: 113
  year: 1986
  end-page: 123
  ident: bib15
  article-title: Pteridines and mono-amines: relevance to neurological damage
  publication-title: Postgrad. Med. J.
– volume: 70
  start-page: 686
  year: 1967
  end-page: 687
  ident: bib4
  article-title: Congenital megaloblastic anemia responsive to N5-formyl tetrafolic acid administration
  publication-title: J. Pediatr.
– volume: 294
  start-page: 466
  year: 1976
  end-page: 470
  ident: bib3
  article-title: Dihydrofolate reductase deficiency causing megaloblastic anemia in two families
  publication-title: N. Engl. J. Med.
– volume: 310
  start-page: 789
  year: 1984
  end-page: 790
  ident: bib6
  article-title: Hereditary abnormal transcobalamin II previously diagnosed as congenital dihydrofolate reductase deficiency
  publication-title: N. Engl. J. Med.
– volume: 18
  start-page: 693
  year: 2007
  end-page: 699
  ident: bib11
  article-title: Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status
  publication-title: J. Nutr. Biochem.
– volume: 33
  start-page: 119
  year: 2004
  end-page: 140
  ident: bib9
  article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 31
  start-page: 115
  year: 1978
  end-page: 123
  ident: bib14
  article-title: Dihydropteridine reductase may function in tetrahydrofolate metabolism
  publication-title: J. Neurochem.
– volume: 293
  start-page: 807
  year: 1975
  end-page: 812
  ident: bib5
  article-title: Inborn errors of folate metabolism (second of two parts)
  publication-title: N. Engl. J. Med.
– volume: 3
  start-page: 211
  year: 2002
  end-page: 223
  ident: bib1
  article-title: Physiology of folic acid in health and disease
  publication-title: Curr. Drug Metab.
– volume: 134
  start-page: 125
  year: 2006
  end-page: 136
  ident: bib2
  article-title: Acquired and inherited disorders of cobalamin and folate in children
  publication-title: Br. J. Haematol.
– start-page: 717
  year: 2008
  end-page: 724
  ident: bib7
  article-title: Folates
  publication-title: Laboratory Guide to the Methods in Biochemical Genetics
– volume: 16
  start-page: 1031
  year: 1991
  end-page: 1036
  ident: bib17
  article-title: Some metabolic relationships between biopterin and folate: implications for the “methyl trap hypothesis”
  publication-title: Neurochem. Res.
– volume: 105
  start-page: 5809
  year: 2008
  end-page: 5814
  ident: bib13
  article-title: Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 450
  year: 2006
  end-page: 459
  ident: bib10
  article-title: Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry
  publication-title: Clin. Chem. Lab. Med.
– volume: 45
  start-page: 903
  year: 2007
  end-page: 911
  ident: bib12
  article-title: Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects
  publication-title: Clin. Chem. Lab. Med.
– volume: 62
  start-page: 113
  year: 1986
  ident: 10.1016/j.ajhg.2011.01.007_bib15
  article-title: Pteridines and mono-amines: relevance to neurological damage
  publication-title: Postgrad. Med. J.
  doi: 10.1136/pgmj.62.724.113
– volume: 294
  start-page: 466
  year: 1976
  ident: 10.1016/j.ajhg.2011.01.007_bib3
  article-title: Dihydrofolate reductase deficiency causing megaloblastic anemia in two families
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197602262940903
– volume: 44
  start-page: 450
  year: 2006
  ident: 10.1016/j.ajhg.2011.01.007_bib10
  article-title: Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/CCLM.2006.085
– volume: 3
  start-page: 211
  year: 2002
  ident: 10.1016/j.ajhg.2011.01.007_bib1
  article-title: Physiology of folic acid in health and disease
  publication-title: Curr. Drug Metab.
  doi: 10.2174/1389200024605163
– start-page: 717
  year: 2008
  ident: 10.1016/j.ajhg.2011.01.007_bib7
  article-title: Folates
– volume: 352
  start-page: 1985
  year: 2005
  ident: 10.1016/j.ajhg.2011.01.007_bib18
  article-title: Autoantibodies to folate receptors in the cerebral folate deficiency syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa043160
– volume: 310
  start-page: 789
  year: 1984
  ident: 10.1016/j.ajhg.2011.01.007_bib6
  article-title: Hereditary abnormal transcobalamin II previously diagnosed as congenital dihydrofolate reductase deficiency
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM198403223101217
– ident: 10.1016/j.ajhg.2011.01.007_bib16
  doi: 10.1007/978-3-540-76698-8_28
– volume: 31
  start-page: 115
  year: 1978
  ident: 10.1016/j.ajhg.2011.01.007_bib14
  article-title: Dihydropteridine reductase may function in tetrahydrofolate metabolism
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1978.tb12439.x
– volume: 134
  start-page: 125
  year: 2006
  ident: 10.1016/j.ajhg.2011.01.007_bib2
  article-title: Acquired and inherited disorders of cobalamin and folate in children
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2006.06133.x
– volume: 293
  start-page: 807
  year: 1975
  ident: 10.1016/j.ajhg.2011.01.007_bib5
  article-title: Inborn errors of folate metabolism (second of two parts)
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197510162931606
– volume: 70
  start-page: 686
  year: 1967
  ident: 10.1016/j.ajhg.2011.01.007_bib4
  article-title: Congenital megaloblastic anemia responsive to N5-formyl tetrafolic acid administration
  publication-title: J. Pediatr.
– volume: 105
  start-page: 5809
  year: 2008
  ident: 10.1016/j.ajhg.2011.01.007_bib13
  article-title: Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0800940105
– volume: 45
  start-page: 903
  year: 2007
  ident: 10.1016/j.ajhg.2011.01.007_bib12
  article-title: Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/CCLM.2007.137
– volume: 18
  start-page: 693
  year: 2007
  ident: 10.1016/j.ajhg.2011.01.007_bib11
  article-title: Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2006.11.010
– volume: 33
  start-page: 119
  year: 2004
  ident: 10.1016/j.ajhg.2011.01.007_bib9
  article-title: Structure, dynamics, and catalytic function of dihydrofolate reductase
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.33.110502.133613
– volume: 16
  start-page: 1031
  year: 1991
  ident: 10.1016/j.ajhg.2011.01.007_bib17
  article-title: Some metabolic relationships between biopterin and folate: implications for the “methyl trap hypothesis”
  publication-title: Neurochem. Res.
  doi: 10.1007/BF00965847
– volume: 73
  start-page: 2127
  year: 2009
  ident: 10.1016/j.ajhg.2011.01.007_bib8
  article-title: Congenital null mutations of the FOLR1 gene-a progressive neurologic disease and its treatment
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181c679df
– reference: 15139807 - Annu Rev Biophys Biomol Struct. 2004;33:119-40
– reference: 3540926 - Postgrad Med J. 1986 Feb;62(724):113-23
– reference: 17418558 - J Nutr Biochem. 2007 Oct;18(10):693-9
– reference: 12003352 - Curr Drug Metab. 2002 Apr;3(2):211-23
– reference: 15888699 - N Engl J Med. 2005 May 12;352(19):1985-91
– reference: 20018644 - Neurology. 2009 Dec 15;73(24):2127-9
– reference: 1060915 - N Engl J Med. 1976 Feb 26;294(9):466-70
– reference: 209138 - J Neurochem. 1978 Jul;31(1):115-23
– reference: 16599840 - Clin Chem Lab Med. 2006;44(4):450-9
– reference: 6700662 - N Engl J Med. 1984 Mar 22;310(12):789-90
– reference: 18359850 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5809-14
– reference: 1099450 - N Engl J Med. 1975 Oct 16;293(16):807-12
– reference: 1784330 - Neurochem Res. 1991 Sep;16(9):1031-6
– reference: 17617036 - Clin Chem Lab Med. 2007;45(7):903-11
– reference: 21388369 - Clin Genet. 2011 Jun;79(6):507-8
– reference: 16846473 - Br J Haematol. 2006 Jul;134(2):125-36
SSID ssj0011803
Score 2.3678122
Snippet The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 226
SubjectTerms Anemia
Anemia, Megaloblastic - diagnosis
Anemia, Megaloblastic - genetics
Biological and medical sciences
Cells
Child
Child, Preschool
Chromatography
Chromosomes
Epilepsy
Erythrocytes - metabolism
Female
Fluoresceins - metabolism
Folic Acid - blood
Folic Acid - cerebrospinal fluid
Folic Acid Deficiency - blood
Folic Acid Deficiency - cerebrospinal fluid
Folic Acid Deficiency - diagnosis
Fundamental and applied biological sciences. Psychology
General aspects. Genetic counseling
Genetics of eukaryotes. Biological and molecular evolution
Homozygote
Humans
Male
Medical genetics
Medical sciences
Metabolism
Methotrexate - analogs & derivatives
Methotrexate - metabolism
Models, Molecular
Molecular and cellular biology
Mutation
Mutation - genetics
Nervous System Diseases - diagnosis
Nervous System Diseases - genetics
Pedigree
Protein Conformation
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - deficiency
Tetrahydrofolate Dehydrogenase - genetics
Vitamin B
Vitamin deficiency
Title Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease
URI https://dx.doi.org/10.1016/j.ajhg.2011.01.007
https://www.ncbi.nlm.nih.gov/pubmed/21310277
https://www.proquest.com/docview/851784151
https://www.proquest.com/docview/851477225
https://www.proquest.com/docview/907158122
https://pubmed.ncbi.nlm.nih.gov/PMC3035706
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5FkSpVqqq-S9Jae-itQmFZFpZjamq5D_eQNpJvaBeGmCgBK8DB_T39oZ1lgcZVk0MlTmZg7Z3ZmW88L0LeIV6LfakjN1Q5uEGmwY0jkG6kmAwVQmzVZ1WuvoXL8-DzWqwPyHyshTFplYPutzq919bDJyfDbp5sy9LU-Ho-GveIMZtuhXqYB7Iv4lt_mCIJTHp8hMCGeiicsTle6nJzMbTxZKaJ9l3G6dFWNbhlhZ118S8w-ndO5S0jtXhCHg_okp7aH_CUHED1jDyw8yZ3z8mvpNzsctS86M-2QM9M29YWzRhNwDSSMFWYNOmAtjVVdFlf1z93F3XX0GS5OKOrzkbt6Vx1DTR0BWhcao3oGxejpxVcl4qqKqdzuDHR6Cu6sMvcevlXm7JvFvgOeIiA9s1Bev1LExsrekHOFx9_zJfuMKbBzUTAW1cLT_GiEBJCkIHiQmtVoNcdSe0FIIEVnPtZHiP3hfTCgnHUAZAJpmUeKqH4S3JY1RW8JlQhWEAVpNAnzINYi1hJ7nlFAMLXiFyEQ9jInzQbepibURpX6ZisdpkanqaGp6mHlxc55P30zNZ28LiXWoxsT_fkMEUTc-9zsz0ZmZbyzVDViIcOOR6FJh3URJMi3DVxX8EcQqe7eL5N0EZVgBw2JAF6QL64myRGmCgQqPkOeWWF8M_qDOG7H-HXi_bEcyIw3cX371Tlpu8yjthGRF549J8bckwe2r_ffZexN-SwvengLeK3Vs_Qc_n0ZdYf09_RxEYU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIgQSQvwV0kLZA5yQVe_aa68PHEpMlNCkh9JKuZndeNykau2odlSF5-ENeEFmvXZoEO0BqVJO8dqz2hnPfOP5I-Q94rWISx06gUrB8ScanCgE6YSKyUAhxFZ1VuXoMOif-F_HYrxBfrW1MCatstH9VqfX2rr5Z685zb35bGZqfF2Oxj1kzKZbNZmVB7C8Qr-t_DSIkckfOO99Oe72nWa0gDMRvlc5WrjKyzIhIQDpK09orTL0FEOpXR8ksMzz-CSNcMdCukHGPJRbmAimZRoooTx87j1yH9FHaLTBYPx5Fbpg0vVazG2211Tq2KQydTY9bfqGMtO1-yZr-HiuSuRRZodr_Av9_p3Eec0q9p6SJw2cpfv2xJ6RDcifkwd2wOXyBfkZz6bLFFU9OtAV0CPTJ7ZCu0ljMJ0rTNknjRdAq4Iq2i8uih_L02JR0rjfO6KjhU0ToF21KKGkI0BrVmiE-0iM7udwMVNU5SntwqUJf5_TniVz7eFDWyNgCHwDfGuB1t1IaoVPYxuceklO7oR5W2QzL3J4TahCdII6T6ETmvqRFpGSnutmPgiuESqJDmEtf5JJ0zTdzO44T9rsuLPE8DQxPE1c_Llhh3xc3TO3LUNuXS1atidrgp-gTbv1vt01GVmR4maKa-gFHbLTCk3S6KUyQXxtAs2CdQhdXUWFYqJEKgfksFnio8vFxc1LIsSlApEh75BXVgj_UGfoL_AQtxeuiedqgWlnvn4ln03rtuYIpkToBtv_eSDvyMP-8WiYDAeHBzvkkf32zx3G3pDN6nIBbxE8Vnq3flkp-X7X2uE3XYCCiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dihydrofolate+Reductase+Deficiency+Due+to+a+Homozygous+DHFR+Mutation+Causes+Megaloblastic+Anemia+and+Cerebral+Folate+Deficiency+Leading+to+Severe+Neurologic+Disease&rft.jtitle=American+journal+of+human+genetics&rft.au=Cario%2C+Holger&rft.au=Smith%2C+Desiree+EC&rft.au=Blom%2C+Henk&rft.au=Blau%2C+Nenad&rft.date=2011-02-11&rft.issn=0002-9297&rft.volume=88&rft.issue=2&rft.spage=226&rft.epage=231&rft_id=info:doi/10.1016%2Fj.ajhg.2011.01.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon