Morphological transitions of elastic filaments in shear flow

The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, w...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 38; pp. 9438 - 9443
Main Authors Liu, Yanan, Chakrabarti, Brato, Saintillan, David, Lindner, Anke, du Roure, Olivia
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler–Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent “snaking” motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.
AbstractList The morphological dynamics, instabilities and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming, and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are employed as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler-Bernoulli beam theory and non-local slender-body hydrodynamics in the presence of thermal fluctuations, and agree quantitatively with observations. We demonstrate that filament dynamics in this system is primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations only playing a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly-deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent "snaking" motions. A theoretical model for the so far unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments and simulations.
The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler-Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent "snaking" motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.
The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler-Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent "snaking" motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler-Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent "snaking" motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.
Elastic filaments and semiflexible polymers occur ubiquitously in biophysical systems and are key components of many complex fluids, yet our understanding of their conformational dynamics under flow is incomplete. Here, we report on experimental observations of actin filaments in simple shear and characterize their various dynamical regimes from tumbling to buckling and snaking. Numerical simulations accounting for elastohydrodynamics as well as Brownian fluctuations show perfect agreement with measurements. Using a reduced-order theoretical model, we elucidate the unexplained mechanism for the transition to snaking. Our results pave the way for a better understanding of biophysical processes, as well as the rheology of sheared soft materials, and provide a theoretical framework for the exploration of the dynamics of dilute and semidilute suspensions. The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming and are also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we combine experiments and computational modeling to elucidate the dynamical regimes and morphological transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are used as an experimental model system and their conformations are investigated through fluorescence microscopy in microfluidic channels. Simulations matching the experimental conditions are also performed using inextensible Euler–Bernoulli beam theory and nonlocal slender-body hydrodynamics in the presence of thermal fluctuations and agree quantitatively with observations. We demonstrate that filament dynamics in this system are primarily governed by a dimensionless elasto-viscous number comparing viscous drag forces to elastic bending forces, with thermal fluctuations playing only a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buckling instability arises above a critical flow strength. A second transition to strongly deformed shapes occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of localized high-curvature bends that propagate along the filaments in apparent “snaking” motions. A theoretical model for the as yet unexplored onset of snaking accurately predicts the transition and explains the observed dynamics. We present a complete characterization of filament morphologies and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate excellent agreement between theory, experiments, and simulations.
Author Lindner, Anke
du Roure, Olivia
Saintillan, David
Chakrabarti, Brato
Liu, Yanan
Author_xml – sequence: 1
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI Paris, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, 75005 Paris, France
– sequence: 2
  givenname: Brato
  surname: Chakrabarti
  fullname: Chakrabarti, Brato
  organization: Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
– sequence: 3
  givenname: David
  surname: Saintillan
  fullname: Saintillan, David
  organization: Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
– sequence: 4
  givenname: Anke
  surname: Lindner
  fullname: Lindner, Anke
  organization: Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI Paris, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, 75005 Paris, France
– sequence: 5
  givenname: Olivia
  surname: du Roure
  fullname: du Roure, Olivia
  organization: Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI Paris, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, 75005 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30181295$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02167915$$DView record in HAL
BookMark eNp9kc1vEzEQxS1URNPCmRNoJS70sO2MvfauJYRUVfRDCuICZ8tx7MaRYwd7U8R_j6OUUHLoyZL9e2_e-J2Qo5iiJeQtwjlCzy7WUZdzHIAzKRH5CzJBkNiKTsIRmQDQvh062h2Tk1KWACD5AK_IMQMckEo-IZ--prxepJDuvdGhGbOOxY8-xdIk19igy-hN43zQKxvH0vjYlIXVuXEh_XpNXjodin3zeJ6SH9dfvl_dttNvN3dXl9PW8I6Nba8dpVT2YjagdV1vRC-ZdRKoZM7N3aCtpiCs0NbM5qafWQTDuENqtOOOsVPyeee73sxWdm5qkqyDWme_0vm3Stqr_1-iX6j79KAEciEGXg3OdgaLA9nt5VRt74BiDYX8ASv78XFYTj83toxq5YuxIeho06YoClIOsuNSVPTDAbpMmxzrVyiK2FHgQKFS75-m38__W0IFLnaAyamUbN0eQVDbmtW2ZvWv5qrgBwrjR72tra7vwzO6dzvdsowp78dQwRkio-wPKUm2FA
CitedBy_id crossref_primary_10_3389_frsfm_2022_977729
crossref_primary_10_1021_acsnano_1c07769
crossref_primary_10_1063_5_0141027
crossref_primary_10_1103_PhysRevResearch_6_043126
crossref_primary_10_1038_s41567_020_0843_7
crossref_primary_10_1088_1367_2630_accdfb
crossref_primary_10_1103_PhysRevE_106_025103
crossref_primary_10_1039_D0SM00390E
crossref_primary_10_1017_jfm_2022_1040
crossref_primary_10_1073_pnas_2303679121
crossref_primary_10_1016_j_ijheatfluidflow_2019_04_011
crossref_primary_10_1088_1361_648X_ac533a
crossref_primary_10_1088_1873_7005_aba9b8
crossref_primary_10_1103_PhysRevFluids_6_034303
crossref_primary_10_1016_j_ijmecsci_2022_107766
crossref_primary_10_1103_PhysRevLett_121_154501
crossref_primary_10_1103_PhysRevLett_130_064001
crossref_primary_10_1017_jfm_2021_383
crossref_primary_10_1002_syst_202400031
crossref_primary_10_1039_D0SM00292E
crossref_primary_10_1103_PhysRevFluids_8_014101
crossref_primary_10_1039_D0SM02184A
crossref_primary_10_1039_D1RA07354K
crossref_primary_10_1146_annurev_fluid_122316_045153
crossref_primary_10_1039_C9SM01373C
crossref_primary_10_1021_acs_jpclett_1c02795
crossref_primary_10_1039_D0SM01293A
crossref_primary_10_1103_PhysRevLett_126_124501
crossref_primary_10_1039_D3SM00255A
crossref_primary_10_1103_PhysRevFluids_8_113102
crossref_primary_10_1103_PhysRevFluids_4_113101
crossref_primary_10_1016_j_jnnfm_2022_104836
crossref_primary_10_1039_D4NR01034E
crossref_primary_10_1016_j_jcp_2022_111375
crossref_primary_10_1063_5_0011005
crossref_primary_10_1088_1367_2630_ad56c0
crossref_primary_10_1007_s00707_022_03205_7
crossref_primary_10_1007_s00707_024_04190_9
crossref_primary_10_1103_PhysRevLett_131_184002
crossref_primary_10_1063_5_0073397
crossref_primary_10_1007_s10118_021_2523_1
crossref_primary_10_1017_jfm_2022_282
crossref_primary_10_1007_s10974_019_09564_4
crossref_primary_10_1017_jfm_2020_1048
crossref_primary_10_1016_j_apsusc_2021_151238
crossref_primary_10_1016_j_sctalk_2022_100057
crossref_primary_10_1103_PhysRevFluids_4_034202
crossref_primary_10_1103_PhysRevE_101_023104
crossref_primary_10_1063_5_0230485
crossref_primary_10_1137_19M1280879
crossref_primary_10_1039_D3SM00572K
crossref_primary_10_1177_10812865221083323
crossref_primary_10_1016_j_jnnfm_2019_06_007
crossref_primary_10_1016_j_jfluidstructs_2024_104261
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125649
crossref_primary_10_1103_PhysRevE_110_025104
crossref_primary_10_1103_PhysRevLett_129_074504
crossref_primary_10_1126_sciadv_abb2012
crossref_primary_10_1039_D3SM01499A
crossref_primary_10_1103_PhysRevE_100_063107
crossref_primary_10_1103_PhysRevFluids_5_123103
crossref_primary_10_1039_D3SM00066D
crossref_primary_10_1017_jfm_2019_723
crossref_primary_10_1016_j_jcp_2020_109324
crossref_primary_10_1016_j_jcp_2020_109643
crossref_primary_10_1021_acsomega_0c00164
crossref_primary_10_1039_D1SM01256H
crossref_primary_10_1007_s41745_024_00423_x
crossref_primary_10_1088_1367_2630_ac43eb
crossref_primary_10_1039_C8SM02397B
crossref_primary_10_1103_PhysRevFluids_9_014101
crossref_primary_10_1103_PhysRevLett_121_254502
Cites_doi 10.1083/jcb.120.4.923
10.1122/1.5013246
10.1017/S0022112082002651
10.1063/1.1681018
10.1103/PhysRevLett.110.108302
10.1063/1.4812794
10.1017/jfm.2015.115
10.1038/ncomms6060
10.1103/PhysRevE.89.022606
10.1103/PhysRevE.69.061914
10.1126/science.1086070
10.1021/ma049461l
10.1122/1.551115
10.1021/mz400607x
10.1103/PhysRevE.76.061914
10.1103/PhysRevLett.108.038103
10.1103/PhysRevLett.96.038304
10.1073/pnas.1203575109
10.1122/1.2000971
10.1103/PhysRevE.92.041002
10.1016/0095-8522(59)90013-3
10.1016/j.physrep.2007.03.004
10.1209/0295-5075/91/14001
10.1073/pnas.1616001114
10.1016/j.jcp.2003.10.017
10.1371/journal.pone.0187815
10.1146/annurev.fl.28.010196.001021
10.1103/PhysRevLett.99.058303
10.1063/1.4771606
10.1103/PhysRevE.74.041911
10.1126/science.276.5321.2016
10.1103/PhysRevLett.87.198301
10.1098/rsif.2014.0314
10.1016/j.jcp.2015.01.026
10.1146/annurev.fl.09.010177.002011
10.1103/PhysRevLett.95.018301
10.1016/S0021-9258(18)62016-2
10.1098/rspa.1922.0078
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 18, 2018
Distributed under a Creative Commons Attribution 4.0 International License
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 18, 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.1805399115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1091-6490
EndPage 9443
ExternalDocumentID PMC6156685
oai_HAL_hal_02167915v1
30181295
10_1073_pnas_1805399115
26531132
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 682367
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 682367
– fundername: China Scholarship Council (CSC)
  grantid: ...
– fundername: National Science Foundation (NSF)
  grantid: CBET-1532652
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
.GJ
1XC
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADXHL
AFHIN
AFQQW
AS~
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
VOOES
WHG
ZCG
5PM
ID FETCH-LOGICAL-c543t-7af222976b81ef47c6793ef90293ffdf8aea206e6aecbdc7be10c35f12caf5f33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:33:23 EDT 2025
Wed Aug 13 07:42:07 EDT 2025
Fri Jul 11 16:50:35 EDT 2025
Mon Jun 30 08:16:45 EDT 2025
Sat May 31 02:06:50 EDT 2025
Tue Jul 01 03:19:54 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri May 30 11:17:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords buckling instabilities
actin filaments
flexible fibers
fluid structure interactions
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c543t-7af222976b81ef47c6793ef90293ffdf8aea206e6aecbdc7be10c35f12caf5f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1Y.L. and B.C. contributed equally to this work.
Author contributions: Y.L., B.C., D.S., A.L., and O.d.R. designed research; Y.L., A.L., and O.d.R. performed experiments; B.C. and D.S. performed simulations; Y.L., B.C., D.S., A.L., and O.d.R. analyzed data and contributed to the theoretical model; and Y.L., B.C., D.S., A.L., and O.d.R. wrote the paper.
Edited by Howard A. Stone, Princeton University, Princeton, NJ, and approved August 3, 2018 (received for review March 31, 2018)
ORCID 0000-0002-5007-9568
0000-0001-6993-0589
0000-0002-6364-612X
0000-0002-7136-6777
0000-0001-9948-708X
OpenAccessLink https://hal.science/hal-02167915
PMID 30181295
PQID 2114205020
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6156685
hal_primary_oai_HAL_hal_02167915v1
proquest_miscellaneous_2099894596
proquest_journals_2114205020
pubmed_primary_30181295
crossref_primary_10_1073_pnas_1805399115
crossref_citationtrail_10_1073_pnas_1805399115
jstor_primary_26531132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-18
PublicationDateYYYYMMDD 2018-09-18
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Lindner A (e_1_3_3_1_2) 2016
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Blake JR (e_1_3_3_3_2) 2001
e_1_3_3_40_2
Bird RB (e_1_3_3_12_2) 1977
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
White FM (e_1_3_3_43_2) 2006
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_36_2
  doi: 10.1083/jcb.120.4.923
– ident: e_1_3_3_16_2
  doi: 10.1122/1.5013246
– ident: e_1_3_3_38_2
  doi: 10.1017/S0022112082002651
– ident: e_1_3_3_6_2
  doi: 10.1063/1.1681018
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevLett.110.108302
– ident: e_1_3_3_25_2
  doi: 10.1063/1.4812794
– ident: e_1_3_3_27_2
  doi: 10.1017/jfm.2015.115
– ident: e_1_3_3_40_2
  doi: 10.1038/ncomms6060
– ident: e_1_3_3_29_2
  doi: 10.1103/PhysRevE.89.022606
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevE.69.061914
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1086070
– ident: e_1_3_3_20_2
  doi: 10.1021/ma049461l
– ident: e_1_3_3_18_2
  doi: 10.1122/1.551115
– ident: e_1_3_3_41_2
  doi: 10.1021/mz400607x
– start-page: 1
  volume-title: Computational Modeling in Biological Fluid Dynamics
  year: 2001
  ident: e_1_3_3_3_2
– ident: e_1_3_3_37_2
  doi: 10.1103/PhysRevE.76.061914
– ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevLett.108.038103
– ident: e_1_3_3_19_2
  doi: 10.1103/PhysRevLett.96.038304
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1203575109
– ident: e_1_3_3_22_2
  doi: 10.1122/1.2000971
– ident: e_1_3_3_26_2
  doi: 10.1103/PhysRevE.92.041002
– ident: e_1_3_3_32_2
  doi: 10.1016/0095-8522(59)90013-3
– ident: e_1_3_3_15_2
  doi: 10.1016/j.physrep.2007.03.004
– ident: e_1_3_3_35_2
  doi: 10.1209/0295-5075/91/14001
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1616001114
– start-page: 168
  volume-title: Fluid-Structure Interactions in Low-Reynolds-Number Flows
  year: 2016
  ident: e_1_3_3_1_2
– ident: e_1_3_3_10_2
  doi: 10.1016/j.jcp.2003.10.017
– ident: e_1_3_3_33_2
  doi: 10.1371/journal.pone.0187815
– volume-title: Dynamics of Polymeric Liquids
  year: 1977
  ident: e_1_3_3_12_2
– ident: e_1_3_3_14_2
  doi: 10.1146/annurev.fl.28.010196.001021
– ident: e_1_3_3_8_2
  doi: 10.1103/PhysRevLett.99.058303
– ident: e_1_3_3_28_2
  doi: 10.1063/1.4771606
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevE.74.041911
– ident: e_1_3_3_17_2
  doi: 10.1126/science.276.5321.2016
– ident: e_1_3_3_13_2
  doi: 10.1103/PhysRevLett.87.198301
– ident: e_1_3_3_31_2
  doi: 10.1098/rsif.2014.0314
– ident: e_1_3_3_34_2
  doi: 10.1016/j.jcp.2015.01.026
– volume-title: Viscous Fluid Flow
  year: 2006
  ident: e_1_3_3_43_2
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.fl.09.010177.002011
– ident: e_1_3_3_21_2
  doi: 10.1103/PhysRevLett.95.018301
– ident: e_1_3_3_42_2
  doi: 10.1016/S0021-9258(18)62016-2
– ident: e_1_3_3_11_2
  doi: 10.1103/PhysRevLett.95.018301
– ident: e_1_3_3_24_2
  doi: 10.1098/rspa.1922.0078
SSID ssj0009580
Score 2.5591793
Snippet The morphological dynamics, instabilities, and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar...
Elastic filaments and semiflexible polymers occur ubiquitously in biophysical systems and are key components of many complex fluids, yet our understanding of...
The morphological dynamics, instabilities and transitions of elastic filaments in viscous flows underlie a wealth of biophysical processes from flagellar...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9438
SubjectTerms Actin
Actin Cytoskeleton - chemistry
Actin Cytoskeleton - metabolism
Algorithms
Beam theory (structures)
Behavior
Bends
Biophysical Phenomena
Computational fluid dynamics
Computer applications
Computer Simulation
Critical flow
Curvature
Deformation mechanisms
Dimensionless numbers
Drag
Elastic bending
Elasticity
Euler-Bernoulli beams
Filaments
Flagella
Flow stability
Fluctuations
Fluid Dynamics
Fluid flow
Fluorescence
Fluorescence microscopy
Hydrodynamics
Mechanics
Microfluidics
Microscopy
Microscopy, Fluorescence
Models, Theoretical
Molecular Conformation
Morphology
Motion stability
Physical Sciences
Physics
Rheological properties
Rheology
Shear flow
Solid mechanics
Streaming
Studies
Thermodynamics
Transitions
Tumbling
Viscosity
Viscous drag
Title Morphological transitions of elastic filaments in shear flow
URI https://www.jstor.org/stable/26531132
https://www.ncbi.nlm.nih.gov/pubmed/30181295
https://www.proquest.com/docview/2114205020
https://www.proquest.com/docview/2099894596
https://hal.science/hal-02167915
https://pubmed.ncbi.nlm.nih.gov/PMC6156685
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6y4ULYoGFwIIC4rCoSkkc5yVxKWhXFSplD63UW-QktjZi5SKagsSRX874EScpBQGXqHVcy_VMZsbON98g9JIUWVRkaQBPGk08ktDUS2NGvbDk8iUTePRKoS0W8WxF3q-j9Wj0o4da2jXFpPx-MK_kf6QKbSBXmSX7D5K1g0IDfAb5whUkDNe_kvGHDayStV6NdDu1RbYxiIslGyuvQegqj60W460sYD3mN5tv_aj0ynqxbYsZWLSHhNMu5cTYge3YG18tugLG83qnDDkVnabtoQXeypf59jCH1qKRxY7EHqheDiUqk4EzFZ9Y_0giUPgJY0V7jN4HZ9i3xRj8I9EZ1BOmzS9EL15MdAFRa591vqdRRM0FY8xtRvTXX_wAGC5ZvFjQ7SRIfcm-244yYNxefMwvV_N5vrxYL4_QLQxbDQUOnfWJm1OdxmRm29JDJeHrveEHkc3RtcTVaojroc3LPga3F9Qs76I7ZjfiTrVqnaARE_fQSbuK7rkhJX91H70Z6Jrb0zV3w12ja67VNbcWrtI1V-raA7S6vFi-m3mm8oZXRiRsvIRyWec9iYs0YJwkZQxmnPHMh-CQ84qnlFHsxyymrCyqMilY4JdhxANcUh7xMDxFx2Ij2CPkUnAYFLb1PuaYFJxlOKASBMwYiXBFmYMm7arlpaGll9VRbnIFj0jCXC5z3i2zg87tDz5rRpbfd30BYrC9JJP6bDrPZRuEtvCfguhr4KBTJSXbDcfgl4IQO-isFVtuHvptjmXuuR_BJstBz-1tMMnyPRsVbLODPrDrSjMSZbGDHmop28FDRZCXwdSSgfwHkxzeEfW1on2P5VFLGj3-87SeoNvdI3mGjpsvO_YU4uameKYU-ycmMcRQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+transitions+of+elastic+filaments+in+shear+flow&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Yanan&rft.au=Chakrabarti%2C+Brato&rft.au=Saintillan%2C+David&rft.au=Lindner%2C+Anke&rft.date=2018-09-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=38&rft.spage=9438&rft_id=info:doi/10.1073%2Fpnas.1805399115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon