A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments
In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed alo...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 198; pp. 255 - 270 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2019
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2019.05.040 |
Cover
Loading…
Abstract | In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region.
The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions.
In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease.
Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales. |
---|---|
AbstractList | In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region.The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions.In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease.Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales. In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales. In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales. |
Author | Sivera, Raphaël Lorenzi, Marco Delingette, Hervé Pennec, Xavier Ayache, Nicholas |
AuthorAffiliation | Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, France |
AuthorAffiliation_xml | – name: Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, France |
Author_xml | – sequence: 1 givenname: Raphaël surname: Sivera fullname: Sivera, Raphaël email: raphael.sivera@inria.fr – sequence: 2 givenname: Hervé surname: Delingette fullname: Delingette, Hervé – sequence: 3 givenname: Marco surname: Lorenzi fullname: Lorenzi, Marco – sequence: 4 givenname: Xavier surname: Pennec fullname: Pennec, Xavier – sequence: 5 givenname: Nicholas surname: Ayache fullname: Ayache, Nicholas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31121298$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-01948174$$DView record in HAL |
BookMark | eNqNkk-P1CAchhuzxv2jX8GQeFAPrUBhSi_GcaO7JpN40TOh8GuHkcII7Sbrp5c6u2sypwkHKHl4Gt6Xy-LMBw9FgQiuCCarD7vKwxyDHdUAFcWkrTCvMMPPiguCW162vKFny5rXpSCkPS8uU9phjFvCxIvivCaEEtqKi2K_RmMw4FDoUReV9fkz7rfBhcFq5ZDeKj9AQhGcmsCgKSA1WD8g5Q1auz9bsCPEtwkZm0AlQH0MI9IxpFQm0JMNPltUSpDSCH5KL4vnvXIJXj3MV8XPr19-XN-Wm-83367Xm1JzVk-l6jk2BOOeAzdNHh2hrCE9aVqtsICGd31Tr6hq2r4zVHNTG2P4qmVQixWj9VXx_uDdKif3MUcV72VQVt6uN3LZy6kxQRp2V2f23YHdx_B7hjTJ0SYNzikPYU6S0poI1gixoG-O0F2YY77jQjGGm5YKlqnXD9TcjWCe_v-YewbEAfiXVIT-CSFYLhXLnfxfsVwqlpjLXHE--vHoqLaTWoKecn_uFMHngwBy_HcWokzagtdgbMyNSRPsKZJPRxLtrF-ezC-4P03xFxzT3ws |
CitedBy_id | crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1007_s00429_022_02488_9 crossref_primary_10_1016_j_cmpb_2021_106116 crossref_primary_10_1016_j_neuroimage_2023_120073 crossref_primary_10_1038_s41583_023_00779_6 crossref_primary_10_5897_JMPR2021_7127 crossref_primary_10_1016_j_brainres_2020_147081 crossref_primary_10_1016_j_neurobiolaging_2024_02_014 crossref_primary_10_24012_dumf_1197722 crossref_primary_10_1109_ACCESS_2021_3072559 crossref_primary_10_1142_S021951942140025X crossref_primary_10_2174_1567205018666210716122034 crossref_primary_10_1016_j_media_2022_102723 crossref_primary_10_1016_j_bspc_2025_107514 crossref_primary_10_1109_TMI_2022_3166131 crossref_primary_10_1016_j_nicl_2024_103624 crossref_primary_10_1111_psyg_12839 crossref_primary_10_1038_s41380_023_02221_w crossref_primary_10_1109_TMI_2022_3221890 crossref_primary_10_1002_alz_12422 crossref_primary_10_1016_j_jksuci_2021_09_003 crossref_primary_10_1016_j_media_2021_102265 crossref_primary_10_1109_JTEHM_2022_3219775 crossref_primary_10_1016_j_media_2021_102169 crossref_primary_10_3389_fneur_2024_1297076 crossref_primary_10_1016_j_neuroimage_2019_116266 crossref_primary_10_1016_j_neurobiolaging_2019_11_020 |
Cites_doi | 10.1007/s11263-012-0598-4 10.1016/j.neuroimage.2016.03.061 10.1111/j.1469-185X.1990.tb01428.x 10.1016/j.neuroimage.2013.04.114 10.1016/j.neuroimage.2015.07.087 10.1016/j.arr.2016.01.002 10.1006/cviu.1999.0815 10.1016/j.neurobiolaging.2004.05.004 10.1523/JNEUROSCI.4166-03.2004 10.1016/j.neuroimage.2012.01.062 10.1016/j.neuroimage.2017.08.059 10.1093/brain/awp091 10.1093/cercor/bhp279 10.1146/annurev.psych.59.103006.093656 10.1016/j.neuroimage.2009.06.043 10.1016/j.media.2007.07.001 10.1016/0197-4580(96)00005-X 10.1109/TMI.2009.2017942 10.1016/j.neulet.2013.06.063 10.1016/S0896-6273(02)00569-X 10.3389/fnins.2016.00236 10.1088/0031-9155/39/3/022 10.1016/j.neurobiolaging.2014.07.046 10.1038/nn1008 10.1016/j.neuroimage.2016.04.001 10.1002/hbm.22297 10.1016/j.acra.2012.03.006 10.1016/j.neuroimage.2011.11.002 10.1038/mp.2017.62 10.1037/0735-7044.117.6.1150 10.1016/j.neuroimage.2012.02.084 10.1016/j.neuroimage.2010.01.005 10.1016/j.nicl.2014.11.001 10.1109/TMI.2006.887380 10.1016/j.jalz.2017.02.001 10.1006/nimg.2001.0786 10.1016/j.neuroimage.2012.10.029 10.1006/nimg.2001.0978 10.1024/1662-9647/a000074 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES |
DOI | 10.1016/j.neuroimage.2019.05.040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1095-9572 |
EndPage | 270 |
ExternalDocumentID | oai_HAL_hal_01948174v3 31121298 10_1016_j_neuroimage_2019_05_040 S105381191930432X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c543t-af50d100f5e5d7d7db12471f179ca08e75bf7362a79fbd2c5d3ddd5694e386423 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 07:32:44 EDT 2025 Fri Jul 11 10:16:43 EDT 2025 Wed Aug 13 07:39:55 EDT 2025 Wed Feb 19 02:31:18 EST 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 03:02:08 EDT 2025 Fri Feb 23 02:36:57 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aging Deformations Spatio-temporal model Imaging biomarkers Alzheimer's disease Brain morphology |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-af50d100f5e5d7d7db12471f179ca08e75bf7362a79fbd2c5d3ddd5694e386423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6617-7664 0000-0003-0521-2881 0000-0001-6050-5949 |
OpenAccessLink | https://inria.hal.science/hal-01948174 |
PMID | 31121298 |
PQID | 2244079284 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_01948174v3 proquest_miscellaneous_2231847883 proquest_journals_2244079284 pubmed_primary_31121298 crossref_primary_10_1016_j_neuroimage_2019_05_040 crossref_citationtrail_10_1016_j_neuroimage_2019_05_040 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_040 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 2019-09 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Hutton, Draganski, Ashburner, Weiskopf (bib24) Nov. 2009; 48 Park, Reuter-Lorenz (bib37) 2009; 60 Long, Liao, Jiang, Liang, Qiu, Zhang (bib28) 2012; 19 Cash, Frost, Iheme, Ünay, Kandemir, Fripp, Salvado, Bourgeat, Reuter, Fischl, Lorenzi, Frisoni, Pennec, Pierson, Gunter, Senjem, Jack, Guizard, Fonov, Collins, Modat, Cardoso, Leung, Wang, Das, Yushkevich, Malone, Fox, Schott, Ourselin (bib7) Dec. 2015; 123 Schmitter, Roche, Maréchal, Ribes, Abdulkadir, Bach-Cuadra, Daducci, Granziera, Klöppel, Maeder, Meuli, Krueger (bib46) 2015; 7 Ohnishi, Matsuda, Tabira, Asada, Uno (bib36) 2001; 22 Reuter, Schmansky, Rosas, Fischl (bib40) July 2012; 61 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib20) July 2001; 14 Davatzikos, Xu, An, Fan, Resnick (bib11) 2009; 132 Blezek, Miller (bib4) Oct. 2007; 11 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib49) 2002; 15 Khanal, Lorenzi, Ayache, Pennec (bib25) July 2016 DeCarli, Massaro, Harvey, Hald, Tullberg, Au, Beiser, D'Agostino, Wolf (bib12) 2005; 26 van Velsen, Vernooij, Vrooman, van der Lugt, Breteler, Hofman, Niessen, Ikram (bib50) 2013; 550 Lorenzi, Pennec (bib29) 2013; 105 Cury, Lorenzi, Cash, Nicholas, Routier, Rohrer, Ourselin, Durrleman, Modat (bib10) 2016 Marchewka, Kherif, Krueger, Grabowska, Frackowiak, Draganski (bib33) 2014; 35 Bilgel, Prince, Wong, Resnick, Jedynak (bib3) July 2016; 134 Lorenzi, Pennec, Frisoni, Ayache (bib31) 2015; 36 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib38) 2011; 12 Lorenzi, Ayache, Frisoni, Pennec, LCC-Demons (bib30) 2013; 81 Alzheimer’s Association and others (bib1) 2017; 13 Wang, Beg, Ratnanather, Ceritoglu, Younes, Morris, Csernansky, Miller (bib51) Apr. 2007; 26 Franke, Ziegler, Klöppel, Gaser, Initiative (bib19) 2010; 50 Singh, Hinkle, Joshi, Fletcher (bib47) 2013 Medvedev (bib34) 1990; 65 Sabuncu, Balci, Shenton, Golland (bib44) Sept. 2009; 28 Sowell, Peterson, Thompson, Welcome, Henkenius, Toga (bib48) 2003; 6 Rohé, Sermesant, Pennec (bib42) 2016 Franke, Gaser (bib18) Jan. 2012; 25 Donohue, Jacqmin-Gadda, Le Goff, Thomas, Raman, Gamst, Beckett, Jack, Weiner, Dartigues, Aisen (bib13) Oct. 2014; 10 Rosen, Prull, Gabrieli, Stoub, O’hara, Friedman, Yesavage, deToledo Morrell (bib43) 2003; 117 Carmichael, McLaren, Tommet, Mungas, Jones (bib6) 2013; 66 Cole, Ritchie, Bastin, Hernández, Maniega, Royle, Corley, Pattie, Harris, Zhang (bib9) 2018; 23 Arsigny, Commowick, Pennec, Ayache (bib2) 2006 Hadj-Hamou (bib22) 2016 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (bib15) 2002; 33 Rodrigue, Raz (bib41) 2004; 24 Double, Halliday, Krill, Harasty, Cullen, Brooks, Creasey, Broe (bib14) 1996; 17 Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bib26) 2012; 61 Christensen, Rabbitt, Miller (bib8) 1994; 39 Lorenzi, Filippone, Frisoni, Alexander, Ourselin (bib32) 2019; 190 Pini, Pievani, Bocchetta, Altomare, Bosco, Cavedo, Galluzzi, Marizzoni, Frisoni (bib39) 2016; 30 Guimond, Meunier, Thirion (bib21) 2000; 77 Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler, Holland, Blennow, Brewer, Dale (bib16) 2010; 20 Bossa, Hernandez, Olmos (bib5) 2007 Hadj-Hamou, Lorenzi, Ayache, Pennec (bib23) 2016; 10 Muralidharan, Fishbaugh, Kim, Johnson, Paulsen, Gerig, Fletcher (bib35) Apr. 2016 Fonteijn, Modat, Clarkson, Barnes, Lehmann, Hobbs, Scahill, Tabrizi, Ourselin, Fox, Alexander (bib17) Apr. 2012; 60 Schiratti, Allassonnière, Colliot, Durrleman (bib45) 2017; 18 Koval, Schiratti, Routier, Bacci, Colliot, Allassonnière, Durrleman, Initiative (bib27) 2017 Wang (10.1016/j.neuroimage.2019.05.040_bib51) 2007; 26 Koval (10.1016/j.neuroimage.2019.05.040_bib27) 2017 Park (10.1016/j.neuroimage.2019.05.040_bib37) 2009; 60 Ohnishi (10.1016/j.neuroimage.2019.05.040_bib36) 2001; 22 Singh (10.1016/j.neuroimage.2019.05.040_bib47) 2013 Bilgel (10.1016/j.neuroimage.2019.05.040_bib3) 2016; 134 Cury (10.1016/j.neuroimage.2019.05.040_bib10) 2016 Carmichael (10.1016/j.neuroimage.2019.05.040_bib6) 2013; 66 Rohé (10.1016/j.neuroimage.2019.05.040_bib42) 2016 Franke (10.1016/j.neuroimage.2019.05.040_bib19) 2010; 50 Davatzikos (10.1016/j.neuroimage.2019.05.040_bib11) 2009; 132 Fischl (10.1016/j.neuroimage.2019.05.040_bib15) 2002; 33 Lorenzi (10.1016/j.neuroimage.2019.05.040_bib31) 2015; 36 Khanal (10.1016/j.neuroimage.2019.05.040_bib25) 2016 Hadj-Hamou (10.1016/j.neuroimage.2019.05.040_bib23) 2016; 10 Cash (10.1016/j.neuroimage.2019.05.040_bib7) 2015; 123 Schmitter (10.1016/j.neuroimage.2019.05.040_bib46) 2015; 7 Pini (10.1016/j.neuroimage.2019.05.040_bib39) 2016; 30 DeCarli (10.1016/j.neuroimage.2019.05.040_bib12) 2005; 26 Christensen (10.1016/j.neuroimage.2019.05.040_bib8) 1994; 39 Fonteijn (10.1016/j.neuroimage.2019.05.040_bib17) 2012; 60 Hadj-Hamou (10.1016/j.neuroimage.2019.05.040_bib22) 2016 Guimond (10.1016/j.neuroimage.2019.05.040_bib21) 2000; 77 Sabuncu (10.1016/j.neuroimage.2019.05.040_bib44) 2009; 28 Hutton (10.1016/j.neuroimage.2019.05.040_bib24) 2009; 48 Blezek (10.1016/j.neuroimage.2019.05.040_bib4) 2007; 11 Lorenzi (10.1016/j.neuroimage.2019.05.040_bib32) 2019; 190 Franke (10.1016/j.neuroimage.2019.05.040_bib18) 2012; 25 Schiratti (10.1016/j.neuroimage.2019.05.040_bib45) 2017; 18 Alzheimer’s Association and others (10.1016/j.neuroimage.2019.05.040_bib1) 2017; 13 Cole (10.1016/j.neuroimage.2019.05.040_bib9) 2018; 23 Arsigny (10.1016/j.neuroimage.2019.05.040_bib2) 2006 Reuter (10.1016/j.neuroimage.2019.05.040_bib40) 2012; 61 Long (10.1016/j.neuroimage.2019.05.040_bib28) 2012; 19 Sowell (10.1016/j.neuroimage.2019.05.040_bib48) 2003; 6 Good (10.1016/j.neuroimage.2019.05.040_bib20) 2001; 14 Lorenzi (10.1016/j.neuroimage.2019.05.040_bib29) 2013; 105 Donohue (10.1016/j.neuroimage.2019.05.040_bib13) 2014; 10 Double (10.1016/j.neuroimage.2019.05.040_bib14) 1996; 17 Marchewka (10.1016/j.neuroimage.2019.05.040_bib33) 2014; 35 van Velsen (10.1016/j.neuroimage.2019.05.040_bib50) 2013; 550 Bossa (10.1016/j.neuroimage.2019.05.040_bib5) 2007 Fjell (10.1016/j.neuroimage.2019.05.040_bib16) 2010; 20 Rosen (10.1016/j.neuroimage.2019.05.040_bib43) 2003; 117 Muralidharan (10.1016/j.neuroimage.2019.05.040_bib35) 2016 Rodrigue (10.1016/j.neuroimage.2019.05.040_bib41) 2004; 24 Klöppel (10.1016/j.neuroimage.2019.05.040_bib26) 2012; 61 Tzourio-Mazoyer (10.1016/j.neuroimage.2019.05.040_bib49) 2002; 15 Pedregosa (10.1016/j.neuroimage.2019.05.040_bib38) 2011; 12 Medvedev (10.1016/j.neuroimage.2019.05.040_bib34) 1990; 65 Lorenzi (10.1016/j.neuroimage.2019.05.040_bib30) 2013; 81 |
References_xml | – volume: 30 start-page: 25 year: 2016 end-page: 48 ident: bib39 article-title: Brain atrophy in alzheimer's disease and aging publication-title: Ageing Res. Rev. – volume: 81 start-page: 470 year: 2013 end-page: 483 ident: bib30 article-title: A robust and accurate symmetric diffeomorphic registration algorithm publication-title: Neuroimage – volume: 17 start-page: 513 year: 1996 end-page: 521 ident: bib14 article-title: Topography of brain atrophy during normal aging and alzheimer's disease publication-title: Neurobiol. Aging – start-page: 656 year: Apr. 2016 end-page: 659 ident: bib35 article-title: Bayesian covariate selection in mixed-effects models for longitudinal shape analysis publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) – volume: 10 start-page: 236 year: 2016 ident: bib23 article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields publication-title: Front. Neurosci. – volume: 48 start-page: 371 year: Nov. 2009 end-page: 380 ident: bib24 article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging publication-title: Neuroimage – volume: 26 start-page: 491 year: 2005 end-page: 510 ident: bib12 article-title: Measures of brain morphology and infarction in the framingham heart study: establishing what is normal publication-title: Neurobiol. Aging – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib15 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – start-page: 35 year: July 2016 end-page: 52 ident: bib25 article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease publication-title: Neuroimage – volume: 105 start-page: 111 year: 2013 end-page: 127 ident: bib29 article-title: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration publication-title: Int. J. Comput. Vis. – volume: 10 start-page: S400 year: Oct. 2014 end-page: S410 ident: bib13 article-title: Estimating long-term multivariate progression from short-term data publication-title: Alzheimer's Dementia – volume: 132 start-page: 2026 year: 2009 end-page: 2035 ident: bib11 article-title: Longitudinal progression of alzheimer’s-like patterns of atrophy in normal older adults: the spare-ad index publication-title: Brain – start-page: 560 year: 2013 end-page: 571 ident: bib47 article-title: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis publication-title: International Conference on Information Processing in Medical Imaging – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib38 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 36 start-page: S42 year: 2015 end-page: S52 ident: bib31 article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images publication-title: Neurobiol. Aging – volume: 117 start-page: 1150 year: 2003 ident: bib43 article-title: Differential associations between entorhinal and hippocampal volumes and memory performance in older adults publication-title: Behav. Neurosci. – volume: 60 start-page: 1880 year: Apr. 2012 end-page: 1889 ident: bib17 article-title: An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease publication-title: Neuroimage – volume: 24 start-page: 956 year: 2004 end-page: 963 ident: bib41 article-title: Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults publication-title: J. Neurosci. – volume: 550 start-page: 189 year: 2013 end-page: 194 ident: bib50 article-title: Brain cortical thickness in the general elderly population: the rotterdam scan study publication-title: Neurosci. Lett. – volume: 22 start-page: 1680 year: 2001 end-page: 1685 ident: bib36 article-title: Changes in brain morphology in alzheimer disease and normal aging: is alzheimer disease an exaggerated aging process? publication-title: Am. J. Neuroradiol. – start-page: 63 year: 2016 end-page: 75 ident: bib10 article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease publication-title: International Workshop on Spectral and Shape Analysis in Medical Imaging – volume: 25 start-page: 235 year: Jan. 2012 end-page: 245 ident: bib18 article-title: Longitudinal changes in individual publication-title: GeroPsych – volume: 60 start-page: 173 year: 2009 end-page: 196 ident: bib37 article-title: The adaptive brain: aging and neurocognitive scaffolding publication-title: Annu. Rev. Psychol. – volume: 65 start-page: 375 year: 1990 end-page: 398 ident: bib34 article-title: An attempt at a rational classification of theories of ageing publication-title: Biol. Rev. – volume: 13 start-page: 325 year: 2017 end-page: 373 ident: bib1 article-title: Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia – volume: 23 start-page: 1385 year: 2018 ident: bib9 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry – volume: 28 start-page: 1473 year: Sept. 2009 end-page: 1487 ident: bib44 article-title: Image-driven population analysis through mixture modeling publication-title: IEEE Trans. Med. Imaging – volume: 190 start-page: 56 year: 2019 end-page: 68 ident: bib32 article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in alzheimer's disease publication-title: Neuroimage – volume: 26 start-page: 462 year: Apr. 2007 end-page: 470 ident: bib51 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type publication-title: IEEE Trans. Med. Imaging – volume: 134 start-page: 658 year: July 2016 end-page: 670 ident: bib3 article-title: A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging publication-title: Neuroimage – start-page: 667 year: 2007 end-page: 674 ident: bib5 article-title: Contributions to 3d diffeomorphic atlas estimation: application to brain images. Medical Image Computing and Computer-Assisted Intervention-MICCAI – volume: 39 start-page: 609 year: 1994 ident: bib8 article-title: 3d brain mapping using a deformable neuroanatomy publication-title: Phys. Med. Biol. – volume: 66 start-page: 449 year: 2013 end-page: 456 ident: bib6 article-title: Coevolution of brain structures in amnestic mild cognitive impairment publication-title: Neuroimage – volume: 61 start-page: 1402 year: July 2012 end-page: 1418 ident: bib40 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 18 start-page: 4840 year: 2017 end-page: 4872 ident: bib45 article-title: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations publication-title: J. Mach. Learn. Res. – start-page: 924 year: 2006 end-page: 931 ident: bib2 article-title: A log-euclidean framework for statistics on diffeomorphisms publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006 – volume: 20 start-page: 2069 year: 2010 end-page: 2079 ident: bib16 article-title: And the Alzheimer's Disease Neuroimaging Initiative. Brain atrophy in healthy aging is related to csf levels of ab1-42 publication-title: Cerebr. Cortex – volume: 19 start-page: 785 year: 2012 end-page: 793 ident: bib28 article-title: Healthy aging: an automatic analysis of global and regional morphological alterations of human brain publication-title: Acad. Radiol. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib49 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage – start-page: 451 year: 2017 end-page: 459 ident: bib27 article-title: Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 35 start-page: 1865 year: 2014 end-page: 1874 ident: bib33 article-title: Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of alzheimer's disease publication-title: Hum. Brain Mapp. – volume: 123 start-page: 149 year: Dec. 2015 end-page: 164 ident: bib7 article-title: Assessing atrophy measurement techniques in dementia: results from the MIRIAD atrophy challenge publication-title: Neuroimage – start-page: 300 year: 2016 end-page: 307 ident: bib42 article-title: Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 14 start-page: 21 year: July 2001 end-page: 36 ident: bib20 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage – volume: 77 start-page: 192 year: 2000 end-page: 210 ident: bib21 article-title: Average brain models: a convergence study publication-title: Comput. Vis. Image Understand. – volume: 7 start-page: 7 year: 2015 end-page: 17 ident: bib46 article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage: Clinical – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bib19 article-title: Estimating the age of healthy subjects from t 1-weighted mri scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage – volume: 11 start-page: 443 year: Oct. 2007 end-page: 457 ident: bib4 article-title: Atlas stratification publication-title: Med. Image Anal. – volume: 61 start-page: 457 year: 2012 end-page: 463 ident: bib26 article-title: Diagnostic neuroimaging across diseases publication-title: Neuroimage – year: 2016 ident: bib22 article-title: Beyond Volumetry in Longitudinal Deformation-Based Morphometry: Application to Sexual Dimorphism during Adolescence – volume: 6 start-page: 309 year: 2003 end-page: 315 ident: bib48 article-title: Mapping cortical change across the human life span publication-title: Nat. Neurosci. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2019.05.040_bib38 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 300 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib42 article-title: Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking – volume: 105 start-page: 111 issue: 2 year: 2013 ident: 10.1016/j.neuroimage.2019.05.040_bib29 article-title: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0598-4 – start-page: 35 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib25 article-title: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.061 – volume: 65 start-page: 375 issue: 3 year: 1990 ident: 10.1016/j.neuroimage.2019.05.040_bib34 article-title: An attempt at a rational classification of theories of ageing publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1990.tb01428.x – volume: 81 start-page: 470 year: 2013 ident: 10.1016/j.neuroimage.2019.05.040_bib30 article-title: A robust and accurate symmetric diffeomorphic registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.114 – start-page: 667 year: 2007 ident: 10.1016/j.neuroimage.2019.05.040_bib5 – volume: 123 start-page: 149 year: 2015 ident: 10.1016/j.neuroimage.2019.05.040_bib7 article-title: Assessing atrophy measurement techniques in dementia: results from the MIRIAD atrophy challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.087 – volume: 30 start-page: 25 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib39 article-title: Brain atrophy in alzheimer's disease and aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.01.002 – volume: 77 start-page: 192 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2019.05.040_bib21 article-title: Average brain models: a convergence study publication-title: Comput. Vis. Image Understand. doi: 10.1006/cviu.1999.0815 – volume: 26 start-page: 491 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2019.05.040_bib12 article-title: Measures of brain morphology and infarction in the framingham heart study: establishing what is normal publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.05.004 – volume: 24 start-page: 956 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2019.05.040_bib41 article-title: Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4166-03.2004 – volume: 60 start-page: 1880 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2019.05.040_bib17 article-title: An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.062 – start-page: 656 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib35 article-title: Bayesian covariate selection in mixed-effects models for longitudinal shape analysis – volume: 190 start-page: 56 year: 2019 ident: 10.1016/j.neuroimage.2019.05.040_bib32 article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.059 – volume: 132 start-page: 2026 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2019.05.040_bib11 article-title: Longitudinal progression of alzheimer’s-like patterns of atrophy in normal older adults: the spare-ad index publication-title: Brain doi: 10.1093/brain/awp091 – volume: 10 start-page: S400 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2019.05.040_bib13 article-title: Estimating long-term multivariate progression from short-term data publication-title: Alzheimer's Dementia – start-page: 924 year: 2006 ident: 10.1016/j.neuroimage.2019.05.040_bib2 article-title: A log-euclidean framework for statistics on diffeomorphisms – volume: 20 start-page: 2069 issue: 9 year: 2010 ident: 10.1016/j.neuroimage.2019.05.040_bib16 article-title: And the Alzheimer's Disease Neuroimaging Initiative. Brain atrophy in healthy aging is related to csf levels of ab1-42 publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhp279 – volume: 60 start-page: 173 year: 2009 ident: 10.1016/j.neuroimage.2019.05.040_bib37 article-title: The adaptive brain: aging and neurocognitive scaffolding publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.59.103006.093656 – volume: 22 start-page: 1680 issue: 9 year: 2001 ident: 10.1016/j.neuroimage.2019.05.040_bib36 article-title: Changes in brain morphology in alzheimer disease and normal aging: is alzheimer disease an exaggerated aging process? publication-title: Am. J. Neuroradiol. – start-page: 560 year: 2013 ident: 10.1016/j.neuroimage.2019.05.040_bib47 article-title: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis – volume: 48 start-page: 371 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2019.05.040_bib24 article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.043 – volume: 11 start-page: 443 issue: 5 year: 2007 ident: 10.1016/j.neuroimage.2019.05.040_bib4 article-title: Atlas stratification publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.07.001 – volume: 17 start-page: 513 issue: 4 year: 1996 ident: 10.1016/j.neuroimage.2019.05.040_bib14 article-title: Topography of brain atrophy during normal aging and alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(96)00005-X – volume: 28 start-page: 1473 issue: 9 year: 2009 ident: 10.1016/j.neuroimage.2019.05.040_bib44 article-title: Image-driven population analysis through mixture modeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2017942 – volume: 550 start-page: 189 year: 2013 ident: 10.1016/j.neuroimage.2019.05.040_bib50 article-title: Brain cortical thickness in the general elderly population: the rotterdam scan study publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.06.063 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2019.05.040_bib15 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 10 start-page: 236 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib23 article-title: Longitudinal analysis of image time series with diffeomorphic deformations: a computational framework based on stationary velocity fields publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00236 – volume: 39 start-page: 609 issue: 3 year: 1994 ident: 10.1016/j.neuroimage.2019.05.040_bib8 article-title: 3d brain mapping using a deformable neuroanatomy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/39/3/022 – volume: 36 start-page: S42 year: 2015 ident: 10.1016/j.neuroimage.2019.05.040_bib31 article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.07.046 – volume: 6 start-page: 309 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2019.05.040_bib48 article-title: Mapping cortical change across the human life span publication-title: Nat. Neurosci. doi: 10.1038/nn1008 – volume: 134 start-page: 658 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib3 article-title: A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.001 – volume: 35 start-page: 1865 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2019.05.040_bib33 article-title: Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of alzheimer's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22297 – volume: 19 start-page: 785 issue: 7 year: 2012 ident: 10.1016/j.neuroimage.2019.05.040_bib28 article-title: Healthy aging: an automatic analysis of global and regional morphological alterations of human brain publication-title: Acad. Radiol. doi: 10.1016/j.acra.2012.03.006 – start-page: 451 year: 2017 ident: 10.1016/j.neuroimage.2019.05.040_bib27 article-title: Statistical learning of spatiotemporal patterns from longitudinal manifold-valued networks – volume: 61 start-page: 457 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2019.05.040_bib26 article-title: Diagnostic neuroimaging across diseases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.002 – volume: 23 start-page: 1385 issue: 5 year: 2018 ident: 10.1016/j.neuroimage.2019.05.040_bib9 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.62 – volume: 117 start-page: 1150 issue: 6 year: 2003 ident: 10.1016/j.neuroimage.2019.05.040_bib43 article-title: Differential associations between entorhinal and hippocampal volumes and memory performance in older adults publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.117.6.1150 – volume: 61 start-page: 1402 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2019.05.040_bib40 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 18 start-page: 4840 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2019.05.040_bib45 article-title: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 883 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2019.05.040_bib19 article-title: Estimating the age of healthy subjects from t 1-weighted mri scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.005 – start-page: 63 year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib10 article-title: Spatio-temporal shape analysis of cross-sectional data for detection of early changes in neurodegenerative disease – volume: 7 start-page: 7 year: 2015 ident: 10.1016/j.neuroimage.2019.05.040_bib46 article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2014.11.001 – volume: 26 start-page: 462 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2019.05.040_bib51 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887380 – volume: 13 start-page: 325 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2019.05.040_bib1 article-title: Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2017.02.001 – volume: 14 start-page: 21 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2019.05.040_bib20 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0786 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.040_bib22 – volume: 66 start-page: 449 year: 2013 ident: 10.1016/j.neuroimage.2019.05.040_bib6 article-title: Coevolution of brain structures in amnestic mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.029 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2019.05.040_bib49 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 25 start-page: 235 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2019.05.040_bib18 article-title: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and alzheimer's disease publication-title: GeroPsych doi: 10.1024/1662-9647/a000074 |
SSID | ssj0009148 |
Score | 2.5009549 |
Snippet | In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 255 |
SubjectTerms | Age Aged Aging Aging - physiology Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer Disease - physiopathology Alzheimer's disease Atrophy Bias Biomarkers Brain - diagnostic imaging Brain - pathology Brain - physiopathology Brain morphology Computer Science Computer Vision and Pattern Recognition Cross-Sectional Studies Deformations Disease Progression Evolution Female Health care Hippocampus Humans Image Processing Imaging biomarkers Inverse problems Magnetic Resonance Imaging Male Models, Neurological Morphology Neurodegenerative diseases Neuroimaging Parameter estimation Spatio-temporal model Statistical analysis Studies Temporal lobe |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZokRAXVN7bFmQQEieLZG3HiThUK0S1QpQTlfZm-akWtcnSbDnw6zvjONlLQaucknhsy2PPjO1vZgj5EI11lTGwN1FuzoSTgjXcBuZEUFZxUQmH_s5nP6rlufi2kqt84NZnWOUoE5Og9p3DM_JPoGpg79GAND1Z_2aYNQpvV3MKjT3yEEOXIaRLrdQ26G4pBlc4yVkNBTKSZ8B3pXiRl9ewahHg1aT4nXgEcr962rtAnOS_jNCkjE4PyJNsRdLFwPan5EFon5FHZ_me_DlZL2hKcUO7SC0mgYBXGNBR0NHB3benyZMleLrpaMpWRE3r6eLq70W4vA43H3ua728oeqHQ1GXWJ_AWNm-mqJ79C3J--vXnlyXLuRUYsINvmImy8GVRRBmkV_BYUPSqjLA-nSnqoKSNCpSbUU20fu6k5957WTUi8Br2LPwl2W-7NrwmtIrzEC33IVRShFg3EfSilTIYUYJ5wGdEjUOqXQ48jvkvrvSIMPult8zQyAxdSA3MmJFyolwPwTd2oGlGrunRuRTEoQYNsQPt54k2GyCDYbEj9XuYJFNHMW73cvFd4zcoJGrY-_2BwTge55DO0qLX27k9I--m37DO8fLGtKG7xTIgfTHXAVTxaph7U1McjGaw2-rD_1d-RB5jdweE3DHZ39zchjdgUm3s27Ru7gB2miFE priority: 102 providerName: ProQuest |
Title | A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191930432X https://dx.doi.org/10.1016/j.neuroimage.2019.05.040 https://www.ncbi.nlm.nih.gov/pubmed/31121298 https://www.proquest.com/docview/2244079284 https://www.proquest.com/docview/2231847883 https://inria.hal.science/hal-01948174 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3va9QwNMwJ4hfx907niCL4qV57SZoWP9Vj49TtGNPBfQtJk7CTrXesNz_4wb_d99K0Q1A4kEJL2rw25L28H837Qchbr02daw22iawnCa8FT0pmXFJzJ41kPOc1xjufzPPZOf-8EIsdMu1jYdCtMvL-jqcHbh3vjONsjtfL5fgraAYgbsDeKBnmlVtgBDuXSOXvf926eZQZ78LhBEuwd_Tm6Xy8Qs7I5RWsXHTyKkMOT_wN8ncRdecCfSX_pYgGgXT0kDyImiStusE-IjuueUzuncS98idkXdFQ5oauPDVYCAKaMKk9s6NdyG9LQzSLs3SzoqFiEdWNpdXlzwu3vHLX71oa93AoRqLQMOSkDQ5c-Hk9ZPZsn5Lzo8Nv01kS6yskgBK2SbQXqc3S1AsnrITDgLCXmYc1Wuu0cFIYL0HAaVl6Yye1sMxaK_KSO1aA3cKekd1m1bg9QnM_cd4w61wuuPNF6UE2GiGc5hmoCGxEZD-lqo7Jx7EGxqXqvcy-q1tkKESGSoUCZIxINkCuuwQcW8CUPdZUH2AKLFGBlNgC9sMA-wchbgn9BohkGCjm7p5VxwrvQSdegP33AyZjv6chFTlGq0CVAtu6BG1hRF4Pj2Gt4waObtzqBvsAB8Z6B_CK5x3tDZ9ioDiD7la8-K_xvyT3sdU50e2T3c31jXsFWtfGHIRlBWe5kAfkbjU9Oz7F66cvszlcPx7OT89-A_gqMms |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQS8IL4pDDAIxFNEEtv5EEKowKaOtRVCm7Q3Y8e2NrSlZelA8EfxN3KXr74A6svUpzQ5x_Kdf3cX3wfAc69NkWiNvklaxIEopAhyblxQCJealItEFJTvPJ0l40Px8UgebcDvLheGwio7TKyB2s4L-kb-ClUN-h45ounbxbeAukbR6WrXQqMRi3338we6bNWbvQ_I3xdxvLtz8H4ctF0FApwIXwbay9BGYeilkzbFn0EVl0YeJbPQYeZSaXyKsK7T3BsbF9Jya61McuF4htY6x3E3YUtwdGUGsPVuZ_bp86rMbySa5DvJgyyK8jZ2qIkoqytUnpwhTlBIWV5XDKWPLn9XiJvHFJn5L7O3Vn-7N-B6a7eyUSNoN2HDlbfgyrQ9mb8NixGrm-qwuWeG2k7gJbKwg1bWJBhXrM6dcZYt56zuj8R0adno9NexOzlz5y8r1p4YMcp7YfWUg6oOF6PX676OaHUHDi9l3e_CoJyX7j6wxMfOG26dS6RwPss9amIjpdMiQoOEDyHtllQVbalz6rhxqrqYtq9qxQxFzFChVMiMIUQ95aIp97EGTd5xTXXprAjACnXSGrSve9rW5GlMmTWpn6GQ9BOlSuHj0UTRf_iQyNDb_I6Lsd3JkGrxqVKr3TSEp_1tRBY6LtKlm1_QM4j31F0Bh7jXyF7_Ko5mOlqK2YP_D_4Ero4PphM12ZvtP4RrNPUmPm8bBsvzC_cIDbqledzuIgZfLnvj_gFT81-5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIlVcEO9uKWAQiFPUJLbjRAihFWW1pQ9xoNLejB3balGbbJstCH4av44Z57EXQHup9pRNxrE8M9-M43kQ8sprU2Zaw95ElmnES8GjghkXldxJIxnPeIn5zkfH2fSEf5qJ2Rr53efCYFhlj4kBqG1d4jfyXTA1sPcoAE13fRcW8Xlv8n5-GWEHKTxp7dtptCJy4H7-gO1b825_D3j9Ok0nH798mEZdh4EIJsUWkfYitkkce-GElfAzYO5k4kFKSx3nTgrjJUC8loU3Ni2FZdZakRXcsRw8dwbjrpNbkokEdUzO5LLgb8LbNDzBojxJii6KqI0tC7Uqzy4AMTC4rAi1Q_Hzy99N4_opxmj-ywEOhnByl9zpPFg6bkXuHllz1X2yedSd0T8g8zEN7XVo7anBBhRwCczsQZa2qcYNDVk0ztJFTUOnJKorS8fnv07d2YW7etPQ7uyIYgYMDVOOmhA4hq_XQ0XR5iE5uZFVf0Q2qrpyW4RmPnXeMOtcJrjzeeHBJhshnOYJuCZsRGS_pKrsip5j741z1Ue3fVNLZihkhoqFAmaMSDJQztvCHyvQFD3XVJ_YClCswDqtQPt2oO2cn9apWZH6JQjJMFGsGT4dHyr8Dx7iOew7v8Ni7PQypDqkatRSr0bkxXAbMAYPjnTl6mt8BpAf-yzAEI9b2RtexcBhB58x3_7_4M_JJqirOtw_PnhCbuPM20C9HbKxuLp2T8GzW5hnQYUo-XrTOvsHsndiiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+of+brain+morphological+changes+related+to+aging+and+Alzheimer%27s+disease+from+cross-sectional+assessments&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sivera%2C+Rapha%C3%ABl&rft.au=Delingette%2C+Herv%C3%A9&rft.au=Lorenzi%2C+Marco&rft.au=Pennec%2C+Xavier&rft.date=2019-09-01&rft.eissn=1095-9572&rft.volume=198&rft.spage=255&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.040&rft_id=info%3Apmid%2F31121298&rft.externalDocID=31121298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |