Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016

The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bis...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 13; no. 9; pp. 2511 - 2535
Main Authors Abdel Jaber, Wael, Rott, Helmut, Floricioiu, Dana, Wuite, Jan, Miranda, Nuno
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 27.09.2019
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1994-0424
1994-0416
1994-0424
1994-0416
DOI10.5194/tc-13-2511-2019

Cover

Loading…
Abstract The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.
AbstractList The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are - 4.26 ± 0.20 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b89828f9a77603a2d41ef60c7baad2d2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00001.svg" width="64pt" height="10pt" src="tc-13-2511-2019-ie00001.png"/></svg:svg>  km 3  a −1 for epoch 1 and - 5.60 ± 0.74 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6107849c234e9d59f9331ac093ed7038"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00002.svg" width="64pt" height="10pt" src="tc-13-2511-2019-ie00002.png"/></svg:svg>  km 3  a −1 for epoch 2, while for SPI these are - 14.87 ± 0.52 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c40fe4cc7ac52c795dc00b6c7053c0cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00003.svg" width="70pt" height="10pt" src="tc-13-2511-2019-ie00003.png"/></svg:svg>  km 3  a −1 for epoch 1 and - 11.86 ± 1.99 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ba6365d233129f58fab56edcfdb48f7e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00004.svg" width="70pt" height="10pt" src="tc-13-2511-2019-ie00004.png"/></svg:svg>  km 3  a −1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002  mm a −1 for epoch 1 and 0.043±0.005  mm a −1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.
The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.
The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000-2012 and 2012-2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km.sup.3  a.sup.-1 for epoch 1 and -5.60±0.74 km.sup.3  a.sup.-1 for epoch 2, while for SPI these are -14.87±0.52 km.sup.3  a.sup.-1 for epoch 1 and -11.86±1.99 km.sup.3  a.sup.-1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a.sup.-1 for epoch 1 and 0.043±0.005 mm a.sup.-1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.
The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a-1 for epoch 1 and -5.60±0.74 km3 a-1 for epoch 2, while for SPI these are -14.87±0.52 km3 a-1 for epoch 1 and -11.86±1.99 km3 a-1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a-1 for epoch 1 and 0.043±0.005 mm a-1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier.
Audience Academic
Author Wuite, Jan
Rott, Helmut
Floricioiu, Dana
Miranda, Nuno
Abdel Jaber, Wael
Author_xml – sequence: 1
  givenname: Wael
  orcidid: 0000-0003-4678-6806
  surname: Abdel Jaber
  fullname: Abdel Jaber, Wael
– sequence: 2
  givenname: Helmut
  orcidid: 0000-0003-4719-7376
  surname: Rott
  fullname: Rott, Helmut
– sequence: 3
  givenname: Dana
  orcidid: 0000-0002-1647-7191
  surname: Floricioiu
  fullname: Floricioiu, Dana
– sequence: 4
  givenname: Jan
  orcidid: 0000-0001-9333-1586
  surname: Wuite
  fullname: Wuite, Jan
– sequence: 5
  givenname: Nuno
  surname: Miranda
  fullname: Miranda, Nuno
BookMark eNp1kl9vFCEUxSemJrbVZ19JfPJhWmBmmOGxadRu0qTGP8_kLlymbGZgBcbqV_BTl93V6BoND8DJ7xwucM-qEx88VtVLRi86JtvLrGvW1LxjrOaUySfVKZOyrWnL25M_1s-qs5Q2lAouaXta_bjBjDGM6DEsiaQtZAcTAW9IxnkbYtkUrTCeBEvSEi1oJDjh10IGT_Q9-BH3hhlSImuYwBeiwPkeyXvIMAbvwBNXVOtwMgXC_IDoCaeU7q2lYvG8emphSvji53xefX775tP1TX179251fXVb665tci0sSgODFLRjxkBvtWzXltqhk2h5D9xoFE3HsOc9IgNcMzEw0TMDlosWmvNqdcg1ATZqG90M8bsK4NReCHFUELPTEypGYaDQGwlA2zWyQVpLUTNLgTLK-pL16pC1jeHLgimrTViiL-UrzuUgRCNF85saoYQ6b0OOoGeXtLoSlMpBSiELdfEPqgyDs9Pls60r-pHh9ZGhMBm_5RGWlNTq44djtjuwOoaUIlqlXd7_YDnETeWmatdFKmvFGrXrIrXrouK7_Mv368H-53gEgazJ8Q
CitedBy_id crossref_primary_10_1002_esp_5775
crossref_primary_10_1016_j_rse_2021_112854
crossref_primary_10_1002_esp_5854
crossref_primary_10_1017_jog_2021_92
crossref_primary_10_1038_s41586_024_08545_z
crossref_primary_10_3389_feart_2021_713011
crossref_primary_10_5331_bgr_19R03
crossref_primary_10_1016_j_tecto_2024_230320
crossref_primary_10_1109_JSTARS_2021_3062286
crossref_primary_10_5194_essd_13_4653_2021
crossref_primary_10_1016_j_accre_2023_04_007
crossref_primary_10_1016_j_coldregions_2024_104158
crossref_primary_10_1038_s43247_022_00531_5
crossref_primary_10_1016_j_geomorph_2021_108080
crossref_primary_10_5194_tc_18_3195_2024
crossref_primary_10_1017_jog_2023_9
crossref_primary_10_1117_1_JRS_16_024517
crossref_primary_10_1007_s12517_022_10885_x
crossref_primary_10_3390_rs15030584
crossref_primary_10_5194_tc_15_4421_2021
crossref_primary_10_1002_esp_6012
crossref_primary_10_1016_j_epsl_2021_116811
crossref_primary_10_3389_feart_2020_00099
crossref_primary_10_1029_2022JF006598
crossref_primary_10_5194_tc_17_5435_2023
crossref_primary_10_1017_jog_2023_42
crossref_primary_10_3389_feart_2020_576044
crossref_primary_10_1017_jog_2022_78
crossref_primary_10_1088_1748_9326_ab6b32
crossref_primary_10_1038_s41598_021_95725_w
crossref_primary_10_3390_w17030385
crossref_primary_10_1016_j_jsames_2020_102904
crossref_primary_10_3390_rs14040820
crossref_primary_10_1016_j_quascirev_2023_108009
crossref_primary_10_1038_s41598_024_77486_4
crossref_primary_10_1109_JSTARS_2020_2992530
crossref_primary_10_3390_rs14246281
crossref_primary_10_1017_aog_2024_7
crossref_primary_10_5194_tc_17_4629_2023
crossref_primary_10_1016_j_quascirev_2022_107934
crossref_primary_10_5194_essd_15_2841_2023
crossref_primary_10_1088_1361_6633_acaf8e
crossref_primary_10_3390_rs12060996
crossref_primary_10_1017_qua_2024_39
crossref_primary_10_3389_feart_2022_813574
Cites_doi 10.3390/rs10020188
10.5194/cp-8-403-2012
10.1016/j.quascirev.2012.12.003
10.1109/IGARSS.2011.6049700
10.1007/s10712-016-9394-y
10.1080/02757258709532086
10.3189/172756507781833848
10.14358/PERS.72.3.287
10.1109/TGRS.2005.851789
10.1002/2014GL062661
10.3998/0472119356
10.1038/ngeo1122
10.3189/002214309789470950
10.1016/j.epsl.2009.10.021
10.1109/36.842004
10.1016/j.rse.2018.03.041
10.5194/tc-5-271-2011
10.1016/j.gloplacha.2006.11.037
10.3389/feart.2018.00219
10.1029/2012GL053136
10.1016/j.gloplacha.2006.11.025
10.1002/qj.828
10.1109/IGARSS.2011.6049701
10.3189/172756409787769744
10.3189/2012JoG12J026
10.3189/2013AoG63A296
10.1109/JOE.1984.1145645
10.1016/S0921-8181(99)00026-0
10.5194/essd-10-1551-2018
10.1016/j.isprsjprs.2012.05.014
10.5194/tc-12-1273-2018
10.1016/j.rse.2011.09.017
10.1109/TGRS.2007.900693
10.1016/j.earscirev.2007.02.002
10.1109/TGRS.2009.2034980
10.3389/feart.2018.00081
10.1002/jgrf.20038
10.1109/TGRS.2007.896613
10.1126/science.1087393
10.3389/feart.2018.00008
10.1109/36.974998
10.1109/LGRS.2016.2538822
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1029/2018JD028857
10.1038/s41558-018-0375-7
10.1002/2015MS000482
10.5194/tc-9-957-2015
10.1109/IGARSS.2016.7729834
10.1016/j.isprsjprs.2017.08.008
10.1016/j.gloplacha.2009.12.009
10.5194/isprsarchives-XLI-B4-125-2016
10.1029/2005RG000183
10.1029/2010JB007607
10.3189/2014JoG13J176
10.1029/2007GL031871
10.1109/IGARSS.2012.6350737
10.1109/36.312890
10.1038/ngeo2290
10.1175/JCLI-D-12-00001.1
10.1016/j.isprsjprs.2018.02.017
10.1109/IGARSS.2014.6947367
10.1038/nature10847
10.1080/01431168708954805
10.1016/S0924-2716(02)00124-7
10.1017/aog.2016.32
10.3389/feart.2017.00001
ContentType Journal Article
Copyright COPYRIGHT 2019 Copernicus GmbH
2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 Copernicus GmbH
– notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/tc-13-2511-2019
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
EISSN 1994-0424
1994-0416
EndPage 2535
ExternalDocumentID oai_doaj_org_article_10a80a7d9aa04be189ff0ec1f0a01017
A600989969
10_5194_tc_13_2511_2019
GeographicLocations Chile
Southern Hemisphere
GeographicLocations_xml – name: Chile
– name: Southern Hemisphere
GroupedDBID 29F
2WC
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
TUS
ZBA
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c543t-6fe9da896051dda7fc94bf0f859ef27a2dce6351e727ee1aeb1681671daf264a3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Wed Aug 27 01:20:19 EDT 2025
Mon Jun 30 12:41:07 EDT 2025
Tue Jun 17 21:26:44 EDT 2025
Tue Jun 10 20:14:44 EDT 2025
Fri Jun 27 03:47:25 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 04:25:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-6fe9da896051dda7fc94bf0f859ef27a2dce6351e727ee1aeb1681671daf264a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4678-6806
0000-0003-4719-7376
0000-0002-1647-7191
0000-0001-9333-1586
OpenAccessLink https://doaj.org/article/10a80a7d9aa04be189ff0ec1f0a01017
PQID 2298663963
PQPubID 105732
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_10a80a7d9aa04be189ff0ec1f0a01017
proquest_journals_2298663963
gale_infotracmisc_A600989969
gale_infotracacademiconefile_A600989969
gale_incontextgauss_ISR_A600989969
crossref_citationtrail_10_5194_tc_13_2511_2019
crossref_primary_10_5194_tc_13_2511_2019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-27
PublicationDateYYYYMMDD 2019-09-27
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-27
  day: 27
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2019
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
cr-split#-ref9.2
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref81
ref40
cr-split#-ref9.1
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
cr-split#-ref65.2
ref2
ref1
ref39
ref38
cr-split#-ref65.1
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref42
  doi: 10.3390/rs10020188
– ident: ref61
  doi: 10.5194/cp-8-403-2012
– ident: ref1
– ident: ref22
  doi: 10.1016/j.quascirev.2012.12.003
– ident: #cr-split#-ref9.1
  doi: 10.1109/IGARSS.2011.6049700
– ident: ref43
  doi: 10.1007/s10712-016-9394-y
– ident: ref20
– ident: ref44
  doi: 10.1080/02757258709532086
– ident: ref70
  doi: 10.3189/172756507781833848
– ident: ref11
  doi: 10.14358/PERS.72.3.287
– ident: ref10
  doi: 10.1109/TGRS.2005.851789
– ident: ref46
  doi: 10.1002/2014GL062661
– ident: ref72
  doi: 10.3998/0472119356
– ident: ref30
  doi: 10.1038/ngeo1122
– ident: ref64
  doi: 10.3189/002214309789470950
– ident: ref18
  doi: 10.1016/j.epsl.2009.10.021
– ident: ref47
  doi: 10.1109/36.842004
– ident: ref69
– ident: ref27
  doi: 10.1016/j.rse.2018.03.041
– ident: ref51
  doi: 10.5194/tc-5-271-2011
– ident: ref57
– ident: ref60
  doi: 10.1016/j.gloplacha.2006.11.037
– ident: ref39
  doi: 10.3389/feart.2018.00219
– ident: ref79
  doi: 10.1029/2012GL053136
– ident: ref55
  doi: 10.1016/j.gloplacha.2006.11.025
– ident: ref17
  doi: 10.1002/qj.828
– ident: ref36
– ident: ref28
  doi: 10.1109/IGARSS.2011.6049701
– ident: ref6
– ident: ref13
  doi: 10.3189/172756409787769744
– ident: ref16
  doi: 10.3189/2012JoG12J026
– ident: ref52
  doi: 10.3189/2013AoG63A296
– ident: ref71
  doi: 10.1109/JOE.1984.1145645
– ident: ref73
  doi: 10.1016/S0921-8181(99)00026-0
– ident: ref74
  doi: 10.5194/essd-10-1551-2018
– ident: ref50
– ident: ref66
  doi: 10.1016/j.isprsjprs.2012.05.014
– ident: #cr-split#-ref65.2
– ident: ref67
  doi: 10.5194/tc-12-1273-2018
– ident: ref78
  doi: 10.1016/j.rse.2011.09.017
– ident: ref35
  doi: 10.1109/TGRS.2007.900693
– ident: ref5
  doi: 10.1016/j.earscirev.2007.02.002
– ident: ref31
  doi: 10.1109/TGRS.2009.2034980
– ident: ref75
  doi: 10.3389/feart.2018.00081
– ident: ref68
  doi: 10.1002/jgrf.20038
– ident: ref15
  doi: 10.1109/TGRS.2007.896613
– ident: ref58
  doi: 10.1126/science.1087393
– ident: #cr-split#-ref9.2
– ident: ref23
  doi: 10.3389/feart.2018.00008
– ident: ref26
  doi: 10.1109/36.974998
– ident: ref76
  doi: 10.1109/LGRS.2016.2538822
– ident: ref34
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: ref8
  doi: 10.1029/2018JD028857
– ident: ref7
  doi: 10.1038/s41558-018-0375-7
– ident: ref25
  doi: 10.1002/2015MS000482
– ident: #cr-split#-ref65.1
– ident: ref48
– ident: ref81
  doi: 10.5194/tc-9-957-2015
– ident: ref37
  doi: 10.1109/IGARSS.2016.7729834
– ident: ref62
  doi: 10.1016/j.isprsjprs.2017.08.008
– ident: ref19
– ident: ref41
  doi: 10.1016/j.gloplacha.2009.12.009
– ident: ref14
  doi: 10.5194/isprsarchives-XLI-B4-125-2016
– ident: ref24
  doi: 10.1029/2005RG000183
– ident: ref32
  doi: 10.1029/2010JB007607
– ident: ref53
  doi: 10.3189/2014JoG13J176
– ident: ref12
  doi: 10.1029/2007GL031871
– ident: ref38
– ident: ref63
– ident: ref2
  doi: 10.1109/IGARSS.2012.6350737
– ident: ref59
– ident: ref40
  doi: 10.1109/36.312890
– ident: ref4
  doi: 10.1038/ngeo2290
– ident: ref29
  doi: 10.1175/JCLI-D-12-00001.1
– ident: ref77
  doi: 10.1016/j.isprsjprs.2018.02.017
– ident: ref3
  doi: 10.1109/IGARSS.2014.6947367
– ident: ref21
– ident: ref49
– ident: ref33
  doi: 10.1038/nature10847
– ident: ref56
  doi: 10.1080/01431168708954805
– ident: ref54
  doi: 10.1016/S0924-2716(02)00124-7
– ident: ref80
  doi: 10.1017/aog.2016.32
– ident: ref45
  doi: 10.3389/feart.2017.00001
SSID ssj0062904
Score 2.416829
Snippet The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability...
The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2511
SubjectTerms Acceleration
Backscatter
Backscattering
Digital Elevation Models
Elevation
Eustatic changes
Flow (Dynamics)
Flow velocity
Geophysical research
Glacier flow
Glaciers
Ice
Ice calving
Ice fields
Ice volume
Interferometry
Mass
Mass balance
Radar
Radar data
Remote sensing
SAR (radar)
Satellite remote sensing
Sea level
Sea level rise
Seasonal variations
Seasonality
Surface-ice melting
Synthetic aperture radar
Temporal variations
Topography (geology)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcClggJioSALIeASGnsTJz6htmq1ILWqCpV6syb-KEhLst1kD_wFfjUzjrewh3LcZJx1MuPxG3v8hrG3OjgZlCoyJxsi1YYmq3FgZbIMLncAjY_JmKdnanZZfLkqr9KCW5_SKtc-MTpq11laI9-XUtc4O6K9fFrcZFQ1inZXUwmN-2wbXXCNwdf24fHZ-cXaFyup83FfmQhwC1mM5D6IWor9wWaC-iQEWgoR7fwzL0X6_rucdJx5Th6xnQQZ-cGo48fsnm932YNUvfz7r102OUXk2y3jAjl_x4_mPxCGxl9P2O8Z5bt0aCYeY3zeUwI1PgxaxxMr1ZwvIsdmy7vA-9UygPWcTp1HnfHxZHBs8BOBNm8oFxIlUBixIz8H2tZq0cg4uhweE-JQaMz-4nRCJzbFd1dP2eXJ8bejWZbqL2S2LKZDpoLXDmqMcUrhHFTB6qIJeahL7YOsQDrrEa8IjxjIewHo9lUtVCUcBMRZMH3Gttqu9c8Zpw0_jWhNNqUsXO0a9DRBY6ySg_J4ecI-rr--sYmcnGpkzA0GKaQuM1gjpobUZUhdE_bhtsFi5OW4W_SQ1HkrRoTa8UK3vDZpfGJbwL5UTgPkReNFrUPIvRUhB2LhqybsDRmDIcqMlnJyrmHV9-bz1wtzoIiUFeNG_Kf3SSh02HsL6YgDfgNi2dqQ3NuQxDFtN2-vbc4kn9KbvyPgxf9vv2QP6b0pq0VWe2xrWK78K4ROQ_M6jY8_3oYWFQ
  priority: 102
  providerName: ProQuest
Title Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016
URI https://www.proquest.com/docview/2298663963
https://doaj.org/article/10a80a7d9aa04be189ff0ec1f0a01017
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAFQQGxUCoLIeASiL2JEx_bqmVBalUVKu3NcvxRkJak2s0e-Av8at442ap7qLhwibTZcdbxjMdv1jPPjL3V0cuoVJF52RCptm2yGhMrk2X0ube2CSkZ8_RMzS6Lr_NyfuuoL8oJG-iBh4HDrLZ1biuvrc2LJohax5gHJ2JuiR4t1ZFjzdsEU4MPVlLnw34yEd8CcwykPkArxafeZYL6IgQshAh2bq1Hibb_LuecVpyTx-zRCBX5wdDFJ-xeaHfZg_HU8h-_d9nkFIi3W6Y_xvk7frT4CfiZPj1lf2aU59LBPAJie76ixGk8zLaej2xUC36duDVb3kW-Wi-jdYFTtXnSFR8qglODXwDYvKEcSEhAGJiRn1vazmphXByuhqdEOAgNWV-cKnNSU7y7esYuT46_H82y8dyFzJXFtM9UDNrbGrFNKby3VXS6aGIe61KHKCsrvQvAKSIA-4QgLNy9qoWqhLcR-MpOn7OdtmvDC8Zpo08DpcmmlIWvfQMPEzVilNyqgNsT9nEz-saNpOR0NsbCIDghdZneGTE1pC5D6pqwDzcNrgc-jrtFD0mdN2JEpJ1uwLzMaF7mX-Y1YW_IGAxRZbSUi3Nl16uV-fLtwhwoImNFvIhfej8KxQ69d3YsbcAYELvWluTeliTmstv-emNzZvQlKyOlroEL4Slf_o83esUe0uhQzous9thOv1yH1wBWfbPP7h8en51f7Ke5hOvnufgLCMwf3g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuCAqIhQIW4nUJjb2JkxwQakurXdpdVaWVejOOHwVpSZbNrlD_Aj-G38iM4xT2UG49Jhnn4RnPI575hpCXhTPcCZFEhpcIqq3KKIeFFfHUmdgoVVqfjDmeiOFZ8uk8PV8jv7taGEyr7HSiV9Sm1viPfJvzIgfrCPLyYfYjwq5RuLvatdBoxeLQXv6EkK15P_oI_H3F-cH-6d4wCl0FIp0mg0UknC2MysFzT5kxKnO6SEoXuzwtrOOZ4kZbsMLMgmW3lilQZiJnImNGOfAe1ADue4usJwMIZXpkfXd_cnzS6X7Bi7jdx0bA3YQnLZgQeEnJ9kJHDOeAMZBMBPb5xw76dgHXGQVv6Q7ukjvBRaU7rUzdI2u22iQboVv618tN0h-Dp13P_Q95-pruTb-B2-uP7pNfQ8yvqUEsbb1saIMJ23AzVRkaULCmdOYxPStaO9os505pS7HK3csIbSuR_YDv4NjTEnMvgQKIwVelxwq30SoQagoqjvoEPCBqs80oVgT5ofDt4gE5uxHOPCS9qq7sI0Jxg7EA75CXKU9MbkrQbK6A2ChWwsLpPnnXzb7UAQwde3JMJQRFyC650JINJLJLIrv65O3VgFmLA3I96S6y84oMAbz9iXp-IYM-gLEK3iUzhVJxUlqWF87FVjMXK0T9y_rkBQqDRIiOCnOALtSyaeTo84ncEQgCC3EqPOlNIHI1vL1WoaQC5gBRvVYot1YoQYfo1cudzMmgwxr5d8U9_v_l52RjeDo-kkejyeETchvnADNqeLZFeov50j4Ft21RPgtrhZIvN708_wCNd1Ra
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VVAJeOAqIQIEV4npxYm98PiDUgyihpCpHRd-W9R5tRbBD7AiVn8BP4q_wZ5hZrwtBKm994NH2rG2N5_TOfEPIo8woZuI49BTLEVRb5F4KiuWxyChfCZFrW4w52Y1H--Grg-hghfxoe2GwrLK1idZQq1LiP_I-Y1kK3hHkpW9cWcTe9vDF7IuHE6Rwp7Udp9GIyI4--QrpW_V8vA3f-jFjw5fvt0aemzDgySgc1F5sdKZEClF8FCglEiOzMDe-SaNMG5YIpqQGjxxo8PJaBwIMW5wGcRIoYSCSEAO47wWymsZpxDpkdXM4efOh9QMxy_xmTxvBd0MWNsBCEDGF_Vp6AfIjCEBKEeTnD59oRwec5SCs1xteJT9bfjXFLp96izrvyW9_QUn-nwy9Rq64YJxuNNpznazoYo1ccnPhj07WSHcCOUU5t1sP9Andmh5DgG-PbpDvI6wkKkEBdbmoaIWl6XAzUSjq8L6mdGbRSwtaGlot5kZITbGf32oDbXqu7YLPkMLQHKtMgQKIISqnewI3DAtQXwrGnNpSQyBq6uoo9j7ZpfBl45tk_1zYdIt0irLQtwnFrdQM4mCWRyxUqcrBhpsMskBfxBpOd0mvlS0uHew7Th-Zckj_UBh5LXkw4CiMHIWxS56dLpg1iCdnk26isJ6SIVS5PVHOD7mzfLBWwLskKhPCD3MdpJkxvpaB8QXiGyZd8hBFnSMYSYFSeCgWVcXH797yjRjhbiEjhyc9dUSmhLeXwjWPAA8Qv2yJcn2JEqylXL7cagN31rriv1Xhzr8vPyAXQUf46_Huzl1yGVmApUMsWSeder7Q9yA-rfP7zhBQ8vG8VeUXlayg5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+spatial+and+temporal+pattern+of+surface+elevation+change+and+mass+balance+of+the+Patagonian+ice+fields+between+2000+and+2016&rft.jtitle=The+cryosphere&rft.au=Abdel+Jaber%2C+Wael&rft.au=Rott%2C+Helmut&rft.au=Floricioiu%2C+Dana&rft.au=Wuite%2C+Jan&rft.date=2019-09-27&rft.pub=Copernicus+GmbH&rft.issn=1994-0416&rft.volume=13&rft.issue=9&rft.spage=2511&rft_id=info:doi/10.5194%2Ftc-13-2511-2019&rft.externalDocID=A600989969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon