Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: Data availability and quality for 36 alternative brominated flame retardants
Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of a...
Saved in:
Published in | Chemosphere (Oxford) Vol. 116; pp. 118 - 123 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of alternative BFRs, such as decabromodiphenyl ethane and tribromophenol, that are increasingly used as replacements, but which may possess similar hazardous properties. This necessitates hazard and risk assessments of these compounds. For a set of 36 alternative BFRs, we searched 25 databases for chemical property data that are needed as input for a PBT assessment. These properties are degradation half-life, bioconcentration factor (BCF), octanol–water partition coefficient (Kow), and toxic effect concentrations in aquatic organisms. For 17 of the 36 substances, no data at all were found for these properties. Too few persistence data were available to even assess the quality of these data in a systematic way. The available data for Kow and toxicity show surprisingly high variability, which makes it difficult to identify the most reliable values. We propose methods for systematic evaluations of PBT-related chemical property data that should be performed before data are included in publicly available databases. Using these methods, we evaluated the data for Kow and toxicity in more detail and identified several inaccurate values. For most of the 36 alternative BFRs, the amount and the quality of the PBT-related property data need to be improved before reliable hazard and risk assessments of these substances can be performed. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2014.01.083 |