Activity classification using a single chest mounted tri-axial accelerometer

Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 33; no. 9; pp. 1127 - 1135
Main Authors Godfrey, A., Bourke, A.K., Ólaighin, G.M., van de Ven, P., Nelson, J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using M atlab ® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86–92% for young healthy subjects in a controlled setting and 83–89% for elderly healthy subjects in a home environment.
AbstractList Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using Matlab® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86-92% for young healthy subjects in a controlled setting and 83-89% for elderly healthy subjects in a home environment.Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using Matlab® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86-92% for young healthy subjects in a controlled setting and 83-89% for elderly healthy subjects in a home environment.
Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using M atlab ® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86–92% for young healthy subjects in a controlled setting and 83–89% for elderly healthy subjects in a home environment.
Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using Matlab® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86-92% for young healthy subjects in a controlled setting and 83-89% for elderly healthy subjects in a home environment.
Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using Matlab super( registered to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86-92% for young healthy subjects in a controlled setting and 83-89% for elderly healthy subjects in a home environment.)
Abstract Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using M atlab® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86–92% for young healthy subjects in a controlled setting and 83–89% for elderly healthy subjects in a home environment.
Author Bourke, A.K.
van de Ven, P.
Godfrey, A.
Nelson, J.
Ólaighin, G.M.
Author_xml – sequence: 1
  givenname: A.
  surname: Godfrey
  fullname: Godfrey, A.
  email: alan.godfrey@newcastle.ac.uk, alan.godfrey@ncl.ac.uk
  organization: Clinical Ageing Research Unit, Newcastle University, Campus for Ageing & Vitality, Newcastle Upon Tyne NE4 5PL, United Kingdom
– sequence: 2
  givenname: A.K.
  surname: Bourke
  fullname: Bourke, A.K.
  organization: School of Engineering & Informatics, NUI Galway, University Road, Galway, Ireland
– sequence: 3
  givenname: G.M.
  surname: Ólaighin
  fullname: Ólaighin, G.M.
  organization: School of Engineering & Informatics, NUI Galway, University Road, Galway, Ireland
– sequence: 4
  givenname: P.
  surname: van de Ven
  fullname: van de Ven, P.
  organization: Wireless Access Research Group, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
– sequence: 5
  givenname: J.
  surname: Nelson
  fullname: Nelson, J.
  organization: Wireless Access Research Group, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24628725$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21636308$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFAR_YC_ALkgTgn-dnIAtKr4klbiAJwtr_3SenGcxXYq9t_jsFuQKqH29HyYmfc8M-fVSZgCVNULjFqMsHi9bUewEK521_uWIIxbxFuEyKPqDHeSNgxRdFLelKOGcUpPq_OUtgghxgR9Up0SLKigqDur1iuT3Y3L-9p4nZIbnNHZTaGekwtXta6X4aE215ByPU5zyGDrHF2jfznta20MeIjTCBni0-rxoH2CZ8d5UX3_8P7b5adm_eXj58vVujGc0dx00nJsCGZyYyy2mkkmNd_gQfTdhgsw1BLSYw6d7jmVxEorNRGDEKzvyUDpRfXqoLuL08-5HKZGl8odXgeY5qT68k8pqeD3Iru-6xjqO1aQz4_IeVO8VbvoRh336taqAnh5BOhktB-iDsalfzgmSCfJsvLNAWfilFKEQRmX_3iao3ZeYaSWCNVW_Y1QLREqxFWJsPDlHf7tivuZqwMTivc3DqJKxkEwYF0Ek5Wd3AM03t7RMN6FUgr_A_aQttMcQ4lWYZWIQurrUrGlYRijooJxEXj3f4EHnfAbjDvkgA
CitedBy_id crossref_primary_10_1109_TCPMT_2020_3036045
crossref_primary_10_1371_journal_pone_0137668
crossref_primary_10_3390_s21217417
crossref_primary_10_1109_TNSRE_2016_2519413
crossref_primary_10_1186_s12984_015_0026_4
crossref_primary_10_1108_SR_05_2016_0085
crossref_primary_10_3390_s150510734
crossref_primary_10_1016_j_cmpb_2020_105486
crossref_primary_10_1109_JSEN_2020_3011417
crossref_primary_10_3390_s17040774
crossref_primary_10_1016_j_gaitpost_2021_08_020
crossref_primary_10_1049_iet_net_2015_0109
crossref_primary_10_1109_JBHI_2015_2419317
crossref_primary_10_1115_1_4033764
crossref_primary_10_1007_s11517_015_1357_9
crossref_primary_10_1016_j_gaitpost_2016_07_328
crossref_primary_10_1016_j_nanoen_2021_106016
crossref_primary_10_1109_ACCESS_2020_2998842
crossref_primary_10_1371_journal_pone_0185670
crossref_primary_10_1088_1361_6579_38_1_45
crossref_primary_10_1186_s12984_015_0060_2
crossref_primary_10_1109_JIOT_2018_2846359
crossref_primary_10_1109_TNSRE_2021_3073456
crossref_primary_10_1109_TBME_2016_2614230
crossref_primary_10_1007_s11517_017_1778_8
crossref_primary_10_1016_j_neucom_2014_08_016
crossref_primary_10_1519_JPT_0b013e3182abe779
crossref_primary_10_3390_info7030047
crossref_primary_10_1088_0967_3334_35_7_1245
crossref_primary_10_1109_JBHI_2021_3076707
crossref_primary_10_1109_JBHI_2016_2576285
crossref_primary_10_1186_s12938_023_01196_7
crossref_primary_10_3390_s16040546
crossref_primary_10_1007_s00521_018_3437_x
crossref_primary_10_1109_TNSRE_2017_2745418
crossref_primary_10_3389_fphys_2019_00075
crossref_primary_10_3390_s16122105
crossref_primary_10_1016_j_gaitpost_2017_03_037
crossref_primary_10_1155_2019_5462694
crossref_primary_10_1088_1361_6579_38_1_N1
crossref_primary_10_1186_s13102_022_00492_4
crossref_primary_10_1016_j_autcon_2016_04_007
crossref_primary_10_1007_s00521_019_04451_y
crossref_primary_10_3390_ijerph20065184
crossref_primary_10_3390_s22072489
crossref_primary_10_3390_fi12110194
crossref_primary_10_1007_s10916_016_0570_x
crossref_primary_10_1016_j_medengphy_2020_11_005
crossref_primary_10_1088_0967_3334_37_10_1785
crossref_primary_10_1109_TSMC_2016_2562509
crossref_primary_10_1016_j_pmcj_2014_11_004
crossref_primary_10_1186_s12984_020_00692_4
crossref_primary_10_1109_JBHI_2018_2820179
crossref_primary_10_1186_s12877_016_0216_3
crossref_primary_10_1109_ACCESS_2024_3428309
crossref_primary_10_3390_info11090404
crossref_primary_10_1080_1206212X_2024_2426501
crossref_primary_10_1111_ggi_12979
crossref_primary_10_1007_s40846_018_0404_z
crossref_primary_10_1016_j_medengphy_2013_06_005
crossref_primary_10_3390_s21082875
crossref_primary_10_1016_j_measurement_2019_04_002
crossref_primary_10_3390_s17030559
crossref_primary_10_3390_s23104605
crossref_primary_10_1016_j_pmcj_2017_04_002
crossref_primary_10_1016_j_jbiomech_2014_04_017
crossref_primary_10_1109_TNSRE_2014_2331895
crossref_primary_10_1186_s12889_016_3271_y
crossref_primary_10_3390_s20226424
crossref_primary_10_1016_j_infbeh_2021_101530
crossref_primary_10_1016_j_jab_2017_05_002
crossref_primary_10_3109_17483107_2014_961179
crossref_primary_10_1682_JRRD_2013_01_0024
crossref_primary_10_1016_j_medengphy_2013_11_010
crossref_primary_10_3390_s21165253
crossref_primary_10_1016_j_jbi_2018_09_002
crossref_primary_10_1016_j_comcom_2016_03_006
crossref_primary_10_1186_s12911_021_01723_3
crossref_primary_10_1088_0967_3334_37_4_515
crossref_primary_10_1007_s12652_018_0880_6
crossref_primary_10_1016_j_medengphy_2014_02_012
crossref_primary_10_1088_0967_3334_37_3_442
crossref_primary_10_1109_JSEN_2015_2449862
crossref_primary_10_1109_TBME_2017_2738440
crossref_primary_10_1186_s12984_017_0241_2
crossref_primary_10_1016_j_medengphy_2018_04_008
crossref_primary_10_1249_MSS_0000000000003404
Cites_doi 10.1080/13554790701646233
10.1109/TITB.2005.856864
10.1016/j.medengphy.2007.12.003
10.1016/j.medengphy.2008.09.005
10.1016/j.gaitpost.2004.08.008
10.1093/ageing/afi192
10.1016/j.gaitpost.2006.09.011
10.1097/00005768-199711000-00022
10.1109/TBME.2002.800763
10.1016/S0924-4247(98)00049-1
10.1109/6.540087
10.1109/TBME.2003.812189
10.1016/j.ejvs.2006.11.032
10.1191/0269215504cr734oa
10.1016/j.medengphy.2005.11.008
10.1016/j.gaitpost.2006.09.012
10.1016/j.medengphy.2004.11.006
10.1016/j.gaitpost.2008.01.003
ContentType Journal Article
Copyright 2011
2015 INIST-CNRS
Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011
– notice: 2015 INIST-CNRS
– notice: Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.medengphy.2011.05.002
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 1135
ExternalDocumentID 21636308
24628725
10_1016_j_medengphy_2011_05_002
S1350453311001111
1_s2_0_S1350453311001111
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c543t-87d51c2147bcd1da4747a5b1f698b56ec3d22915e8a95372d7d7a26f664992f33
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Fri Jul 11 17:01:23 EDT 2025
Fri Jul 11 02:51:16 EDT 2025
Mon Jul 21 05:27:53 EDT 2025
Mon Jul 21 09:14:39 EDT 2025
Tue Jul 01 04:24:44 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:29:21 EST 2024
Sun Feb 23 10:20:00 EST 2025
Tue Aug 26 16:32:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Discrete wavelet transform
Physical activity
Scalar product
Dot product
Accelerometer
Gyroscope
ADL
Postural transitions
Human
Physical exercise
Daily living
Measurement sensor
Thorax
Experimental study
Algorithm
Posture
Young adult
Signal processing
Elderly
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-87d51c2147bcd1da4747a5b1f698b56ec3d22915e8a95372d7d7a26f664992f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21636308
PQID 898840984
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_904477365
proquest_miscellaneous_898840984
pubmed_primary_21636308
pascalfrancis_primary_24628725
crossref_citationtrail_10_1016_j_medengphy_2011_05_002
crossref_primary_10_1016_j_medengphy_2011_05_002
elsevier_sciencedirect_doi_10_1016_j_medengphy_2011_05_002
elsevier_clinicalkeyesjournals_1_s2_0_S1350453311001111
elsevier_clinicalkey_doi_10_1016_j_medengphy_2011_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Culhane, O’Connor, Lyons, Lyons (bib0050) 2005; 34
Karantonis, Narayanan, Mathie, Lovell, Celler (bib0070) 2006; 10
Nyan, Tay, Tan, Seah (bib0060) 2006; 28
Clarke-Moloney, Godfrey, O’Connor, Meagher, Burke, Kavanagh (bib0010) 2007; 33
Ryan, Gray, Newton, Granat (bib0040) 2007
Bourke, O’Donovan, Nelson, Ólaighin (bib0115) 2008
Coley, Najafi, Paraschiv-Ionescu, Aminian (bib0055) 2005; 22
Bruce, Donoho, Gao (bib0105) 1996; 33
Ferraris, Grimaldi, Parvis (bib0090) 1995; 7
Lyons, Culhane, Hilton, Grace, Lyons (bib0075) 2005; 27
Coleman, Saelens, Wiedrich-Smith, Finn, Epstein (bib0005) 1997; 29
Bourke, O’Donovan, Ólaighin (bib0020) 2008; 30
Lötters, Schipper, Veltink, Olthuis, Bergveld P. (bib0095) 1998; 68
Najafi, Aminian, Loew, Blanc, Robert (bib0125) 2002; 49
Moore, MacDougall, Gracies, Cohen, Ondo (bib0025) 2007; 26
Culhane, Lyons, Hilton, Grace, Lyons (bib0030) 2004; 18
Semmlow (bib0100) 2004
Kangas, Konttila, Lindgren, Winblad, Jamsa (bib0065) 2008; 28
Najafi, Aminian, Paraschiv-Ionescu, Loew, Bula, Robert (bib0085) 2003; 50
Godfrey, Conway, Meagher, Ólaighin (bib0080) 2008; 30
Bourke, O’Brien, Lyons (bib0015) 2007; 26
Degen, Jaeckel, Rufer, Wyss (bib0110) 2003
Leonard, Godfrey, Silberhorn, Conroy, Donnelly, Meagher (bib0045) 2007; 13
Daubechies (bib0120) 1992
Grant, Dall, Granat (bib0035) 2007
Boulos, Rocha, Martins, Vicente, Bolz, Feld (bib0130) 2007; 6
Najafi (10.1016/j.medengphy.2011.05.002_bib0125) 2002; 49
Coleman (10.1016/j.medengphy.2011.05.002_bib0005) 1997; 29
Lötters (10.1016/j.medengphy.2011.05.002_bib0095) 1998; 68
Daubechies (10.1016/j.medengphy.2011.05.002_bib0120) 1992
Coley (10.1016/j.medengphy.2011.05.002_bib0055) 2005; 22
Culhane (10.1016/j.medengphy.2011.05.002_bib0050) 2005; 34
Karantonis (10.1016/j.medengphy.2011.05.002_bib0070) 2006; 10
Semmlow (10.1016/j.medengphy.2011.05.002_bib0100) 2004
Nyan (10.1016/j.medengphy.2011.05.002_bib0060) 2006; 28
Lyons (10.1016/j.medengphy.2011.05.002_bib0075) 2005; 27
Kangas (10.1016/j.medengphy.2011.05.002_bib0065) 2008; 28
Moore (10.1016/j.medengphy.2011.05.002_bib0025) 2007; 26
Ferraris (10.1016/j.medengphy.2011.05.002_bib0090) 1995; 7
Bourke (10.1016/j.medengphy.2011.05.002_bib0015) 2007; 26
Degen (10.1016/j.medengphy.2011.05.002_bib0110) 2003
Bourke (10.1016/j.medengphy.2011.05.002_bib0115) 2008
Clarke-Moloney (10.1016/j.medengphy.2011.05.002_bib0010) 2007; 33
Najafi (10.1016/j.medengphy.2011.05.002_bib0085) 2003; 50
Ryan (10.1016/j.medengphy.2011.05.002_bib0040) 2007
Boulos (10.1016/j.medengphy.2011.05.002_bib0130) 2007; 6
Culhane (10.1016/j.medengphy.2011.05.002_bib0030) 2004; 18
Grant (10.1016/j.medengphy.2011.05.002_bib0035) 2007
Bourke (10.1016/j.medengphy.2011.05.002_bib0020) 2008; 30
Bruce (10.1016/j.medengphy.2011.05.002_bib0105) 1996; 33
Leonard (10.1016/j.medengphy.2011.05.002_bib0045) 2007; 13
Godfrey (10.1016/j.medengphy.2011.05.002_bib0080) 2008; 30
References_xml – start-page: 2832
  year: 2008
  end-page: 2835
  ident: bib0115
  article-title: Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 33
  start-page: 26
  year: 1996
  end-page: 35
  ident: bib0105
  article-title: Wavelet analysis
  publication-title: IEEE Spectr
– volume: 49
  start-page: 843
  year: 2002
  end-page: 851
  ident: bib0125
  article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly
  publication-title: IEEE Trans Biomed Eng
– volume: 28
  start-page: 842
  year: 2006
  end-page: 849
  ident: bib0060
  article-title: Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization
  publication-title: Med Eng Phys
– volume: 26
  start-page: 194
  year: 2007
  end-page: 199
  ident: bib0015
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
– volume: 10
  start-page: 156
  year: 2006
  end-page: 167
  ident: bib0070
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 34
  start-page: 556
  year: 2005
  end-page: 560
  ident: bib0050
  article-title: Accelerometers in rehabilitation medicine for older adults
  publication-title: Age Ageing
– volume: 18
  start-page: 335
  year: 2004
  end-page: 343
  ident: bib0030
  article-title: Long-term mobility monitoring of older adults using accelerometers in a clinical environment
  publication-title: Clin Rehabil
– volume: 68
  start-page: 221
  year: 1998
  end-page: 228
  ident: bib0095
  article-title: Procedure for in-use calibration of triaxial accelerometers in medical applications
  publication-title: Sens Actuators A: Phys
– volume: 6
  start-page: 1
  year: 2007
  end-page: 6
  ident: bib0130
  article-title: CAALYX: a new generation of location-based services in healthcare
  publication-title: Int J Health Geogr
– volume: 50
  start-page: 711
  year: 2003
  end-page: 723
  ident: bib0085
  article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly
  publication-title: IEEE Trans Biomed Eng
– volume: 13
  start-page: 272
  year: 2007
  end-page: 277
  ident: bib0045
  article-title: Motion analysis in delirium: a novel method of clarifying motoric subtypes
  publication-title: Neurocase
– volume: 30
  start-page: 1364
  year: 2008
  end-page: 1386
  ident: bib0080
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Med Eng Phys
– volume: 22
  start-page: 287
  year: 2005
  end-page: 294
  ident: bib0055
  article-title: Stair climbing detection during daily physical activity using a miniature gyroscope
  publication-title: Gait Posture
– volume: 28
  start-page: 285
  year: 2008
  end-page: 291
  ident: bib0065
  article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers
  publication-title: Gait Posture
– year: 2007
  ident: bib0040
  article-title: An investigation of the effects of psychological distress on physical activity levels in individuals with chronic lower back pain
  publication-title: Procedings of the 4th world congress of the international society of physical medicine and rehabilitation
– year: 2003
  ident: bib0110
  article-title: SPEEDY: a fall detector in a wrist watch
  publication-title: Proceedings of the seventh IEEE international symposium on wearable computers, 2003
– volume: 30
  start-page: 937
  year: 2008
  end-page: 946
  ident: bib0020
  article-title: The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls
  publication-title: Med Eng Phys
– volume: 29
  start-page: 1535
  year: 1997
  end-page: 1542
  ident: bib0005
  article-title: Relationships between TriTrac-R3D vectors, heart rate, and self-report in obese children
  publication-title: Med Sci Sports Exerc
– volume: 26
  start-page: 200
  year: 2007
  end-page: 207
  ident: bib0025
  article-title: Long-term monitoring of gait in Parkinson's disease
  publication-title: Gait Posture
– year: 2007
  ident: bib0035
  article-title: The feasibility of measuring activity patterns of women with osteoporosis
  publication-title: Procedings of the 4th world congress of the international society of physical medicine and rehabilitation
– year: 2004
  ident: bib0100
  article-title: Biosignal and biomedical image processing: matlab based applications
– year: 1992
  ident: bib0120
  article-title: Ten lectures on wavelets (CBMS-NSF regional conference series in applied mathematics)
– volume: 27
  start-page: 497
  year: 2005
  end-page: 504
  ident: bib0075
  article-title: A description of an accelerometer-based mobility monitoring technique
  publication-title: Med Eng Phys
– volume: 7
  start-page: 311
  year: 1995
  end-page: 330
  ident: bib0090
  article-title: Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers
  publication-title: Sens Mater
– volume: 33
  start-page: 488
  year: 2007
  end-page: 493
  ident: bib0010
  article-title: Mobility in patients with venous leg ulceration
  publication-title: Eur J Vasc Endovasc Surg
– volume: 13
  start-page: 272
  issue: 4
  year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0045
  article-title: Motion analysis in delirium: a novel method of clarifying motoric subtypes
  publication-title: Neurocase
  doi: 10.1080/13554790701646233
– volume: 10
  start-page: 156
  issue: 1
  year: 2006
  ident: 10.1016/j.medengphy.2011.05.002_bib0070
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2005.856864
– volume: 30
  start-page: 937
  issue: 7
  year: 2008
  ident: 10.1016/j.medengphy.2011.05.002_bib0020
  article-title: The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.12.003
– volume: 30
  start-page: 1364
  issue: 10
  year: 2008
  ident: 10.1016/j.medengphy.2011.05.002_bib0080
  article-title: Direct measurement of human movement by accelerometry
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.09.005
– volume: 22
  start-page: 287
  issue: 4
  year: 2005
  ident: 10.1016/j.medengphy.2011.05.002_bib0055
  article-title: Stair climbing detection during daily physical activity using a miniature gyroscope
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.08.008
– volume: 34
  start-page: 556
  issue: 6
  year: 2005
  ident: 10.1016/j.medengphy.2011.05.002_bib0050
  article-title: Accelerometers in rehabilitation medicine for older adults
  publication-title: Age Ageing
  doi: 10.1093/ageing/afi192
– volume: 26
  start-page: 200
  issue: 2
  year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0025
  article-title: Long-term monitoring of gait in Parkinson's disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.011
– volume: 29
  start-page: 1535
  issue: 11
  year: 1997
  ident: 10.1016/j.medengphy.2011.05.002_bib0005
  article-title: Relationships between TriTrac-R3D vectors, heart rate, and self-report in obese children
  publication-title: Med Sci Sports Exerc
  doi: 10.1097/00005768-199711000-00022
– volume: 49
  start-page: 843
  issue: 8
  year: 2002
  ident: 10.1016/j.medengphy.2011.05.002_bib0125
  article-title: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2002.800763
– year: 2003
  ident: 10.1016/j.medengphy.2011.05.002_bib0110
  article-title: SPEEDY: a fall detector in a wrist watch
– volume: 68
  start-page: 221
  year: 1998
  ident: 10.1016/j.medengphy.2011.05.002_bib0095
  article-title: Procedure for in-use calibration of triaxial accelerometers in medical applications
  publication-title: Sens Actuators A: Phys
  doi: 10.1016/S0924-4247(98)00049-1
– year: 2004
  ident: 10.1016/j.medengphy.2011.05.002_bib0100
– year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0035
  article-title: The feasibility of measuring activity patterns of women with osteoporosis
– volume: 33
  start-page: 26
  issue: 10
  year: 1996
  ident: 10.1016/j.medengphy.2011.05.002_bib0105
  article-title: Wavelet analysis
  publication-title: IEEE Spectr
  doi: 10.1109/6.540087
– volume: 50
  start-page: 711
  issue: 6
  year: 2003
  ident: 10.1016/j.medengphy.2011.05.002_bib0085
  article-title: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.812189
– volume: 7
  start-page: 311
  issue: 5
  year: 1995
  ident: 10.1016/j.medengphy.2011.05.002_bib0090
  article-title: Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers
  publication-title: Sens Mater
– volume: 6
  start-page: 1
  issue: 9
  year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0130
  article-title: CAALYX: a new generation of location-based services in healthcare
  publication-title: Int J Health Geogr
– start-page: 2832
  year: 2008
  ident: 10.1016/j.medengphy.2011.05.002_bib0115
  article-title: Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– year: 1992
  ident: 10.1016/j.medengphy.2011.05.002_bib0120
– volume: 33
  start-page: 488
  issue: 4
  year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0010
  article-title: Mobility in patients with venous leg ulceration
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2006.11.032
– volume: 18
  start-page: 335
  issue: 3
  year: 2004
  ident: 10.1016/j.medengphy.2011.05.002_bib0030
  article-title: Long-term mobility monitoring of older adults using accelerometers in a clinical environment
  publication-title: Clin Rehabil
  doi: 10.1191/0269215504cr734oa
– volume: 28
  start-page: 842
  issue: 8
  year: 2006
  ident: 10.1016/j.medengphy.2011.05.002_bib0060
  article-title: Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2005.11.008
– year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0040
  article-title: An investigation of the effects of psychological distress on physical activity levels in individuals with chronic lower back pain
– volume: 26
  start-page: 194
  issue: 2
  year: 2007
  ident: 10.1016/j.medengphy.2011.05.002_bib0015
  article-title: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.012
– volume: 27
  start-page: 497
  issue: 6
  year: 2005
  ident: 10.1016/j.medengphy.2011.05.002_bib0075
  article-title: A description of an accelerometer-based mobility monitoring technique
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2004.11.006
– volume: 28
  start-page: 285
  issue: 2
  year: 2008
  ident: 10.1016/j.medengphy.2011.05.002_bib0065
  article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.003
SSID ssj0004463
Score 2.3503766
Snippet Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups....
Abstract Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1127
SubjectTerms Acceleration
Accelerometer
Accidental Falls
Activities of Daily Living
ADL
Adult
Aged
Aged, 80 and over
Algorithms
Biological and medical sciences
Discrete wavelet transform
Dot product
Female
Fundamental and applied biological sciences. Psychology
Gyroscope
Humans
Male
Monitoring, Ambulatory - instrumentation
Motor Activity - physiology
Physical activity
Pilot Projects
Postural transitions
Posture - physiology
Radiology
Scalar product
Thorax
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Young Adult
Title Activity classification using a single chest mounted tri-axial accelerometer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453311001111
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453311001111
https://dx.doi.org/10.1016/j.medengphy.2011.05.002
https://www.ncbi.nlm.nih.gov/pubmed/21636308
https://www.proquest.com/docview/898840984
https://www.proquest.com/docview/904477365
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCn1QSrt9bR-LDr26a-vt3palYftILm0gNyFLctiQOku8gZ762zuy5d0uTUihJ4PR2JZmNPONPA-Ad66suafonQhnfcadlZlGs5g5xusa4SyVIR7oHx7JxTH_fCJO9mA-5MLEsMqk-3ud3mnrdGeaVnO6Wi6n3womEI8wFouexY0fM9i5ilL-_tc2zAPdnS7IHgdncfROjBcanNCc4nxSLc_t-co1Furhyra4bnXf8OJmRNpZpoPH8ChBSjLrv_oJ7IVmBPfmQye3ETz4o-jgCO4ept_pT-HrzPXNI4iLIDpGDXWMIjEa_pRYEi_ngXRNtciP2FYieLK-XGb2J8otsc6h1YoFD5A7z-D44OP3-SJL7RUyJzhbox70onCxT1HlfOEtR8_CiqqoZakrIYNjntKyEEHbUjBFvfLKUllLiV4SrRl7DvvNRRNeAvGI-upgtfQ548ozzQtqHSIT5YqqtHIMclhS41Lt8dgC49wMQWZnZsMLE3lhcmGQF2PIN4SrvvzG7SR64JkZsktRHxo0EbeTqutIQ5v2dWsK01KTm79kbwwfNpQ74vtvr53siNZmpjQmDisqxkAGWTMoOvGXjm3CxVVrdKmjh675zUNK3AJKMYlPedGL6fb5CMYly_Wr__n613C_O2fv8jPfwP768iq8RaC2ribdTpzAndmnL4uj33QGPQI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NITEQQlAYlMHwA6-hiR3_CG9TxVSg3QubtDfLsZ2paMuqpZN44m_nnDgtFZs2iaeqlS9NfOe775zzfQAfbVHljmJ2wq1xSW6NSBSGxcSyvKoQzlLhw4b-7EhMTvJvp_x0C8b9WZhQVhl9f-fTW28dfxnF2Rwt5vPRj4xxxCOMhaZnYeE_gIf4VQUag0-_13UemO-0VfY4OgnDN4q8MOL4-gwfKDbzXG-w3BCini5MgxNXdYwXt0PSNjQdPodnEVOSg-62X8CWrwewM-6p3Abw5K-ugwN4NIvv01_C9MB27BHEBhQdyoZaTZFQDn9GDAkf5560rFrkIvBKeEeWV_PE_ELDJcZaDFuh4wGq5xWcHH45Hk-SyK-QWJ6zJTpCxzMbiIpK6zJnckwtDC-zShSq5MJb5igtMu6VKTiT1EknDRWVEJgm0YqxXdiuL2v_BohD2Fd5o4RLWS4dU3lGjUVoIm1WFkYMQfRTqm1sPh44MM51X2X2U690oYMudMo16mII6Upw0fXfuFtE9TrT_fFSdIgaY8TdovImUd_Ehd3oTDdUp_of4xvC55Xkhv3e72_3N0xr9aQ0nByWlA-B9Lam0XTCOx1T-8vrRqtChRRd5bcPKXAJSMkEXuV1Z6br6yMaFyxVb__n7j_AzuR4NtXTr0ff9-Bxu-neHtZ8B9vLq2v_HlHbstxvV-UfVpY-kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+classification+using+a+single+chest+mounted+tri-axial+accelerometer&rft.jtitle=Medical+engineering+%26+physics&rft.au=Godfrey%2C+A.&rft.au=Bourke%2C+A.K.&rft.au=%C3%93laighin%2C+G.M.&rft.au=van+de+Ven%2C+P.&rft.date=2011-11-01&rft.issn=1350-4533&rft.volume=33&rft.issue=9&rft.spage=1127&rft.epage=1135&rft_id=info:doi/10.1016%2Fj.medengphy.2011.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2011_05_002
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453311X00097%2Fcov150h.gif