Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product

Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolu...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 16; no. 4; pp. 1299 - 1314
Main Authors Tian, Tian R., Fraser, Alexander D., Kimura, Noriaki, Zhao, Chen, Heil, Petra
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 11.04.2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics.
AbstractList Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics.
Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km x 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true â¼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent â¼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of "swath-to-swath" (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics.
Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km  ×  60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼  24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼  39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics.
Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data have been used widely for studying sea ice motion and deformation, and they provide daily global coverage at a relatively low spatial resolution (in the order of 60 km × 60 km). In the Arctic, several validated datasets of satellite observations are available and used to study sea ice kinematics, but far fewer validation studies exist for the Antarctic. Here, we compare the widely used passive-microwave-derived Antarctic sea ice motion product by Kimura et al. (2013) with buoy-derived velocities and interpret the effects of satellite observational configuration on the representation of Antarctic sea ice kinematics. We identify two issues in the Kimura et al. (2013) product: (i) errors in two large triangular areas within the eastern Weddell Sea and western Amundsen Sea relating to an error in the input satellite data composite and (ii) a more subtle error relating to invalid assumptions for the average sensing time of each pixel. Upon rectification of these, performance of the daily composite sea ice motion product is found to be a function of latitude, relating to the number of satellite swaths incorporated (more swaths further south as tracks converge) and the heterogeneity of the underlying satellite signal (brightness temperature here). Daily sea ice motion vectors calculated using ascending- and descending-only satellite tracks (with a true ∼ 24 h timescale) are compared with the widely used combined product (ascending and descending tracks combined together, with an inherent ∼ 39 h timescale). This comparison reveals that kinematic parameters derived from the shorter-timescale velocity datasets are higher in magnitude than the combined dataset, indicating a high degree of sensitivity to observation timescale. We conclude that the new generation of “swath-to-swath” (S2S) sea ice velocity datasets, encompassing a range of observational timescales, is necessary to advance future research into sea ice kinematics.
Audience Academic
Author Fraser, Alexander D.
Zhao, Chen
Heil, Petra
Kimura, Noriaki
Tian, Tian R.
Author_xml – sequence: 1
  givenname: Tian R.
  orcidid: 0000-0002-8639-8448
  surname: Tian
  fullname: Tian, Tian R.
– sequence: 2
  givenname: Alexander D.
  orcidid: 0000-0003-1924-0015
  surname: Fraser
  fullname: Fraser, Alexander D.
– sequence: 3
  givenname: Noriaki
  surname: Kimura
  fullname: Kimura, Noriaki
– sequence: 4
  givenname: Chen
  orcidid: 0000-0003-0368-1334
  surname: Zhao
  fullname: Zhao, Chen
– sequence: 5
  givenname: Petra
  orcidid: 0000-0003-2078-0342
  surname: Heil
  fullname: Heil, Petra
BookMark eNp1Ul1rHCEUHUoKTdI-91XoUx8mUcdxxscl9GMhEEjbt4Jc9bq4zI6pukv338fNtrQbWnxQL-ccr-eei-ZsjjM2zVtGr3qmxHWxLZMt40q1nHL-ojlnSomWCi7O_jq_ai5yXlMquaLivPl-j7YEHyyUEGcCsyM7mII7XqMnQByEaU8yFJymULB1mMIOHVnMBVIlW5IRSLBIdjhFG8qePKTotra8bl56mDK--bVfNt8-fvh687m9vfu0vFnctrYXXWkHVIYaxY1kfQ9OjaMFQ1HCMEjlVAfOGN-pnlHHrTRMmX6UHrxVg_GG-e6yWR51XYS1fkhhA2mvIwT9VIhppSHVRifURnqP3HrqgQqnxDhIJ7hznmInYOyr1rujVv3Djy3motdxm-bavuZSjIqLkao_qBVU0TD7WBLYTchWLwZKWbVbiYq6-geqLoebYOv4fKj1E8L7E0LFFPxZVrDNWS-_3J9i-yPWpphzQq-r9U9jq4-ESTOqD7nQxWom9SEX-pCLyrt-xvtt2P8Yj1KXu5U
CitedBy_id crossref_primary_10_5194_essd_17_423_2025
crossref_primary_10_1007_s10872_022_00669_y
crossref_primary_10_1016_j_rse_2023_113813
crossref_primary_10_1146_annurev_marine_121422_015323
crossref_primary_10_1029_2022JC018875
Cites_doi 10.1175/MWR3045.1
10.5194/tc-14-1519-2020
10.1080/07055900.1983.9649166
10.5194/tc-2021-202-supplement
10.1029/96JC01293
10.1016/j.dsr2.2010.12.004
10.1109/IGARSS.2010.5650207
10.1016/S0074-6142(01)80124-8
10.1002/9781444317145.ch1
10.1029/JC091iC09p10725
10.1029/90JC02273
10.1103/PhysRevLett.93.178501
10.1029/93JC00656
10.1029/1999JC900076
10.1029/1999JC900268
10.5194/tc-15-3681-2021
10.1109/TGRS.2009.2023667
10.2151/jmsj.2004.1223
10.1016/j.crhy.2004.09.005
10.1017/S0954102004002263
10.1029/95JC02441
10.3189/002214311796406167
10.1029/92GL02920
10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
10.3189/172756406781811682
10.1029/2011JC006961
10.3189/S0260305500014154
10.3189/172756401781818374
10.5194/tc-11-1553-2017
10.1002/2016GL069799
10.1002/2013JC009724
10.1016/j.rse.2011.04.027
10.1175/1520-0485(1975)005<0729:OVG>2.0.CO;2
10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2
10.1002/2017JC013119
10.1029/2011GL048668
10.1029/2008JC004873
10.1017/aog.2020.43
10.3402/polar.v32i0.20193
10.3189/1998AoG27-1-433-437
10.1086/160554
10.2514/4.862434
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/tc-16-1299-2022
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
EISSN 1994-0424
1994-0416
EndPage 1314
ExternalDocumentID oai_doaj_org_article_b6ffe2cf0fa04d94876d42ddf0e34a85
A700119994
10_5194_tc_16_1299_2022
GeographicLocations Arctic region
Southern Ocean
GeographicLocations_xml – name: Southern Ocean
– name: Arctic region
GroupedDBID 29F
2WC
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
TUS
ZBA
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
AZQEC
C1K
COVID
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c543t-7e9b0b92b6155ad988cab0e6a7769d93adbbf39510d2c6b19b586fafc97bfb1f3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Wed Aug 27 01:22:33 EDT 2025
Mon Jun 30 13:37:02 EDT 2025
Tue Jun 17 21:33:30 EDT 2025
Tue Jun 10 20:35:21 EDT 2025
Fri Jun 27 03:59:13 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 04:25:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-7e9b0b92b6155ad988cab0e6a7769d93adbbf39510d2c6b19b586fafc97bfb1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8639-8448
0000-0003-2078-0342
0000-0003-0368-1334
0000-0003-1924-0015
OpenAccessLink https://doaj.org/article/b6ffe2cf0fa04d94876d42ddf0e34a85
PQID 2648924809
PQPubID 105732
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_b6ffe2cf0fa04d94876d42ddf0e34a85
proquest_journals_2648924809
gale_infotracmisc_A700119994
gale_infotracacademiconefile_A700119994
gale_incontextgauss_ISR_A700119994
crossref_citationtrail_10_5194_tc_16_1299_2022
crossref_primary_10_5194_tc_16_1299_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-11
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.1175/MWR3045.1
– ident: ref44
  doi: 10.5194/tc-14-1519-2020
– ident: ref45
  doi: 10.1080/07055900.1983.9649166
– ident: ref1
  doi: 10.5194/tc-2021-202-supplement
– ident: ref25
  doi: 10.1029/96JC01293
– ident: ref17
  doi: 10.1016/j.dsr2.2010.12.004
– ident: ref29
  doi: 10.1109/IGARSS.2010.5650207
– ident: ref36
  doi: 10.1016/S0074-6142(01)80124-8
– ident: ref5
  doi: 10.1002/9781444317145.ch1
– ident: ref35
  doi: 10.1029/JC091iC09p10725
– ident: ref8
  doi: 10.1029/90JC02273
– ident: ref30
  doi: 10.1103/PhysRevLett.93.178501
– ident: ref7
  doi: 10.1029/93JC00656
– ident: ref12
  doi: 10.1029/1999JC900076
– ident: ref27
– ident: ref32
  doi: 10.1029/1999JC900268
– ident: ref28
  doi: 10.5194/tc-15-3681-2021
– ident: ref31
  doi: 10.1109/TGRS.2009.2023667
– ident: ref22
  doi: 10.2151/jmsj.2004.1223
– ident: ref46
  doi: 10.1016/j.crhy.2004.09.005
– ident: ref2
  doi: 10.1017/S0954102004002263
– ident: ref11
  doi: 10.1029/95JC02441
– ident: ref26
  doi: 10.3189/002214311796406167
– ident: ref47
  doi: 10.1029/92GL02920
– ident: ref4
  doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
– ident: ref15
  doi: 10.3189/172756406781811682
– ident: ref20
  doi: 10.1029/2011JC006961
– ident: ref10
  doi: 10.3189/S0260305500014154
– ident: ref14
  doi: 10.3189/172756401781818374
– ident: ref39
  doi: 10.5194/tc-11-1553-2017
– ident: ref38
– ident: ref41
  doi: 10.1002/2016GL069799
– ident: ref40
  doi: 10.1002/2013JC009724
– ident: ref9
  doi: 10.1016/j.rse.2011.04.027
– ident: ref24
  doi: 10.1175/1520-0485(1975)005<0729:OVG>2.0.CO;2
– ident: ref34
  doi: 10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2
– ident: ref42
– ident: ref21
  doi: 10.1002/2017JC013119
– ident: ref6
  doi: 10.1029/2011GL048668
– ident: ref16
  doi: 10.1029/2008JC004873
– ident: ref43
  doi: 10.1017/aog.2020.43
– ident: ref23
  doi: 10.3402/polar.v32i0.20193
– ident: ref18
– ident: ref13
  doi: 10.3189/1998AoG27-1-433-437
– ident: ref37
  doi: 10.1086/160554
– ident: ref3
  doi: 10.2514/4.862434
– ident: ref33
SSID ssj0062904
Score 2.3182106
Snippet Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data...
Antarctic sea ice kinematics plays a crucial role in shaping the Southern Ocean climate and ecosystems. Satellite passive-microwave-derived sea ice motion data...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1299
SubjectTerms Antarctic sea ice
Arctic research
Brightness temperature
Buoys
Daily
Datasets
Deformation
Heterogeneity
Kinematics
Marine ecosystems
Movement
Ocean-atmosphere system
Satellite data
Satellite observation
Satellites
Sea ice
Sea ice deformation
Sea ice motion
Sea ice temperatures
Spatial discrimination
Spatial resolution
Surface radiation temperature
Swaths
Temperature
Time
Vectors
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ALKgVEaEEWQsAlNHESJz6hbdWqILVCC5V6QLL8LCutkmWTVuq_74zjbbWH9ph4kkw8D4_t8TeEfKqUgJDNujTnOoMJiqlS7axIS1eZyglmi3AW5vSMn5yXPy-qi7jg1se0yrVPDI7adgbXyPcxEwvmCk0mvi__p1g1CndXYwmNp2QLXHDTTMjWwdHZr9naF3MmsnFfGQFwS1aO4D4QtZT7gwH-UhjuBGgKYxvjUoDvf8hJh5HneJu8iCEjnY4yfkmeuHaHPIvVy__d7JDkFCLfbhUWyOlneriYQxgarl6RvzP0aD6uzFHVWgq6NR8rKdHOU0Wtmi9uaK8CNufgUgtKee0snbYDWAF8lII5UHAoFPOLDITtdDnixL4m58dHfw5P0lhRITVVWQxp7YTOtGAadyOVFU1jlM4cV3XNhRWFslr7AoMuywzXudBVw73yRtTa69wXb8ik7Vr3llBVFd466D1RZ6XNmG4KV5QeXpkz7ZRLyLd1f0oT4cax6sVCwrQDBSAHI3MuUQASBZCQr3cPLEekjYdJD1BAd2QIkR1udKtLGS1Oau69Y8ZnXgGDAiZm3JbMWp8Bn6qpEvIRxSsRBKPFLJtLddX38sfvmZzWAQoPlCYhXyKR74B7o-KhBegDxM3aoNzboAQrNZvNay2S0Uv08l6n3z3evEue43_jLlae75HJsLpy7yEYGvSHqPG3w4oISw
  priority: 102
  providerName: ProQuest
Title Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
URI https://www.proquest.com/docview/2648924809
https://doaj.org/article/b6ffe2cf0fa04d94876d42ddf0e34a85
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdhgXxDYQgTFZCAGXMMdJnPjYTRsDaRMqTOoByfJPqFSl05oh7b_nPdud6GHiwiVS05fUfe_z8-fY-R4hb1stgbI5X1bCMJig2LY03smy8a1tveSuju_CXFyK86vmy6yd_VXqC_eEJXng5LgjI0Lw3AYWNGucBH4tXMOdC8zXje6jeimMeevJVMrBgkuW1pNR-BY4RxL1AbbSHI0W2lXCMCcBIZxvjEdRtv-h5BxHnLOn5EmminSSmrhLHvlhj-zkquW_7vZIcQGMd3kTH4zTd_RkMQf6GT_tkx9TzGQhP5GjenAUMDVPFZToMlBNnZ4v7uhKR03O0ZcOwPjbOzoZRkA__CiFbkAhkVDcV2SBrtPrpA_7jFydnX4_OS9zJYXStk09lp2XhhnJDa5Caif73mrDvNBdJ6STtXbGhBrJluNWmEqathdBBys7E0wV6udka1gO_gWhuq2D8-A92UE8GDd9DYEIcMuKG699QT6u_alslhnHahcLBdMNDIAaraqEwgAoDEBBPtxfcJ0UNh42PcYA3ZuhNHY8AYBRGTDqX4ApyBsMr0LxiwF31_zUt6uV-vxtqiZdlMAD0BTkfTYKS2i91fllBfAB6mVtWB5sWELvtJtfr1GkcnZYKdxVCPPensmX_-MfvSKP0Tu4xlVVB2RrvLn1r4EqjeaQbB-fXn6dHsbeAcdPs-oPCw0THw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuCAqIhQIW4nUJTZzEiQ8IbUurXdpdodJKPVQyfpaVVsmym4L2T_EbmcmjaA_l1mPiiWPNjMcz9vgbQl6nSoDLZl0QcR1CgGLSQDsrgsSlJnWC2bi-CzOe8OFZ8uU8Pd8gf7q7MJhW2dnE2lDb0uAe-S5mYkGskIfi0_xngFWj8HS1K6HRqMWRW_2GkG35cfQZ5PuGscOD0_1h0FYVCEyaxFWQOaFDLZjGEzllRZ4bpUPHVZZxYUWsrNY-RsfDMsN1JHSac6-8EZn2OvIx9HuHbCYxD1mPbO4dTL6edLafMxE259gIuJuwpAETAi8p2a0M8COA5VWAZjK2tg7W5QJuWhTqle7wPrnXuqh00OjUA7Lhim2y1VZL_7HaJv0xeNrlot6Qp2_p_mwKbm_99JBcnKAF9e1OIFWFpaDL06ZyEy09VdSq6WxFl6rGAq1cYGES_HKWDooK2As_pcBnCgaMYj6TgTCBzhtc2kfk7FZ4_Zj0irJwTwhVaeytA-6JLExsyHQeuzjx0GXEtFOuTz50_JSmhTfHKhszCWEOCkBWRkZcogAkCqBP3l9_MG-QPW4m3UMBXZMhJHf9olxcynaGS829d8z40CsYoIBAkNuEWetDGKfK0z55heKVCLpRYFbPpbpaLuXo24kcZDX0HihNn7xriXwJozeqvSQBPECcrjXKnTVKsApmvbnTItlapaX8N4ee_r_5Jdkano6P5fFocvSM3EUe4AlaFO2QXrW4cs_BEav0i1b7Kfl-2xPuL_U7RvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVAIuCAqIQIERYruY2ON1DgilmxpKoypQqYdKw6wlUmSHxAXlr_HreM8eF-VQbj3afrZHb3-zfI-Q16nkkLIZG0SZCqFA0WmgrOFBYlOdWs5M3JyFOR5nh6fJ57P0bIP86c7C4LbKzic2jtpUGufIB7gTC2qFIuQD57dFnOwdfJr_DLCDFK60du00WhU5sqvfUL4tP472QNZvGDvY_7Z7GPgOA4FOk7gOcstVqDhTuDonDS8KLVVoM5nnGTc8lkYpF2MSYpjOVMRVWmROOs1z5VTkYvjuLbKZY1XUI5s7--OTSRcHMsbDdk0bwXcTlrTAQpAxJYNaA28CCLUctJSxtZjYtA64LkA0Ue_gPrnn01U6bPXrAdmw5Ra54zun_1htkf4xZN3Vopmcp2_p7mwKKXBz9ZCcT9CbOj8rSGVpKOj1tO3iRCtHJTVyOlvRpWxwQWsbGDCIX9bQYVkDe-GnFPhMwZlR3NukoWSg8xaj9hE5vRFePya9sirtE0JlGjtjgXs8DxMTMlXENk4cfDJiykrbJx86fgrtoc6x48ZMQMmDAhC1FlEmUAACBdAn769emLcoH9eT7qCArsgQnru5US0uhLd2oTLnLNMudBIGyKEozEzCjHEhjFMWaZ-8QvEKBOAoUZUv5OVyKUZfJ2KYNzB8oDR98s4TuQpGr6U_MAE8QMyuNcrtNUrwEHr9cadFwnuopfhnT0____gluQ2GJr6MxkfPyF1kAS6mRdE26dWLS_sccrJavfDKT8n3m7a3vxaCSyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rectification+and+validation+of+a+daily+satellite-derived+Antarctic+sea+ice+velocity+product&rft.jtitle=The+cryosphere&rft.au=Tian%2C+Tian+R.&rft.au=Fraser%2C+Alexander+D.&rft.au=Kimura%2C+Noriaki&rft.au=Zhao%2C+Chen&rft.date=2022-04-11&rft.issn=1994-0424&rft.eissn=1994-0424&rft.volume=16&rft.issue=4&rft.spage=1299&rft.epage=1314&rft_id=info:doi/10.5194%2Ftc-16-1299-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_tc_16_1299_2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon