Benchmarking functional connectome-based predictive models for resting-state fMRI
Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of fu...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 192; no. 192; pp. 115 - 134 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2019
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.
[Display omitted]
•We evaluate methods for prediction from resting-state fMRI on 6 cohorts.•A prediction pipeline needs brain regions, a connectome, and a supervised predictor.•Regions defined functionally (with dictionary learning or ICA) give best prediction.•Prefer tangent-space parametrization of connectomes to full or partial correlation.•Non-sparse linear classifiers are best for supervised learning. |
---|---|
AbstractList | Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.
[Display omitted]
•We evaluate methods for prediction from resting-state fMRI on 6 cohorts.•A prediction pipeline needs brain regions, a connectome, and a supervised predictor.•Regions defined functionally (with dictionary learning or ICA) give best prediction.•Prefer tangent-space parametrization of connectomes to full or partial correlation.•Non-sparse linear classifiers are best for supervised learning. Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions -either pre-defined or generated from the rest-fMRI data- 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions -either pre-defined or generated from the rest-fMRI data- 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings. Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings. Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2 000 individuals, encompassing neuro-degenerative (Alzheimer’s, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations inthe populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings. |
Author | Milham, Michael Thirion, Bertrand Rahim, Mehdi Chyzhyk, Darya Dadi, Kamalaker Varoquaux, Gaël Abraham, Alexandre |
Author_xml | – sequence: 1 givenname: Kamalaker surname: Dadi fullname: Dadi, Kamalaker email: kamalaker-reddy.dadi@inria.fr, dkamalakarreddy@gmail.com organization: Parietal Project-team, INRIA Saclay-île de France, France – sequence: 2 givenname: Mehdi surname: Rahim fullname: Rahim, Mehdi organization: Parietal Project-team, INRIA Saclay-île de France, France – sequence: 3 givenname: Alexandre surname: Abraham fullname: Abraham, Alexandre organization: Parietal Project-team, INRIA Saclay-île de France, France – sequence: 4 givenname: Darya surname: Chyzhyk fullname: Chyzhyk, Darya organization: Parietal Project-team, INRIA Saclay-île de France, France – sequence: 5 givenname: Michael surname: Milham fullname: Milham, Michael organization: Center for the Developing Brain Child Mind Institute, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, USA – sequence: 6 givenname: Bertrand surname: Thirion fullname: Thirion, Bertrand organization: Parietal Project-team, INRIA Saclay-île de France, France – sequence: 7 givenname: Gaël surname: Varoquaux fullname: Varoquaux, Gaël organization: Parietal Project-team, INRIA Saclay-île de France, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30836146$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-01824205$$DView record in HAL |
BookMark | eNqNkU1r3DAQhkVJaT7av1AMvbQHuyNZtuVLaRKSJrCltLRnoZXHiTa2tJHshfz7zrJJC3taMNiyn3nHvM8pO_LBI2MZh4IDrz-vCo9zDG40d1gI4G0BooBavGInHNoqb6tGHG2fqzJXnLfH7DSlFQC0XKo37LgEVdZc1ifs5wV6ez-a-OD8XdbP3k4ueDNkNniPdgoj5kuTsMvWETtHXzeYjaHDIWV9iFnENNFkniYzYdZ__3X7lr3uzZDw3fP9jP25vvp9eZMvfny7vTxf5LaS5ZS3gnMrauykEhW0xoJsl7zi1ipVVaqpONpW2qbhQJcUdG4kcG6WnZJNC-UZ-7TLvTeDXkfqIj7pYJy-OV_o7TvgSkgB1aYk9uOOXcfwONMv69Eli8NgPIY5acFpqVJNKQn9sIeuwhypEaIElFA3Ta2Iev9MzcsRu3_7X4ol4MsOsDGkFLHX1lFF1O0UjRs0B701qVf6v0m9NalBaDJJAWov4GXHAaMXu1GShBuHUSfrSDP5i6RUd8EdEvJ1L8QOzjtrhgd8OiziL5-a0fA |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3269446 crossref_primary_10_1142_S012906572150009X crossref_primary_10_3389_fnagi_2022_912895 crossref_primary_10_1016_j_neuroimage_2022_119367 crossref_primary_10_1016_j_intell_2022_101654 crossref_primary_10_1162_netn_a_00325 crossref_primary_10_1523_JNEUROSCI_1202_23_2023 crossref_primary_10_1162_netn_a_00166 crossref_primary_10_1016_j_neuroimage_2020_117226 crossref_primary_10_1016_j_nicl_2022_103120 crossref_primary_10_1016_j_neuroimage_2020_116893 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1007_s00234_024_03489_7 crossref_primary_10_1016_j_ynirp_2023_100163 crossref_primary_10_1093_gigascience_giac014 crossref_primary_10_1002_hbm_24979 crossref_primary_10_1016_j_celrep_2023_113597 crossref_primary_10_32604_cmc_2022_026999 crossref_primary_10_1007_s00429_023_02723_x crossref_primary_10_3389_fninf_2021_676491 crossref_primary_10_1007_s41060_023_00408_6 crossref_primary_10_1016_j_biopsych_2020_02_016 crossref_primary_10_1093_cercor_bhac060 crossref_primary_10_1016_j_bpsgos_2021_11_004 crossref_primary_10_1016_j_biopsych_2020_08_024 crossref_primary_10_1109_TBME_2021_3102015 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_1038_s41386_021_01147_7 crossref_primary_10_1093_gigascience_giac082 crossref_primary_10_1016_j_tics_2024_09_007 crossref_primary_10_1088_1741_2552_ab9fec crossref_primary_10_1109_JBHI_2024_3351177 crossref_primary_10_1016_j_patcog_2019_107183 crossref_primary_10_1007_s11222_024_10411_x crossref_primary_10_1016_j_neunet_2024_106660 crossref_primary_10_1093_biomtc_ujaf023 crossref_primary_10_1016_j_neuroimage_2021_118289 crossref_primary_10_1016_j_neuroimage_2021_118044 crossref_primary_10_1016_j_neuroimage_2023_120115 crossref_primary_10_1093_cercor_bhac189 crossref_primary_10_2139_ssrn_4098700 crossref_primary_10_1016_j_neunet_2025_107335 crossref_primary_10_1109_ACCESS_2023_3324670 crossref_primary_10_1016_j_neuroimage_2023_120010 crossref_primary_10_1016_j_neuroimage_2024_120570 crossref_primary_10_1002_hbm_26027 crossref_primary_10_1155_2022_1581958 crossref_primary_10_1016_j_isci_2023_107624 crossref_primary_10_1016_j_bpsc_2019_05_018 crossref_primary_10_1371_journal_pone_0235039 crossref_primary_10_1103_PhysRevE_107_014302 crossref_primary_10_1162_netn_a_00383 crossref_primary_10_3389_fnins_2021_700171 crossref_primary_10_1007_s12021_021_09548_1 crossref_primary_10_1016_j_cmpb_2022_107082 crossref_primary_10_1016_j_neuroimage_2021_118533 crossref_primary_10_1002_hbm_25448 crossref_primary_10_1016_j_artmed_2020_101870 crossref_primary_10_1016_j_media_2021_102233 crossref_primary_10_1016_j_neuroimage_2021_118254 crossref_primary_10_1038_s41598_022_06459_2 crossref_primary_10_1162_imag_a_00222 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1002_hbm_24879 crossref_primary_10_1093_cercor_bhac235 crossref_primary_10_1162_netn_a_00419 crossref_primary_10_1016_j_compmedimag_2023_102187 crossref_primary_10_1038_s41467_019_13785_z crossref_primary_10_7554_eLife_56257 crossref_primary_10_1016_j_neuroimage_2023_120388 crossref_primary_10_1016_j_bpsc_2024_10_002 crossref_primary_10_1109_TCBB_2024_3422152 crossref_primary_10_1002_hbm_26498 crossref_primary_10_1016_j_nicl_2024_103571 crossref_primary_10_1155_2023_4136087 crossref_primary_10_1038_s41562_023_01670_1 crossref_primary_10_1038_s41598_022_07860_7 crossref_primary_10_1109_TMI_2024_3432531 crossref_primary_10_3389_fpsyt_2022_1100266 crossref_primary_10_1016_j_neuroimage_2020_117706 crossref_primary_10_3390_app11083636 crossref_primary_10_1038_s41562_020_01005_4 crossref_primary_10_1089_cmb_2020_0252 crossref_primary_10_1109_TCDS_2021_3101643 crossref_primary_10_1016_j_compbiomed_2023_107478 crossref_primary_10_1016_j_rineng_2025_104444 crossref_primary_10_3389_fnsys_2022_904770 crossref_primary_10_1002_hbm_25679 crossref_primary_10_1016_j_neurobiolaging_2022_06_008 crossref_primary_10_1002_hbm_25436 crossref_primary_10_1016_j_neurad_2022_10_002 crossref_primary_10_1162_imag_a_00233 crossref_primary_10_1093_cercor_bhac489 crossref_primary_10_1109_OJSP_2021_3051453 crossref_primary_10_1109_TMI_2023_3327283 crossref_primary_10_1016_j_neuroimage_2019_116038 crossref_primary_10_1109_TMI_2024_3392988 crossref_primary_10_1002_hbm_26164 crossref_primary_10_1093_biostatistics_kxab015 crossref_primary_10_1109_TMI_2024_3512603 crossref_primary_10_3390_brainsci11060735 crossref_primary_10_1162_netn_a_00400 crossref_primary_10_1016_j_bpsc_2020_12_002 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1016_j_neuroimage_2020_116604 crossref_primary_10_1016_j_bspc_2024_107466 crossref_primary_10_1109_TMI_2022_3219260 crossref_primary_10_1016_j_compbiomed_2020_104096 crossref_primary_10_1016_j_neuroimage_2021_118513 crossref_primary_10_1038_s41398_022_02134_2 crossref_primary_10_1177_13623613211041904 crossref_primary_10_1002_hbm_70158 crossref_primary_10_1016_j_neuroimage_2023_120304 crossref_primary_10_1093_brain_awac315 crossref_primary_10_1186_s13195_023_01349_9 crossref_primary_10_1016_j_jad_2024_01_177 crossref_primary_10_1038_s42003_024_06438_5 crossref_primary_10_3389_fnhum_2023_1094592 crossref_primary_10_4236_jcc_2024_123002 crossref_primary_10_1001_jamapsychiatry_2023_1419 crossref_primary_10_1016_j_neunet_2021_05_016 crossref_primary_10_1016_j_neuroimage_2023_120044 crossref_primary_10_1523_JNEUROSCI_0856_23_2024 crossref_primary_10_1002_hbm_25462 crossref_primary_10_1016_j_bpsgos_2022_07_008 crossref_primary_10_1063_5_0203926 crossref_primary_10_1162_netn_a_00239 crossref_primary_10_3389_fnins_2021_729937 crossref_primary_10_7554_eLife_54055 crossref_primary_10_1038_s41467_022_31347_8 crossref_primary_10_1162_netn_a_00117 crossref_primary_10_1109_JBHI_2022_3159031 crossref_primary_10_1016_j_neuroimage_2021_118518 crossref_primary_10_1093_gigascience_giab071 crossref_primary_10_1016_j_patter_2023_100756 crossref_primary_10_3389_fnins_2022_872848 crossref_primary_10_1016_j_euroneuro_2020_09_190 crossref_primary_10_3389_fneur_2022_960760 crossref_primary_10_1016_j_neuroimage_2021_118761 crossref_primary_10_3389_fnimg_2022_952084 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1038_s41598_021_82681_8 crossref_primary_10_1038_s41596_022_00696_5 crossref_primary_10_1109_TNSRE_2021_3120024 crossref_primary_10_1016_j_neuroimage_2022_119185 crossref_primary_10_1007_s11517_022_02628_7 crossref_primary_10_1016_j_neuroimage_2022_118890 crossref_primary_10_1103_PhysRevE_108_024313 crossref_primary_10_1007_s11571_021_09772_0 crossref_primary_10_1016_j_neuroimage_2022_119588 crossref_primary_10_1111_ecc_13428 crossref_primary_10_1002_hbm_25095 crossref_primary_10_3389_fnins_2021_697870 crossref_primary_10_3233_JAD_220100 crossref_primary_10_37979_afb_2021v4n2_96 crossref_primary_10_1016_j_schres_2021_12_041 crossref_primary_10_3389_fnins_2021_715861 crossref_primary_10_1038_s41467_024_52479_z crossref_primary_10_1038_s41598_023_47934_8 crossref_primary_10_1038_s41583_022_00601_9 crossref_primary_10_1016_j_neuroimage_2020_117126 crossref_primary_10_1016_j_neuroimage_2020_117489 crossref_primary_10_1162_netn_a_00182 crossref_primary_10_1016_j_neuroimage_2020_117001 crossref_primary_10_1016_j_artmed_2020_102004 crossref_primary_10_3389_fpubh_2020_584430 crossref_primary_10_1002_biof_1933 crossref_primary_10_3389_fnhum_2023_1276994 crossref_primary_10_7717_peerj_14835 crossref_primary_10_1007_s11682_021_00585_7 crossref_primary_10_1016_j_bspc_2024_106766 crossref_primary_10_1016_j_jmva_2022_105120 crossref_primary_10_1162_netn_a_00216 crossref_primary_10_1162_netn_a_00176 crossref_primary_10_1016_j_compbiomed_2022_105239 crossref_primary_10_1016_j_plrev_2023_12_006 crossref_primary_10_3389_fnins_2021_720909 crossref_primary_10_1016_j_bpsc_2020_05_013 crossref_primary_10_1109_TNSRE_2023_3309847 crossref_primary_10_1038_s42003_023_05073_w crossref_primary_10_1016_j_neuroimage_2021_118624 crossref_primary_10_1016_j_neuroimage_2021_118625 crossref_primary_10_1016_j_pscychresns_2024_111822 crossref_primary_10_1093_gigascience_giaf010 crossref_primary_10_1038_s41598_022_10710_1 crossref_primary_10_1002_hbm_26449 crossref_primary_10_1089_brain_2024_0056 crossref_primary_10_1002_hbm_24947 crossref_primary_10_1093_cercor_bhac288 crossref_primary_10_1093_biostatistics_kxae023 |
Cites_doi | 10.7554/eLife.20178 10.3389/fnhum.2014.00897 10.1002/mrm.22159 10.1093/cercor/bhu255 10.1016/j.neuroimage.2010.08.063 10.3389/fnins.2013.00133 10.1016/j.neuroimage.2008.09.036 10.1016/j.neuroimage.2016.10.045 10.1186/s13742-015-0045-x 10.1097/WNR.0b013e32835a650c 10.1016/j.nicl.2017.09.004 10.1038/nn.4125 10.1002/hbm.1048 10.1016/j.neuroimage.2011.10.018 10.1080/01621459.1963.10500845 10.1002/hbm.21333 10.1093/ije/dym276 10.1002/hbm.22373 10.1016/j.neuroimage.2009.11.011 10.1007/s11263-005-3222-z 10.1093/cercor/bhr099 10.1016/j.neuroimage.2014.11.021 10.1016/j.tics.2016.03.014 10.3389/fninf.2014.00014 10.1073/pnas.0911855107 10.1109/TIT.1967.1053964 10.1016/j.neuroimage.2013.12.015 10.1148/radiol.10100734 10.1523/JNEUROSCI.0257-12.2012 10.1016/j.neuroimage.2012.02.018 10.1016/j.clinph.2015.02.060 10.1016/j.neuroimage.2010.02.010 10.1016/j.neuroimage.2013.04.007 10.1016/j.neuroimage.2016.04.051 10.1016/j.media.2014.10.006 10.1162/neco.1996.8.7.1341 10.1126/science.1194144 10.1016/j.patcog.2011.04.006 10.1016/j.neuroimage.2013.05.041 10.1111/cns.12499 10.1016/j.neuroimage.2016.02.079 10.1089/brain.2013.0214 10.1016/j.neuroimage.2016.11.005 10.1016/j.neubiorev.2015.08.001 10.1093/biostatistics/kxm045 10.1016/j.neuroimage.2006.01.021 10.1109/TSP.2017.2752697 10.1016/j.cortex.2014.08.011 10.1152/jn.00338.2011 10.1038/mp.2013.78 10.1038/nn.4393 10.3389/fninf.2011.00013 10.1016/j.dcn.2015.01.003 10.1177/0956797611417632 10.1016/j.neuroimage.2011.03.069 10.1109/MCSE.2007.55 10.1016/j.neuroimage.2016.10.038 10.1002/hbm.20813 10.1016/j.neuroimage.2015.07.039 10.1097/WCO.0b013e328306f2c5 10.1023/A:1010933404324 10.1371/journal.pcbi.0010042 10.3389/fnins.2012.00149 10.1038/nn.4478 10.1016/j.neuroimage.2007.04.042 10.1016/j.neuroimage.2010.02.082 10.3389/fpsyt.2011.00075 10.1016/S0047-259X(03)00096-4 10.3389/fnsys.2012.00058 10.1016/j.sigpro.2005.12.018 10.3389/fnhum.2013.00599 10.1016/j.nic.2005.09.008 10.1152/jn.90777.2008 10.1109/TMI.2003.822821 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2011.10.002 10.1214/12-EJS740 10.1016/j.neucom.2012.12.039 10.1016/j.neuron.2011.09.006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES |
DOI | 10.1016/j.neuroimage.2019.02.062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1095-9572 |
EndPage | 134 |
ExternalDocumentID | oai_HAL_hal_01824205v3 30836146 10_1016_j_neuroimage_2019_02_062 S1053811919301594 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES |
ID | FETCH-LOGICAL-c543t-9211c26ed482509ac049b151cc88558751ec94c77107104251e74011abd847903 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri May 09 12:20:14 EDT 2025 Thu Jul 10 21:59:25 EDT 2025 Wed Aug 13 07:29:55 EDT 2025 Wed Feb 19 02:31:50 EST 2025 Tue Jul 01 03:02:07 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Fri Feb 23 02:36:57 EST 2024 Tue Aug 26 20:02:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 192 |
Keywords | Resting-state fMRI Predictive modeling Population study Functional connectomes Classification |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-9211c26ed482509ac049b151cc88558751ec94c77107104251e74011abd847903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2214-1050 0000-0003-1076-5122 |
OpenAccessLink | https://inria.hal.science/hal-01824205 |
PMID | 30836146 |
PQID | 2203067768 |
PQPubID | 2031077 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_01824205v3 proquest_miscellaneous_2188588734 proquest_journals_2203067768 pubmed_primary_30836146 crossref_citationtrail_10_1016_j_neuroimage_2019_02_062 crossref_primary_10_1016_j_neuroimage_2019_02_062 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_02_062 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_02_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Hastie, Tibshirani, Friedman (bib46) 2009 Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib22) 2017; 6 Mensch, Mairal, Thirion, Varoquaux (bib57) 2018; 66 Friedman, Hastie, Tibshirani (bib40) 2008; 9 Craddock, Benhajali, Chu, Chouinard, Evans, Jakab, Khundrakpam, Lewis, Li, Milham, Yan, Bellec (bib24) 2013 Chen, Ward, Xie, Li, Wu, Jones, Franczak, Antuono, Li (bib20) 2011; 259 Dubois, Adolphs (bib34) 2016; 20 Fei, Jie, Zhang (bib37) 2014; 4 Greicius (bib43) 2008; 21 Varoquaux, Sadaghiani, Pinel, Kleinschmidt, Poline, Thirion (bib97) 2010; 51 Mensch, Varoquaux, Thirion (bib58) 2016 Craddock, Holtzheimer, Hu, Mayberg (bib26) 2009; 62 Pedregosa, Varoquaux, Gramfort (bib68) 2011; 12 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib89) 2012; 62 Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib5) 2014; 102 Ward (bib99) 1963; 58 Sporns, Tononi, Kotter (bib86) 2005; 1 Power, Barnes, Snyder, Schlaggar, Petersen (bib72) 2012; 59 Wolfers, Buitelaar, Beckmann, Franke, Marquand (bib101) 2015; 57 Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib12) 2010; 51 Wolpert (bib102) 1996; 8 Van Essen, Smith (bib90) 2013; 80 Abraham, Dohmatob, Thirion, Samaras, Varoquaux (bib2) 2014; 8 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib3) 2017; 147 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib71) 2011; 72 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib88) 2002; 15 Dodero, Minh, Biagio, Murino, Sona (bib31) 2015 Simmons, Nelson, Simonsohn (bib83) 2011; 22 Breiman (bib14) 2001; 45 Cover, Hart (bib23) 1967; 13 Zhu, Li, Terry, Puente, Wang, Shen, Miller, Liu (bib106) 2013; 35 Arbabshirani, Plis, Sui, Calhoun (bib7) 2017; 145 Jie, Shen, Zhang (bib49) 2014 Brier, Mitra, McCarthy, Ances, Snyder (bib15) 2015; 121 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib82) 2012; 22 Wong, Anderson, Zielinski, Fletcher (bib103) 2018 Woo, Chang, Lindquist, Wager (bib104) 2017; 20 Rashid, Damaraju, Pearlson, Calhoun (bib77) 2014; 8 Rubinov, Sporns (bib80) 2011; 56 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib29) 2006; 31 Varoquaux, Gramfort, Poline, Thirion (bib95) 2010 Thirion, Varoquaux, Dohmatob, Poline (bib87) 2014; 8 Meszlényi, Peska, Gál, Vidnyánszky, Buza (bib59) 2016 Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (bib67) 2013; 7 Varoquaux (bib92) 2017; 180 Yeo, Krienen, Sepulcre, Sabuncu (bib105) 2011; 106 Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi, Gramfort, Thirion, Varoquaux (bib4) 2014; 8 Pennec, Fillard, Ayache (bib69) 2006; 66 Abraham, Dohmatob, Thirion, Samaras, Varoquaux (bib1) 2013 Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib42) 2011; 5 Craddock, Sikka, Cheung, Khanuja, Ghosh, Yan, Li, Lurie, Vogelstein, Burns, Colcombe, Mennes, Kelly, Di Martino, Castellanos, Milham (bib25) 2013 Wee, Yap, Shen (bib100) 2016; 22 Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola (bib52) 2009; 30 Gellerup (bib41) 2016 Liem, Varoquaux, Kynast, Beyer, Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock (bib54) 2017; 148 Varoquaux, Craddock (bib94) 2013; 80 Barachant, Bonnet, Congedo, Jutten (bib8) 2013; 112 Brown, Hamarneh (bib16) 2016 Fletcher, Joshi (bib38) 2007; 87 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib85) 2015; 18 Elliott, Peakman (bib36) 2008; 37 Ledoit, Wolf (bib53) 2004; 88 Mensch, Mairal, Thirion, Varoquaux (bib56) 2016 Mazumder, Hastie (bib55) 2012; 6 Craddock, Tungaraza, Milham (bib28) 2015; 4 Hallquist, Hillary (bib45) 2018 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib63) 2005; 15 Murphy, Birn, Handwerker, Jones, Bandettini (bib64) 2009; 44 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann (bib13) 2010; 107 Ng, Dressler, Varoquaux, Poline, Greicius, Thirion (bib65) 2014 Behzadi, Restom, Liau, Liu (bib11) 2007; 37 Qiu, Lee, Tan, Chung (bib74) 2015; 20 Milazzo, Ng, Jiang, Shirer, Varoquaux, Poline, Thirion, Greicius (bib61) 2014; 26 Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (bib78) 2010; 56 Dubois, Galdi, Paul, Adolphs (bib35) 2018 Guo, Cao, Liu, Li, Chen, Zhang (bib44) 2012; 23 Michel, Gramfort, Varoquaux, Eger, Keribin, Thirion (bib60) 2012; 45 Kahnt, Chang, Park, Heinzle, Haynes (bib50) 2012 Varoquaux, Baronnet, Kleinschmidt, Fillard, Thirion (bib93) 2010 Perrot, Riviere, Tucholka, Mangin (bib70) 2009 Bassett, Nelson, Mueller, Camchong, Lim (bib9) 2012; 59 Beckmann, Smith (bib10) 2004; 23 Pruett, Kandala, Hoertel, Snyder, Elison, Nishino, Feczko, Dosenbach, Nardos, Power, Adeyemo, Botteron, McKinstry, Evans, Hazlett, Dager, Paterson, Schultz, Collins, Fonov, Styner, Gerig, Das, Kostopoulos, Constantino, Estes, Petersen, Schlaggar, Piven (bib73) 2015; 12 Miller, Alfaro-Almagro (bib62) 2016; 19 Ng, Varoquaux, Poline, Thirion, Greicius, Poston (bib66) 2017; 16 Shen, Wang, Liu, Hu (bib81) 2010; 49 Calhoun, Sui, Kiehl, Turner, Allen, Pearlson (bib17) 2012; 2 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib84) 2011; 54 Arbabshirani, Kiehl, Pearlson, Calhoun (bib6) 2013; 7 Iidaka (bib48) 2015; 63 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib30) 2014; 19 Rosa, Portugal, Hahn, Fallgatter, Garrido, Shawe-Taylor, Mourao-Miranda (bib79) 2015; 105 Craddock, James, Holtzheimer, Hu, Mayberg (bib27) 2012; 33 Drysdale, Grosenick (bib33) 2016; 23 Fox, Zhang, Snyder, Raichle (bib39) 2009; 101 Carp (bib19) 2012; 6 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib96) 2017; 145 Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib76) 2016; 134 Calhoun, Adali, Pearlson, Pekar (bib18) 2001; 14 Vanderweyen, Munsell, Mintzer, Mintzer, Gajadhar, Zhu, Wu, Joseph (bib91) 2015 Khazaee, Ebrahimzadeh, Babajani-Feremi (bib51) 2015; 126 Hunter (bib47) 2007; 9 Rahim, Thirion, Varoquaux (bib75) 2017 Cheng, Ji, Zhang, Feng (bib21) 2012; 6 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib32) 2010; 329 Wang, Fei, Jie, Zhang (bib98) 2014 Michel (10.1016/j.neuroimage.2019.02.062_bib60) 2012; 45 Desikan (10.1016/j.neuroimage.2019.02.062_bib29) 2006; 31 Murphy (10.1016/j.neuroimage.2019.02.062_bib64) 2009; 44 Simmons (10.1016/j.neuroimage.2019.02.062_bib83) 2011; 22 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib95) 2010 Nielsen (10.1016/j.neuroimage.2019.02.062_bib67) 2013; 7 Gorgolewski (10.1016/j.neuroimage.2019.02.062_bib42) 2011; 5 Meszlényi (10.1016/j.neuroimage.2019.02.062_bib59) 2016 Milazzo (10.1016/j.neuroimage.2019.02.062_bib61) 2014; 26 Hastie (10.1016/j.neuroimage.2019.02.062_bib46) 2009 Kiviniemi (10.1016/j.neuroimage.2019.02.062_bib52) 2009; 30 Friedman (10.1016/j.neuroimage.2019.02.062_bib40) 2008; 9 Ng (10.1016/j.neuroimage.2019.02.062_bib65) 2014 Wang (10.1016/j.neuroimage.2019.02.062_bib98) 2014 Dubois (10.1016/j.neuroimage.2019.02.062_bib34) 2016; 20 Miller (10.1016/j.neuroimage.2019.02.062_bib62) 2016; 19 Rubinov (10.1016/j.neuroimage.2019.02.062_bib80) 2011; 56 Anderson (10.1016/j.neuroimage.2019.02.062_bib5) 2014; 102 Cover (10.1016/j.neuroimage.2019.02.062_bib23) 1967; 13 Guo (10.1016/j.neuroimage.2019.02.062_bib44) 2012; 23 Greicius (10.1016/j.neuroimage.2019.02.062_bib43) 2008; 21 Gellerup (10.1016/j.neuroimage.2019.02.062_bib41) 2016 Shirer (10.1016/j.neuroimage.2019.02.062_bib82) 2012; 22 Rosa (10.1016/j.neuroimage.2019.02.062_bib79) 2015; 105 Power (10.1016/j.neuroimage.2019.02.062_bib71) 2011; 72 Power (10.1016/j.neuroimage.2019.02.062_bib72) 2012; 59 Abraham (10.1016/j.neuroimage.2019.02.062_bib2) 2014; 8 Smith (10.1016/j.neuroimage.2019.02.062_bib85) 2015; 18 Vanderweyen (10.1016/j.neuroimage.2019.02.062_bib91) 2015 Mueller (10.1016/j.neuroimage.2019.02.062_bib63) 2005; 15 Abraham (10.1016/j.neuroimage.2019.02.062_bib4) 2014; 8 Biswal (10.1016/j.neuroimage.2019.02.062_bib13) 2010; 107 Kahnt (10.1016/j.neuroimage.2019.02.062_bib50) 2012 Breiman (10.1016/j.neuroimage.2019.02.062_bib14) 2001; 45 Bassett (10.1016/j.neuroimage.2019.02.062_bib9) 2012; 59 Jie (10.1016/j.neuroimage.2019.02.062_bib49) 2014 Barachant (10.1016/j.neuroimage.2019.02.062_bib8) 2013; 112 Smith (10.1016/j.neuroimage.2019.02.062_bib84) 2011; 54 Yeo (10.1016/j.neuroimage.2019.02.062_bib105) 2011; 106 Dodero (10.1016/j.neuroimage.2019.02.062_bib31) 2015 Brier (10.1016/j.neuroimage.2019.02.062_bib15) 2015; 121 Dubois (10.1016/j.neuroimage.2019.02.062_bib35) 2018 Chen (10.1016/j.neuroimage.2019.02.062_bib20) 2011; 259 Liem (10.1016/j.neuroimage.2019.02.062_bib54) 2017; 148 Wolfers (10.1016/j.neuroimage.2019.02.062_bib101) 2015; 57 Mensch (10.1016/j.neuroimage.2019.02.062_bib57) 2018; 66 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib94) 2013; 80 Perrot (10.1016/j.neuroimage.2019.02.062_bib70) 2009 Woo (10.1016/j.neuroimage.2019.02.062_bib104) 2017; 20 Rahim (10.1016/j.neuroimage.2019.02.062_bib75) 2017 Van Essen (10.1016/j.neuroimage.2019.02.062_bib90) 2013; 80 Elliott (10.1016/j.neuroimage.2019.02.062_bib36) 2008; 37 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib96) 2017; 145 Iidaka (10.1016/j.neuroimage.2019.02.062_bib48) 2015; 63 Brown (10.1016/j.neuroimage.2019.02.062_bib16) 2016 Thirion (10.1016/j.neuroimage.2019.02.062_bib87) 2014; 8 Van Essen (10.1016/j.neuroimage.2019.02.062_bib89) 2012; 62 Tzourio-Mazoyer (10.1016/j.neuroimage.2019.02.062_bib88) 2002; 15 Hunter (10.1016/j.neuroimage.2019.02.062_bib47) 2007; 9 Abraham (10.1016/j.neuroimage.2019.02.062_bib1) 2013 Craddock (10.1016/j.neuroimage.2019.02.062_bib27) 2012; 33 Pedregosa (10.1016/j.neuroimage.2019.02.062_bib68) 2011; 12 Pruett (10.1016/j.neuroimage.2019.02.062_bib73) 2015; 12 Colclough (10.1016/j.neuroimage.2019.02.062_bib22) 2017; 6 Arbabshirani (10.1016/j.neuroimage.2019.02.062_bib6) 2013; 7 Fox (10.1016/j.neuroimage.2019.02.062_bib39) 2009; 101 Fletcher (10.1016/j.neuroimage.2019.02.062_bib38) 2007; 87 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib97) 2010; 51 Mazumder (10.1016/j.neuroimage.2019.02.062_bib55) 2012; 6 Pennec (10.1016/j.neuroimage.2019.02.062_bib69) 2006; 66 Calhoun (10.1016/j.neuroimage.2019.02.062_bib18) 2001; 14 Carp (10.1016/j.neuroimage.2019.02.062_bib19) 2012; 6 Wee (10.1016/j.neuroimage.2019.02.062_bib100) 2016; 22 Cheng (10.1016/j.neuroimage.2019.02.062_bib21) 2012; 6 Sporns (10.1016/j.neuroimage.2019.02.062_bib86) 2005; 1 Hallquist (10.1016/j.neuroimage.2019.02.062_bib45) 2018 Calhoun (10.1016/j.neuroimage.2019.02.062_bib17) 2012; 2 Mensch (10.1016/j.neuroimage.2019.02.062_bib58) 2016 Craddock (10.1016/j.neuroimage.2019.02.062_bib28) 2015; 4 Wong (10.1016/j.neuroimage.2019.02.062_bib103) 2018 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib92) 2017; 180 Varoquaux (10.1016/j.neuroimage.2019.02.062_bib93) 2010 Bellec (10.1016/j.neuroimage.2019.02.062_bib12) 2010; 51 Behzadi (10.1016/j.neuroimage.2019.02.062_bib11) 2007; 37 Ledoit (10.1016/j.neuroimage.2019.02.062_bib53) 2004; 88 Craddock (10.1016/j.neuroimage.2019.02.062_bib25) 2013 Shen (10.1016/j.neuroimage.2019.02.062_bib81) 2010; 49 Craddock (10.1016/j.neuroimage.2019.02.062_bib26) 2009; 62 Qiu (10.1016/j.neuroimage.2019.02.062_bib74) 2015; 20 Khazaee (10.1016/j.neuroimage.2019.02.062_bib51) 2015; 126 Richiardi (10.1016/j.neuroimage.2019.02.062_bib78) 2010; 56 Zhu (10.1016/j.neuroimage.2019.02.062_bib106) 2013; 35 Ward (10.1016/j.neuroimage.2019.02.062_bib99) 1963; 58 Rashid (10.1016/j.neuroimage.2019.02.062_bib76) 2016; 134 Rashid (10.1016/j.neuroimage.2019.02.062_bib77) 2014; 8 Wolpert (10.1016/j.neuroimage.2019.02.062_bib102) 1996; 8 Drysdale (10.1016/j.neuroimage.2019.02.062_bib33) 2016; 23 Beckmann (10.1016/j.neuroimage.2019.02.062_bib10) 2004; 23 Craddock (10.1016/j.neuroimage.2019.02.062_bib24) 2013 Abraham (10.1016/j.neuroimage.2019.02.062_bib3) 2017; 147 Arbabshirani (10.1016/j.neuroimage.2019.02.062_bib7) 2017; 145 Dosenbach (10.1016/j.neuroimage.2019.02.062_bib32) 2010; 329 Ng (10.1016/j.neuroimage.2019.02.062_bib66) 2017; 16 Fei (10.1016/j.neuroimage.2019.02.062_bib37) 2014; 4 Di Martino (10.1016/j.neuroimage.2019.02.062_bib30) 2014; 19 Mensch (10.1016/j.neuroimage.2019.02.062_bib56) 2016 |
References_xml | – start-page: 1737 year: 2016 end-page: 1746 ident: bib56 article-title: Dictionary learning for massive matrix factorization publication-title: International Conference on Machine Learning – year: 2014 ident: bib98 article-title: Combining multiple network features for mild cognitive impairment classification publication-title: 2014 IEEE International Conference on Data Mining Workshop – volume: 8 year: 2014 ident: bib2 article-title: Region segmentation for sparse decompositions: better brain parcellations from rest fMRI publication-title: Front. Neuroinf. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib85 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – year: 2016 ident: bib41 article-title: Discriminating Parkinsons Disease Using Functional Connectivity and Brain Network Analysis – volume: 35 start-page: 2911 year: 2013 end-page: 2923 ident: bib106 article-title: Connectome-scale assessments of structural and functional connectivity in MCI publication-title: Hum. Brain Mapp. – volume: 6 year: 2012 ident: bib19 article-title: On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments publication-title: Front. Neurosci. – year: 2013 ident: bib25 article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac) publication-title: Front. Neuroinf. – volume: 19 year: 2016 ident: bib62 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nat. Neurosci. – start-page: 78 year: 2018 end-page: 87 ident: bib103 article-title: Riemannian regression and classification models of brain networks applied to autism publication-title: International Workshop on Connectomics in Neuroimaging – volume: 51 start-page: 1126 year: 2010 ident: bib12 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: Neuroimage – volume: 15 start-page: 273 year: 2002 ident: bib88 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib47 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. – year: 2009 ident: bib70 article-title: Joint Bayesian Cortical Sulci Recognition and Spatial Normalization – volume: 26 start-page: 933 year: 2014 end-page: 942 ident: bib61 article-title: Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm publication-title: Cerebr. Cortex – volume: 1 year: 2005 ident: bib86 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – year: 2014 ident: bib65 article-title: Transport on riemannian manifold for functional connectivity-based classification publication-title: MICCAI - 17th International Conference on Medical Image Computing and Computer Assisted Intervention – year: 2009 ident: bib46 article-title: The Elements of Statistical Learning – volume: 259 start-page: 213 year: 2011 end-page: 221 ident: bib20 article-title: Classification of alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging publication-title: Radiology – volume: 5 start-page: 13 year: 2011 ident: bib42 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. – volume: 58 start-page: 236 year: 1963 ident: bib99 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. Stat. Assoc. – volume: 31 start-page: 968 year: 2006 ident: bib29 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: Neuroimage – volume: 2 start-page: 75 year: 2012 ident: bib17 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Front. Psychiatry – year: 2015 ident: bib31 article-title: Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices publication-title: International Symposium on Biomedical Imaging (ISBI) – volume: 180 year: 2017 ident: bib92 article-title: Cross-validation failure: small sample sizes lead to large error bars publication-title: Neuroimage – volume: 4 start-page: 347 year: 2014 end-page: 360 ident: bib37 article-title: Frequent and discriminative subnetwork mining for mild cognitive impairment classification publication-title: Brain Connect. – volume: 22 start-page: 212 year: 2016 end-page: 219 ident: bib100 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neurosci. Ther. – volume: 37 start-page: 234 year: 2008 end-page: 244 ident: bib36 article-title: The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine publication-title: Int. J. Epidemiol. – start-page: 724 year: 2014 end-page: 732 ident: bib49 article-title: Brain connectivity hyper-network for MCI classification publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 – start-page: 1282 year: 2016 ident: bib58 article-title: Compressed online dictionary learning for fast resting-state fMRI decomposition publication-title: Proc. ISBI – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib89 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – year: 2016 ident: bib16 article-title: Machine Learning on Human Connectome Data from Mri – volume: 56 year: 2010 ident: bib78 article-title: Decoding brain states from fMRI connectivity graphs publication-title: Neuroimage – volume: 51 start-page: 288 year: 2010 ident: bib97 article-title: A group model for stable multi-subject ICA on fMRI datasets publication-title: Neuroimage – volume: 30 start-page: 3865 year: 2009 ident: bib52 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum. Brain Mapp. – year: 2010 ident: bib93 article-title: Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling – volume: 21 start-page: 424 year: 2008 ident: bib43 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Curr. Opin. Neurol. – volume: 45 start-page: 5 year: 2001 ident: bib14 article-title: Random forests publication-title: Mach. Learn. – volume: 66 start-page: 113 year: 2018 end-page: 128 ident: bib57 article-title: Stochastic subsampling for factorizing huge matrices publication-title: IEEE Trans. Signal Process. – volume: 112 start-page: 172 year: 2013 end-page: 178 ident: bib8 article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications publication-title: Neurocomputing – volume: 59 start-page: 2196 year: 2012 end-page: 2207 ident: bib9 article-title: Altered resting state complexity in schizophrenia publication-title: Neuroimage – volume: 20 start-page: 425 year: 2016 end-page: 443 ident: bib34 article-title: Building a science of individual differences from fmri publication-title: Trends Cognit. Sci. – volume: 121 start-page: 29 year: 2015 end-page: 38 ident: bib15 article-title: Partial covariance based functional connectivity computation using ledoit–wolf covariance regularization publication-title: Neuroimage – volume: 8 start-page: 1341 year: 1996 end-page: 1390 ident: bib102 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural Comput. – volume: 37 start-page: 90 year: 2007 ident: bib11 article-title: A component based noise correction method (compcor) for BOLD and perfusion based fMRI publication-title: Neuroimage – volume: 8 start-page: 897 year: 2014 ident: bib77 article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. – volume: 107 start-page: 4734 year: 2010 ident: bib13 article-title: Toward discovery science of human brain function publication-title: Proc Ntl Acad Sci – volume: 63 start-page: 55 year: 2015 end-page: 67 ident: bib48 article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control publication-title: Cortex – volume: 126 start-page: 2132 year: 2015 end-page: 2141 ident: bib51 article-title: Identifying patients with alzheimer's disease using resting-state fMRI and graph theory publication-title: Clin. Neurophysiol. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib72 article-title: Spurious but systematic correlations in functional connectivity mri networks arise from subject motion publication-title: Neuroimage – volume: 7 year: 2013 ident: bib6 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front. Neurosci. – volume: 49 start-page: 3110 year: 2010 ident: bib81 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: Neuroimage – year: 2013 ident: bib24 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front. Neuroinf. – volume: 23 start-page: 137 year: 2004 ident: bib10 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: Trans Med Im – volume: 80 start-page: 405 year: 2013 ident: bib94 article-title: Learning and comparing functional connectomes across subjects publication-title: Neuroimage – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib7 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: bib96 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage – volume: 87 start-page: 250 year: 2007 ident: bib38 article-title: Riemannian geometry for the statistical analysis of diffusion tensor data publication-title: Signal Process. – volume: 54 start-page: 875 year: 2011 ident: bib84 article-title: Network modelling methods for fMRI publication-title: Neuroimage – volume: 66 start-page: 41 year: 2006 ident: bib69 article-title: A Riemannian framework for tensor computing publication-title: Int. J. Comput. Vis. – volume: 12 start-page: 123 year: 2015 end-page: 133 ident: bib73 article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data publication-title: Developmental Cognitive Neuroscience – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib90 article-title: The Wu-minn human connectome project: an overview publication-title: Neuroimage – volume: 88 start-page: 365 year: 2004 ident: bib53 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivariate Anal. – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: bib3 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage – volume: 12 start-page: 2825 year: 2011 ident: bib68 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1359 year: 2011 ident: bib83 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib32 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 6 start-page: 2125 year: 2012 ident: bib55 article-title: The graphical lasso: new insights and alternatives publication-title: Electronic journal of statistics – volume: 23 year: 2016 ident: bib33 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat. Med. – volume: 6 year: 2017 ident: bib22 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: eLife – volume: 57 start-page: 328 year: 2015 ident: bib101 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. – volume: 45 start-page: 2041 year: 2012 ident: bib60 article-title: A supervised clustering approach for fMRI-based inference of brain states publication-title: Pattern Recogn. – volume: 7 year: 2013 ident: bib67 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. – start-page: 229 year: 2015 end-page: 237 ident: bib91 article-title: Identifying abnormal network alterations common to traumatic brain injury and alzheimer's disease patients using functional connectome data publication-title: Machine Learning in Medical Imaging – volume: 101 start-page: 3270 year: 2009 end-page: 3283 ident: bib39 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. – year: 2018 ident: bib45 article-title: Graph Theory Approaches to Functional Network Organization in Brain Disorders: A Critique for a Brave New Small-World – volume: 102 start-page: 207 year: 2014 end-page: 219 ident: bib5 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: Neuroimage – volume: 8 year: 2014 ident: bib4 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinf. – volume: 105 year: 2015 ident: bib79 article-title: Sparse network-based models for patient classification using fMRI publication-title: Neuroimage – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib30 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. – start-page: 6240 year: 2012 end-page: 6250 ident: bib50 article-title: Connectivity-based parcellation of the human orbitofrontal cortex publication-title: J. Neurosci. – volume: 9 start-page: 432 year: 2008 ident: bib40 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: bib64 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage – volume: 134 start-page: 645 year: 2016 end-page: 657 ident: bib76 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity publication-title: Neuroimage – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: bib71 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 6 year: 2012 ident: bib21 article-title: Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques publication-title: Front. Syst. Neurosci. – volume: 56 start-page: 2068 year: 2011 ident: bib80 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage – start-page: 203 year: 2016 end-page: 208 ident: bib59 article-title: A model for classification based on the functional connectivity pattern dynamics of the brain publication-title: 2016 Third European Network Intelligence Conference (ENIC) – volume: 33 start-page: 1914 year: 2012 ident: bib27 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. – volume: 20 start-page: 52 year: 2015 end-page: 60 ident: bib74 article-title: Manifold learning on brain functional networks in aging publication-title: Med. Image Anal. – volume: 8 start-page: 167 year: 2014 ident: bib87 article-title: Which fMRI clustering gives good brain parcellations? publication-title: Name: Front. Neurosci. – volume: 62 start-page: 1619 year: 2009 ident: bib26 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib23 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 14 start-page: 140 year: 2001 ident: bib18 article-title: A method for making group inferences from fMRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 16 start-page: 575 year: 2017 end-page: 585 ident: bib66 article-title: Distinct alterations in Parkinson's medication-state and disease-state connectivity publication-title: Neuroimage: Clinica – year: 2018 ident: bib35 article-title: A Distributed Brain Network Predicts General Intelligence from Resting-State Human Neuroimaging Data – volume: 148 start-page: 179 year: 2017 end-page: 188 ident: bib54 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: Neuroimage – start-page: 460 year: 2017 end-page: 468 ident: bib75 article-title: Population-shrinkage of covariance to estimate better brain functional connectivity publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib104 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – volume: 22 start-page: 158 year: 2012 ident: bib82 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebr. Cortex – year: 2010 ident: bib95 article-title: Brain Covariance Selection: Better Individual Functional Connectivity Models Using Population Prior – start-page: 607 year: 2013 ident: bib1 article-title: Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning – volume: 23 start-page: 1006 year: 2012 end-page: 1011 ident: bib44 article-title: Machine learning classifier using abnormal brain network topological metrics in major depressive disorder publication-title: Neuroreport – volume: 4 start-page: 13 year: 2015 ident: bib28 article-title: Connectomics and new approaches for analyzing human brain functional connectivity publication-title: GigaScience – volume: 106 start-page: 1125 year: 2011 ident: bib105 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. (Bethesda) – volume: 15 start-page: 869 year: 2005 ident: bib63 article-title: The alzheimers disease neuroimaging initiative publication-title: Neuroimaging Clin. – volume: 6 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib22 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: eLife doi: 10.7554/eLife.20178 – volume: 8 start-page: 897 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib77 article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00897 – volume: 62 start-page: 1619 year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib26 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22159 – volume: 26 start-page: 933 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib61 article-title: Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhu255 – volume: 54 start-page: 875 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib84 article-title: Network modelling methods for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib41 – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib6 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00133 – volume: 44 start-page: 893 year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib64 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – year: 2018 ident: 10.1016/j.neuroimage.2019.02.062_bib45 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib2 article-title: Region segmentation for sparse decompositions: better brain parcellations from rest fMRI publication-title: Front. Neuroinf. – year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib16 – year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib70 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib3 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 4 start-page: 13 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib28 article-title: Connectomics and new approaches for analyzing human brain functional connectivity publication-title: GigaScience doi: 10.1186/s13742-015-0045-x – volume: 23 start-page: 1006 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib44 article-title: Machine learning classifier using abnormal brain network topological metrics in major depressive disorder publication-title: Neuroreport doi: 10.1097/WNR.0b013e32835a650c – start-page: 78 year: 2018 ident: 10.1016/j.neuroimage.2019.02.062_bib103 article-title: Riemannian regression and classification models of brain networks applied to autism – volume: 8 start-page: 167 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib87 article-title: Which fMRI clustering gives good brain parcellations? publication-title: Name: Front. Neurosci. – year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib98 article-title: Combining multiple network features for mild cognitive impairment classification – volume: 16 start-page: 575 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib66 article-title: Distinct alterations in Parkinson's medication-state and disease-state connectivity publication-title: Neuroimage: Clinica doi: 10.1016/j.nicl.2017.09.004 – volume: 18 start-page: 1565 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib85 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 14 start-page: 140 year: 2001 ident: 10.1016/j.neuroimage.2019.02.062_bib18 article-title: A method for making group inferences from fMRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib72 article-title: Spurious but systematic correlations in functional connectivity mri networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 58 start-page: 236 year: 1963 ident: 10.1016/j.neuroimage.2019.02.062_bib99 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1963.10500845 – volume: 33 start-page: 1914 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib27 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21333 – volume: 37 start-page: 234 year: 2008 ident: 10.1016/j.neuroimage.2019.02.062_bib36 article-title: The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dym276 – volume: 35 start-page: 2911 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib106 article-title: Connectome-scale assessments of structural and functional connectivity in MCI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22373 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib68 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 49 start-page: 3110 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib81 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.011 – start-page: 203 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib59 article-title: A model for classification based on the functional connectivity pattern dynamics of the brain – volume: 66 start-page: 41 year: 2006 ident: 10.1016/j.neuroimage.2019.02.062_bib69 article-title: A Riemannian framework for tensor computing publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-005-3222-z – volume: 56 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib78 article-title: Decoding brain states from fMRI connectivity graphs publication-title: Neuroimage – year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib31 article-title: Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices – volume: 22 start-page: 158 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib82 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhr099 – volume: 105 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib79 article-title: Sparse network-based models for patient classification using fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.021 – volume: 20 start-page: 425 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib34 article-title: Building a science of individual differences from fmri publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2016.03.014 – start-page: 229 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib91 article-title: Identifying abnormal network alterations common to traumatic brain injury and alzheimer's disease patients using functional connectome data – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib4 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00014 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib13 article-title: Toward discovery science of human brain function publication-title: Proc Ntl Acad Sci doi: 10.1073/pnas.0911855107 – start-page: 724 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib49 article-title: Brain connectivity hyper-network for MCI classification – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.neuroimage.2019.02.062_bib23 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib25 article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac) publication-title: Front. Neuroinf. – volume: 102 start-page: 207 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib5 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.015 – volume: 259 start-page: 213 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib20 article-title: Classification of alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging publication-title: Radiology doi: 10.1148/radiol.10100734 – start-page: 6240 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib50 article-title: Connectivity-based parcellation of the human orbitofrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0257-12.2012 – year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib24 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front. Neuroinf. – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib89 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 126 start-page: 2132 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib51 article-title: Identifying patients with alzheimer's disease using resting-state fMRI and graph theory publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.02.060 – volume: 51 start-page: 288 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib97 article-title: A group model for stable multi-subject ICA on fMRI datasets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.010 – volume: 80 start-page: 405 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib94 article-title: Learning and comparing functional connectomes across subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.007 – volume: 134 start-page: 645 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib76 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.051 – volume: 20 start-page: 52 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib74 article-title: Manifold learning on brain functional networks in aging publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.10.006 – volume: 8 start-page: 1341 year: 1996 ident: 10.1016/j.neuroimage.2019.02.062_bib102 article-title: The lack of a priori distinctions between learning algorithms publication-title: Neural Comput. doi: 10.1162/neco.1996.8.7.1341 – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib32 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 45 start-page: 2041 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib60 article-title: A supervised clustering approach for fMRI-based inference of brain states publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.04.006 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib90 article-title: The Wu-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 22 start-page: 212 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib100 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12499 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib7 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 4 start-page: 347 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib37 article-title: Frequent and discriminative subnetwork mining for mild cognitive impairment classification publication-title: Brain Connect. doi: 10.1089/brain.2013.0214 – volume: 148 start-page: 179 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib54 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.005 – volume: 57 start-page: 328 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib101 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.08.001 – volume: 9 start-page: 432 year: 2008 ident: 10.1016/j.neuroimage.2019.02.062_bib40 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroimage.2019.02.062_bib29 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 66 start-page: 113 year: 2018 ident: 10.1016/j.neuroimage.2019.02.062_bib57 article-title: Stochastic subsampling for factorizing huge matrices publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2752697 – volume: 63 start-page: 55 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib48 article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control publication-title: Cortex doi: 10.1016/j.cortex.2014.08.011 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib105 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. (Bethesda) doi: 10.1152/jn.00338.2011 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib30 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. doi: 10.1038/mp.2013.78 – volume: 23 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib33 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat. Med. – volume: 19 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib62 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 – volume: 5 start-page: 13 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib42 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinf. doi: 10.3389/fninf.2011.00013 – volume: 12 start-page: 123 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib73 article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data publication-title: Developmental Cognitive Neuroscience doi: 10.1016/j.dcn.2015.01.003 – volume: 22 start-page: 1359 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib83 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. doi: 10.1177/0956797611417632 – volume: 56 start-page: 2068 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib80 article-title: Weight-conserving characterization of complex functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.069 – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2019.02.062_bib47 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 145 start-page: 166 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib96 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 180 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib92 article-title: Cross-validation failure: small sample sizes lead to large error bars publication-title: Neuroimage – volume: 30 start-page: 3865 year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib52 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20813 – volume: 121 start-page: 29 year: 2015 ident: 10.1016/j.neuroimage.2019.02.062_bib15 article-title: Partial covariance based functional connectivity computation using ledoit–wolf covariance regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.039 – start-page: 460 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib75 article-title: Population-shrinkage of covariance to estimate better brain functional connectivity – year: 2018 ident: 10.1016/j.neuroimage.2019.02.062_bib35 – volume: 21 start-page: 424 year: 2008 ident: 10.1016/j.neuroimage.2019.02.062_bib43 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e328306f2c5 – year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib95 – year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib93 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.neuroimage.2019.02.062_bib14 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 1 year: 2005 ident: 10.1016/j.neuroimage.2019.02.062_bib86 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib19 article-title: On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00149 – volume: 20 start-page: 365 year: 2017 ident: 10.1016/j.neuroimage.2019.02.062_bib104 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – start-page: 607 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib1 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2019.02.062_bib11 article-title: A component based noise correction method (compcor) for BOLD and perfusion based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 51 start-page: 1126 year: 2010 ident: 10.1016/j.neuroimage.2019.02.062_bib12 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.082 – start-page: 1737 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib56 article-title: Dictionary learning for massive matrix factorization – volume: 2 start-page: 75 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib17 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2011.00075 – year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib46 – volume: 88 start-page: 365 year: 2004 ident: 10.1016/j.neuroimage.2019.02.062_bib53 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivariate Anal. doi: 10.1016/S0047-259X(03)00096-4 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib21 article-title: Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00058 – start-page: 1282 year: 2016 ident: 10.1016/j.neuroimage.2019.02.062_bib58 article-title: Compressed online dictionary learning for fast resting-state fMRI decomposition – volume: 87 start-page: 250 year: 2007 ident: 10.1016/j.neuroimage.2019.02.062_bib38 article-title: Riemannian geometry for the statistical analysis of diffusion tensor data publication-title: Signal Process. doi: 10.1016/j.sigpro.2005.12.018 – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib67 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00599 – volume: 15 start-page: 869 year: 2005 ident: 10.1016/j.neuroimage.2019.02.062_bib63 article-title: The alzheimers disease neuroimaging initiative publication-title: Neuroimaging Clin. doi: 10.1016/j.nic.2005.09.008 – volume: 101 start-page: 3270 year: 2009 ident: 10.1016/j.neuroimage.2019.02.062_bib39 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – year: 2014 ident: 10.1016/j.neuroimage.2019.02.062_bib65 article-title: Transport on riemannian manifold for functional connectivity-based classification – volume: 23 start-page: 137 year: 2004 ident: 10.1016/j.neuroimage.2019.02.062_bib10 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: Trans Med Im doi: 10.1109/TMI.2003.822821 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2019.02.062_bib88 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 59 start-page: 2196 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib9 article-title: Altered resting state complexity in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.002 – volume: 6 start-page: 2125 year: 2012 ident: 10.1016/j.neuroimage.2019.02.062_bib55 article-title: The graphical lasso: new insights and alternatives publication-title: Electronic journal of statistics doi: 10.1214/12-EJS740 – volume: 112 start-page: 172 year: 2013 ident: 10.1016/j.neuroimage.2019.02.062_bib8 article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 72 start-page: 665 year: 2011 ident: 10.1016/j.neuroimage.2019.02.062_bib71 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 |
SSID | ssj0009148 |
Score | 2.656452 |
Snippet | Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115 |
SubjectTerms | Accuracy Alzheimer's disease Autism Benchmarking - methods Biomarkers Brain - diagnostic imaging Brain - physiology Brain mapping Cannabis Classification Computer Science Connectome - methods Connectome - standards Datasets Dictionaries Functional connectomes Functional magnetic resonance imaging Humans Intelligence Machine Learning Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Medical Imaging Mental disorders Models, Neurological Neurodegenerative diseases Neuroimaging Population study Post traumatic stress disorder Prediction models Predictive modeling Rest Resting-state fMRI Schizophrenia Trends |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VHhAXxJvQggziajZ-JbE4lYpqQSwSj0q9WY7jVRexD7XbHvntzDhOKg6VVkLayyaZjXcynm8-ZzwD8JZgoK2C5Y31LdeqK7mv6sCll6qKnWnb1D9l9rWanurPZ-ZsD46HvTCUVpl9f-_Tk7fORyZZm5PNYjH5gZEBwg3yDYtGaizVBNW6Jit_9-cmzcMK3W-HM4rT1Tmbp8_xSjUjF0ucuZTkZVP1zkreBlF3zilX8rZANAHSyQO4nyNJdtQP9iHsxdUjuDvL78ofw7cP-GfOlz4thjPCr37ZjwXKbQnb9TJywrCObS5IiPweS41xLhlGsoyadqAkT1uO2Hz2_dMTOD35-PN4ynMDBR6MVltukd0FiSrXyANL6wPSgRYhPoSmMQaZiojB6lBjlIEfnL0iUoM-4dsOQcuW6insr9ar-BxYE-S8bpGsVPOouwZ_JgqJUGY7b5UXvoB60JkLubo4Nbn47YY0sl_uRtuOtO1K6VDbBYhRctNX2NhBxg6PxQ07SNHnOYSBHWTfj7L_WNqO0m_QCsaBUnHu6dEXR8dKpGpaluZaFXA4GInLLuHSSZnoGdK7Al6Pp3Ey0xsav4rrK7xG4INBt690Ac964xpvpaiOOOLai_8a_wHco2-U_yDMIexvL67iSwyrtu2rNG_-AprZHtU priority: 102 providerName: Elsevier |
Title | Benchmarking functional connectome-based predictive models for resting-state fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919301594 https://dx.doi.org/10.1016/j.neuroimage.2019.02.062 https://www.ncbi.nlm.nih.gov/pubmed/30836146 https://www.proquest.com/docview/2203067768 https://www.proquest.com/docview/2188588734 https://inria.hal.science/hal-01824205 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6RVkJcEO8ulMggroa1vS-LA0pRqxRIBBWVcrO8XkcFkQdNypHfzozXuzkVRYoUKdnZXY3H831jj2cA3hAM1IXTvNK25plqUm6L0nFppSp8k9d16J8ymRbjy-zTLJ_FBbdNTKvsfGJw1M3K0Rr5OykDu0V2_GH9m1PXKNpdjS00BnBIpcvIqstZuSu6K7L2KFyueIUXxEyeNr8r1Iv8scBZSwleOlTuLORt8DS4ojzJ20hoAKOzB3A_skg2aof9Idzxy0dwdxL3yR_DtxM0vquFDQvhjLCrXfJjjvJa3Ha18Jzwq2HraxIin8dCU5wNQxbLqGEHSvJw3IjNJxfnT-Dy7PT7xzGPzRO4yzO15RojOydR3RnGgKm2DkOBGuHduarKc4xShHc6cyUyDPzgzBWemvMJWzcIWDpVT-FguVr6I2CVk_OyxkClmPusqfA2XkiEMd1YraywCZSdzoyLlcWpwcUv06WQ_TQ7bRvStkmlQW0nIHrJdVtdYw8Z3Q2L6U6Por8zCAF7yL7vZSPDaJnDntKv0Qr6F6XC3OPRF0O_pRimZTLN_6gEjjsjMdEdbMzOeBN41f-NE5l2Z-zSr27wGoEDgy5fZQk8a42rf5SiGuKIac__f_MXcI9el5IbRH4MB9vrG_8SOdO2HsLg7V8xDNNjCIej88_jKX6fnE6_XvwDk7oXlA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RYJeKt7dUsAgOFqs7X1ZCKHyqBKaVAK1Um7G63XUVuRBk4L4U_xGZryPnIpyqZTTZsdr2eP5vrHHMwCvCAbKzGleaFvyRFUxt1nuuLRSZb5KyzLUTxkeZ73T5MsoHW3A3_YuDIVVtjYxGOpq5miP_I2Ugd0iO34__8mpahSdrrYlNGq1OPJ_fqPLtnjX_4Tz-1rKw88nH3u8qSrAXZqoJdfo8jiJ_UjQOYq1dciRS8Q954oiTZG-C-904nKEXvyhSgtPVeuELSu05DpW2O4m3ELgjcnZy0f5KsmvSOqrd6nihRC6iRyq48lCfsrzCVoJCijTIVNoJq-Dw80zisu8jvQG8Du8CzsNa2UHtZrdgw0_vQ-3h825_AP4-gGV_Wxiw8Y7I6ystxiZozgat5xNPCe8rNj8koTIxrJQhGfBkDUzKhCCkjxcb2Lj4bf-Qzi9kWF9BFvT2dTvAiucHOclOkbZ2CdVgc14IRE2dWW1ssJGkLdjZlyTyZwKavwwbcjahVmNtqHRNrE0ONoRiE5yXmfzWENGt9Ni2tuqaF8NQs4asm872YbR1ExlTemXqAVdRykReO9gYOhZjG5hIuP0l4pgv1US05ifhVktlghedH-j4aDTIDv1syt8R-DEIMSoJILHtXJ1n1KUsxwxdO__jT-HO72T4cAM-sdHT2Cbuk6BFSLdh63l5ZV_inxtWT4Li4TB95telf8ABvdMmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qVRxQbxZWsAgOFpde70PCyHU0kYJbaJSUak31-t1VBB5tElb8df4dczsK6eiXCrltNnxWvZ4vm_s8QzAB4KBPHGaZ9rmXEVFyG2SOi6tjBJfxHle1k8ZDJPeqfp2Fp-twd_mLgyFVTY2sTTUxdTRHvmOlCW7RXa8M6rDIo73u19ml5wqSNFJa1NOo1KRQ__nFt23-ef-Ps71Rym7Bz--9nhdYYC7WEULrtH9cRL7pNBRCrV1yJdzxEDnsiyOkcoL77RyKcIw_lC9hacKdsLmBVp1HUbY7jpspOQVdWBj72B4fLJM-StUdREvjngmhK7jiKrosjJb5c8x2gwKL9Nl3tBE3gWO6xcUpXkXBS6hsPsIHtYclu1WSvcY1vzkCWwO6lP6p_B9D1X_YmzLbXhGyFltODJHUTVuMR17TuhZsNkVCZHFZWVJnjlDDs2oXAhK8vKyExsNTvrP4PReBvY5dCbTiX8JLHNylOboJiUjr4oMm_FCIojqwurIChtA2oyZcXVecyqv8ds0AWy_zHK0DY22CaXB0Q5AtJKzKrfHCjK6mRbT3F1Fa2sQgFaQ_dTK1vym4i0rSr9HLWg7SmnBe7tHhp6F6CQqGcY3UQDbjZKY2hjNzXLpBPCu_RvNCJ0N2YmfXuM7AicGASdSAbyolKv9VEQZzBFRX_2_8bewiSvSHPWHh1vwgHpOURYi3obO4urav0bytsjf1KuEwfl9L8x_iMFSNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+functional+connectome-based+predictive+models+for+resting-state+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dadi%2C+Kamalaker&rft.au=Rahim%2C+Mehdi&rft.au=Abraham%2C+Alexandre&rft.au=Chyzhyk%2C+Darya&rft.date=2019-05-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=192&rft.spage=115&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.02.062&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |