Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolu...
Saved in:
Published in | The cryosphere Vol. 16; no. 4; pp. 1299 - 1314 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
11.04.2022
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antarctic sea ice kinematics plays a crucial role in shaping the
Southern Ocean climate and ecosystems. Satellite passive-microwave-derived
sea ice motion data have been used widely for studying sea ice motion and
deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic,
several validated datasets of satellite observations are available and used
to study sea ice kinematics, but far fewer validation studies exist for the
Antarctic. Here, we compare the widely used passive-microwave-derived
Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived
velocities and interpret the effects of satellite observational
configuration on the representation of Antarctic sea ice kinematics. We
identify two issues in the Kimura et al. (2013) product: (i) errors in two
large triangular areas within the eastern Weddell Sea and western Amundsen
Sea relating to an error in the input satellite data composite and (ii) a
more subtle error relating to invalid assumptions for the average sensing
time of each pixel. Upon rectification of these, performance of the daily
composite sea ice motion product is found to be a function of latitude,
relating to the number of satellite swaths incorporated (more swaths further
south as tracks converge) and the heterogeneity of the underlying satellite
signal (brightness temperature here). Daily sea ice motion vectors
calculated using ascending- and descending-only satellite tracks (with a
true ∼ 24 h timescale) are compared with the widely used
combined product (ascending and descending tracks combined together, with an
inherent ∼ 39 h timescale). This comparison reveals that
kinematic parameters derived from the shorter-timescale velocity datasets
are higher in magnitude than the combined dataset, indicating a high degree
of sensitivity to observation timescale. We conclude that the new
generation of “swath-to-swath” (S2S) sea ice velocity datasets,
encompassing a range of observational timescales, is necessary to advance
future research into sea ice kinematics. |
---|---|
AbstractList | Antarctic sea ice kinematics plays a crucial role in shaping the
Southern Ocean climate and ecosystems. Satellite passive-microwave-derived
sea ice motion data have been used widely for studying sea ice motion and
deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic,
several validated datasets of satellite observations are available and used
to study sea ice kinematics, but far fewer validation studies exist for the
Antarctic. Here, we compare the widely used passive-microwave-derived
Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived
velocities and interpret the effects of satellite observational
configuration on the representation of Antarctic sea ice kinematics. We
identify two issues in the Kimura et al. (2013) product: (i) errors in two
large triangular areas within the eastern Weddell Sea and western Amundsen
Sea relating to an error in the input satellite data composite and (ii) a
more subtle error relating to invalid assumptions for the average sensing
time of each pixel. Upon rectification of these, performance of the daily
composite sea ice motion product is found to be a function of latitude,
relating to the number of satellite swaths incorporated (more swaths further
south as tracks converge) and the heterogeneity of the underlying satellite
signal (brightness temperature here). Daily sea ice motion vectors
calculated using ascending- and descending-only satellite tracks (with a
true ∼ 24 h timescale) are compared with the widely used
combined product (ascending and descending tracks combined together, with an
inherent ∼ 39 h timescale). This comparison reveals that
kinematic parameters derived from the shorter-timescale velocity datasets
are higher in magnitude than the combined dataset, indicating a high degree
of sensitivity to observation timescale. We conclude that the new
generation of “swath-to-swath” (S2S) sea ice velocity datasets,
encompassing a range of observational timescales, is necessary to advance
future research into sea ice kinematics. Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km x 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true â¼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent â¼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of "swath-to-swath" (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics. Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics. Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics. |
Audience | Academic |
Author | Fraser, Alexander D. Zhao, Chen Heil, Petra Kimura, Noriaki Tian, Tian R. |
Author_xml | – sequence: 1 givenname: Tian R. orcidid: 0000-0002-8639-8448 surname: Tian fullname: Tian, Tian R. – sequence: 2 givenname: Alexander D. orcidid: 0000-0003-1924-0015 surname: Fraser fullname: Fraser, Alexander D. – sequence: 3 givenname: Noriaki surname: Kimura fullname: Kimura, Noriaki – sequence: 4 givenname: Chen orcidid: 0000-0003-0368-1334 surname: Zhao fullname: Zhao, Chen – sequence: 5 givenname: Petra orcidid: 0000-0003-2078-0342 surname: Heil fullname: Heil, Petra |
BookMark | eNp1Ul1rHCEUHUoKTdI-91XoUx8mUcdxxscl9GMhEEjbt4Jc9bq4zI6pukv338fNtrQbWnxQL-ccr-eei-ZsjjM2zVtGr3qmxHWxLZMt40q1nHL-ojlnSomWCi7O_jq_ai5yXlMquaLivPl-j7YEHyyUEGcCsyM7mII7XqMnQByEaU8yFJymULB1mMIOHVnMBVIlW5IRSLBIdjhFG8qePKTotra8bl56mDK--bVfNt8-fvh687m9vfu0vFnctrYXXWkHVIYaxY1kfQ9OjaMFQ1HCMEjlVAfOGN-pnlHHrTRMmX6UHrxVg_GG-e6yWR51XYS1fkhhA2mvIwT9VIhppSHVRifURnqP3HrqgQqnxDhIJ7hznmInYOyr1rujVv3Djy3motdxm-bavuZSjIqLkao_qBVU0TD7WBLYTchWLwZKWbVbiYq6-geqLoebYOv4fKj1E8L7E0LFFPxZVrDNWS-_3J9i-yPWpphzQq-r9U9jq4-ESTOqD7nQxWom9SEX-pCLyrt-xvtt2P8Yj1KXu5U |
CitedBy_id | crossref_primary_10_5194_essd_17_423_2025 crossref_primary_10_1007_s10872_022_00669_y crossref_primary_10_1016_j_rse_2023_113813 crossref_primary_10_1146_annurev_marine_121422_015323 crossref_primary_10_1029_2022JC018875 |
Cites_doi | 10.1175/MWR3045.1 10.5194/tc-14-1519-2020 10.1080/07055900.1983.9649166 10.5194/tc-2021-202-supplement 10.1029/96JC01293 10.1016/j.dsr2.2010.12.004 10.1109/IGARSS.2010.5650207 10.1016/S0074-6142(01)80124-8 10.1002/9781444317145.ch1 10.1029/JC091iC09p10725 10.1029/90JC02273 10.1103/PhysRevLett.93.178501 10.1029/93JC00656 10.1029/1999JC900076 10.1029/1999JC900268 10.5194/tc-15-3681-2021 10.1109/TGRS.2009.2023667 10.2151/jmsj.2004.1223 10.1016/j.crhy.2004.09.005 10.1017/S0954102004002263 10.1029/95JC02441 10.3189/002214311796406167 10.1029/92GL02920 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2 10.3189/172756406781811682 10.1029/2011JC006961 10.3189/S0260305500014154 10.3189/172756401781818374 10.5194/tc-11-1553-2017 10.1002/2016GL069799 10.1002/2013JC009724 10.1016/j.rse.2011.04.027 10.1175/1520-0485(1975)005<0729:OVG>2.0.CO;2 10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2 10.1002/2017JC013119 10.1029/2011GL048668 10.1029/2008JC004873 10.1017/aog.2020.43 10.3402/polar.v32i0.20193 10.3189/1998AoG27-1-433-437 10.1086/160554 10.2514/4.862434 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU COVID DWQXO F1W GNUQQ H95 H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/tc-16-1299-2022 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database Continental Europe Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Meteorology & Climatology |
EISSN | 1994-0424 1994-0416 |
EndPage | 1314 |
ExternalDocumentID | oai_doaj_org_article_b6ffe2cf0fa04d94876d42ddf0e34a85 A700119994 10_5194_tc_16_1299_2022 |
GeographicLocations | Arctic region Southern Ocean |
GeographicLocations_xml | – name: Southern Ocean – name: Arctic region |
GroupedDBID | 29F 2WC 5GY 5VS 7XC 8CJ 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z ESX GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 LK5 M7R MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 TUS ZBA ~02 BBORY PMFND 7QH 7TG 7TN 7UA AZQEC C1K COVID DWQXO F1W GNUQQ H95 H96 KL. L.G PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c543t-7e9b0b92b6155ad988cab0e6a7769d93adbbf39510d2c6b19b586fafc97bfb1f3 |
IEDL.DBID | DOA |
ISSN | 1994-0424 1994-0416 |
IngestDate | Wed Aug 27 01:22:33 EDT 2025 Mon Jun 30 13:37:02 EDT 2025 Tue Jun 17 21:33:30 EDT 2025 Tue Jun 10 20:35:21 EDT 2025 Fri Jun 27 03:59:13 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 04:25:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-7e9b0b92b6155ad988cab0e6a7769d93adbbf39510d2c6b19b586fafc97bfb1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8639-8448 0000-0003-2078-0342 0000-0003-0368-1334 0000-0003-1924-0015 |
OpenAccessLink | https://doaj.org/article/b6ffe2cf0fa04d94876d42ddf0e34a85 |
PQID | 2648924809 |
PQPubID | 105732 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6ffe2cf0fa04d94876d42ddf0e34a85 proquest_journals_2648924809 gale_infotracmisc_A700119994 gale_infotracacademiconefile_A700119994 gale_incontextgauss_ISR_A700119994 crossref_citationtrail_10_5194_tc_16_1299_2022 crossref_primary_10_5194_tc_16_1299_2022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-11 |
PublicationDateYYYYMMDD | 2022-04-11 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | The cryosphere |
PublicationYear | 2022 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref19 doi: 10.1175/MWR3045.1 – ident: ref44 doi: 10.5194/tc-14-1519-2020 – ident: ref45 doi: 10.1080/07055900.1983.9649166 – ident: ref1 doi: 10.5194/tc-2021-202-supplement – ident: ref25 doi: 10.1029/96JC01293 – ident: ref17 doi: 10.1016/j.dsr2.2010.12.004 – ident: ref29 doi: 10.1109/IGARSS.2010.5650207 – ident: ref36 doi: 10.1016/S0074-6142(01)80124-8 – ident: ref5 doi: 10.1002/9781444317145.ch1 – ident: ref35 doi: 10.1029/JC091iC09p10725 – ident: ref8 doi: 10.1029/90JC02273 – ident: ref30 doi: 10.1103/PhysRevLett.93.178501 – ident: ref7 doi: 10.1029/93JC00656 – ident: ref12 doi: 10.1029/1999JC900076 – ident: ref27 – ident: ref32 doi: 10.1029/1999JC900268 – ident: ref28 doi: 10.5194/tc-15-3681-2021 – ident: ref31 doi: 10.1109/TGRS.2009.2023667 – ident: ref22 doi: 10.2151/jmsj.2004.1223 – ident: ref46 doi: 10.1016/j.crhy.2004.09.005 – ident: ref2 doi: 10.1017/S0954102004002263 – ident: ref11 doi: 10.1029/95JC02441 – ident: ref26 doi: 10.3189/002214311796406167 – ident: ref47 doi: 10.1029/92GL02920 – ident: ref4 doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2 – ident: ref15 doi: 10.3189/172756406781811682 – ident: ref20 doi: 10.1029/2011JC006961 – ident: ref10 doi: 10.3189/S0260305500014154 – ident: ref14 doi: 10.3189/172756401781818374 – ident: ref39 doi: 10.5194/tc-11-1553-2017 – ident: ref38 – ident: ref41 doi: 10.1002/2016GL069799 – ident: ref40 doi: 10.1002/2013JC009724 – ident: ref9 doi: 10.1016/j.rse.2011.04.027 – ident: ref24 doi: 10.1175/1520-0485(1975)005<0729:OVG>2.0.CO;2 – ident: ref34 doi: 10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2 – ident: ref42 – ident: ref21 doi: 10.1002/2017JC013119 – ident: ref6 doi: 10.1029/2011GL048668 – ident: ref16 doi: 10.1029/2008JC004873 – ident: ref43 doi: 10.1017/aog.2020.43 – ident: ref23 doi: 10.3402/polar.v32i0.20193 – ident: ref18 – ident: ref13 doi: 10.3189/1998AoG27-1-433-437 – ident: ref37 doi: 10.1086/160554 – ident: ref3 doi: 10.2514/4.862434 – ident: ref33 |
SSID | ssj0062904 |
Score | 2.3182106 |
Snippet | Antarctic sea ice kinematics plays a crucial role in shaping the
Southern Ocean climate and ecosystems. Satellite passive-microwave-derived
sea ice motion data... Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1299 |
SubjectTerms | Antarctic sea ice Arctic research Brightness temperature Buoys Daily Datasets Deformation Heterogeneity Kinematics Marine ecosystems Movement Ocean-atmosphere system Satellite data Satellite observation Satellites Sea ice Sea ice deformation Sea ice motion Sea ice temperatures Spatial discrimination Spatial resolution Surface radiation temperature Swaths Temperature Time Vectors Velocity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ALKgVEaEEWQsAlNHESJz6hbdWqILVCC5V6QLL8LCutkmWTVuq_74zjbbWH9ph4kkw8D4_t8TeEfKqUgJDNujTnOoMJiqlS7axIS1eZyglmi3AW5vSMn5yXPy-qi7jg1se0yrVPDI7adgbXyPcxEwvmCk0mvi__p1g1CndXYwmNp2QLXHDTTMjWwdHZr9naF3MmsnFfGQFwS1aO4D4QtZT7gwH-UhjuBGgKYxvjUoDvf8hJh5HneJu8iCEjnY4yfkmeuHaHPIvVy__d7JDkFCLfbhUWyOlneriYQxgarl6RvzP0aD6uzFHVWgq6NR8rKdHOU0Wtmi9uaK8CNufgUgtKee0snbYDWAF8lII5UHAoFPOLDITtdDnixL4m58dHfw5P0lhRITVVWQxp7YTOtGAadyOVFU1jlM4cV3XNhRWFslr7AoMuywzXudBVw73yRtTa69wXb8ik7Vr3llBVFd466D1RZ6XNmG4KV5QeXpkz7ZRLyLd1f0oT4cax6sVCwrQDBSAHI3MuUQASBZCQr3cPLEekjYdJD1BAd2QIkR1udKtLGS1Oau69Y8ZnXgGDAiZm3JbMWp8Bn6qpEvIRxSsRBKPFLJtLddX38sfvmZzWAQoPlCYhXyKR74B7o-KhBegDxM3aoNzboAQrNZvNay2S0Uv08l6n3z3evEue43_jLlae75HJsLpy7yEYGvSHqPG3w4oISw priority: 102 providerName: ProQuest |
Title | Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product |
URI | https://www.proquest.com/docview/2648924809 https://doaj.org/article/b6ffe2cf0fa04d94876d42ddf0e34a85 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdhgXxDYQgTFZCAGXMMdJnPjYTRsDaRMqTOoByfJPqFSl05oh7b_nPdud6GHiwiVS05fUfe_z8-fY-R4hb1stgbI5X1bCMJig2LY03smy8a1tveSuju_CXFyK86vmy6yd_VXqC_eEJXng5LgjI0Lw3AYWNGucBH4tXMOdC8zXje6jeimMeevJVMrBgkuW1pNR-BY4RxL1AbbSHI0W2lXCMCcBIZxvjEdRtv-h5BxHnLOn5EmminSSmrhLHvlhj-zkquW_7vZIcQGMd3kTH4zTd_RkMQf6GT_tkx9TzGQhP5GjenAUMDVPFZToMlBNnZ4v7uhKR03O0ZcOwPjbOzoZRkA__CiFbkAhkVDcV2SBrtPrpA_7jFydnX4_OS9zJYXStk09lp2XhhnJDa5Caif73mrDvNBdJ6STtXbGhBrJluNWmEqathdBBys7E0wV6udka1gO_gWhuq2D8-A92UE8GDd9DYEIcMuKG699QT6u_alslhnHahcLBdMNDIAaraqEwgAoDEBBPtxfcJ0UNh42PcYA3ZuhNHY8AYBRGTDqX4ApyBsMr0LxiwF31_zUt6uV-vxtqiZdlMAD0BTkfTYKS2i91fllBfAB6mVtWB5sWELvtJtfr1GkcnZYKdxVCPPensmX_-MfvSKP0Tu4xlVVB2RrvLn1r4EqjeaQbB-fXn6dHsbeAcdPs-oPCw0THw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuCAqIhQIW4nUJTZzEiQ8IbUurXdpdodJKPVQyfpaVVsmym4L2T_EbmcmjaA_l1mPiiWPNjMcz9vgbQl6nSoDLZl0QcR1CgGLSQDsrgsSlJnWC2bi-CzOe8OFZ8uU8Pd8gf7q7MJhW2dnE2lDb0uAe-S5mYkGskIfi0_xngFWj8HS1K6HRqMWRW_2GkG35cfQZ5PuGscOD0_1h0FYVCEyaxFWQOaFDLZjGEzllRZ4bpUPHVZZxYUWsrNY-RsfDMsN1JHSac6-8EZn2OvIx9HuHbCYxD1mPbO4dTL6edLafMxE259gIuJuwpAETAi8p2a0M8COA5VWAZjK2tg7W5QJuWhTqle7wPrnXuqh00OjUA7Lhim2y1VZL_7HaJv0xeNrlot6Qp2_p_mwKbm_99JBcnKAF9e1OIFWFpaDL06ZyEy09VdSq6WxFl6rGAq1cYGES_HKWDooK2As_pcBnCgaMYj6TgTCBzhtc2kfk7FZ4_Zj0irJwTwhVaeytA-6JLExsyHQeuzjx0GXEtFOuTz50_JSmhTfHKhszCWEOCkBWRkZcogAkCqBP3l9_MG-QPW4m3UMBXZMhJHf9olxcynaGS829d8z40CsYoIBAkNuEWetDGKfK0z55heKVCLpRYFbPpbpaLuXo24kcZDX0HihNn7xriXwJozeqvSQBPECcrjXKnTVKsApmvbnTItlapaX8N4ee_r_5Jdkano6P5fFocvSM3EUe4AlaFO2QXrW4cs_BEav0i1b7Kfl-2xPuL_U7RvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVAIuCAqIQIERYruY2ON1DgilmxpKoypQqYdKw6wlUmSHxAXlr_HreM8eF-VQbj3afrZHb3-zfI-Q16nkkLIZG0SZCqFA0WmgrOFBYlOdWs5M3JyFOR5nh6fJ57P0bIP86c7C4LbKzic2jtpUGufIB7gTC2qFIuQD57dFnOwdfJr_DLCDFK60du00WhU5sqvfUL4tP472QNZvGDvY_7Z7GPgOA4FOk7gOcstVqDhTuDonDS8KLVVoM5nnGTc8lkYpF2MSYpjOVMRVWmROOs1z5VTkYvjuLbKZY1XUI5s7--OTSRcHMsbDdk0bwXcTlrTAQpAxJYNaA28CCLUctJSxtZjYtA64LkA0Ue_gPrnn01U6bPXrAdmw5Ra54zun_1htkf4xZN3Vopmcp2_p7mwKKXBz9ZCcT9CbOj8rSGVpKOj1tO3iRCtHJTVyOlvRpWxwQWsbGDCIX9bQYVkDe-GnFPhMwZlR3NukoWSg8xaj9hE5vRFePya9sirtE0JlGjtjgXs8DxMTMlXENk4cfDJiykrbJx86fgrtoc6x48ZMQMmDAhC1FlEmUAACBdAn769emLcoH9eT7qCArsgQnru5US0uhLd2oTLnLNMudBIGyKEozEzCjHEhjFMWaZ-8QvEKBOAoUZUv5OVyKUZfJ2KYNzB8oDR98s4TuQpGr6U_MAE8QMyuNcrtNUrwEHr9cadFwnuopfhnT0____gluQ2GJr6MxkfPyF1kAS6mRdE26dWLS_sccrJavfDKT8n3m7a3vxaCSyU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rectification+and+validation+of+a+daily+satellite-derived+Antarctic+sea+ice+velocity+product&rft.jtitle=The+cryosphere&rft.au=Tian%2C+Tian+R.&rft.au=Fraser%2C+Alexander+D.&rft.au=Kimura%2C+Noriaki&rft.au=Zhao%2C+Chen&rft.date=2022-04-11&rft.issn=1994-0424&rft.eissn=1994-0424&rft.volume=16&rft.issue=4&rft.spage=1299&rft.epage=1314&rft_id=info:doi/10.5194%2Ftc-16-1299-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_tc_16_1299_2022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon |