Benchmarking functional connectome-based predictive models for resting-state fMRI

Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of fu...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 192; no. 192; pp. 115 - 134
Main Authors Dadi, Kamalaker, Rahim, Mehdi, Abraham, Alexandre, Chyzhyk, Darya, Milham, Michael, Thirion, Bertrand, Varoquaux, Gaël
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2019
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings. [Display omitted] •We evaluate methods for prediction from resting-state fMRI on 6 cohorts.•A prediction pipeline needs brain regions, a connectome, and a supervised predictor.•Regions defined functionally (with dictionary learning or ICA) give best prediction.•Prefer tangent-space parametrization of connectomes to full or partial correlation.•Non-sparse linear classifiers are best for supervised learning.
AbstractList Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings. [Display omitted] •We evaluate methods for prediction from resting-state fMRI on 6 cohorts.•A prediction pipeline needs brain regions, a connectome, and a supervised predictor.•Regions defined functionally (with dictionary learning or ICA) give best prediction.•Prefer tangent-space parametrization of connectomes to full or partial correlation.•Non-sparse linear classifiers are best for supervised learning.
Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions -either pre-defined or generated from the rest-fMRI data- 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions -either pre-defined or generated from the rest-fMRI data- 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.
Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2000 individuals, encompassing neuro-degenerative (Alzheimer's, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations in the populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.
Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines typically used to derive them from rest-fMRI cohorts. Here, we consider a specific type of studies, using predictive models on the edge weights of functional connectomes, for which we highlight the best modeling choices. We systematically study the prediction performances of models in 6 different cohorts and a total of 2 000 individuals, encompassing neuro-degenerative (Alzheimer’s, Post-traumatic stress disorder), neuro-psychiatric (Schizophrenia, Autism), drug impact (Cannabis use) clinical settings and psychological trait (fluid intelligence). The typical prediction procedure from rest-fMRI consists of three main steps: defining brain regions, representing the interactions, and supervised learning. For each step we benchmark typical choices: 8 different ways of defining regions –either pre-defined or generated from the rest-fMRI data– 3 measures to build functional connectomes from the extracted time-series, and 10 classification models to compare functional interactions across subjects. Our benchmarks summarize more than 240 different pipelines and outline modeling choices that show consistent prediction performances in spite of variations inthe populations and sites. We find that regions defined from functional data work best; that it is beneficial to capture between-region interactions with tangent-based parametrization of covariances, a midway between correlations and partial correlation; and that simple linear predictors such as a logistic regression give the best predictions. Our work is a step forward to establishing reproducible imaging-based biomarkers for clinical settings.
Author Milham, Michael
Thirion, Bertrand
Rahim, Mehdi
Chyzhyk, Darya
Dadi, Kamalaker
Varoquaux, Gaël
Abraham, Alexandre
Author_xml – sequence: 1
  givenname: Kamalaker
  surname: Dadi
  fullname: Dadi, Kamalaker
  email: kamalaker-reddy.dadi@inria.fr, dkamalakarreddy@gmail.com
  organization: Parietal Project-team, INRIA Saclay-île de France, France
– sequence: 2
  givenname: Mehdi
  surname: Rahim
  fullname: Rahim, Mehdi
  organization: Parietal Project-team, INRIA Saclay-île de France, France
– sequence: 3
  givenname: Alexandre
  surname: Abraham
  fullname: Abraham, Alexandre
  organization: Parietal Project-team, INRIA Saclay-île de France, France
– sequence: 4
  givenname: Darya
  surname: Chyzhyk
  fullname: Chyzhyk, Darya
  organization: Parietal Project-team, INRIA Saclay-île de France, France
– sequence: 5
  givenname: Michael
  surname: Milham
  fullname: Milham, Michael
  organization: Center for the Developing Brain Child Mind Institute, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, USA
– sequence: 6
  givenname: Bertrand
  surname: Thirion
  fullname: Thirion, Bertrand
  organization: Parietal Project-team, INRIA Saclay-île de France, France
– sequence: 7
  givenname: Gaël
  surname: Varoquaux
  fullname: Varoquaux, Gaël
  organization: Parietal Project-team, INRIA Saclay-île de France, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30836146$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01824205$$DView record in HAL
BookMark eNqNkU1r3DAQhkVJaT7av1AMvbQHuyNZtuVLaRKSJrCltLRnoZXHiTa2tJHshfz7zrJJC3taMNiyn3nHvM8pO_LBI2MZh4IDrz-vCo9zDG40d1gI4G0BooBavGInHNoqb6tGHG2fqzJXnLfH7DSlFQC0XKo37LgEVdZc1ifs5wV6ez-a-OD8XdbP3k4ueDNkNniPdgoj5kuTsMvWETtHXzeYjaHDIWV9iFnENNFkniYzYdZ__3X7lr3uzZDw3fP9jP25vvp9eZMvfny7vTxf5LaS5ZS3gnMrauykEhW0xoJsl7zi1ipVVaqpONpW2qbhQJcUdG4kcG6WnZJNC-UZ-7TLvTeDXkfqIj7pYJy-OV_o7TvgSkgB1aYk9uOOXcfwONMv69Eli8NgPIY5acFpqVJNKQn9sIeuwhypEaIElFA3Ta2Iev9MzcsRu3_7X4ol4MsOsDGkFLHX1lFF1O0UjRs0B701qVf6v0m9NalBaDJJAWov4GXHAaMXu1GShBuHUSfrSDP5i6RUd8EdEvJ1L8QOzjtrhgd8OiziL5-a0fA
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3269446
crossref_primary_10_1142_S012906572150009X
crossref_primary_10_3389_fnagi_2022_912895
crossref_primary_10_1016_j_neuroimage_2022_119367
crossref_primary_10_1016_j_intell_2022_101654
crossref_primary_10_1162_netn_a_00325
crossref_primary_10_1523_JNEUROSCI_1202_23_2023
crossref_primary_10_1162_netn_a_00166
crossref_primary_10_1016_j_neuroimage_2020_117226
crossref_primary_10_1016_j_nicl_2022_103120
crossref_primary_10_1016_j_neuroimage_2020_116893
crossref_primary_10_1088_1361_6560_ac9d1e
crossref_primary_10_1007_s00234_024_03489_7
crossref_primary_10_1016_j_ynirp_2023_100163
crossref_primary_10_1093_gigascience_giac014
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1016_j_celrep_2023_113597
crossref_primary_10_32604_cmc_2022_026999
crossref_primary_10_1007_s00429_023_02723_x
crossref_primary_10_3389_fninf_2021_676491
crossref_primary_10_1007_s41060_023_00408_6
crossref_primary_10_1016_j_biopsych_2020_02_016
crossref_primary_10_1093_cercor_bhac060
crossref_primary_10_1016_j_bpsgos_2021_11_004
crossref_primary_10_1016_j_biopsych_2020_08_024
crossref_primary_10_1109_TBME_2021_3102015
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_1038_s41386_021_01147_7
crossref_primary_10_1093_gigascience_giac082
crossref_primary_10_1016_j_tics_2024_09_007
crossref_primary_10_1088_1741_2552_ab9fec
crossref_primary_10_1109_JBHI_2024_3351177
crossref_primary_10_1016_j_patcog_2019_107183
crossref_primary_10_1007_s11222_024_10411_x
crossref_primary_10_1016_j_neunet_2024_106660
crossref_primary_10_1093_biomtc_ujaf023
crossref_primary_10_1016_j_neuroimage_2021_118289
crossref_primary_10_1016_j_neuroimage_2021_118044
crossref_primary_10_1016_j_neuroimage_2023_120115
crossref_primary_10_1093_cercor_bhac189
crossref_primary_10_2139_ssrn_4098700
crossref_primary_10_1016_j_neunet_2025_107335
crossref_primary_10_1109_ACCESS_2023_3324670
crossref_primary_10_1016_j_neuroimage_2023_120010
crossref_primary_10_1016_j_neuroimage_2024_120570
crossref_primary_10_1002_hbm_26027
crossref_primary_10_1155_2022_1581958
crossref_primary_10_1016_j_isci_2023_107624
crossref_primary_10_1016_j_bpsc_2019_05_018
crossref_primary_10_1371_journal_pone_0235039
crossref_primary_10_1103_PhysRevE_107_014302
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_3389_fnins_2021_700171
crossref_primary_10_1007_s12021_021_09548_1
crossref_primary_10_1016_j_cmpb_2022_107082
crossref_primary_10_1016_j_neuroimage_2021_118533
crossref_primary_10_1002_hbm_25448
crossref_primary_10_1016_j_artmed_2020_101870
crossref_primary_10_1016_j_media_2021_102233
crossref_primary_10_1016_j_neuroimage_2021_118254
crossref_primary_10_1038_s41598_022_06459_2
crossref_primary_10_1162_imag_a_00222
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1002_hbm_24879
crossref_primary_10_1093_cercor_bhac235
crossref_primary_10_1162_netn_a_00419
crossref_primary_10_1016_j_compmedimag_2023_102187
crossref_primary_10_1038_s41467_019_13785_z
crossref_primary_10_7554_eLife_56257
crossref_primary_10_1016_j_neuroimage_2023_120388
crossref_primary_10_1016_j_bpsc_2024_10_002
crossref_primary_10_1109_TCBB_2024_3422152
crossref_primary_10_1002_hbm_26498
crossref_primary_10_1016_j_nicl_2024_103571
crossref_primary_10_1155_2023_4136087
crossref_primary_10_1038_s41562_023_01670_1
crossref_primary_10_1038_s41598_022_07860_7
crossref_primary_10_1109_TMI_2024_3432531
crossref_primary_10_3389_fpsyt_2022_1100266
crossref_primary_10_1016_j_neuroimage_2020_117706
crossref_primary_10_3390_app11083636
crossref_primary_10_1038_s41562_020_01005_4
crossref_primary_10_1089_cmb_2020_0252
crossref_primary_10_1109_TCDS_2021_3101643
crossref_primary_10_1016_j_compbiomed_2023_107478
crossref_primary_10_1016_j_rineng_2025_104444
crossref_primary_10_3389_fnsys_2022_904770
crossref_primary_10_1002_hbm_25679
crossref_primary_10_1016_j_neurobiolaging_2022_06_008
crossref_primary_10_1002_hbm_25436
crossref_primary_10_1016_j_neurad_2022_10_002
crossref_primary_10_1162_imag_a_00233
crossref_primary_10_1093_cercor_bhac489
crossref_primary_10_1109_OJSP_2021_3051453
crossref_primary_10_1109_TMI_2023_3327283
crossref_primary_10_1016_j_neuroimage_2019_116038
crossref_primary_10_1109_TMI_2024_3392988
crossref_primary_10_1002_hbm_26164
crossref_primary_10_1093_biostatistics_kxab015
crossref_primary_10_1109_TMI_2024_3512603
crossref_primary_10_3390_brainsci11060735
crossref_primary_10_1162_netn_a_00400
crossref_primary_10_1016_j_bpsc_2020_12_002
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1016_j_neuroimage_2020_116604
crossref_primary_10_1016_j_bspc_2024_107466
crossref_primary_10_1109_TMI_2022_3219260
crossref_primary_10_1016_j_compbiomed_2020_104096
crossref_primary_10_1016_j_neuroimage_2021_118513
crossref_primary_10_1038_s41398_022_02134_2
crossref_primary_10_1177_13623613211041904
crossref_primary_10_1002_hbm_70158
crossref_primary_10_1016_j_neuroimage_2023_120304
crossref_primary_10_1093_brain_awac315
crossref_primary_10_1186_s13195_023_01349_9
crossref_primary_10_1016_j_jad_2024_01_177
crossref_primary_10_1038_s42003_024_06438_5
crossref_primary_10_3389_fnhum_2023_1094592
crossref_primary_10_4236_jcc_2024_123002
crossref_primary_10_1001_jamapsychiatry_2023_1419
crossref_primary_10_1016_j_neunet_2021_05_016
crossref_primary_10_1016_j_neuroimage_2023_120044
crossref_primary_10_1523_JNEUROSCI_0856_23_2024
crossref_primary_10_1002_hbm_25462
crossref_primary_10_1016_j_bpsgos_2022_07_008
crossref_primary_10_1063_5_0203926
crossref_primary_10_1162_netn_a_00239
crossref_primary_10_3389_fnins_2021_729937
crossref_primary_10_7554_eLife_54055
crossref_primary_10_1038_s41467_022_31347_8
crossref_primary_10_1162_netn_a_00117
crossref_primary_10_1109_JBHI_2022_3159031
crossref_primary_10_1016_j_neuroimage_2021_118518
crossref_primary_10_1093_gigascience_giab071
crossref_primary_10_1016_j_patter_2023_100756
crossref_primary_10_3389_fnins_2022_872848
crossref_primary_10_1016_j_euroneuro_2020_09_190
crossref_primary_10_3389_fneur_2022_960760
crossref_primary_10_1016_j_neuroimage_2021_118761
crossref_primary_10_3389_fnimg_2022_952084
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1038_s41598_021_82681_8
crossref_primary_10_1038_s41596_022_00696_5
crossref_primary_10_1109_TNSRE_2021_3120024
crossref_primary_10_1016_j_neuroimage_2022_119185
crossref_primary_10_1007_s11517_022_02628_7
crossref_primary_10_1016_j_neuroimage_2022_118890
crossref_primary_10_1103_PhysRevE_108_024313
crossref_primary_10_1007_s11571_021_09772_0
crossref_primary_10_1016_j_neuroimage_2022_119588
crossref_primary_10_1111_ecc_13428
crossref_primary_10_1002_hbm_25095
crossref_primary_10_3389_fnins_2021_697870
crossref_primary_10_3233_JAD_220100
crossref_primary_10_37979_afb_2021v4n2_96
crossref_primary_10_1016_j_schres_2021_12_041
crossref_primary_10_3389_fnins_2021_715861
crossref_primary_10_1038_s41467_024_52479_z
crossref_primary_10_1038_s41598_023_47934_8
crossref_primary_10_1038_s41583_022_00601_9
crossref_primary_10_1016_j_neuroimage_2020_117126
crossref_primary_10_1016_j_neuroimage_2020_117489
crossref_primary_10_1162_netn_a_00182
crossref_primary_10_1016_j_neuroimage_2020_117001
crossref_primary_10_1016_j_artmed_2020_102004
crossref_primary_10_3389_fpubh_2020_584430
crossref_primary_10_1002_biof_1933
crossref_primary_10_3389_fnhum_2023_1276994
crossref_primary_10_7717_peerj_14835
crossref_primary_10_1007_s11682_021_00585_7
crossref_primary_10_1016_j_bspc_2024_106766
crossref_primary_10_1016_j_jmva_2022_105120
crossref_primary_10_1162_netn_a_00216
crossref_primary_10_1162_netn_a_00176
crossref_primary_10_1016_j_compbiomed_2022_105239
crossref_primary_10_1016_j_plrev_2023_12_006
crossref_primary_10_3389_fnins_2021_720909
crossref_primary_10_1016_j_bpsc_2020_05_013
crossref_primary_10_1109_TNSRE_2023_3309847
crossref_primary_10_1038_s42003_023_05073_w
crossref_primary_10_1016_j_neuroimage_2021_118624
crossref_primary_10_1016_j_neuroimage_2021_118625
crossref_primary_10_1016_j_pscychresns_2024_111822
crossref_primary_10_1093_gigascience_giaf010
crossref_primary_10_1038_s41598_022_10710_1
crossref_primary_10_1002_hbm_26449
crossref_primary_10_1089_brain_2024_0056
crossref_primary_10_1002_hbm_24947
crossref_primary_10_1093_cercor_bhac288
crossref_primary_10_1093_biostatistics_kxae023
Cites_doi 10.7554/eLife.20178
10.3389/fnhum.2014.00897
10.1002/mrm.22159
10.1093/cercor/bhu255
10.1016/j.neuroimage.2010.08.063
10.3389/fnins.2013.00133
10.1016/j.neuroimage.2008.09.036
10.1016/j.neuroimage.2016.10.045
10.1186/s13742-015-0045-x
10.1097/WNR.0b013e32835a650c
10.1016/j.nicl.2017.09.004
10.1038/nn.4125
10.1002/hbm.1048
10.1016/j.neuroimage.2011.10.018
10.1080/01621459.1963.10500845
10.1002/hbm.21333
10.1093/ije/dym276
10.1002/hbm.22373
10.1016/j.neuroimage.2009.11.011
10.1007/s11263-005-3222-z
10.1093/cercor/bhr099
10.1016/j.neuroimage.2014.11.021
10.1016/j.tics.2016.03.014
10.3389/fninf.2014.00014
10.1073/pnas.0911855107
10.1109/TIT.1967.1053964
10.1016/j.neuroimage.2013.12.015
10.1148/radiol.10100734
10.1523/JNEUROSCI.0257-12.2012
10.1016/j.neuroimage.2012.02.018
10.1016/j.clinph.2015.02.060
10.1016/j.neuroimage.2010.02.010
10.1016/j.neuroimage.2013.04.007
10.1016/j.neuroimage.2016.04.051
10.1016/j.media.2014.10.006
10.1162/neco.1996.8.7.1341
10.1126/science.1194144
10.1016/j.patcog.2011.04.006
10.1016/j.neuroimage.2013.05.041
10.1111/cns.12499
10.1016/j.neuroimage.2016.02.079
10.1089/brain.2013.0214
10.1016/j.neuroimage.2016.11.005
10.1016/j.neubiorev.2015.08.001
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2006.01.021
10.1109/TSP.2017.2752697
10.1016/j.cortex.2014.08.011
10.1152/jn.00338.2011
10.1038/mp.2013.78
10.1038/nn.4393
10.3389/fninf.2011.00013
10.1016/j.dcn.2015.01.003
10.1177/0956797611417632
10.1016/j.neuroimage.2011.03.069
10.1109/MCSE.2007.55
10.1016/j.neuroimage.2016.10.038
10.1002/hbm.20813
10.1016/j.neuroimage.2015.07.039
10.1097/WCO.0b013e328306f2c5
10.1023/A:1010933404324
10.1371/journal.pcbi.0010042
10.3389/fnins.2012.00149
10.1038/nn.4478
10.1016/j.neuroimage.2007.04.042
10.1016/j.neuroimage.2010.02.082
10.3389/fpsyt.2011.00075
10.1016/S0047-259X(03)00096-4
10.3389/fnsys.2012.00058
10.1016/j.sigpro.2005.12.018
10.3389/fnhum.2013.00599
10.1016/j.nic.2005.09.008
10.1152/jn.90777.2008
10.1109/TMI.2003.822821
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2011.10.002
10.1214/12-EJS740
10.1016/j.neucom.2012.12.039
10.1016/j.neuron.2011.09.006
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOI 10.1016/j.neuroimage.2019.02.062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest One Psychology
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 134
ExternalDocumentID oai_HAL_hal_01824205v3
30836146
10_1016_j_neuroimage_2019_02_062
S1053811919301594
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c543t-9211c26ed482509ac049b151cc88558751ec94c77107104251e74011abd847903
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri May 09 12:20:14 EDT 2025
Thu Jul 10 21:59:25 EDT 2025
Wed Aug 13 07:29:55 EDT 2025
Wed Feb 19 02:31:50 EST 2025
Tue Jul 01 03:02:07 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Fri Feb 23 02:36:57 EST 2024
Tue Aug 26 20:02:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 192
Keywords Resting-state fMRI
Predictive modeling
Population study
Functional connectomes
Classification
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-9211c26ed482509ac049b151cc88558751ec94c77107104251e74011abd847903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2214-1050
0000-0003-1076-5122
OpenAccessLink https://inria.hal.science/hal-01824205
PMID 30836146
PQID 2203067768
PQPubID 2031077
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_01824205v3
proquest_miscellaneous_2188588734
proquest_journals_2203067768
pubmed_primary_30836146
crossref_citationtrail_10_1016_j_neuroimage_2019_02_062
crossref_primary_10_1016_j_neuroimage_2019_02_062
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_02_062
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_02_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Hastie, Tibshirani, Friedman (bib46) 2009
Colclough, Smith, Nichols, Winkler, Sotiropoulos, Glasser, Van Essen, Woolrich (bib22) 2017; 6
Mensch, Mairal, Thirion, Varoquaux (bib57) 2018; 66
Friedman, Hastie, Tibshirani (bib40) 2008; 9
Craddock, Benhajali, Chu, Chouinard, Evans, Jakab, Khundrakpam, Lewis, Li, Milham, Yan, Bellec (bib24) 2013
Chen, Ward, Xie, Li, Wu, Jones, Franczak, Antuono, Li (bib20) 2011; 259
Dubois, Adolphs (bib34) 2016; 20
Fei, Jie, Zhang (bib37) 2014; 4
Greicius (bib43) 2008; 21
Varoquaux, Sadaghiani, Pinel, Kleinschmidt, Poline, Thirion (bib97) 2010; 51
Mensch, Varoquaux, Thirion (bib58) 2016
Craddock, Holtzheimer, Hu, Mayberg (bib26) 2009; 62
Pedregosa, Varoquaux, Gramfort (bib68) 2011; 12
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib89) 2012; 62
Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib5) 2014; 102
Ward (bib99) 1963; 58
Sporns, Tononi, Kotter (bib86) 2005; 1
Power, Barnes, Snyder, Schlaggar, Petersen (bib72) 2012; 59
Wolfers, Buitelaar, Beckmann, Franke, Marquand (bib101) 2015; 57
Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib12) 2010; 51
Wolpert (bib102) 1996; 8
Van Essen, Smith (bib90) 2013; 80
Abraham, Dohmatob, Thirion, Samaras, Varoquaux (bib2) 2014; 8
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib3) 2017; 147
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (bib71) 2011; 72
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib88) 2002; 15
Dodero, Minh, Biagio, Murino, Sona (bib31) 2015
Simmons, Nelson, Simonsohn (bib83) 2011; 22
Breiman (bib14) 2001; 45
Cover, Hart (bib23) 1967; 13
Zhu, Li, Terry, Puente, Wang, Shen, Miller, Liu (bib106) 2013; 35
Arbabshirani, Plis, Sui, Calhoun (bib7) 2017; 145
Jie, Shen, Zhang (bib49) 2014
Brier, Mitra, McCarthy, Ances, Snyder (bib15) 2015; 121
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib82) 2012; 22
Wong, Anderson, Zielinski, Fletcher (bib103) 2018
Woo, Chang, Lindquist, Wager (bib104) 2017; 20
Rashid, Damaraju, Pearlson, Calhoun (bib77) 2014; 8
Rubinov, Sporns (bib80) 2011; 56
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib29) 2006; 31
Varoquaux, Gramfort, Poline, Thirion (bib95) 2010
Thirion, Varoquaux, Dohmatob, Poline (bib87) 2014; 8
Meszlényi, Peska, Gál, Vidnyánszky, Buza (bib59) 2016
Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (bib67) 2013; 7
Varoquaux (bib92) 2017; 180
Yeo, Krienen, Sepulcre, Sabuncu (bib105) 2011; 106
Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi, Gramfort, Thirion, Varoquaux (bib4) 2014; 8
Pennec, Fillard, Ayache (bib69) 2006; 66
Abraham, Dohmatob, Thirion, Samaras, Varoquaux (bib1) 2013
Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom, Ghosh (bib42) 2011; 5
Craddock, Sikka, Cheung, Khanuja, Ghosh, Yan, Li, Lurie, Vogelstein, Burns, Colcombe, Mennes, Kelly, Di Martino, Castellanos, Milham (bib25) 2013
Wee, Yap, Shen (bib100) 2016; 22
Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola (bib52) 2009; 30
Gellerup (bib41) 2016
Liem, Varoquaux, Kynast, Beyer, Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock (bib54) 2017; 148
Varoquaux, Craddock (bib94) 2013; 80
Barachant, Bonnet, Congedo, Jutten (bib8) 2013; 112
Brown, Hamarneh (bib16) 2016
Fletcher, Joshi (bib38) 2007; 87
Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib85) 2015; 18
Elliott, Peakman (bib36) 2008; 37
Ledoit, Wolf (bib53) 2004; 88
Mensch, Mairal, Thirion, Varoquaux (bib56) 2016
Mazumder, Hastie (bib55) 2012; 6
Craddock, Tungaraza, Milham (bib28) 2015; 4
Hallquist, Hillary (bib45) 2018
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib63) 2005; 15
Murphy, Birn, Handwerker, Jones, Bandettini (bib64) 2009; 44
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann (bib13) 2010; 107
Ng, Dressler, Varoquaux, Poline, Greicius, Thirion (bib65) 2014
Behzadi, Restom, Liau, Liu (bib11) 2007; 37
Qiu, Lee, Tan, Chung (bib74) 2015; 20
Milazzo, Ng, Jiang, Shirer, Varoquaux, Poline, Thirion, Greicius (bib61) 2014; 26
Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (bib78) 2010; 56
Dubois, Galdi, Paul, Adolphs (bib35) 2018
Guo, Cao, Liu, Li, Chen, Zhang (bib44) 2012; 23
Michel, Gramfort, Varoquaux, Eger, Keribin, Thirion (bib60) 2012; 45
Kahnt, Chang, Park, Heinzle, Haynes (bib50) 2012
Varoquaux, Baronnet, Kleinschmidt, Fillard, Thirion (bib93) 2010
Perrot, Riviere, Tucholka, Mangin (bib70) 2009
Bassett, Nelson, Mueller, Camchong, Lim (bib9) 2012; 59
Beckmann, Smith (bib10) 2004; 23
Pruett, Kandala, Hoertel, Snyder, Elison, Nishino, Feczko, Dosenbach, Nardos, Power, Adeyemo, Botteron, McKinstry, Evans, Hazlett, Dager, Paterson, Schultz, Collins, Fonov, Styner, Gerig, Das, Kostopoulos, Constantino, Estes, Petersen, Schlaggar, Piven (bib73) 2015; 12
Miller, Alfaro-Almagro (bib62) 2016; 19
Ng, Varoquaux, Poline, Thirion, Greicius, Poston (bib66) 2017; 16
Shen, Wang, Liu, Hu (bib81) 2010; 49
Calhoun, Sui, Kiehl, Turner, Allen, Pearlson (bib17) 2012; 2
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib84) 2011; 54
Arbabshirani, Kiehl, Pearlson, Calhoun (bib6) 2013; 7
Iidaka (bib48) 2015; 63
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib30) 2014; 19
Rosa, Portugal, Hahn, Fallgatter, Garrido, Shawe-Taylor, Mourao-Miranda (bib79) 2015; 105
Craddock, James, Holtzheimer, Hu, Mayberg (bib27) 2012; 33
Drysdale, Grosenick (bib33) 2016; 23
Fox, Zhang, Snyder, Raichle (bib39) 2009; 101
Carp (bib19) 2012; 6
Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib96) 2017; 145
Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib76) 2016; 134
Calhoun, Adali, Pearlson, Pekar (bib18) 2001; 14
Vanderweyen, Munsell, Mintzer, Mintzer, Gajadhar, Zhu, Wu, Joseph (bib91) 2015
Khazaee, Ebrahimzadeh, Babajani-Feremi (bib51) 2015; 126
Hunter (bib47) 2007; 9
Rahim, Thirion, Varoquaux (bib75) 2017
Cheng, Ji, Zhang, Feng (bib21) 2012; 6
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bib32) 2010; 329
Wang, Fei, Jie, Zhang (bib98) 2014
Michel (10.1016/j.neuroimage.2019.02.062_bib60) 2012; 45
Desikan (10.1016/j.neuroimage.2019.02.062_bib29) 2006; 31
Murphy (10.1016/j.neuroimage.2019.02.062_bib64) 2009; 44
Simmons (10.1016/j.neuroimage.2019.02.062_bib83) 2011; 22
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib95) 2010
Nielsen (10.1016/j.neuroimage.2019.02.062_bib67) 2013; 7
Gorgolewski (10.1016/j.neuroimage.2019.02.062_bib42) 2011; 5
Meszlényi (10.1016/j.neuroimage.2019.02.062_bib59) 2016
Milazzo (10.1016/j.neuroimage.2019.02.062_bib61) 2014; 26
Hastie (10.1016/j.neuroimage.2019.02.062_bib46) 2009
Kiviniemi (10.1016/j.neuroimage.2019.02.062_bib52) 2009; 30
Friedman (10.1016/j.neuroimage.2019.02.062_bib40) 2008; 9
Ng (10.1016/j.neuroimage.2019.02.062_bib65) 2014
Wang (10.1016/j.neuroimage.2019.02.062_bib98) 2014
Dubois (10.1016/j.neuroimage.2019.02.062_bib34) 2016; 20
Miller (10.1016/j.neuroimage.2019.02.062_bib62) 2016; 19
Rubinov (10.1016/j.neuroimage.2019.02.062_bib80) 2011; 56
Anderson (10.1016/j.neuroimage.2019.02.062_bib5) 2014; 102
Cover (10.1016/j.neuroimage.2019.02.062_bib23) 1967; 13
Guo (10.1016/j.neuroimage.2019.02.062_bib44) 2012; 23
Greicius (10.1016/j.neuroimage.2019.02.062_bib43) 2008; 21
Gellerup (10.1016/j.neuroimage.2019.02.062_bib41) 2016
Shirer (10.1016/j.neuroimage.2019.02.062_bib82) 2012; 22
Rosa (10.1016/j.neuroimage.2019.02.062_bib79) 2015; 105
Power (10.1016/j.neuroimage.2019.02.062_bib71) 2011; 72
Power (10.1016/j.neuroimage.2019.02.062_bib72) 2012; 59
Abraham (10.1016/j.neuroimage.2019.02.062_bib2) 2014; 8
Smith (10.1016/j.neuroimage.2019.02.062_bib85) 2015; 18
Vanderweyen (10.1016/j.neuroimage.2019.02.062_bib91) 2015
Mueller (10.1016/j.neuroimage.2019.02.062_bib63) 2005; 15
Abraham (10.1016/j.neuroimage.2019.02.062_bib4) 2014; 8
Biswal (10.1016/j.neuroimage.2019.02.062_bib13) 2010; 107
Kahnt (10.1016/j.neuroimage.2019.02.062_bib50) 2012
Breiman (10.1016/j.neuroimage.2019.02.062_bib14) 2001; 45
Bassett (10.1016/j.neuroimage.2019.02.062_bib9) 2012; 59
Jie (10.1016/j.neuroimage.2019.02.062_bib49) 2014
Barachant (10.1016/j.neuroimage.2019.02.062_bib8) 2013; 112
Smith (10.1016/j.neuroimage.2019.02.062_bib84) 2011; 54
Yeo (10.1016/j.neuroimage.2019.02.062_bib105) 2011; 106
Dodero (10.1016/j.neuroimage.2019.02.062_bib31) 2015
Brier (10.1016/j.neuroimage.2019.02.062_bib15) 2015; 121
Dubois (10.1016/j.neuroimage.2019.02.062_bib35) 2018
Chen (10.1016/j.neuroimage.2019.02.062_bib20) 2011; 259
Liem (10.1016/j.neuroimage.2019.02.062_bib54) 2017; 148
Wolfers (10.1016/j.neuroimage.2019.02.062_bib101) 2015; 57
Mensch (10.1016/j.neuroimage.2019.02.062_bib57) 2018; 66
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib94) 2013; 80
Perrot (10.1016/j.neuroimage.2019.02.062_bib70) 2009
Woo (10.1016/j.neuroimage.2019.02.062_bib104) 2017; 20
Rahim (10.1016/j.neuroimage.2019.02.062_bib75) 2017
Van Essen (10.1016/j.neuroimage.2019.02.062_bib90) 2013; 80
Elliott (10.1016/j.neuroimage.2019.02.062_bib36) 2008; 37
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib96) 2017; 145
Iidaka (10.1016/j.neuroimage.2019.02.062_bib48) 2015; 63
Brown (10.1016/j.neuroimage.2019.02.062_bib16) 2016
Thirion (10.1016/j.neuroimage.2019.02.062_bib87) 2014; 8
Van Essen (10.1016/j.neuroimage.2019.02.062_bib89) 2012; 62
Tzourio-Mazoyer (10.1016/j.neuroimage.2019.02.062_bib88) 2002; 15
Hunter (10.1016/j.neuroimage.2019.02.062_bib47) 2007; 9
Abraham (10.1016/j.neuroimage.2019.02.062_bib1) 2013
Craddock (10.1016/j.neuroimage.2019.02.062_bib27) 2012; 33
Pedregosa (10.1016/j.neuroimage.2019.02.062_bib68) 2011; 12
Pruett (10.1016/j.neuroimage.2019.02.062_bib73) 2015; 12
Colclough (10.1016/j.neuroimage.2019.02.062_bib22) 2017; 6
Arbabshirani (10.1016/j.neuroimage.2019.02.062_bib6) 2013; 7
Fox (10.1016/j.neuroimage.2019.02.062_bib39) 2009; 101
Fletcher (10.1016/j.neuroimage.2019.02.062_bib38) 2007; 87
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib97) 2010; 51
Mazumder (10.1016/j.neuroimage.2019.02.062_bib55) 2012; 6
Pennec (10.1016/j.neuroimage.2019.02.062_bib69) 2006; 66
Calhoun (10.1016/j.neuroimage.2019.02.062_bib18) 2001; 14
Carp (10.1016/j.neuroimage.2019.02.062_bib19) 2012; 6
Wee (10.1016/j.neuroimage.2019.02.062_bib100) 2016; 22
Cheng (10.1016/j.neuroimage.2019.02.062_bib21) 2012; 6
Sporns (10.1016/j.neuroimage.2019.02.062_bib86) 2005; 1
Hallquist (10.1016/j.neuroimage.2019.02.062_bib45) 2018
Calhoun (10.1016/j.neuroimage.2019.02.062_bib17) 2012; 2
Mensch (10.1016/j.neuroimage.2019.02.062_bib58) 2016
Craddock (10.1016/j.neuroimage.2019.02.062_bib28) 2015; 4
Wong (10.1016/j.neuroimage.2019.02.062_bib103) 2018
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib92) 2017; 180
Varoquaux (10.1016/j.neuroimage.2019.02.062_bib93) 2010
Bellec (10.1016/j.neuroimage.2019.02.062_bib12) 2010; 51
Behzadi (10.1016/j.neuroimage.2019.02.062_bib11) 2007; 37
Ledoit (10.1016/j.neuroimage.2019.02.062_bib53) 2004; 88
Craddock (10.1016/j.neuroimage.2019.02.062_bib25) 2013
Shen (10.1016/j.neuroimage.2019.02.062_bib81) 2010; 49
Craddock (10.1016/j.neuroimage.2019.02.062_bib26) 2009; 62
Qiu (10.1016/j.neuroimage.2019.02.062_bib74) 2015; 20
Khazaee (10.1016/j.neuroimage.2019.02.062_bib51) 2015; 126
Richiardi (10.1016/j.neuroimage.2019.02.062_bib78) 2010; 56
Zhu (10.1016/j.neuroimage.2019.02.062_bib106) 2013; 35
Ward (10.1016/j.neuroimage.2019.02.062_bib99) 1963; 58
Rashid (10.1016/j.neuroimage.2019.02.062_bib76) 2016; 134
Rashid (10.1016/j.neuroimage.2019.02.062_bib77) 2014; 8
Wolpert (10.1016/j.neuroimage.2019.02.062_bib102) 1996; 8
Drysdale (10.1016/j.neuroimage.2019.02.062_bib33) 2016; 23
Beckmann (10.1016/j.neuroimage.2019.02.062_bib10) 2004; 23
Craddock (10.1016/j.neuroimage.2019.02.062_bib24) 2013
Abraham (10.1016/j.neuroimage.2019.02.062_bib3) 2017; 147
Arbabshirani (10.1016/j.neuroimage.2019.02.062_bib7) 2017; 145
Dosenbach (10.1016/j.neuroimage.2019.02.062_bib32) 2010; 329
Ng (10.1016/j.neuroimage.2019.02.062_bib66) 2017; 16
Fei (10.1016/j.neuroimage.2019.02.062_bib37) 2014; 4
Di Martino (10.1016/j.neuroimage.2019.02.062_bib30) 2014; 19
Mensch (10.1016/j.neuroimage.2019.02.062_bib56) 2016
References_xml – start-page: 1737
  year: 2016
  end-page: 1746
  ident: bib56
  article-title: Dictionary learning for massive matrix factorization
  publication-title: International Conference on Machine Learning
– year: 2014
  ident: bib98
  article-title: Combining multiple network features for mild cognitive impairment classification
  publication-title: 2014 IEEE International Conference on Data Mining Workshop
– volume: 8
  year: 2014
  ident: bib2
  article-title: Region segmentation for sparse decompositions: better brain parcellations from rest fMRI
  publication-title: Front. Neuroinf.
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: bib85
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
– year: 2016
  ident: bib41
  article-title: Discriminating Parkinsons Disease Using Functional Connectivity and Brain Network Analysis
– volume: 35
  start-page: 2911
  year: 2013
  end-page: 2923
  ident: bib106
  article-title: Connectome-scale assessments of structural and functional connectivity in MCI
  publication-title: Hum. Brain Mapp.
– volume: 6
  year: 2012
  ident: bib19
  article-title: On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments
  publication-title: Front. Neurosci.
– year: 2013
  ident: bib25
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)
  publication-title: Front. Neuroinf.
– volume: 19
  year: 2016
  ident: bib62
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
– start-page: 78
  year: 2018
  end-page: 87
  ident: bib103
  article-title: Riemannian regression and classification models of brain networks applied to autism
  publication-title: International Workshop on Connectomics in Neuroimaging
– volume: 51
  start-page: 1126
  year: 2010
  ident: bib12
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: Neuroimage
– volume: 15
  start-page: 273
  year: 2002
  ident: bib88
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: bib47
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput. Sci. Eng.
– year: 2009
  ident: bib70
  article-title: Joint Bayesian Cortical Sulci Recognition and Spatial Normalization
– volume: 26
  start-page: 933
  year: 2014
  end-page: 942
  ident: bib61
  article-title: Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm
  publication-title: Cerebr. Cortex
– volume: 1
  year: 2005
  ident: bib86
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– year: 2014
  ident: bib65
  article-title: Transport on riemannian manifold for functional connectivity-based classification
  publication-title: MICCAI - 17th International Conference on Medical Image Computing and Computer Assisted Intervention
– year: 2009
  ident: bib46
  article-title: The Elements of Statistical Learning
– volume: 259
  start-page: 213
  year: 2011
  end-page: 221
  ident: bib20
  article-title: Classification of alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging
  publication-title: Radiology
– volume: 5
  start-page: 13
  year: 2011
  ident: bib42
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
– volume: 58
  start-page: 236
  year: 1963
  ident: bib99
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
– volume: 31
  start-page: 968
  year: 2006
  ident: bib29
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 2
  start-page: 75
  year: 2012
  ident: bib17
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Front. Psychiatry
– year: 2015
  ident: bib31
  article-title: Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices
  publication-title: International Symposium on Biomedical Imaging (ISBI)
– volume: 180
  year: 2017
  ident: bib92
  article-title: Cross-validation failure: small sample sizes lead to large error bars
  publication-title: Neuroimage
– volume: 4
  start-page: 347
  year: 2014
  end-page: 360
  ident: bib37
  article-title: Frequent and discriminative subnetwork mining for mild cognitive impairment classification
  publication-title: Brain Connect.
– volume: 22
  start-page: 212
  year: 2016
  end-page: 219
  ident: bib100
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neurosci. Ther.
– volume: 37
  start-page: 234
  year: 2008
  end-page: 244
  ident: bib36
  article-title: The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: Int. J. Epidemiol.
– start-page: 724
  year: 2014
  end-page: 732
  ident: bib49
  article-title: Brain connectivity hyper-network for MCI classification
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
– start-page: 1282
  year: 2016
  ident: bib58
  article-title: Compressed online dictionary learning for fast resting-state fMRI decomposition
  publication-title: Proc. ISBI
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib89
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– year: 2016
  ident: bib16
  article-title: Machine Learning on Human Connectome Data from Mri
– volume: 56
  year: 2010
  ident: bib78
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: Neuroimage
– volume: 51
  start-page: 288
  year: 2010
  ident: bib97
  article-title: A group model for stable multi-subject ICA on fMRI datasets
  publication-title: Neuroimage
– volume: 30
  start-page: 3865
  year: 2009
  ident: bib52
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum. Brain Mapp.
– year: 2010
  ident: bib93
  article-title: Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling
– volume: 21
  start-page: 424
  year: 2008
  ident: bib43
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Curr. Opin. Neurol.
– volume: 45
  start-page: 5
  year: 2001
  ident: bib14
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 66
  start-page: 113
  year: 2018
  end-page: 128
  ident: bib57
  article-title: Stochastic subsampling for factorizing huge matrices
  publication-title: IEEE Trans. Signal Process.
– volume: 112
  start-page: 172
  year: 2013
  end-page: 178
  ident: bib8
  article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications
  publication-title: Neurocomputing
– volume: 59
  start-page: 2196
  year: 2012
  end-page: 2207
  ident: bib9
  article-title: Altered resting state complexity in schizophrenia
  publication-title: Neuroimage
– volume: 20
  start-page: 425
  year: 2016
  end-page: 443
  ident: bib34
  article-title: Building a science of individual differences from fmri
  publication-title: Trends Cognit. Sci.
– volume: 121
  start-page: 29
  year: 2015
  end-page: 38
  ident: bib15
  article-title: Partial covariance based functional connectivity computation using ledoit–wolf covariance regularization
  publication-title: Neuroimage
– volume: 8
  start-page: 1341
  year: 1996
  end-page: 1390
  ident: bib102
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
– volume: 37
  start-page: 90
  year: 2007
  ident: bib11
  article-title: A component based noise correction method (compcor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
– volume: 8
  start-page: 897
  year: 2014
  ident: bib77
  article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
– volume: 107
  start-page: 4734
  year: 2010
  ident: bib13
  article-title: Toward discovery science of human brain function
  publication-title: Proc Ntl Acad Sci
– volume: 63
  start-page: 55
  year: 2015
  end-page: 67
  ident: bib48
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
– volume: 126
  start-page: 2132
  year: 2015
  end-page: 2141
  ident: bib51
  article-title: Identifying patients with alzheimer's disease using resting-state fMRI and graph theory
  publication-title: Clin. Neurophysiol.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib72
  article-title: Spurious but systematic correlations in functional connectivity mri networks arise from subject motion
  publication-title: Neuroimage
– volume: 7
  year: 2013
  ident: bib6
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front. Neurosci.
– volume: 49
  start-page: 3110
  year: 2010
  ident: bib81
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: Neuroimage
– year: 2013
  ident: bib24
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinf.
– volume: 23
  start-page: 137
  year: 2004
  ident: bib10
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: Trans Med Im
– volume: 80
  start-page: 405
  year: 2013
  ident: bib94
  article-title: Learning and comparing functional connectomes across subjects
  publication-title: Neuroimage
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib7
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 145
  start-page: 166
  year: 2017
  end-page: 179
  ident: bib96
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
– volume: 87
  start-page: 250
  year: 2007
  ident: bib38
  article-title: Riemannian geometry for the statistical analysis of diffusion tensor data
  publication-title: Signal Process.
– volume: 54
  start-page: 875
  year: 2011
  ident: bib84
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
– volume: 66
  start-page: 41
  year: 2006
  ident: bib69
  article-title: A Riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vis.
– volume: 12
  start-page: 123
  year: 2015
  end-page: 133
  ident: bib73
  article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
  publication-title: Developmental Cognitive Neuroscience
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib90
  article-title: The Wu-minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 88
  start-page: 365
  year: 2004
  ident: bib53
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivariate Anal.
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: bib3
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
– volume: 12
  start-page: 2825
  year: 2011
  ident: bib68
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1359
  year: 2011
  ident: bib83
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib32
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 6
  start-page: 2125
  year: 2012
  ident: bib55
  article-title: The graphical lasso: new insights and alternatives
  publication-title: Electronic journal of statistics
– volume: 23
  year: 2016
  ident: bib33
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat. Med.
– volume: 6
  year: 2017
  ident: bib22
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: eLife
– volume: 57
  start-page: 328
  year: 2015
  ident: bib101
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
– volume: 45
  start-page: 2041
  year: 2012
  ident: bib60
  article-title: A supervised clustering approach for fMRI-based inference of brain states
  publication-title: Pattern Recogn.
– volume: 7
  year: 2013
  ident: bib67
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front. Hum. Neurosci.
– start-page: 229
  year: 2015
  end-page: 237
  ident: bib91
  article-title: Identifying abnormal network alterations common to traumatic brain injury and alzheimer's disease patients using functional connectome data
  publication-title: Machine Learning in Medical Imaging
– volume: 101
  start-page: 3270
  year: 2009
  end-page: 3283
  ident: bib39
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
– year: 2018
  ident: bib45
  article-title: Graph Theory Approaches to Functional Network Organization in Brain Disorders: A Critique for a Brave New Small-World
– volume: 102
  start-page: 207
  year: 2014
  end-page: 219
  ident: bib5
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: Neuroimage
– volume: 8
  year: 2014
  ident: bib4
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinf.
– volume: 105
  year: 2015
  ident: bib79
  article-title: Sparse network-based models for patient classification using fMRI
  publication-title: Neuroimage
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib30
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
– start-page: 6240
  year: 2012
  end-page: 6250
  ident: bib50
  article-title: Connectivity-based parcellation of the human orbitofrontal cortex
  publication-title: J. Neurosci.
– volume: 9
  start-page: 432
  year: 2008
  ident: bib40
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: bib64
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
– volume: 134
  start-page: 645
  year: 2016
  end-page: 657
  ident: bib76
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity
  publication-title: Neuroimage
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib71
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 6
  year: 2012
  ident: bib21
  article-title: Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques
  publication-title: Front. Syst. Neurosci.
– volume: 56
  start-page: 2068
  year: 2011
  ident: bib80
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
– start-page: 203
  year: 2016
  end-page: 208
  ident: bib59
  article-title: A model for classification based on the functional connectivity pattern dynamics of the brain
  publication-title: 2016 Third European Network Intelligence Conference (ENIC)
– volume: 33
  start-page: 1914
  year: 2012
  ident: bib27
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 52
  year: 2015
  end-page: 60
  ident: bib74
  article-title: Manifold learning on brain functional networks in aging
  publication-title: Med. Image Anal.
– volume: 8
  start-page: 167
  year: 2014
  ident: bib87
  article-title: Which fMRI clustering gives good brain parcellations?
  publication-title: Name: Front. Neurosci.
– volume: 62
  start-page: 1619
  year: 2009
  ident: bib26
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib23
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 140
  year: 2001
  ident: bib18
  article-title: A method for making group inferences from fMRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 16
  start-page: 575
  year: 2017
  end-page: 585
  ident: bib66
  article-title: Distinct alterations in Parkinson's medication-state and disease-state connectivity
  publication-title: Neuroimage: Clinica
– year: 2018
  ident: bib35
  article-title: A Distributed Brain Network Predicts General Intelligence from Resting-State Human Neuroimaging Data
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  ident: bib54
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
– start-page: 460
  year: 2017
  end-page: 468
  ident: bib75
  article-title: Population-shrinkage of covariance to estimate better brain functional connectivity
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  ident: bib104
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 158
  year: 2012
  ident: bib82
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebr. Cortex
– year: 2010
  ident: bib95
  article-title: Brain Covariance Selection: Better Individual Functional Connectivity Models Using Population Prior
– start-page: 607
  year: 2013
  ident: bib1
  article-title: Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning
– volume: 23
  start-page: 1006
  year: 2012
  end-page: 1011
  ident: bib44
  article-title: Machine learning classifier using abnormal brain network topological metrics in major depressive disorder
  publication-title: Neuroreport
– volume: 4
  start-page: 13
  year: 2015
  ident: bib28
  article-title: Connectomics and new approaches for analyzing human brain functional connectivity
  publication-title: GigaScience
– volume: 106
  start-page: 1125
  year: 2011
  ident: bib105
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol. (Bethesda)
– volume: 15
  start-page: 869
  year: 2005
  ident: bib63
  article-title: The alzheimers disease neuroimaging initiative
  publication-title: Neuroimaging Clin.
– volume: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib22
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: eLife
  doi: 10.7554/eLife.20178
– volume: 8
  start-page: 897
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib77
  article-title: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00897
– volume: 62
  start-page: 1619
  year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib26
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22159
– volume: 26
  start-page: 933
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib61
  article-title: Identification of mood-relevant brain connections using a continuous, subject-driven rumination paradigm
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhu255
– volume: 54
  start-page: 875
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib84
  article-title: Network modelling methods for fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib41
– volume: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib6
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00133
– volume: 44
  start-page: 893
  year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib64
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– year: 2018
  ident: 10.1016/j.neuroimage.2019.02.062_bib45
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib2
  article-title: Region segmentation for sparse decompositions: better brain parcellations from rest fMRI
  publication-title: Front. Neuroinf.
– year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib16
– year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib70
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib3
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 4
  start-page: 13
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib28
  article-title: Connectomics and new approaches for analyzing human brain functional connectivity
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0045-x
– volume: 23
  start-page: 1006
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib44
  article-title: Machine learning classifier using abnormal brain network topological metrics in major depressive disorder
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32835a650c
– start-page: 78
  year: 2018
  ident: 10.1016/j.neuroimage.2019.02.062_bib103
  article-title: Riemannian regression and classification models of brain networks applied to autism
– volume: 8
  start-page: 167
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib87
  article-title: Which fMRI clustering gives good brain parcellations?
  publication-title: Name: Front. Neurosci.
– year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib98
  article-title: Combining multiple network features for mild cognitive impairment classification
– volume: 16
  start-page: 575
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib66
  article-title: Distinct alterations in Parkinson's medication-state and disease-state connectivity
  publication-title: Neuroimage: Clinica
  doi: 10.1016/j.nicl.2017.09.004
– volume: 18
  start-page: 1565
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib85
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– volume: 14
  start-page: 140
  year: 2001
  ident: 10.1016/j.neuroimage.2019.02.062_bib18
  article-title: A method for making group inferences from fMRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib72
  article-title: Spurious but systematic correlations in functional connectivity mri networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 58
  start-page: 236
  year: 1963
  ident: 10.1016/j.neuroimage.2019.02.062_bib99
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 33
  start-page: 1914
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib27
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21333
– volume: 37
  start-page: 234
  year: 2008
  ident: 10.1016/j.neuroimage.2019.02.062_bib36
  article-title: The UK biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dym276
– volume: 35
  start-page: 2911
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib106
  article-title: Connectome-scale assessments of structural and functional connectivity in MCI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22373
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib68
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 49
  start-page: 3110
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib81
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.011
– start-page: 203
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib59
  article-title: A model for classification based on the functional connectivity pattern dynamics of the brain
– volume: 66
  start-page: 41
  year: 2006
  ident: 10.1016/j.neuroimage.2019.02.062_bib69
  article-title: A Riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-3222-z
– volume: 56
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib78
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: Neuroimage
– year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib31
  article-title: Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices
– volume: 22
  start-page: 158
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib82
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 105
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib79
  article-title: Sparse network-based models for patient classification using fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.021
– volume: 20
  start-page: 425
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib34
  article-title: Building a science of individual differences from fmri
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2016.03.014
– start-page: 229
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib91
  article-title: Identifying abnormal network alterations common to traumatic brain injury and alzheimer's disease patients using functional connectome data
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib4
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00014
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib13
  article-title: Toward discovery science of human brain function
  publication-title: Proc Ntl Acad Sci
  doi: 10.1073/pnas.0911855107
– start-page: 724
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib49
  article-title: Brain connectivity hyper-network for MCI classification
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.neuroimage.2019.02.062_bib23
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib25
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)
  publication-title: Front. Neuroinf.
– volume: 102
  start-page: 207
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib5
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.015
– volume: 259
  start-page: 213
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib20
  article-title: Classification of alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.10100734
– start-page: 6240
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib50
  article-title: Connectivity-based parcellation of the human orbitofrontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0257-12.2012
– year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib24
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinf.
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib89
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 126
  start-page: 2132
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib51
  article-title: Identifying patients with alzheimer's disease using resting-state fMRI and graph theory
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.02.060
– volume: 51
  start-page: 288
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib97
  article-title: A group model for stable multi-subject ICA on fMRI datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.010
– volume: 80
  start-page: 405
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib94
  article-title: Learning and comparing functional connectomes across subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.007
– volume: 134
  start-page: 645
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib76
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.051
– volume: 20
  start-page: 52
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib74
  article-title: Manifold learning on brain functional networks in aging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.10.006
– volume: 8
  start-page: 1341
  year: 1996
  ident: 10.1016/j.neuroimage.2019.02.062_bib102
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– volume: 329
  start-page: 1358
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib32
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 45
  start-page: 2041
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib60
  article-title: A supervised clustering approach for fMRI-based inference of brain states
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.04.006
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib90
  article-title: The Wu-minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 22
  start-page: 212
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib100
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.12499
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib7
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 4
  start-page: 347
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib37
  article-title: Frequent and discriminative subnetwork mining for mild cognitive impairment classification
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0214
– volume: 148
  start-page: 179
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib54
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.005
– volume: 57
  start-page: 328
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib101
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.08.001
– volume: 9
  start-page: 432
  year: 2008
  ident: 10.1016/j.neuroimage.2019.02.062_bib40
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2019.02.062_bib29
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 66
  start-page: 113
  year: 2018
  ident: 10.1016/j.neuroimage.2019.02.062_bib57
  article-title: Stochastic subsampling for factorizing huge matrices
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2752697
– volume: 63
  start-page: 55
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib48
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib105
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol. (Bethesda)
  doi: 10.1152/jn.00338.2011
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib30
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2013.78
– volume: 23
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib33
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat. Med.
– volume: 19
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib62
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 5
  start-page: 13
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib42
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2011.00013
– volume: 12
  start-page: 123
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib73
  article-title: Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
  publication-title: Developmental Cognitive Neuroscience
  doi: 10.1016/j.dcn.2015.01.003
– volume: 22
  start-page: 1359
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib83
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797611417632
– volume: 56
  start-page: 2068
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib80
  article-title: Weight-conserving characterization of complex functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.069
– volume: 9
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2019.02.062_bib47
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 145
  start-page: 166
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib96
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 180
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib92
  article-title: Cross-validation failure: small sample sizes lead to large error bars
  publication-title: Neuroimage
– volume: 30
  start-page: 3865
  year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib52
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20813
– volume: 121
  start-page: 29
  year: 2015
  ident: 10.1016/j.neuroimage.2019.02.062_bib15
  article-title: Partial covariance based functional connectivity computation using ledoit–wolf covariance regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.039
– start-page: 460
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib75
  article-title: Population-shrinkage of covariance to estimate better brain functional connectivity
– year: 2018
  ident: 10.1016/j.neuroimage.2019.02.062_bib35
– volume: 21
  start-page: 424
  year: 2008
  ident: 10.1016/j.neuroimage.2019.02.062_bib43
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328306f2c5
– year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib95
– year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib93
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.neuroimage.2019.02.062_bib14
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2019.02.062_bib86
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib19
  article-title: On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00149
– volume: 20
  start-page: 365
  year: 2017
  ident: 10.1016/j.neuroimage.2019.02.062_bib104
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– start-page: 607
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib1
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2019.02.062_bib11
  article-title: A component based noise correction method (compcor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 51
  start-page: 1126
  year: 2010
  ident: 10.1016/j.neuroimage.2019.02.062_bib12
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.082
– start-page: 1737
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib56
  article-title: Dictionary learning for massive matrix factorization
– volume: 2
  start-page: 75
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib17
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2011.00075
– year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib46
– volume: 88
  start-page: 365
  year: 2004
  ident: 10.1016/j.neuroimage.2019.02.062_bib53
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivariate Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib21
  article-title: Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00058
– start-page: 1282
  year: 2016
  ident: 10.1016/j.neuroimage.2019.02.062_bib58
  article-title: Compressed online dictionary learning for fast resting-state fMRI decomposition
– volume: 87
  start-page: 250
  year: 2007
  ident: 10.1016/j.neuroimage.2019.02.062_bib38
  article-title: Riemannian geometry for the statistical analysis of diffusion tensor data
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2005.12.018
– volume: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib67
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00599
– volume: 15
  start-page: 869
  year: 2005
  ident: 10.1016/j.neuroimage.2019.02.062_bib63
  article-title: The alzheimers disease neuroimaging initiative
  publication-title: Neuroimaging Clin.
  doi: 10.1016/j.nic.2005.09.008
– volume: 101
  start-page: 3270
  year: 2009
  ident: 10.1016/j.neuroimage.2019.02.062_bib39
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– year: 2014
  ident: 10.1016/j.neuroimage.2019.02.062_bib65
  article-title: Transport on riemannian manifold for functional connectivity-based classification
– volume: 23
  start-page: 137
  year: 2004
  ident: 10.1016/j.neuroimage.2019.02.062_bib10
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: Trans Med Im
  doi: 10.1109/TMI.2003.822821
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2019.02.062_bib88
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 59
  start-page: 2196
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib9
  article-title: Altered resting state complexity in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.002
– volume: 6
  start-page: 2125
  year: 2012
  ident: 10.1016/j.neuroimage.2019.02.062_bib55
  article-title: The graphical lasso: new insights and alternatives
  publication-title: Electronic journal of statistics
  doi: 10.1214/12-EJS740
– volume: 112
  start-page: 172
  year: 2013
  ident: 10.1016/j.neuroimage.2019.02.062_bib8
  article-title: Classification of covariance matrices using a riemannian-based kernel for bci applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 72
  start-page: 665
  year: 2011
  ident: 10.1016/j.neuroimage.2019.02.062_bib71
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
SSID ssj0009148
Score 2.656452
Snippet Functional connectomes reveal biomarkers of individual psychological or clinical traits. However, there is great variability in the analytic pipelines...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Accuracy
Alzheimer's disease
Autism
Benchmarking - methods
Biomarkers
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Cannabis
Classification
Computer Science
Connectome - methods
Connectome - standards
Datasets
Dictionaries
Functional connectomes
Functional magnetic resonance imaging
Humans
Intelligence
Machine Learning
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Medical Imaging
Mental disorders
Models, Neurological
Neurodegenerative diseases
Neuroimaging
Population study
Post traumatic stress disorder
Prediction models
Predictive modeling
Rest
Resting-state fMRI
Schizophrenia
Trends
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VHhAXxJvQggziajZ-JbE4lYpqQSwSj0q9WY7jVRexD7XbHvntzDhOKg6VVkLayyaZjXcynm8-ZzwD8JZgoK2C5Y31LdeqK7mv6sCll6qKnWnb1D9l9rWanurPZ-ZsD46HvTCUVpl9f-_Tk7fORyZZm5PNYjH5gZEBwg3yDYtGaizVBNW6Jit_9-cmzcMK3W-HM4rT1Tmbp8_xSjUjF0ucuZTkZVP1zkreBlF3zilX8rZANAHSyQO4nyNJdtQP9iHsxdUjuDvL78ofw7cP-GfOlz4thjPCr37ZjwXKbQnb9TJywrCObS5IiPweS41xLhlGsoyadqAkT1uO2Hz2_dMTOD35-PN4ynMDBR6MVltukd0FiSrXyANL6wPSgRYhPoSmMQaZiojB6lBjlIEfnL0iUoM-4dsOQcuW6insr9ar-BxYE-S8bpGsVPOouwZ_JgqJUGY7b5UXvoB60JkLubo4Nbn47YY0sl_uRtuOtO1K6VDbBYhRctNX2NhBxg6PxQ07SNHnOYSBHWTfj7L_WNqO0m_QCsaBUnHu6dEXR8dKpGpaluZaFXA4GInLLuHSSZnoGdK7Al6Pp3Ey0xsav4rrK7xG4INBt690Ac964xpvpaiOOOLai_8a_wHco2-U_yDMIexvL67iSwyrtu2rNG_-AprZHtU
  priority: 102
  providerName: Elsevier
Title Benchmarking functional connectome-based predictive models for resting-state fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919301594
https://dx.doi.org/10.1016/j.neuroimage.2019.02.062
https://www.ncbi.nlm.nih.gov/pubmed/30836146
https://www.proquest.com/docview/2203067768
https://www.proquest.com/docview/2188588734
https://inria.hal.science/hal-01824205
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6RVkJcEO8ulMggroa1vS-LA0pRqxRIBBWVcrO8XkcFkQdNypHfzozXuzkVRYoUKdnZXY3H831jj2cA3hAM1IXTvNK25plqUm6L0nFppSp8k9d16J8ymRbjy-zTLJ_FBbdNTKvsfGJw1M3K0Rr5OykDu0V2_GH9m1PXKNpdjS00BnBIpcvIqstZuSu6K7L2KFyueIUXxEyeNr8r1Iv8scBZSwleOlTuLORt8DS4ojzJ20hoAKOzB3A_skg2aof9Idzxy0dwdxL3yR_DtxM0vquFDQvhjLCrXfJjjvJa3Ha18Jzwq2HraxIin8dCU5wNQxbLqGEHSvJw3IjNJxfnT-Dy7PT7xzGPzRO4yzO15RojOydR3RnGgKm2DkOBGuHduarKc4xShHc6cyUyDPzgzBWemvMJWzcIWDpVT-FguVr6I2CVk_OyxkClmPusqfA2XkiEMd1YraywCZSdzoyLlcWpwcUv06WQ_TQ7bRvStkmlQW0nIHrJdVtdYw8Z3Q2L6U6Por8zCAF7yL7vZSPDaJnDntKv0Qr6F6XC3OPRF0O_pRimZTLN_6gEjjsjMdEdbMzOeBN41f-NE5l2Z-zSr27wGoEDgy5fZQk8a42rf5SiGuKIac__f_MXcI9el5IbRH4MB9vrG_8SOdO2HsLg7V8xDNNjCIej88_jKX6fnE6_XvwDk7oXlA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61RYJeKt7dUsAgOFqs7X1ZCKHyqBKaVAK1Um7G63XUVuRBk4L4U_xGZryPnIpyqZTTZsdr2eP5vrHHMwCvCAbKzGleaFvyRFUxt1nuuLRSZb5KyzLUTxkeZ73T5MsoHW3A3_YuDIVVtjYxGOpq5miP_I2Ugd0iO34__8mpahSdrrYlNGq1OPJ_fqPLtnjX_4Tz-1rKw88nH3u8qSrAXZqoJdfo8jiJ_UjQOYq1dciRS8Q954oiTZG-C-904nKEXvyhSgtPVeuELSu05DpW2O4m3ELgjcnZy0f5KsmvSOqrd6nihRC6iRyq48lCfsrzCVoJCijTIVNoJq-Dw80zisu8jvQG8Du8CzsNa2UHtZrdgw0_vQ-3h825_AP4-gGV_Wxiw8Y7I6ystxiZozgat5xNPCe8rNj8koTIxrJQhGfBkDUzKhCCkjxcb2Lj4bf-Qzi9kWF9BFvT2dTvAiucHOclOkbZ2CdVgc14IRE2dWW1ssJGkLdjZlyTyZwKavwwbcjahVmNtqHRNrE0ONoRiE5yXmfzWENGt9Ni2tuqaF8NQs4asm872YbR1ExlTemXqAVdRykReO9gYOhZjG5hIuP0l4pgv1US05ifhVktlghedH-j4aDTIDv1syt8R-DEIMSoJILHtXJ1n1KUsxwxdO__jT-HO72T4cAM-sdHT2Cbuk6BFSLdh63l5ZV_inxtWT4Li4TB95telf8ABvdMmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qVRxQbxZWsAgOFpde70PCyHU0kYJbaJSUak31-t1VBB5tElb8df4dczsK6eiXCrltNnxWvZ4vm_s8QzAB4KBPHGaZ9rmXEVFyG2SOi6tjBJfxHle1k8ZDJPeqfp2Fp-twd_mLgyFVTY2sTTUxdTRHvmOlCW7RXa8M6rDIo73u19ml5wqSNFJa1NOo1KRQ__nFt23-ef-Ps71Rym7Bz--9nhdYYC7WEULrtH9cRL7pNBRCrV1yJdzxEDnsiyOkcoL77RyKcIw_lC9hacKdsLmBVp1HUbY7jpspOQVdWBj72B4fLJM-StUdREvjngmhK7jiKrosjJb5c8x2gwKL9Nl3tBE3gWO6xcUpXkXBS6hsPsIHtYclu1WSvcY1vzkCWwO6lP6p_B9D1X_YmzLbXhGyFltODJHUTVuMR17TuhZsNkVCZHFZWVJnjlDDs2oXAhK8vKyExsNTvrP4PReBvY5dCbTiX8JLHNylOboJiUjr4oMm_FCIojqwurIChtA2oyZcXVecyqv8ds0AWy_zHK0DY22CaXB0Q5AtJKzKrfHCjK6mRbT3F1Fa2sQgFaQ_dTK1vym4i0rSr9HLWg7SmnBe7tHhp6F6CQqGcY3UQDbjZKY2hjNzXLpBPCu_RvNCJ0N2YmfXuM7AicGASdSAbyolKv9VEQZzBFRX_2_8bewiSvSHPWHh1vwgHpOURYi3obO4urav0bytsjf1KuEwfl9L8x_iMFSNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+functional+connectome-based+predictive+models+for+resting-state+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dadi%2C+Kamalaker&rft.au=Rahim%2C+Mehdi&rft.au=Abraham%2C+Alexandre&rft.au=Chyzhyk%2C+Darya&rft.date=2019-05-15&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=192&rft.spage=115&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.02.062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon