A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments

In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed alo...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 198; pp. 255 - 270
Main Authors Sivera, Raphaël, Delingette, Hervé, Lorenzi, Marco, Pennec, Xavier, Ayache, Nicholas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2019
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2019.05.040

Cover

Loading…
Abstract In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.
AbstractList In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region.The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions.In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease.Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.
In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.
In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.
Author Sivera, Raphaël
Lorenzi, Marco
Delingette, Hervé
Pennec, Xavier
Ayache, Nicholas
AuthorAffiliation Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, France
AuthorAffiliation_xml – name: Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, France
Author_xml – sequence: 1
  givenname: Raphaël
  surname: Sivera
  fullname: Sivera, Raphaël
  email: raphael.sivera@inria.fr
– sequence: 2
  givenname: Hervé
  surname: Delingette
  fullname: Delingette, Hervé
– sequence: 3
  givenname: Marco
  surname: Lorenzi
  fullname: Lorenzi, Marco
– sequence: 4
  givenname: Xavier
  surname: Pennec
  fullname: Pennec, Xavier
– sequence: 5
  givenname: Nicholas
  surname: Ayache
  fullname: Ayache, Nicholas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31121298$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01948174$$DView record in HAL
BookMark eNqNkk-P1CAchhuzxv2jX8GQeFAPrUBhSi_GcaO7JpN40TOh8GuHkcII7Sbrp5c6u2sypwkHKHl4Gt6Xy-LMBw9FgQiuCCarD7vKwxyDHdUAFcWkrTCvMMPPiguCW162vKFny5rXpSCkPS8uU9phjFvCxIvivCaEEtqKi2K_RmMw4FDoUReV9fkz7rfBhcFq5ZDeKj9AQhGcmsCgKSA1WD8g5Q1auz9bsCPEtwkZm0AlQH0MI9IxpFQm0JMNPltUSpDSCH5KL4vnvXIJXj3MV8XPr19-XN-Wm-83367Xm1JzVk-l6jk2BOOeAzdNHh2hrCE9aVqtsICGd31Tr6hq2r4zVHNTG2P4qmVQixWj9VXx_uDdKif3MUcV72VQVt6uN3LZy6kxQRp2V2f23YHdx_B7hjTJ0SYNzikPYU6S0poI1gixoG-O0F2YY77jQjGGm5YKlqnXD9TcjWCe_v-YewbEAfiXVIT-CSFYLhXLnfxfsVwqlpjLXHE--vHoqLaTWoKecn_uFMHngwBy_HcWokzagtdgbMyNSRPsKZJPRxLtrF-ezC-4P03xFxzT3ws
CitedBy_id crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1007_s00429_022_02488_9
crossref_primary_10_1016_j_cmpb_2021_106116
crossref_primary_10_1016_j_neuroimage_2023_120073
crossref_primary_10_1038_s41583_023_00779_6
crossref_primary_10_5897_JMPR2021_7127
crossref_primary_10_1016_j_brainres_2020_147081
crossref_primary_10_1016_j_neurobiolaging_2024_02_014
crossref_primary_10_24012_dumf_1197722
crossref_primary_10_1109_ACCESS_2021_3072559
crossref_primary_10_1142_S021951942140025X
crossref_primary_10_2174_1567205018666210716122034
crossref_primary_10_1016_j_media_2022_102723
crossref_primary_10_1016_j_bspc_2025_107514
crossref_primary_10_1109_TMI_2022_3166131
crossref_primary_10_1016_j_nicl_2024_103624
crossref_primary_10_1111_psyg_12839
crossref_primary_10_1038_s41380_023_02221_w
crossref_primary_10_1109_TMI_2022_3221890
crossref_primary_10_1002_alz_12422
crossref_primary_10_1016_j_jksuci_2021_09_003
crossref_primary_10_1016_j_media_2021_102265
crossref_primary_10_1109_JTEHM_2022_3219775
crossref_primary_10_1016_j_media_2021_102169
crossref_primary_10_3389_fneur_2024_1297076
crossref_primary_10_1016_j_neuroimage_2019_116266
crossref_primary_10_1016_j_neurobiolaging_2019_11_020
Cites_doi 10.1007/s11263-012-0598-4
10.1016/j.neuroimage.2016.03.061
10.1111/j.1469-185X.1990.tb01428.x
10.1016/j.neuroimage.2013.04.114
10.1016/j.neuroimage.2015.07.087
10.1016/j.arr.2016.01.002
10.1006/cviu.1999.0815
10.1016/j.neurobiolaging.2004.05.004
10.1523/JNEUROSCI.4166-03.2004
10.1016/j.neuroimage.2012.01.062
10.1016/j.neuroimage.2017.08.059
10.1093/brain/awp091
10.1093/cercor/bhp279
10.1146/annurev.psych.59.103006.093656
10.1016/j.neuroimage.2009.06.043
10.1016/j.media.2007.07.001
10.1016/0197-4580(96)00005-X
10.1109/TMI.2009.2017942
10.1016/j.neulet.2013.06.063
10.1016/S0896-6273(02)00569-X
10.3389/fnins.2016.00236
10.1088/0031-9155/39/3/022
10.1016/j.neurobiolaging.2014.07.046
10.1038/nn1008
10.1016/j.neuroimage.2016.04.001
10.1002/hbm.22297
10.1016/j.acra.2012.03.006
10.1016/j.neuroimage.2011.11.002
10.1038/mp.2017.62
10.1037/0735-7044.117.6.1150
10.1016/j.neuroimage.2012.02.084
10.1016/j.neuroimage.2010.01.005
10.1016/j.nicl.2014.11.001
10.1109/TMI.2006.887380
10.1016/j.jalz.2017.02.001
10.1006/nimg.2001.0786
10.1016/j.neuroimage.2012.10.029
10.1006/nimg.2001.0978
10.1024/1662-9647/a000074
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOI 10.1016/j.neuroimage.2019.05.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 270
ExternalDocumentID oai_HAL_hal_01948174v3
31121298
10_1016_j_neuroimage_2019_05_040
S105381191930432X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
ID FETCH-LOGICAL-c543t-af50d100f5e5d7d7db12471f179ca08e75bf7362a79fbd2c5d3ddd5694e386423
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 07:32:44 EDT 2025
Fri Jul 11 10:16:43 EDT 2025
Wed Aug 13 07:39:55 EDT 2025
Wed Feb 19 02:31:18 EST 2025
Thu Apr 24 22:49:23 EDT 2025
Tue Jul 01 03:02:08 EDT 2025
Fri Feb 23 02:36:57 EST 2024
Tue Aug 26 20:02:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aging
Deformations
Spatio-temporal model
Imaging biomarkers
Alzheimer's disease
Brain morphology
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-af50d100f5e5d7d7db12471f179ca08e75bf7362a79fbd2c5d3ddd5694e386423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6617-7664
0000-0003-0521-2881
0000-0001-6050-5949
OpenAccessLink https://inria.hal.science/hal-01948174
PMID 31121298
PQID 2244079284
PQPubID 2031077
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_01948174v3
proquest_miscellaneous_2231847883
proquest_journals_2244079284
pubmed_primary_31121298
crossref_primary_10_1016_j_neuroimage_2019_05_040
crossref_citationtrail_10_1016_j_neuroimage_2019_05_040
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_040
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
2019-09
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Hutton, Draganski, Ashburner, Weiskopf (bib24) Nov. 2009; 48
Park, Reuter-Lorenz (bib37) 2009; 60
Long, Liao, Jiang, Liang, Qiu, Zhang (bib28) 2012; 19
Cash, Frost, Iheme, Ünay, Kandemir, Fripp, Salvado, Bourgeat, Reuter, Fischl, Lorenzi, Frisoni, Pennec, Pierson, Gunter, Senjem, Jack, Guizard, Fonov, Collins, Modat, Cardoso, Leung, Wang, Das, Yushkevich, Malone, Fox, Schott, Ourselin (bib7) Dec. 2015; 123
Schmitter, Roche, Maréchal, Ribes, Abdulkadir, Bach-Cuadra, Daducci, Granziera, Klöppel, Maeder, Meuli, Krueger (bib46) 2015; 7
Ohnishi, Matsuda, Tabira, Asada, Uno (bib36) 2001; 22
Reuter, Schmansky, Rosas, Fischl (bib40) July 2012; 61
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib20) July 2001; 14
Davatzikos, Xu, An, Fan, Resnick (bib11) 2009; 132
Blezek, Miller (bib4) Oct. 2007; 11
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib49) 2002; 15
Khanal, Lorenzi, Ayache, Pennec (bib25) July 2016
DeCarli, Massaro, Harvey, Hald, Tullberg, Au, Beiser, D'Agostino, Wolf (bib12) 2005; 26
van Velsen, Vernooij, Vrooman, van der Lugt, Breteler, Hofman, Niessen, Ikram (bib50) 2013; 550
Lorenzi, Pennec (bib29) 2013; 105
Cury, Lorenzi, Cash, Nicholas, Routier, Rohrer, Ourselin, Durrleman, Modat (bib10) 2016
Marchewka, Kherif, Krueger, Grabowska, Frackowiak, Draganski (bib33) 2014; 35
Bilgel, Prince, Wong, Resnick, Jedynak (bib3) July 2016; 134
Lorenzi, Pennec, Frisoni, Ayache (bib31) 2015; 36
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib38) 2011; 12
Lorenzi, Ayache, Frisoni, Pennec, LCC-Demons (bib30) 2013; 81
Alzheimer’s Association and others (bib1) 2017; 13
Wang, Beg, Ratnanather, Ceritoglu, Younes, Morris, Csernansky, Miller (bib51) Apr. 2007; 26
Franke, Ziegler, Klöppel, Gaser, Initiative (bib19) 2010; 50
Singh, Hinkle, Joshi, Fletcher (bib47) 2013
Medvedev (bib34) 1990; 65
Sabuncu, Balci, Shenton, Golland (bib44) Sept. 2009; 28
Sowell, Peterson, Thompson, Welcome, Henkenius, Toga (bib48) 2003; 6
Rohé, Sermesant, Pennec (bib42) 2016
Franke, Gaser (bib18) Jan. 2012; 25
Donohue, Jacqmin-Gadda, Le Goff, Thomas, Raman, Gamst, Beckett, Jack, Weiner, Dartigues, Aisen (bib13) Oct. 2014; 10
Rosen, Prull, Gabrieli, Stoub, O’hara, Friedman, Yesavage, deToledo Morrell (bib43) 2003; 117
Carmichael, McLaren, Tommet, Mungas, Jones (bib6) 2013; 66
Cole, Ritchie, Bastin, Hernández, Maniega, Royle, Corley, Pattie, Harris, Zhang (bib9) 2018; 23
Arsigny, Commowick, Pennec, Ayache (bib2) 2006
Hadj-Hamou (bib22) 2016
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (bib15) 2002; 33
Rodrigue, Raz (bib41) 2004; 24
Double, Halliday, Krill, Harasty, Cullen, Brooks, Creasey, Broe (bib14) 1996; 17
Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bib26) 2012; 61
Christensen, Rabbitt, Miller (bib8) 1994; 39
Lorenzi, Filippone, Frisoni, Alexander, Ourselin (bib32) 2019; 190
Pini, Pievani, Bocchetta, Altomare, Bosco, Cavedo, Galluzzi, Marizzoni, Frisoni (bib39) 2016; 30
Guimond, Meunier, Thirion (bib21) 2000; 77
Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Blennow, Brewer, Dale (bib16) 2010; 20
Bossa, Hernandez, Olmos (bib5) 2007
Hadj-Hamou, Lorenzi, Ayache, Pennec (bib23) 2016; 10
Muralidharan, Fishbaugh, Kim, Johnson, Paulsen, Gerig, Fletcher (bib35) Apr. 2016
Fonteijn, Modat, Clarkson, Barnes, Lehmann, Hobbs, Scahill, Tabrizi, Ourselin, Fox, Alexander (bib17) Apr. 2012; 60
Schiratti, Allassonnière, Colliot, Durrleman (bib45) 2017; 18
Koval, Schiratti, Routier, Bacci, Colliot, Allassonnière, Durrleman, Initiative (bib27) 2017
Wang (10.1016/j.neuroimage.2019.05.040_bib51) 2007; 26
Koval (10.1016/j.neuroimage.2019.05.040_bib27) 2017
Park (10.1016/j.neuroimage.2019.05.040_bib37) 2009; 60
Ohnishi (10.1016/j.neuroimage.2019.05.040_bib36) 2001; 22
Singh (10.1016/j.neuroimage.2019.05.040_bib47) 2013
Bilgel (10.1016/j.neuroimage.2019.05.040_bib3) 2016; 134
Cury (10.1016/j.neuroimage.2019.05.040_bib10) 2016
Carmichael (10.1016/j.neuroimage.2019.05.040_bib6) 2013; 66
Rohé (10.1016/j.neuroimage.2019.05.040_bib42) 2016
Franke (10.1016/j.neuroimage.2019.05.040_bib19) 2010; 50
Davatzikos (10.1016/j.neuroimage.2019.05.040_bib11) 2009; 132
Fischl (10.1016/j.neuroimage.2019.05.040_bib15) 2002; 33
Lorenzi (10.1016/j.neuroimage.2019.05.040_bib31) 2015; 36
Khanal (10.1016/j.neuroimage.2019.05.040_bib25) 2016
Hadj-Hamou (10.1016/j.neuroimage.2019.05.040_bib23) 2016; 10
Cash (10.1016/j.neuroimage.2019.05.040_bib7) 2015; 123
Schmitter (10.1016/j.neuroimage.2019.05.040_bib46) 2015; 7
Pini (10.1016/j.neuroimage.2019.05.040_bib39) 2016; 30
DeCarli (10.1016/j.neuroimage.2019.05.040_bib12) 2005; 26
Christensen (10.1016/j.neuroimage.2019.05.040_bib8) 1994; 39
Fonteijn (10.1016/j.neuroimage.2019.05.040_bib17) 2012; 60
Hadj-Hamou (10.1016/j.neuroimage.2019.05.040_bib22) 2016
Guimond (10.1016/j.neuroimage.2019.05.040_bib21) 2000; 77
Sabuncu (10.1016/j.neuroimage.2019.05.040_bib44) 2009; 28
Hutton (10.1016/j.neuroimage.2019.05.040_bib24) 2009; 48
Blezek (10.1016/j.neuroimage.2019.05.040_bib4) 2007; 11
Lorenzi (10.1016/j.neuroimage.2019.05.040_bib32) 2019; 190
Franke (10.1016/j.neuroimage.2019.05.040_bib18) 2012; 25
Schiratti (10.1016/j.neuroimage.2019.05.040_bib45) 2017; 18
Alzheimer’s Association and others (10.1016/j.neuroimage.2019.05.040_bib1) 2017; 13
Cole (10.1016/j.neuroimage.2019.05.040_bib9) 2018; 23
Arsigny (10.1016/j.neuroimage.2019.05.040_bib2) 2006
Reuter (10.1016/j.neuroimage.2019.05.040_bib40) 2012; 61
Long (10.1016/j.neuroimage.2019.05.040_bib28) 2012; 19
Sowell (10.1016/j.neuroimage.2019.05.040_bib48) 2003; 6
Good (10.1016/j.neuroimage.2019.05.040_bib20) 2001; 14
Lorenzi (10.1016/j.neuroimage.2019.05.040_bib29) 2013; 105
Donohue (10.1016/j.neuroimage.2019.05.040_bib13) 2014; 10
Double (10.1016/j.neuroimage.2019.05.040_bib14) 1996; 17
Marchewka (10.1016/j.neuroimage.2019.05.040_bib33) 2014; 35
van Velsen (10.1016/j.neuroimage.2019.05.040_bib50) 2013; 550
Bossa (10.1016/j.neuroimage.2019.05.040_bib5) 2007
Fjell (10.1016/j.neuroimage.2019.05.040_bib16) 2010; 20
Rosen (10.1016/j.neuroimage.2019.05.040_bib43) 2003; 117
Muralidharan (10.1016/j.neuroimage.2019.05.040_bib35) 2016
Rodrigue (10.1016/j.neuroimage.2019.05.040_bib41) 2004; 24
Klöppel (10.1016/j.neuroimage.2019.05.040_bib26) 2012; 61
Tzourio-Mazoyer (10.1016/j.neuroimage.2019.05.040_bib49) 2002; 15
Pedregosa (10.1016/j.neuroimage.2019.05.040_bib38) 2011; 12
Medvedev (10.1016/j.neuroimage.2019.05.040_bib34) 1990; 65
Lorenzi (10.1016/j.neuroimage.2019.05.040_bib30) 2013; 81
References_xml – volume: 30
  start-page: 25
  year: 2016
  end-page: 48
  ident: bib39
  article-title: Brain atrophy in alzheimer's disease and aging
  publication-title: Ageing Res. Rev.
– volume: 81
  start-page: 470
  year: 2013
  end-page: 483
  ident: bib30
  article-title: A robust and accurate symmetric diffeomorphic registration algorithm
  publication-title: Neuroimage
– volume: 17
  start-page: 513
  year: 1996
  end-page: 521
  ident: bib14
  article-title: Topography of brain atrophy during normal aging and alzheimer's disease
  publication-title: Neurobiol. Aging
– start-page: 656
  year: Apr. 2016
  end-page: 659
  ident: bib35
  article-title: Bayesian covariate selection in mixed-effects models for longitudinal shape analysis
  publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
– volume: 10
  start-page: 236
  year: 2016
  ident: bib23
  article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields
  publication-title: Front. Neurosci.
– volume: 48
  start-page: 371
  year: Nov. 2009
  end-page: 380
  ident: bib24
  article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging
  publication-title: Neuroimage
– volume: 26
  start-page: 491
  year: 2005
  end-page: 510
  ident: bib12
  article-title: Measures of brain morphology and infarction in the framingham heart study: establishing what is normal
  publication-title: Neurobiol. Aging
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib15
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– start-page: 35
  year: July 2016
  end-page: 52
  ident: bib25
  article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease
  publication-title: Neuroimage
– volume: 105
  start-page: 111
  year: 2013
  end-page: 127
  ident: bib29
  article-title: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration
  publication-title: Int. J. Comput. Vis.
– volume: 10
  start-page: S400
  year: Oct. 2014
  end-page: S410
  ident: bib13
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer's Dementia
– volume: 132
  start-page: 2026
  year: 2009
  end-page: 2035
  ident: bib11
  article-title: Longitudinal progression of alzheimer’s-like patterns of atrophy in normal older adults: the spare-ad index
  publication-title: Brain
– start-page: 560
  year: 2013
  end-page: 571
  ident: bib47
  article-title: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis
  publication-title: International Conference on Information Processing in Medical Imaging
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib38
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: S42
  year: 2015
  end-page: S52
  ident: bib31
  article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images
  publication-title: Neurobiol. Aging
– volume: 117
  start-page: 1150
  year: 2003
  ident: bib43
  article-title: Differential associations between entorhinal and hippocampal volumes and memory performance in older adults
  publication-title: Behav. Neurosci.
– volume: 60
  start-page: 1880
  year: Apr. 2012
  end-page: 1889
  ident: bib17
  article-title: An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease
  publication-title: Neuroimage
– volume: 24
  start-page: 956
  year: 2004
  end-page: 963
  ident: bib41
  article-title: Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults
  publication-title: J. Neurosci.
– volume: 550
  start-page: 189
  year: 2013
  end-page: 194
  ident: bib50
  article-title: Brain cortical thickness in the general elderly population: the rotterdam scan study
  publication-title: Neurosci. Lett.
– volume: 22
  start-page: 1680
  year: 2001
  end-page: 1685
  ident: bib36
  article-title: Changes in brain morphology in alzheimer disease and normal aging: is alzheimer disease an exaggerated aging process?
  publication-title: Am. J. Neuroradiol.
– start-page: 63
  year: 2016
  end-page: 75
  ident: bib10
  article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease
  publication-title: International Workshop on Spectral and Shape Analysis in Medical Imaging
– volume: 25
  start-page: 235
  year: Jan. 2012
  end-page: 245
  ident: bib18
  article-title: Longitudinal changes in individual
  publication-title: GeroPsych
– volume: 60
  start-page: 173
  year: 2009
  end-page: 196
  ident: bib37
  article-title: The adaptive brain: aging and neurocognitive scaffolding
  publication-title: Annu. Rev. Psychol.
– volume: 65
  start-page: 375
  year: 1990
  end-page: 398
  ident: bib34
  article-title: An attempt at a rational classification of theories of ageing
  publication-title: Biol. Rev.
– volume: 13
  start-page: 325
  year: 2017
  end-page: 373
  ident: bib1
  article-title: Alzheimer's disease facts and figures
  publication-title: Alzheimer's Dementia
– volume: 23
  start-page: 1385
  year: 2018
  ident: bib9
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
– volume: 28
  start-page: 1473
  year: Sept. 2009
  end-page: 1487
  ident: bib44
  article-title: Image-driven population analysis through mixture modeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 190
  start-page: 56
  year: 2019
  end-page: 68
  ident: bib32
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in alzheimer's disease
  publication-title: Neuroimage
– volume: 26
  start-page: 462
  year: Apr. 2007
  end-page: 470
  ident: bib51
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type
  publication-title: IEEE Trans. Med. Imaging
– volume: 134
  start-page: 658
  year: July 2016
  end-page: 670
  ident: bib3
  article-title: A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging
  publication-title: Neuroimage
– start-page: 667
  year: 2007
  end-page: 674
  ident: bib5
  article-title: Contributions to 3d diffeomorphic atlas estimation: application to brain images. Medical Image Computing and Computer-Assisted Intervention-MICCAI
– volume: 39
  start-page: 609
  year: 1994
  ident: bib8
  article-title: 3d brain mapping using a deformable neuroanatomy
  publication-title: Phys. Med. Biol.
– volume: 66
  start-page: 449
  year: 2013
  end-page: 456
  ident: bib6
  article-title: Coevolution of brain structures in amnestic mild cognitive impairment
  publication-title: Neuroimage
– volume: 61
  start-page: 1402
  year: July 2012
  end-page: 1418
  ident: bib40
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 18
  start-page: 4840
  year: 2017
  end-page: 4872
  ident: bib45
  article-title: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations
  publication-title: J. Mach. Learn. Res.
– start-page: 924
  year: 2006
  end-page: 931
  ident: bib2
  article-title: A log-euclidean framework for statistics on diffeomorphisms
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006
– volume: 20
  start-page: 2069
  year: 2010
  end-page: 2079
  ident: bib16
  article-title: And the Alzheimer's Disease Neuroimaging Initiative. Brain atrophy in healthy aging is related to csf levels of ab1-42
  publication-title: Cerebr. Cortex
– volume: 19
  start-page: 785
  year: 2012
  end-page: 793
  ident: bib28
  article-title: Healthy aging: an automatic analysis of global and regional morphological alterations of human brain
  publication-title: Acad. Radiol.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib49
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
– start-page: 451
  year: 2017
  end-page: 459
  ident: bib27
  article-title: Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 35
  start-page: 1865
  year: 2014
  end-page: 1874
  ident: bib33
  article-title: Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of alzheimer's disease
  publication-title: Hum. Brain Mapp.
– volume: 123
  start-page: 149
  year: Dec. 2015
  end-page: 164
  ident: bib7
  article-title: Assessing atrophy measurement techniques in dementia: results from the MIRIAD atrophy challenge
  publication-title: Neuroimage
– start-page: 300
  year: 2016
  end-page: 307
  ident: bib42
  article-title: Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 14
  start-page: 21
  year: July 2001
  end-page: 36
  ident: bib20
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
– volume: 77
  start-page: 192
  year: 2000
  end-page: 210
  ident: bib21
  article-title: Average brain models: a convergence study
  publication-title: Comput. Vis. Image Understand.
– volume: 7
  start-page: 7
  year: 2015
  end-page: 17
  ident: bib46
  article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage: Clinical
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bib19
  article-title: Estimating the age of healthy subjects from t 1-weighted mri scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 11
  start-page: 443
  year: Oct. 2007
  end-page: 457
  ident: bib4
  article-title: Atlas stratification
  publication-title: Med. Image Anal.
– volume: 61
  start-page: 457
  year: 2012
  end-page: 463
  ident: bib26
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
– year: 2016
  ident: bib22
  article-title: Beyond Volumetry in Longitudinal Deformation-Based Morphometry: Application to Sexual Dimorphism during Adolescence
– volume: 6
  start-page: 309
  year: 2003
  end-page: 315
  ident: bib48
  article-title: Mapping cortical change across the human life span
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.040_bib38
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– start-page: 300
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib42
  article-title: Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking
– volume: 105
  start-page: 111
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.040_bib29
  article-title: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-012-0598-4
– start-page: 35
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib25
  article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.061
– volume: 65
  start-page: 375
  issue: 3
  year: 1990
  ident: 10.1016/j.neuroimage.2019.05.040_bib34
  article-title: An attempt at a rational classification of theories of ageing
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.1990.tb01428.x
– volume: 81
  start-page: 470
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.040_bib30
  article-title: A robust and accurate symmetric diffeomorphic registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.114
– start-page: 667
  year: 2007
  ident: 10.1016/j.neuroimage.2019.05.040_bib5
– volume: 123
  start-page: 149
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.040_bib7
  article-title: Assessing atrophy measurement techniques in dementia: results from the MIRIAD atrophy challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.087
– volume: 30
  start-page: 25
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib39
  article-title: Brain atrophy in alzheimer's disease and aging
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.01.002
– volume: 77
  start-page: 192
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2019.05.040_bib21
  article-title: Average brain models: a convergence study
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1006/cviu.1999.0815
– volume: 26
  start-page: 491
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2019.05.040_bib12
  article-title: Measures of brain morphology and infarction in the framingham heart study: establishing what is normal
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.05.004
– volume: 24
  start-page: 956
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2019.05.040_bib41
  article-title: Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4166-03.2004
– volume: 60
  start-page: 1880
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.040_bib17
  article-title: An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.062
– start-page: 656
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib35
  article-title: Bayesian covariate selection in mixed-effects models for longitudinal shape analysis
– volume: 190
  start-page: 56
  year: 2019
  ident: 10.1016/j.neuroimage.2019.05.040_bib32
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.059
– volume: 132
  start-page: 2026
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.040_bib11
  article-title: Longitudinal progression of alzheimer’s-like patterns of atrophy in normal older adults: the spare-ad index
  publication-title: Brain
  doi: 10.1093/brain/awp091
– volume: 10
  start-page: S400
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.040_bib13
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer's Dementia
– start-page: 924
  year: 2006
  ident: 10.1016/j.neuroimage.2019.05.040_bib2
  article-title: A log-euclidean framework for statistics on diffeomorphisms
– volume: 20
  start-page: 2069
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.040_bib16
  article-title: And the Alzheimer's Disease Neuroimaging Initiative. Brain atrophy in healthy aging is related to csf levels of ab1-42
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhp279
– volume: 60
  start-page: 173
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.040_bib37
  article-title: The adaptive brain: aging and neurocognitive scaffolding
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.59.103006.093656
– volume: 22
  start-page: 1680
  issue: 9
  year: 2001
  ident: 10.1016/j.neuroimage.2019.05.040_bib36
  article-title: Changes in brain morphology in alzheimer disease and normal aging: is alzheimer disease an exaggerated aging process?
  publication-title: Am. J. Neuroradiol.
– start-page: 560
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.040_bib47
  article-title: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis
– volume: 48
  start-page: 371
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.040_bib24
  article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.043
– volume: 11
  start-page: 443
  issue: 5
  year: 2007
  ident: 10.1016/j.neuroimage.2019.05.040_bib4
  article-title: Atlas stratification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.07.001
– volume: 17
  start-page: 513
  issue: 4
  year: 1996
  ident: 10.1016/j.neuroimage.2019.05.040_bib14
  article-title: Topography of brain atrophy during normal aging and alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(96)00005-X
– volume: 28
  start-page: 1473
  issue: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.040_bib44
  article-title: Image-driven population analysis through mixture modeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2017942
– volume: 550
  start-page: 189
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.040_bib50
  article-title: Brain cortical thickness in the general elderly population: the rotterdam scan study
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.06.063
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2019.05.040_bib15
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 10
  start-page: 236
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib23
  article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00236
– volume: 39
  start-page: 609
  issue: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2019.05.040_bib8
  article-title: 3d brain mapping using a deformable neuroanatomy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/39/3/022
– volume: 36
  start-page: S42
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.040_bib31
  article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.07.046
– volume: 6
  start-page: 309
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2019.05.040_bib48
  article-title: Mapping cortical change across the human life span
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1008
– volume: 134
  start-page: 658
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib3
  article-title: A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.001
– volume: 35
  start-page: 1865
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.040_bib33
  article-title: Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of alzheimer's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22297
– volume: 19
  start-page: 785
  issue: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.040_bib28
  article-title: Healthy aging: an automatic analysis of global and regional morphological alterations of human brain
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2012.03.006
– start-page: 451
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.040_bib27
  article-title: Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks
– volume: 61
  start-page: 457
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.040_bib26
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 23
  start-page: 1385
  issue: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.040_bib9
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.62
– volume: 117
  start-page: 1150
  issue: 6
  year: 2003
  ident: 10.1016/j.neuroimage.2019.05.040_bib43
  article-title: Differential associations between entorhinal and hippocampal volumes and memory performance in older adults
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.117.6.1150
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.040_bib40
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 18
  start-page: 4840
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.040_bib45
  article-title: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.040_bib19
  article-title: Estimating the age of healthy subjects from t 1-weighted mri scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.005
– start-page: 63
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib10
  article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease
– volume: 7
  start-page: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.040_bib46
  article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2014.11.001
– volume: 26
  start-page: 462
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2019.05.040_bib51
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887380
– volume: 13
  start-page: 325
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.040_bib1
  article-title: Alzheimer's disease facts and figures
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2017.02.001
– volume: 14
  start-page: 21
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2019.05.040_bib20
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0786
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.040_bib22
– volume: 66
  start-page: 449
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.040_bib6
  article-title: Coevolution of brain structures in amnestic mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.029
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2019.05.040_bib49
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 25
  start-page: 235
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.040_bib18
  article-title: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and alzheimer's disease
  publication-title: GeroPsych
  doi: 10.1024/1662-9647/a000074
SSID ssj0009148
Score 2.5009549
Snippet In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 255
SubjectTerms Age
Aged
Aging
Aging - physiology
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer Disease - physiopathology
Alzheimer's disease
Atrophy
Bias
Biomarkers
Brain - diagnostic imaging
Brain - pathology
Brain - physiopathology
Brain morphology
Computer Science
Computer Vision and Pattern Recognition
Cross-Sectional Studies
Deformations
Disease Progression
Evolution
Female
Health care
Hippocampus
Humans
Image Processing
Imaging biomarkers
Inverse problems
Magnetic Resonance Imaging
Male
Models, Neurological
Morphology
Neurodegenerative diseases
Neuroimaging
Parameter estimation
Spatio-temporal model
Statistical analysis
Studies
Temporal lobe
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRAXVN7bFmQQEieLZG3HiThUK0S1QpQTlfZm-akWtcnSbDnw6zvjONlLQaucknhsy2PPjO1vZgj5EI11lTGwN1FuzoSTgjXcBuZEUFZxUQmH_s5nP6rlufi2kqt84NZnWOUoE5Og9p3DM_JPoGpg79GAND1Z_2aYNQpvV3MKjT3yEEOXIaRLrdQ26G4pBlc4yVkNBTKSZ8B3pXiRl9ewahHg1aT4nXgEcr962rtAnOS_jNCkjE4PyJNsRdLFwPan5EFon5FHZ_me_DlZL2hKcUO7SC0mgYBXGNBR0NHB3benyZMleLrpaMpWRE3r6eLq70W4vA43H3ua728oeqHQ1GXWJ_AWNm-mqJ79C3J--vXnlyXLuRUYsINvmImy8GVRRBmkV_BYUPSqjLA-nSnqoKSNCpSbUU20fu6k5957WTUi8Br2LPwl2W-7NrwmtIrzEC33IVRShFg3EfSilTIYUYJ5wGdEjUOqXQ48jvkvrvSIMPult8zQyAxdSA3MmJFyolwPwTd2oGlGrunRuRTEoQYNsQPt54k2GyCDYbEj9XuYJFNHMW73cvFd4zcoJGrY-_2BwTge55DO0qLX27k9I--m37DO8fLGtKG7xTIgfTHXAVTxaph7U1McjGaw2-rD_1d-RB5jdweE3DHZ39zchjdgUm3s27Ru7gB2miFE
  priority: 102
  providerName: ProQuest
Title A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191930432X
https://dx.doi.org/10.1016/j.neuroimage.2019.05.040
https://www.ncbi.nlm.nih.gov/pubmed/31121298
https://www.proquest.com/docview/2244079284
https://www.proquest.com/docview/2231847883
https://inria.hal.science/hal-01948174
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3va9QwNMwJ4hfx907niCL4qV57SZoWP9Vj49TtGNPBfQtJk7CTrXesNz_4wb_d99K0Q1A4kEJL2rw25L28H837Qchbr02daw22iawnCa8FT0pmXFJzJ41kPOc1xjufzPPZOf-8EIsdMu1jYdCtMvL-jqcHbh3vjONsjtfL5fgraAYgbsDeKBnmlVtgBDuXSOXvf926eZQZ78LhBEuwd_Tm6Xy8Qs7I5RWsXHTyKkMOT_wN8ncRdecCfSX_pYgGgXT0kDyImiStusE-IjuueUzuncS98idkXdFQ5oauPDVYCAKaMKk9s6NdyG9LQzSLs3SzoqFiEdWNpdXlzwu3vHLX71oa93AoRqLQMOSkDQ5c-Hk9ZPZsn5Lzo8Nv01kS6yskgBK2SbQXqc3S1AsnrITDgLCXmYc1Wuu0cFIYL0HAaVl6Yye1sMxaK_KSO1aA3cKekd1m1bg9QnM_cd4w61wuuPNF6UE2GiGc5hmoCGxEZD-lqo7Jx7EGxqXqvcy-q1tkKESGSoUCZIxINkCuuwQcW8CUPdZUH2AKLFGBlNgC9sMA-wchbgn9BohkGCjm7p5VxwrvQSdegP33AyZjv6chFTlGq0CVAtu6BG1hRF4Pj2Gt4waObtzqBvsAB8Z6B_CK5x3tDZ9ioDiD7la8-K_xvyT3sdU50e2T3c31jXsFWtfGHIRlBWe5kAfkbjU9Oz7F66cvszlcPx7OT89-A_gqMms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQS8IL4pDDAIxFNEEtv5EEKowKaOtRVCm7Q3Y8e2NrSlZelA8EfxN3KXr74A6svUpzQ5x_Kdf3cX3wfAc69NkWiNvklaxIEopAhyblxQCJealItEFJTvPJ0l40Px8UgebcDvLheGwio7TKyB2s4L-kb-ClUN-h45ounbxbeAukbR6WrXQqMRi3338we6bNWbvQ_I3xdxvLtz8H4ctF0FApwIXwbay9BGYeilkzbFn0EVl0YeJbPQYeZSaXyKsK7T3BsbF9Jya61McuF4htY6x3E3YUtwdGUGsPVuZ_bp86rMbySa5DvJgyyK8jZ2qIkoqytUnpwhTlBIWV5XDKWPLn9XiJvHFJn5L7O3Vn-7N-B6a7eyUSNoN2HDlbfgyrQ9mb8NixGrm-qwuWeG2k7gJbKwg1bWJBhXrM6dcZYt56zuj8R0adno9NexOzlz5y8r1p4YMcp7YfWUg6oOF6PX676OaHUHDi9l3e_CoJyX7j6wxMfOG26dS6RwPss9amIjpdMiQoOEDyHtllQVbalz6rhxqrqYtq9qxQxFzFChVMiMIUQ95aIp97EGTd5xTXXprAjACnXSGrSve9rW5GlMmTWpn6GQ9BOlSuHj0UTRf_iQyNDb_I6Lsd3JkGrxqVKr3TSEp_1tRBY6LtKlm1_QM4j31F0Bh7jXyF7_Ko5mOlqK2YP_D_4Ero4PphM12ZvtP4RrNPUmPm8bBsvzC_cIDbqledzuIgZfLnvj_gFT81-5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO9uKWAQiFPUJLbjRAihFWW1pQ9xoNLejB3balGbbJstCH4av44Z57EXQHup9pRNxrE8M9-M43kQ8sprU2Zaw95ElmnES8GjghkXldxJIxnPeIn5zkfH2fSEf5qJ2Rr53efCYFhlj4kBqG1d4jfyXTA1sPcoAE13fRcW8Xlv8n5-GWEHKTxp7dtptCJy4H7-gO1b825_D3j9Ok0nH798mEZdh4EIJsUWkfYitkkce-GElfAzYO5k4kFKSx3nTgrjJUC8loU3Ni2FZdZakRXcsRw8dwbjrpNbkokEdUzO5LLgb8LbNDzBojxJii6KqI0tC7Uqzy4AMTC4rAi1Q_Hzy99N4_opxmj-ywEOhnByl9zpPFg6bkXuHllz1X2yedSd0T8g8zEN7XVo7anBBhRwCczsQZa2qcYNDVk0ztJFTUOnJKorS8fnv07d2YW7etPQ7uyIYgYMDVOOmhA4hq_XQ0XR5iE5uZFVf0Q2qrpyW4RmPnXeMOtcJrjzeeHBJhshnOYJuCZsRGS_pKrsip5j741z1Ue3fVNLZihkhoqFAmaMSDJQztvCHyvQFD3XVJ_YClCswDqtQPt2oO2cn9apWZH6JQjJMFGsGT4dHyr8Dx7iOew7v8Ni7PQypDqkatRSr0bkxXAbMAYPjnTl6mt8BpAf-yzAEI9b2RtexcBhB58x3_7_4M_JJqirOtw_PnhCbuPM20C9HbKxuLp2T8GzW5hnQYUo-XrTOvsHsndiiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+of+brain+morphological+changes+related+to+aging+and+Alzheimer%27s+disease+from+cross-sectional+assessments&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sivera%2C+Rapha%C3%ABl&rft.au=Delingette%2C+Herv%C3%A9&rft.au=Lorenzi%2C+Marco&rft.au=Pennec%2C+Xavier&rft.date=2019-09-01&rft.eissn=1095-9572&rft.volume=198&rft.spage=255&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.040&rft_id=info%3Apmid%2F31121298&rft.externalDocID=31121298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon