Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome

Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. 1; p. 703
Main Authors Žilina, Olga, Koltšina, Marina, Raid, Raivo, Kurg, Ants, Tõnisson, Neeme, Salumets, Andres
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.09.2015
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-015-1916-3

Cover

Abstract Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. Results We studied panels of tissue samples (11–12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. Conclusions Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
AbstractList Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues.BACKGROUNDSomatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues.We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems.RESULTSWe studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems.Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.CONCLUSIONSOur results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. Results We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. Conclusions Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues. Keywords: Array-CGH: array comparative genomic hybridization, Copy-neutral loss of heterozygosity (cn-LOH), Copy number variation (CNV), Human tissues, SNP genotyping arrays, Somatic mosaicism
Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. Results We studied panels of tissue samples (11–12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. Conclusions Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised oocyte. Mosaicism may result from a mutation that occurs during postzygotic development and is propagated to only a subset of the adult cells. Our aim was to investigate both somatic mosaicism for copy-neutral loss of heterozygosity (cn-LOH) events and DNA copy number variations (CNVs) in fully differentiated tissues. We studied panels of tissue samples (11-12 tissues per individual) from four autopsy subjects using high-resolution Illumina HumanOmniExpress-12 BeadChips to reveal the presence of possible intra-individual tissue-specific cn-LOH and CNV patterns. We detected five mosaic cn-LOH regions >5 Mb in some tissue samples in three out of four individuals. We also detected three CNVs that affected only a portion of the tissues studied in one out of four individuals. These three somatic CNVs range from 123 to 796 kb and are also found in the general population. An attempt was made to explain the succession of genomic events that led to the observed somatic genetic mosaicism under the assumption that the specific mosaic patterns of CNV and cn-LOH changes reflect their formation during the postzygotic embryonic development of germinal layers and organ systems. Our results give further support to the idea that somatic mosaicism for CNVs, and also cn-LOHs, is a common phenomenon in phenotypically normal humans. Thus, the examination of only a single tissue might not provide enough information to diagnose potentially deleterious CNVs within an individual. During routine CNV and cn-LOH analysis, DNA derived from a buccal swab can be used in addition to blood DNA to get information about the CNV/cn-LOH content in tissues of both mesodermal and ectodermal origin. Currently, the real frequency and possible phenotypic consequences of both CNVs and cn-LOHs that display somatic mosaicism remain largely unknown. To answer these questions, future studies should involve larger cohorts of individuals and a range of tissues.
ArticleNumber 703
Audience Academic
Author Koltšina, Marina
Salumets, Andres
Kurg, Ants
Žilina, Olga
Tõnisson, Neeme
Raid, Raivo
Author_xml – sequence: 1
  givenname: Olga
  surname: Žilina
  fullname: Žilina, Olga
  email: olga.zhilina@ut.ee
  organization: Institute of Molecular and Cell Biology, University of Tartu, Department of Genetics, United Laboratories, Tartu University Hospital
– sequence: 2
  givenname: Marina
  surname: Koltšina
  fullname: Koltšina, Marina
  organization: Institute of Molecular and Cell Biology, University of Tartu
– sequence: 3
  givenname: Raivo
  surname: Raid
  fullname: Raid, Raivo
  organization: Institute of Molecular and Cell Biology, University of Tartu
– sequence: 4
  givenname: Ants
  surname: Kurg
  fullname: Kurg, Ants
  organization: Institute of Molecular and Cell Biology, University of Tartu
– sequence: 5
  givenname: Neeme
  surname: Tõnisson
  fullname: Tõnisson, Neeme
  organization: Department of Genetics, United Laboratories, Tartu University Hospital, Estonian Genome Center, University of Tartu
– sequence: 6
  givenname: Andres
  surname: Salumets
  fullname: Salumets, Andres
  organization: Competence Centre on Health Technologies, Department of Obstetrics and Gynaecology, University of Tartu, Institute of Bio- and Translational Medicine, University of Tartu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26376747$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1r1TAYxotM3If-Ad5IwJt50dl8NDm9EQ7zazAUnF6HNH3Tk9Ekx6QdHv9603WTHZFRQkPyex7y8LzHxYEPHoriJa7OMF7xtwmTFWdlhesSN5iX9ElxhJnAJcGcHTzYHxbHKV1XFRYrUj8rDgmnggsmjorhKjg1Wo1cSMpqmxwyISIdtrvSwzRGNaAhpISCQRsYIYbfuz4kO-6Q8h16_2V9yyI_uRYiulHRZrvgE7IejRtAm8kpj3rwwcHz4qlRQ4IXd_-T4sfHD9_PP5eXXz9dnK8vS10zOpaqo23bAtcV5YZpI2rNFGjNGFSEGNUZbjQn9SrHg7YSAFTgrmlBNxUBJuhJ8W7x3U6tg06Dn3PIbbROxZ0Mysr9G283sg83ktWCNmQ2OL0ziOHnBGmUziYNw6A8hClJLDBtmKhXTUZfL2ivBpDWm5Ad9YzLdc0w5XnNhmf_ofLXgbM6t2psPt8TvNkTZGaEX2OvppTkxdW3ffbVw7h_c963nAGxADrmKiMYqe14W1N-hR0kruQ8T3KZJ5nnSc7zJGlW4n-U9-aPaciiSZn1PUR5Haboc-GPiP4AfSjdxQ
CitedBy_id crossref_primary_10_1016_j_beha_2021_101279
crossref_primary_10_1016_j_jdrv_2025_01_002
crossref_primary_10_1038_nrg_2016_145
crossref_primary_10_1007_s00432_023_05505_4
crossref_primary_10_1159_000448368
crossref_primary_10_3390_ijms21051860
crossref_primary_10_18632_oncotarget_28174
crossref_primary_10_1038_srep41268
crossref_primary_10_1038_s41598_017_03711_y
crossref_primary_10_1016_j_jid_2022_06_011
crossref_primary_10_1007_s12264_023_01124_8
crossref_primary_10_1007_s00247_020_04837_4
crossref_primary_10_1038_srep23500
crossref_primary_10_2217_epi_16_8
crossref_primary_10_1073_pnas_1616035114
crossref_primary_10_3389_fgene_2023_1323052
Cites_doi 10.2174/138920210793176047
10.1073/pnas.0909343106
10.1126/science.1243472
10.1182/blood-2007-05-092304
10.1038/nrg1767
10.1002/humu.20399
10.1093/hmg/ddq003
10.1371/journal.pone.0009591
10.1016/j.molmed.2009.01.005
10.1146/annurev.genom.9.081307.164217
10.1016/j.cll.2011.08.003
10.1038/ng.3200
10.1002/gcc.20524
10.1371/journal.pone.0000558
10.1086/519795
10.1038/nrg906
10.1093/ije/dyt268
10.1093/nar/29.9.e45
10.1016/j.tig.2011.03.002
10.1093/nar/gkm076
10.1186/1471-2105-14-S11-S1
10.1016/j.ajhg.2007.12.011
10.1136/jmg.2005.039453
10.1038/ng.2270
10.1371/journal.pcbi.0020041
10.1007/978-1-61779-507-7_12
10.1038/ng.238
10.1016/j.ajhg.2011.12.009
10.1146/annurev-med-100708-204735
10.1093/hmg/ddi493
10.1016/j.ajhg.2010.06.002
10.1016/j.ajhg.2008.08.007
10.1002/humu.20815
10.1126/science.1098918
10.1016/j.ajhg.2015.01.011
10.1101/gr.6861907
10.1093/hmg/ddl436
10.1006/smim.1999.0188
ContentType Journal Article
Copyright Žilina et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright_xml – notice: Žilina et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12864-015-1916-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Science in Context
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID PMC4573927
A541364137
26376747
10_1186_s12864_015_1916_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Estonian Ministry of Education and Research
  grantid: SF0180027s10; SF0180142s08; IUT 34-16
– fundername: European Regional Development Fund
  grantid: FP7 278913; FP7 306031; FP7 313010
– fundername: EU-FP7 Eurostars program
  grantid: EU41564
– fundername: EU-FP7 IAPP project
  grantid: EU324509
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c543t-ad3bbbe6c036f4cf75c4aecc44e022fadf6fc6258471eb07ee371d9bec902e473
IEDL.DBID M48
ISSN 1471-2164
IngestDate Thu Aug 21 17:59:58 EDT 2025
Fri Sep 05 04:49:41 EDT 2025
Tue Jun 17 22:06:12 EDT 2025
Tue Jun 10 21:01:58 EDT 2025
Fri Jun 27 05:58:40 EDT 2025
Thu Apr 03 07:05:27 EDT 2025
Tue Jul 01 02:22:21 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Sat Sep 06 07:21:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Array-CGH: array comparative genomic hybridization
Copy-neutral loss of heterozygosity (cn-LOH)
Somatic mosaicism
Copy number variation (CNV)
Human tissues
SNP genotyping arrays
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-ad3bbbe6c036f4cf75c4aecc44e022fadf6fc6258471eb07ee371d9bec902e473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12864-015-1916-3
PMID 26376747
PQID 1713947589
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4573927
proquest_miscellaneous_1713947589
gale_infotracmisc_A541364137
gale_infotracacademiconefile_A541364137
gale_incontextgauss_ISR_A541364137
pubmed_primary_26376747
crossref_citationtrail_10_1186_s12864_015_1916_3
crossref_primary_10_1186_s12864_015_1916_3
springer_journals_10_1186_s12864_015_1916_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150916
2015-9-16
2015-Sep-16
PublicationDateYYYYMMDD 2015-09-16
PublicationDate_xml – month: 9
  year: 2015
  text: 20150916
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References AF McRae (1916_CR17) 2015
J Simon-Sanchez (1916_CR35) 2007; 16
A Piotrowski (1916_CR2) 2008; 29
MJ McConnell (1916_CR19) 2013; 342
H Mkrtchyan (1916_CR1) 2010; 5
MJ Machiela (1916_CR11) 2015; 96
J Gibson (1916_CR37) 2006; 15
JP Dumanski (1916_CR13) 2012; 838
R Beroukhim (1916_CR22) 2006; 2
KB Jacobs (1916_CR5) 2012; 44
A Abdellaoui (1916_CR34) 2015
F Zhang (1916_CR16) 2009; 10
S Colella (1916_CR28) 2007; 35
P Stankiewicz (1916_CR15) 2010; 61
LK Conlin (1916_CR7) 2010; 19
S Purcell (1916_CR39) 2007; 81
YB Yurov (1916_CR10) 2007; 2
H Youssoufian (1916_CR3) 2002; 3
R McQuillan (1916_CR36) 2008; 83
Y Bergman (1916_CR9) 1999; 11
CE Bruder (1916_CR12) 2008; 82
B Rodriguez-Santiago (1916_CR25) 2010; 87
1916_CR26
M Zhao (1916_CR30) 2013; 14 Suppl 11
HM Kearney (1916_CR20) 2011; 31
K Wang (1916_CR29) 2007; 17
LA Forsberg (1916_CR33) 2012; 90
M Tuna (1916_CR24) 2009; 15
J Sebat (1916_CR8) 2004; 305
B Menten (1916_CR6) 2006; 43
L Feuk (1916_CR14) 2006; 7
LH Li (1916_CR38) 2006; 27
KC Lo (1916_CR23) 2008; 47
SA Frank (1916_CR27) 2010; 107
MW Pfaffl (1916_CR40) 2001; 29
LP Gondek (1916_CR21) 2008; 111
H Mkrtchyan (1916_CR18) 2010; 11
RE Handsaker (1916_CR31) 2015; 47
SA McCarroll (1916_CR32) 2008; 40
S De (1916_CR4) 2011; 27
17341461 - Nucleic Acids Res. 2007;35(6):2013-25
19715442 - Annu Rev Genomics Hum Genet. 2009;10:451-81
24564169 - BMC Bioinformatics. 2013;14 Suppl 11:S1
16955415 - Hum Mutat. 2006 Nov;27(11):1115-21
17593959 - PLoS One. 2007;2(6):e558
20053666 - Hum Mol Genet. 2010 Apr 1;19(7):1263-75
21358987 - Curr Genomics. 2010 Sep;11(6):426-31
22305530 - Am J Hum Genet. 2012 Feb 10;90(2):217-28
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
10497086 - Semin Immunol. 1999 Oct;11(5):319-28
20598279 - Am J Hum Genet. 2010 Jul 9;87(1):129-38
12360233 - Nat Rev Genet. 2002 Oct;3(10):748-58
16436455 - Hum Mol Genet. 2006 Mar 1;15(5):789-95
22118739 - Clin Lab Med. 2011 Dec;31(4):595-613, ix
19805033 - Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1:1725-30
20231887 - PLoS One. 2010;5(3):e9591
16490798 - J Med Genet. 2006 Aug;43(8):625-33
15273396 - Science. 2004 Jul 23;305(5683):525-8
16699594 - PLoS Comput Biol. 2006 May;2(5):e41
18760389 - Am J Hum Genet. 2008 Sep;83(3):359-72
22561519 - Nat Genet. 2012 Jun;44(6):651-8
20059347 - Annu Rev Med. 2010;61:437-55
17116639 - Hum Mol Genet. 2007 Jan 1;16(1):1-14
25578400 - Twin Res Hum Genet. 2015 Feb;18(1):13-8
18050302 - Genes Chromosomes Cancer. 2008 Mar;47(3):221-37
25748358 - Am J Hum Genet. 2015 Mar 5;96(3):487-97
24518929 - Int J Epidemiol. 2015 Aug;44(4):1137-47
17921354 - Genome Res. 2007 Nov;17(11):1665-74
18570184 - Hum Mutat. 2008 Sep;29(9):1118-24
17954704 - Blood. 2008 Feb 1;111(3):1534-42
19246245 - Trends Mol Med. 2009 Mar;15(3):120-8
21496937 - Trends Genet. 2011 Jun;27(6):217-23
25621458 - Nat Genet. 2015 Mar;47(3):296-303
16418744 - Nat Rev Genet. 2006 Feb;7(2):85-97
22228016 - Methods Mol Biol. 2012;838:249-72
25578775 - Twin Res Hum Genet. 2015 Feb;18(1):1-12
18776908 - Nat Genet. 2008 Oct;40(10):1166-74
18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71
24179226 - Science. 2013 Nov 1;342(6158):632-7
References_xml – volume: 11
  start-page: 426
  issue: 6
  year: 2010
  ident: 1916_CR18
  publication-title: Curr Genom
  doi: 10.2174/138920210793176047
– volume: 107
  start-page: 1725
  issue: suppl 1
  year: 2010
  ident: 1916_CR27
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0909343106
– volume: 342
  start-page: 632
  issue: 6158
  year: 2013
  ident: 1916_CR19
  publication-title: Science
  doi: 10.1126/science.1243472
– volume: 111
  start-page: 1534
  issue: 3
  year: 2008
  ident: 1916_CR21
  publication-title: Blood
  doi: 10.1182/blood-2007-05-092304
– volume: 7
  start-page: 85
  issue: 2
  year: 2006
  ident: 1916_CR14
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1767
– volume: 27
  start-page: 1115
  issue: 11
  year: 2006
  ident: 1916_CR38
  publication-title: Hum Mutat
  doi: 10.1002/humu.20399
– volume: 19
  start-page: 1263
  issue: 7
  year: 2010
  ident: 1916_CR7
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq003
– volume: 5
  start-page: e9591
  issue: 3
  year: 2010
  ident: 1916_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009591
– volume: 15
  start-page: 120
  issue: 3
  year: 2009
  ident: 1916_CR24
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2009.01.005
– volume: 10
  start-page: 451
  year: 2009
  ident: 1916_CR16
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.9.081307.164217
– volume: 31
  start-page: 595
  issue: 4
  year: 2011
  ident: 1916_CR20
  publication-title: Clin Lab Med
  doi: 10.1016/j.cll.2011.08.003
– volume: 47
  start-page: 296
  year: 2015
  ident: 1916_CR31
  publication-title: Nat Genet
  doi: 10.1038/ng.3200
– volume: 47
  start-page: 221
  issue: 3
  year: 2008
  ident: 1916_CR23
  publication-title: Gene Chromosome Canc
  doi: 10.1002/gcc.20524
– volume: 2
  start-page: e558
  issue: 6
  year: 2007
  ident: 1916_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000558
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: 1916_CR39
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– start-page: 1
  volume-title: Large autosomal copy-number differences within unselected monozygotic twin pairs are rare. Twin research and human genetics: the official journal of the International Society for Twin Studies
  year: 2015
  ident: 1916_CR17
– volume: 3
  start-page: 748
  issue: 10
  year: 2002
  ident: 1916_CR3
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg906
– ident: 1916_CR26
  doi: 10.1093/ije/dyt268
– volume: 29
  start-page: e45
  issue: 9
  year: 2001
  ident: 1916_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 27
  start-page: 217
  issue: 6
  year: 2011
  ident: 1916_CR4
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2011.03.002
– volume: 35
  start-page: 2013
  issue: 6
  year: 2007
  ident: 1916_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm076
– volume: 14 Suppl 11
  start-page: S1
  year: 2013
  ident: 1916_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S11-S1
– start-page: 1
  volume-title: CNV concordance in 1097 MZ Twin Pairs. Twin research and human genetics: the official journal of the International Society for Twin Studies
  year: 2015
  ident: 1916_CR34
– volume: 82
  start-page: 763
  issue: 3
  year: 2008
  ident: 1916_CR12
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2007.12.011
– volume: 43
  start-page: 625
  issue: 8
  year: 2006
  ident: 1916_CR6
  publication-title: J Med Genet
  doi: 10.1136/jmg.2005.039453
– volume: 44
  start-page: 651
  issue: 6
  year: 2012
  ident: 1916_CR5
  publication-title: Nat Genet
  doi: 10.1038/ng.2270
– volume: 2
  start-page: e41
  issue: 5
  year: 2006
  ident: 1916_CR22
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020041
– volume: 838
  start-page: 249
  year: 2012
  ident: 1916_CR13
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-507-7_12
– volume: 40
  start-page: 1166
  issue: 10
  year: 2008
  ident: 1916_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng.238
– volume: 90
  start-page: 217
  issue: 2
  year: 2012
  ident: 1916_CR33
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.12.009
– volume: 61
  start-page: 437
  year: 2010
  ident: 1916_CR15
  publication-title: Annu Rev Med
  doi: 10.1146/annurev-med-100708-204735
– volume: 15
  start-page: 789
  issue: 5
  year: 2006
  ident: 1916_CR37
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddi493
– volume: 87
  start-page: 129
  issue: 1
  year: 2010
  ident: 1916_CR25
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.06.002
– volume: 83
  start-page: 359
  issue: 3
  year: 2008
  ident: 1916_CR36
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.08.007
– volume: 29
  start-page: 1118
  issue: 9
  year: 2008
  ident: 1916_CR2
  publication-title: Hum Mutat
  doi: 10.1002/humu.20815
– volume: 305
  start-page: 525
  issue: 5683
  year: 2004
  ident: 1916_CR8
  publication-title: Science
  doi: 10.1126/science.1098918
– volume: 96
  start-page: 487
  issue: 3
  year: 2015
  ident: 1916_CR11
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2015.01.011
– volume: 17
  start-page: 1665
  issue: 11
  year: 2007
  ident: 1916_CR29
  publication-title: Genome Res
  doi: 10.1101/gr.6861907
– volume: 16
  start-page: 1
  issue: 1
  year: 2007
  ident: 1916_CR35
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl436
– volume: 11
  start-page: 319
  issue: 5
  year: 1999
  ident: 1916_CR9
  publication-title: Semin Immunol
  doi: 10.1006/smim.1999.0188
– reference: 15273396 - Science. 2004 Jul 23;305(5683):525-8
– reference: 17116639 - Hum Mol Genet. 2007 Jan 1;16(1):1-14
– reference: 18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71
– reference: 16490798 - J Med Genet. 2006 Aug;43(8):625-33
– reference: 19246245 - Trends Mol Med. 2009 Mar;15(3):120-8
– reference: 16418744 - Nat Rev Genet. 2006 Feb;7(2):85-97
– reference: 17341461 - Nucleic Acids Res. 2007;35(6):2013-25
– reference: 20053666 - Hum Mol Genet. 2010 Apr 1;19(7):1263-75
– reference: 20231887 - PLoS One. 2010;5(3):e9591
– reference: 19715442 - Annu Rev Genomics Hum Genet. 2009;10:451-81
– reference: 18050302 - Genes Chromosomes Cancer. 2008 Mar;47(3):221-37
– reference: 22118739 - Clin Lab Med. 2011 Dec;31(4):595-613, ix
– reference: 20598279 - Am J Hum Genet. 2010 Jul 9;87(1):129-38
– reference: 24179226 - Science. 2013 Nov 1;342(6158):632-7
– reference: 18570184 - Hum Mutat. 2008 Sep;29(9):1118-24
– reference: 25578400 - Twin Res Hum Genet. 2015 Feb;18(1):13-8
– reference: 10497086 - Semin Immunol. 1999 Oct;11(5):319-28
– reference: 21496937 - Trends Genet. 2011 Jun;27(6):217-23
– reference: 20059347 - Annu Rev Med. 2010;61:437-55
– reference: 25578775 - Twin Res Hum Genet. 2015 Feb;18(1):1-12
– reference: 12360233 - Nat Rev Genet. 2002 Oct;3(10):748-58
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 22228016 - Methods Mol Biol. 2012;838:249-72
– reference: 18760389 - Am J Hum Genet. 2008 Sep;83(3):359-72
– reference: 25748358 - Am J Hum Genet. 2015 Mar 5;96(3):487-97
– reference: 22561519 - Nat Genet. 2012 Jun;44(6):651-8
– reference: 24518929 - Int J Epidemiol. 2015 Aug;44(4):1137-47
– reference: 22305530 - Am J Hum Genet. 2012 Feb 10;90(2):217-28
– reference: 16699594 - PLoS Comput Biol. 2006 May;2(5):e41
– reference: 16955415 - Hum Mutat. 2006 Nov;27(11):1115-21
– reference: 21358987 - Curr Genomics. 2010 Sep;11(6):426-31
– reference: 25621458 - Nat Genet. 2015 Mar;47(3):296-303
– reference: 18776908 - Nat Genet. 2008 Oct;40(10):1166-74
– reference: 19805033 - Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1:1725-30
– reference: 24564169 - BMC Bioinformatics. 2013;14 Suppl 11:S1
– reference: 16436455 - Hum Mol Genet. 2006 Mar 1;15(5):789-95
– reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
– reference: 17921354 - Genome Res. 2007 Nov;17(11):1665-74
– reference: 17593959 - PLoS One. 2007;2(6):e558
– reference: 17954704 - Blood. 2008 Feb 1;111(3):1534-42
SSID ssj0017825
Score 2.22746
Snippet Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single...
Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single fertilised...
Background Somatic mosaicism denotes the presence of genetically distinct populations of somatic cells in one individual who has developed from a single...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 703
SubjectTerms Adult
Analysis
Animal Genetics and Genomics
Autopsy
Biomedical and Life Sciences
Biotechnology industry
Cytogenetics
DNA Copy Number Variations
Embryonic development
Female
Genetic research
Genome, Human
Human and rodent genomics
Humans
Life Sciences
Loss of Heterozygosity
Male
Microarrays
Microbial Genetics and Genomics
Middle Aged
Mosaicism
Organ Specificity - genetics
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
Proteomics
Research Article
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpQqGX0qavbdOilEKhwdRr62Efl7YhLSSHpgu5CUmWkoVdOdS7gc2v74xsL_WSFnLwSSM_NJqXZ_QNIR-4z-TYg_arLKYZU8sSnZk0MWacM-245gIPJ5-eiZMp-3HBL7pz3E1f7d6nJKOmjmJdiM8NaFKBFRM8gRhDJPkDsschdEdpnGaTTeoATB7v0pd3ThsYoG01_Jcd2q6R3EqURvtz_IQ87hxHOmk5_ZTsuLBPHratJNfPyPy8juCrdFE3emZnzYKCO0ptfb1Oglvhzekc3ofWnl5hCUx9u77Egq011aGiX88mkZa2HULoDYTQ7b88OgsUnEQam_lRhHRduOdkevzt15eTpOukkFjO8mWiq9wY44QFe-WZ9ZJbYIS1jDmw4V5XXngLkRCaKmdS6Vwux1UJ_C3TzDGZvyC7oQ7uFaFWlpWzBqIkoC5SXrgKIeSsNL6omBYjkvbLq2wHM47dLuYqhhuFUC1HFHBEIUdUPiKfNlOuW4yN_xG_R54pxK4IWBxzqVdNo76f_1QTDhZZwCVH5GNH5Gt4uNXdWQP4BIS7GlAeDChBuOxg-LDfGgqHsCItuHrVqDFE9yWDaKsckZftVtm8fCYQI4fBbDnYRBsCxPQejoTZVcT2ZlyCxwozj_rtpjql0vx7TV7fi_oNeZShOGAfDHFAdpe_V-4teFZL8y5K0h__jh4K
  priority: 102
  providerName: Springer Nature
Title Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome
URI https://link.springer.com/article/10.1186/s12864-015-1916-3
https://www.ncbi.nlm.nih.gov/pubmed/26376747
https://www.proquest.com/docview/1713947589
https://pubmed.ncbi.nlm.nih.gov/PMC4573927
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEF_ugeAX8W31LKsIghLNYx_pB5Fa7ziFK3Jnod-W7Gb3rtAm56UV41_vzCatppzihwbKziabnZmdmezsbwh5wV0sIwerX25wmzE0LMhiHQZaRwnLLM-4wMPJJ2NxPGGfp3y6Q9blrdoJrK4N7bCe1ORq_ubHt_o9KPw7r_CpeFvBGiswl4IHEH2IINkl-2CYBMZiJ-z3pgIYQ-4PG8koiCFMaDc5r71Fx0xtL9Z_WKvtTMqt7VRvpY5uk1ute0mHjTzcITu2uEtuNAUn63tkflZ6iFa6KKtsZmbVgoLTSk15WQeFXeHN6RzGQ0tHLzBRpvxZn2NaV02zIqcfx0NPS5s6IvQ7BNrNFz86Kyi4ktSX_KMI_Lqw98nk6PDr6Dho6y0EhrNkGWR5orW2woBVc8w4yQ2wyxjGLFh6l-VOOAPxEho0q0NpbSKjfABSMAhjy2TygOwVZWEfEWrkILdGQywF1GnIU5sj0JyR2qU5y0SPhOvpVaYFI8eaGHPlg5JUqIYjCjiikCMq6ZFXmy6XDRLHv4ifI88UIlwUmEJznq2qSn06O1VDDnZbwE_2yMuWyJXwcJO1JxLgFRAUq0N50KEEFTSd5mdr0VDYhHlrhS1XlYokeNgMYrJBjzxsRGUz-Fggkg6D3rIjRBsCRP7uthSzC48AzrgEvxZ6vl6Lm1przt_n5PF_jPIJuRmjEmCNDHFA9pZXK_sUvK6l7pNdOZV9sv_hcPzlFP6NxKjvv2D0vZbBdRIPfwHfDy2d
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegE4IXxDeFDQxCQgJFpIk_ksdoY-rK1ge6SXuzbMfeKrXJRFqk8tdzl4-KVAyJhzz5Lh8--z5y598R8oH7SI48aL_cYpoxtCzQkQkDY0Yx045rLvBw8tlUjC_Y5JJftue4q67avUtJ1pq63taJ-FKBJhVYMcEDiDFEEN8lewk4I2xA9rJsMptskwdg9HibwPwrY88E7SriPyzRbpXkTqq0tkDHj8jD1nWkWSPrx-SOK56Qe00zyc1TspiVNfwqXZaVntt5taTgkFJb3myCwq3x5nQB70NLT6-xCKb8tbnCkq0N1UVOj6ZZTUubHiH0JwTRzd88Oi8ouIm0budHEdR16Z6Ri-Ov54fjoO2lEFjO4lWg89gY44QFi-WZ9ZJbEIW1jDmw4l7nXngLsRAaK2dC6VwsR3kKEk7DyDEZPyeDoizcS0KtTHNnDcRJQJ2EPHE5gshZaXySMy2GJOymV9kWaBz7XSxUHXAkQjUSUSARhRJR8ZB82rLcNCgb_yJ-jzJTiF5RYHnMlV5XlTqZfVcZB5ss4JJD8rEl8iU83Or2tAF8AgJe9Sj3e5SwvWxv-F23NBQOYU1a4cp1pUYQ36cM4q10SF40S2X78pFAlBwG3LK3iLYEiOrdHynm1zW6N-MSfFbg_NwtN9Wqler2OXn1X9Rvyf3x-dmpOj2ZfntNHkS4NbArhtgng9WPtTsAP2tl3rT76jdpryJN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgCMQXNF6jMIZBSEigaGniR_Kx2lZtPCrEmLRvlu3YW6XWqUiLVP763eVRkQqQ-JBPPufhs_27y51_R8hb7hM59LD7FRbDjLFlkU5MHBkzTJl2XHOBh5O_TMTpBft4yS_bOqdVl-3ehSSbMw3I0hSWh4vCN0s8E4cV7KoCsyd4BP6GiNLb5A5D5MNorTjahBEA_ngbyvxjtx4YbW_Jv2HSdr7kVtC0xqLxLnnQGpF01Gj9IbnlwiNytykruX5MZudlTcRK52Wlp3ZazSmYptSWi3UU3ApvTmfwPrT09BrTYcpf6ytM3lpTHQp6PBnVsrSpFkJ_gjvd_Nej00DBYKR1YT-K9K5z94RcjE--H51GbVWFyHKWLiNdpMYYJyxgl2fWS25BKdYy5gDPvS688Ba8IoQtZ2LpXCqHRQ66zuPEMZk-JTuhDO4ZoVbmhbMGPCaQzmKeuQLp5Kw0PiuYFgMSd8OrbEs5jpUvZqp2PTKhGo0o0IhCjah0QN5vuiwavo1_Cb9BnSnksQiYKHOlV1Wlzs6_qREHdBZwyQF51wr5Eh5udXvuAD4Bqa96kvs9SVhottf8upsaCpswOy24clWpIXj6OQPPKx-QvWaqbF4-EciXw6C37E2ijQDye_dbwvS65vlmXIL1Cj0_dNNNtRtM9fcxef5f0q_Iva_HY_X5bPLpBbmf4MrA8hhin-wsf6zcSzC4luagXlQ3keYlIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Somatic+mosaicism+for+copy-neutral+loss+of+heterozygosity+and+DNA+copy+number+variations+in+the+human+genome&rft.jtitle=BMC+genomics&rft.au=%C5%BDilina%2C+Olga&rft.au=Kolt%C5%A1ina%2C+Marina&rft.au=Raid%2C+Raivo&rft.au=Kurg%2C+Ants&rft.date=2015-09-16&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=16&rft.spage=703&rft_id=info:doi/10.1186%2Fs12864-015-1916-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon