Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016
The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bis...
Saved in:
Published in | The cryosphere Vol. 13; no. 9; pp. 2511 - 2535 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
27.09.2019
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1994-0424 1994-0416 1994-0424 1994-0416 |
DOI | 10.5194/tc-13-2511-2019 |
Cover
Loading…
Abstract | The northern and southern Patagonian ice fields (NPI and SPI) have
been subject to accelerated retreat during the last decades, with considerable
variability in magnitude and timing among individual glaciers. We
derive spatially detailed maps of surface elevation change (SEC) of
NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X)
for two epochs, 2000–2012 and 2012–2016, and
provide data on changes in surface elevation and ice volume for the
individual glaciers and the ice fields at large. We apply advanced
TanDEM-X processing techniques allowing us to cover 90 % and 95 % of
the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively.
Particular attention is paid to precisely co-registering the digital elevation models (DEMs),
accounting for possible effects of radar signal penetration through
backscatter analysis and correcting for seasonality biases in case
of deviations in repeat DEM coverage from full annual time spans.
The results show a different temporal trend between the two ice fields
and reveal a heterogeneous spatial pattern of SEC and mass balance
caused by different sensitivities with respect to direct climatic forcing
and ice flow dynamics of individual glaciers. The estimated volume
change rates for NPI are -4.26±0.20 km3 a−1
for epoch 1 and -5.60±0.74 km3 a−1
for epoch 2, while for SPI these are -14.87±0.52 km3 a−1
for epoch 1 and -11.86±1.99 km3 a−1
for epoch 2. This corresponds for both ice fields to an eustatic sea
level rise of 0.048±0.002 mm a−1 for
epoch 1 and 0.043±0.005 mm a−1 for epoch
2. On SPI the spatial pattern of surface elevation change is more
complex than on NPI and the temporal trend is less uniform. On terminus
sections of the main calving glaciers of SPI, temporal variations in
flow velocities are a main factor for differences in SEC between the
two epochs. Striking differences are observed even on adjoining glaciers,
such as Upsala Glacier, with decreasing mass losses associated with
slowdown of flow velocity, contrasting with acceleration and increase
in mass losses on Viedma Glacier. |
---|---|
AbstractList | The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are - 4.26 ± 0.20 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b89828f9a77603a2d41ef60c7baad2d2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00001.svg" width="64pt" height="10pt" src="tc-13-2511-2019-ie00001.png"/></svg:svg> km 3 a −1 for epoch 1 and - 5.60 ± 0.74 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6107849c234e9d59f9331ac093ed7038"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00002.svg" width="64pt" height="10pt" src="tc-13-2511-2019-ie00002.png"/></svg:svg> km 3 a −1 for epoch 2, while for SPI these are - 14.87 ± 0.52 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c40fe4cc7ac52c795dc00b6c7053c0cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00003.svg" width="70pt" height="10pt" src="tc-13-2511-2019-ie00003.png"/></svg:svg> km 3 a −1 for epoch 1 and - 11.86 ± 1.99 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ba6365d233129f58fab56edcfdb48f7e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-13-2511-2019-ie00004.svg" width="70pt" height="10pt" src="tc-13-2511-2019-ie00004.png"/></svg:svg> km 3 a −1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a −1 for epoch 1 and 0.043±0.005 mm a −1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a−1 for epoch 1 and -5.60±0.74 km3 a−1 for epoch 2, while for SPI these are -14.87±0.52 km3 a−1 for epoch 1 and -11.86±1.99 km3 a−1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a−1 for epoch 1 and 0.043±0.005 mm a−1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000-2012 and 2012-2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km.sup.3 a.sup.-1 for epoch 1 and -5.60±0.74 km.sup.3 a.sup.-1 for epoch 2, while for SPI these are -14.87±0.52 km.sup.3 a.sup.-1 for epoch 1 and -11.86±1.99 km.sup.3 a.sup.-1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a.sup.-1 for epoch 1 and 0.043±0.005 mm a.sup.-1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier. The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability in magnitude and timing among individual glaciers. We derive spatially detailed maps of surface elevation change (SEC) of NPI and SPI from bistatic synthetic aperture radar (SAR) interferometry data of the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) for two epochs, 2000–2012 and 2012–2016, and provide data on changes in surface elevation and ice volume for the individual glaciers and the ice fields at large. We apply advanced TanDEM-X processing techniques allowing us to cover 90 % and 95 % of the area of NPI and 97 % and 98 % of SPI for the two epochs, respectively. Particular attention is paid to precisely co-registering the digital elevation models (DEMs), accounting for possible effects of radar signal penetration through backscatter analysis and correcting for seasonality biases in case of deviations in repeat DEM coverage from full annual time spans. The results show a different temporal trend between the two ice fields and reveal a heterogeneous spatial pattern of SEC and mass balance caused by different sensitivities with respect to direct climatic forcing and ice flow dynamics of individual glaciers. The estimated volume change rates for NPI are -4.26±0.20 km3 a-1 for epoch 1 and -5.60±0.74 km3 a-1 for epoch 2, while for SPI these are -14.87±0.52 km3 a-1 for epoch 1 and -11.86±1.99 km3 a-1 for epoch 2. This corresponds for both ice fields to an eustatic sea level rise of 0.048±0.002 mm a-1 for epoch 1 and 0.043±0.005 mm a-1 for epoch 2. On SPI the spatial pattern of surface elevation change is more complex than on NPI and the temporal trend is less uniform. On terminus sections of the main calving glaciers of SPI, temporal variations in flow velocities are a main factor for differences in SEC between the two epochs. Striking differences are observed even on adjoining glaciers, such as Upsala Glacier, with decreasing mass losses associated with slowdown of flow velocity, contrasting with acceleration and increase in mass losses on Viedma Glacier. |
Audience | Academic |
Author | Wuite, Jan Rott, Helmut Floricioiu, Dana Miranda, Nuno Abdel Jaber, Wael |
Author_xml | – sequence: 1 givenname: Wael orcidid: 0000-0003-4678-6806 surname: Abdel Jaber fullname: Abdel Jaber, Wael – sequence: 2 givenname: Helmut orcidid: 0000-0003-4719-7376 surname: Rott fullname: Rott, Helmut – sequence: 3 givenname: Dana orcidid: 0000-0002-1647-7191 surname: Floricioiu fullname: Floricioiu, Dana – sequence: 4 givenname: Jan orcidid: 0000-0001-9333-1586 surname: Wuite fullname: Wuite, Jan – sequence: 5 givenname: Nuno surname: Miranda fullname: Miranda, Nuno |
BookMark | eNp1kl9vFCEUxSemJrbVZ19JfPJhWmBmmOGxadRu0qTGP8_kLlymbGZgBcbqV_BTl93V6BoND8DJ7xwucM-qEx88VtVLRi86JtvLrGvW1LxjrOaUySfVKZOyrWnL25M_1s-qs5Q2lAouaXta_bjBjDGM6DEsiaQtZAcTAW9IxnkbYtkUrTCeBEvSEi1oJDjh10IGT_Q9-BH3hhlSImuYwBeiwPkeyXvIMAbvwBNXVOtwMgXC_IDoCaeU7q2lYvG8emphSvji53xefX775tP1TX179251fXVb665tci0sSgODFLRjxkBvtWzXltqhk2h5D9xoFE3HsOc9IgNcMzEw0TMDlosWmvNqdcg1ATZqG90M8bsK4NReCHFUELPTEypGYaDQGwlA2zWyQVpLUTNLgTLK-pL16pC1jeHLgimrTViiL-UrzuUgRCNF85saoYQ6b0OOoGeXtLoSlMpBSiELdfEPqgyDs9Pls60r-pHh9ZGhMBm_5RGWlNTq44djtjuwOoaUIlqlXd7_YDnETeWmatdFKmvFGrXrIrXrouK7_Mv368H-53gEgazJ8Q |
CitedBy_id | crossref_primary_10_1002_esp_5775 crossref_primary_10_1016_j_rse_2021_112854 crossref_primary_10_1002_esp_5854 crossref_primary_10_1017_jog_2021_92 crossref_primary_10_1038_s41586_024_08545_z crossref_primary_10_3389_feart_2021_713011 crossref_primary_10_5331_bgr_19R03 crossref_primary_10_1016_j_tecto_2024_230320 crossref_primary_10_1109_JSTARS_2021_3062286 crossref_primary_10_5194_essd_13_4653_2021 crossref_primary_10_1016_j_accre_2023_04_007 crossref_primary_10_1016_j_coldregions_2024_104158 crossref_primary_10_1038_s43247_022_00531_5 crossref_primary_10_1016_j_geomorph_2021_108080 crossref_primary_10_5194_tc_18_3195_2024 crossref_primary_10_1017_jog_2023_9 crossref_primary_10_1117_1_JRS_16_024517 crossref_primary_10_1007_s12517_022_10885_x crossref_primary_10_3390_rs15030584 crossref_primary_10_5194_tc_15_4421_2021 crossref_primary_10_1002_esp_6012 crossref_primary_10_1016_j_epsl_2021_116811 crossref_primary_10_3389_feart_2020_00099 crossref_primary_10_1029_2022JF006598 crossref_primary_10_5194_tc_17_5435_2023 crossref_primary_10_1017_jog_2023_42 crossref_primary_10_3389_feart_2020_576044 crossref_primary_10_1017_jog_2022_78 crossref_primary_10_1088_1748_9326_ab6b32 crossref_primary_10_1038_s41598_021_95725_w crossref_primary_10_3390_w17030385 crossref_primary_10_1016_j_jsames_2020_102904 crossref_primary_10_3390_rs14040820 crossref_primary_10_1016_j_quascirev_2023_108009 crossref_primary_10_1038_s41598_024_77486_4 crossref_primary_10_1109_JSTARS_2020_2992530 crossref_primary_10_3390_rs14246281 crossref_primary_10_1017_aog_2024_7 crossref_primary_10_5194_tc_17_4629_2023 crossref_primary_10_1016_j_quascirev_2022_107934 crossref_primary_10_5194_essd_15_2841_2023 crossref_primary_10_1088_1361_6633_acaf8e crossref_primary_10_3390_rs12060996 crossref_primary_10_1017_qua_2024_39 crossref_primary_10_3389_feart_2022_813574 |
Cites_doi | 10.3390/rs10020188 10.5194/cp-8-403-2012 10.1016/j.quascirev.2012.12.003 10.1109/IGARSS.2011.6049700 10.1007/s10712-016-9394-y 10.1080/02757258709532086 10.3189/172756507781833848 10.14358/PERS.72.3.287 10.1109/TGRS.2005.851789 10.1002/2014GL062661 10.3998/0472119356 10.1038/ngeo1122 10.3189/002214309789470950 10.1016/j.epsl.2009.10.021 10.1109/36.842004 10.1016/j.rse.2018.03.041 10.5194/tc-5-271-2011 10.1016/j.gloplacha.2006.11.037 10.3389/feart.2018.00219 10.1029/2012GL053136 10.1016/j.gloplacha.2006.11.025 10.1002/qj.828 10.1109/IGARSS.2011.6049701 10.3189/172756409787769744 10.3189/2012JoG12J026 10.3189/2013AoG63A296 10.1109/JOE.1984.1145645 10.1016/S0921-8181(99)00026-0 10.5194/essd-10-1551-2018 10.1016/j.isprsjprs.2012.05.014 10.5194/tc-12-1273-2018 10.1016/j.rse.2011.09.017 10.1109/TGRS.2007.900693 10.1016/j.earscirev.2007.02.002 10.1109/TGRS.2009.2034980 10.3389/feart.2018.00081 10.1002/jgrf.20038 10.1109/TGRS.2007.896613 10.1126/science.1087393 10.3389/feart.2018.00008 10.1109/36.974998 10.1109/LGRS.2016.2538822 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1029/2018JD028857 10.1038/s41558-018-0375-7 10.1002/2015MS000482 10.5194/tc-9-957-2015 10.1109/IGARSS.2016.7729834 10.1016/j.isprsjprs.2017.08.008 10.1016/j.gloplacha.2009.12.009 10.5194/isprsarchives-XLI-B4-125-2016 10.1029/2005RG000183 10.1029/2010JB007607 10.3189/2014JoG13J176 10.1029/2007GL031871 10.1109/IGARSS.2012.6350737 10.1109/36.312890 10.1038/ngeo2290 10.1175/JCLI-D-12-00001.1 10.1016/j.isprsjprs.2018.02.017 10.1109/IGARSS.2014.6947367 10.1038/nature10847 10.1080/01431168708954805 10.1016/S0924-2716(02)00124-7 10.1017/aog.2016.32 10.3389/feart.2017.00001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Copernicus GmbH 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2019 Copernicus GmbH – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H95 H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/tc-13-2511-2019 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Meteorology & Climatology |
EISSN | 1994-0424 1994-0416 |
EndPage | 2535 |
ExternalDocumentID | oai_doaj_org_article_10a80a7d9aa04be189ff0ec1f0a01017 A600989969 10_5194_tc_13_2511_2019 |
GeographicLocations | Chile Southern Hemisphere |
GeographicLocations_xml | – name: Chile – name: Southern Hemisphere |
GroupedDBID | 29F 2WC 5GY 5VS 7XC 8CJ 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z ESX GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 LK5 M7R MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 TUS ZBA ~02 BBORY PMFND 7QH 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H95 H96 KL. L.G PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c543t-6fe9da896051dda7fc94bf0f859ef27a2dce6351e727ee1aeb1681671daf264a3 |
IEDL.DBID | DOA |
ISSN | 1994-0424 1994-0416 |
IngestDate | Wed Aug 27 01:20:19 EDT 2025 Mon Jun 30 12:41:07 EDT 2025 Tue Jun 17 21:26:44 EDT 2025 Tue Jun 10 20:14:44 EDT 2025 Fri Jun 27 03:47:25 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 04:25:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-6fe9da896051dda7fc94bf0f859ef27a2dce6351e727ee1aeb1681671daf264a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4678-6806 0000-0003-4719-7376 0000-0002-1647-7191 0000-0001-9333-1586 |
OpenAccessLink | https://doaj.org/article/10a80a7d9aa04be189ff0ec1f0a01017 |
PQID | 2298663963 |
PQPubID | 105732 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_10a80a7d9aa04be189ff0ec1f0a01017 proquest_journals_2298663963 gale_infotracmisc_A600989969 gale_infotracacademiconefile_A600989969 gale_incontextgauss_ISR_A600989969 crossref_citationtrail_10_5194_tc_13_2511_2019 crossref_primary_10_5194_tc_13_2511_2019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-27 |
PublicationDateYYYYMMDD | 2019-09-27 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | The cryosphere |
PublicationYear | 2019 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 cr-split#-ref9.2 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref81 ref40 cr-split#-ref9.1 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 cr-split#-ref65.2 ref2 ref1 ref39 ref38 cr-split#-ref65.1 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref42 doi: 10.3390/rs10020188 – ident: ref61 doi: 10.5194/cp-8-403-2012 – ident: ref1 – ident: ref22 doi: 10.1016/j.quascirev.2012.12.003 – ident: #cr-split#-ref9.1 doi: 10.1109/IGARSS.2011.6049700 – ident: ref43 doi: 10.1007/s10712-016-9394-y – ident: ref20 – ident: ref44 doi: 10.1080/02757258709532086 – ident: ref70 doi: 10.3189/172756507781833848 – ident: ref11 doi: 10.14358/PERS.72.3.287 – ident: ref10 doi: 10.1109/TGRS.2005.851789 – ident: ref46 doi: 10.1002/2014GL062661 – ident: ref72 doi: 10.3998/0472119356 – ident: ref30 doi: 10.1038/ngeo1122 – ident: ref64 doi: 10.3189/002214309789470950 – ident: ref18 doi: 10.1016/j.epsl.2009.10.021 – ident: ref47 doi: 10.1109/36.842004 – ident: ref69 – ident: ref27 doi: 10.1016/j.rse.2018.03.041 – ident: ref51 doi: 10.5194/tc-5-271-2011 – ident: ref57 – ident: ref60 doi: 10.1016/j.gloplacha.2006.11.037 – ident: ref39 doi: 10.3389/feart.2018.00219 – ident: ref79 doi: 10.1029/2012GL053136 – ident: ref55 doi: 10.1016/j.gloplacha.2006.11.025 – ident: ref17 doi: 10.1002/qj.828 – ident: ref36 – ident: ref28 doi: 10.1109/IGARSS.2011.6049701 – ident: ref6 – ident: ref13 doi: 10.3189/172756409787769744 – ident: ref16 doi: 10.3189/2012JoG12J026 – ident: ref52 doi: 10.3189/2013AoG63A296 – ident: ref71 doi: 10.1109/JOE.1984.1145645 – ident: ref73 doi: 10.1016/S0921-8181(99)00026-0 – ident: ref74 doi: 10.5194/essd-10-1551-2018 – ident: ref50 – ident: ref66 doi: 10.1016/j.isprsjprs.2012.05.014 – ident: #cr-split#-ref65.2 – ident: ref67 doi: 10.5194/tc-12-1273-2018 – ident: ref78 doi: 10.1016/j.rse.2011.09.017 – ident: ref35 doi: 10.1109/TGRS.2007.900693 – ident: ref5 doi: 10.1016/j.earscirev.2007.02.002 – ident: ref31 doi: 10.1109/TGRS.2009.2034980 – ident: ref75 doi: 10.3389/feart.2018.00081 – ident: ref68 doi: 10.1002/jgrf.20038 – ident: ref15 doi: 10.1109/TGRS.2007.896613 – ident: ref58 doi: 10.1126/science.1087393 – ident: #cr-split#-ref9.2 – ident: ref23 doi: 10.3389/feart.2018.00008 – ident: ref26 doi: 10.1109/36.974998 – ident: ref76 doi: 10.1109/LGRS.2016.2538822 – ident: ref34 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref8 doi: 10.1029/2018JD028857 – ident: ref7 doi: 10.1038/s41558-018-0375-7 – ident: ref25 doi: 10.1002/2015MS000482 – ident: #cr-split#-ref65.1 – ident: ref48 – ident: ref81 doi: 10.5194/tc-9-957-2015 – ident: ref37 doi: 10.1109/IGARSS.2016.7729834 – ident: ref62 doi: 10.1016/j.isprsjprs.2017.08.008 – ident: ref19 – ident: ref41 doi: 10.1016/j.gloplacha.2009.12.009 – ident: ref14 doi: 10.5194/isprsarchives-XLI-B4-125-2016 – ident: ref24 doi: 10.1029/2005RG000183 – ident: ref32 doi: 10.1029/2010JB007607 – ident: ref53 doi: 10.3189/2014JoG13J176 – ident: ref12 doi: 10.1029/2007GL031871 – ident: ref38 – ident: ref63 – ident: ref2 doi: 10.1109/IGARSS.2012.6350737 – ident: ref59 – ident: ref40 doi: 10.1109/36.312890 – ident: ref4 doi: 10.1038/ngeo2290 – ident: ref29 doi: 10.1175/JCLI-D-12-00001.1 – ident: ref77 doi: 10.1016/j.isprsjprs.2018.02.017 – ident: ref3 doi: 10.1109/IGARSS.2014.6947367 – ident: ref21 – ident: ref49 – ident: ref33 doi: 10.1038/nature10847 – ident: ref56 doi: 10.1080/01431168708954805 – ident: ref54 doi: 10.1016/S0924-2716(02)00124-7 – ident: ref80 doi: 10.1017/aog.2016.32 – ident: ref45 doi: 10.3389/feart.2017.00001 |
SSID | ssj0062904 |
Score | 2.416829 |
Snippet | The northern and southern Patagonian ice fields (NPI and SPI) have
been subject to accelerated retreat during the last decades, with considerable
variability... The northern and southern Patagonian ice fields (NPI and SPI) have been subject to accelerated retreat during the last decades, with considerable variability... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2511 |
SubjectTerms | Acceleration Backscatter Backscattering Digital Elevation Models Elevation Eustatic changes Flow (Dynamics) Flow velocity Geophysical research Glacier flow Glaciers Ice Ice calving Ice fields Ice volume Interferometry Mass Mass balance Radar Radar data Remote sensing SAR (radar) Satellite remote sensing Sea level Sea level rise Seasonal variations Seasonality Surface-ice melting Synthetic aperture radar Temporal variations Topography (geology) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcClggJioSALIeASGnsTJz6htmq1ILWqCpV6syb-KEhLst1kD_wFfjUzjrewh3LcZJx1MuPxG3v8hrG3OjgZlCoyJxsi1YYmq3FgZbIMLncAjY_JmKdnanZZfLkqr9KCW5_SKtc-MTpq11laI9-XUtc4O6K9fFrcZFQ1inZXUwmN-2wbXXCNwdf24fHZ-cXaFyup83FfmQhwC1mM5D6IWor9wWaC-iQEWgoR7fwzL0X6_rucdJx5Th6xnQQZ-cGo48fsnm932YNUvfz7r102OUXk2y3jAjl_x4_mPxCGxl9P2O8Z5bt0aCYeY3zeUwI1PgxaxxMr1ZwvIsdmy7vA-9UygPWcTp1HnfHxZHBs8BOBNm8oFxIlUBixIz8H2tZq0cg4uhweE-JQaMz-4nRCJzbFd1dP2eXJ8bejWZbqL2S2LKZDpoLXDmqMcUrhHFTB6qIJeahL7YOsQDrrEa8IjxjIewHo9lUtVCUcBMRZMH3Gttqu9c8Zpw0_jWhNNqUsXO0a9DRBY6ySg_J4ecI-rr--sYmcnGpkzA0GKaQuM1gjpobUZUhdE_bhtsFi5OW4W_SQ1HkrRoTa8UK3vDZpfGJbwL5UTgPkReNFrUPIvRUhB2LhqybsDRmDIcqMlnJyrmHV9-bz1wtzoIiUFeNG_Kf3SSh02HsL6YgDfgNi2dqQ3NuQxDFtN2-vbc4kn9KbvyPgxf9vv2QP6b0pq0VWe2xrWK78K4ROQ_M6jY8_3oYWFQ priority: 102 providerName: ProQuest |
Title | Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016 |
URI | https://www.proquest.com/docview/2298663963 https://doaj.org/article/10a80a7d9aa04be189ff0ec1f0a01017 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAFQQGxUCoLIeASiL2JEx_bqmVBalUVKu3NcvxRkJak2s0e-Av8at442ap7qLhwibTZcdbxjMdv1jPPjL3V0cuoVJF52RCptm2yGhMrk2X0ube2CSkZ8_RMzS6Lr_NyfuuoL8oJG-iBh4HDrLZ1biuvrc2LJohax5gHJ2JuiR4t1ZFjzdsEU4MPVlLnw34yEd8CcwykPkArxafeZYL6IgQshAh2bq1Hibb_LuecVpyTx-zRCBX5wdDFJ-xeaHfZg_HU8h-_d9nkFIi3W6Y_xvk7frT4CfiZPj1lf2aU59LBPAJie76ixGk8zLaej2xUC36duDVb3kW-Wi-jdYFTtXnSFR8qglODXwDYvKEcSEhAGJiRn1vazmphXByuhqdEOAgNWV-cKnNSU7y7esYuT46_H82y8dyFzJXFtM9UDNrbGrFNKby3VXS6aGIe61KHKCsrvQvAKSIA-4QgLNy9qoWqhLcR-MpOn7OdtmvDC8Zpo08DpcmmlIWvfQMPEzVilNyqgNsT9nEz-saNpOR0NsbCIDghdZneGTE1pC5D6pqwDzcNrgc-jrtFD0mdN2JEpJ1uwLzMaF7mX-Y1YW_IGAxRZbSUi3Nl16uV-fLtwhwoImNFvIhfej8KxQ69d3YsbcAYELvWluTeliTmstv-emNzZvQlKyOlroEL4Slf_o83esUe0uhQzous9thOv1yH1wBWfbPP7h8en51f7Ke5hOvnufgLCMwf3g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lAuCAqIhQIW4nUJjb2JkxwQakurXdpdVaWVejOOHwVpSZbNrlD_Aj-G38iM4xT2UG49Jhnn4RnPI575hpCXhTPcCZFEhpcIqq3KKIeFFfHUmdgoVVqfjDmeiOFZ8uk8PV8jv7taGEyr7HSiV9Sm1viPfJvzIgfrCPLyYfYjwq5RuLvatdBoxeLQXv6EkK15P_oI_H3F-cH-6d4wCl0FIp0mg0UknC2MysFzT5kxKnO6SEoXuzwtrOOZ4kZbsMLMgmW3lilQZiJnImNGOfAe1ADue4usJwMIZXpkfXd_cnzS6X7Bi7jdx0bA3YQnLZgQeEnJ9kJHDOeAMZBMBPb5xw76dgHXGQVv6Q7ukjvBRaU7rUzdI2u22iQboVv618tN0h-Dp13P_Q95-pruTb-B2-uP7pNfQ8yvqUEsbb1saIMJ23AzVRkaULCmdOYxPStaO9os505pS7HK3csIbSuR_YDv4NjTEnMvgQKIwVelxwq30SoQagoqjvoEPCBqs80oVgT5ofDt4gE5uxHOPCS9qq7sI0Jxg7EA75CXKU9MbkrQbK6A2ChWwsLpPnnXzb7UAQwde3JMJQRFyC650JINJLJLIrv65O3VgFmLA3I96S6y84oMAbz9iXp-IYM-gLEK3iUzhVJxUlqWF87FVjMXK0T9y_rkBQqDRIiOCnOALtSyaeTo84ncEQgCC3EqPOlNIHI1vL1WoaQC5gBRvVYot1YoQYfo1cudzMmgwxr5d8U9_v_l52RjeDo-kkejyeETchvnADNqeLZFeov50j4Ft21RPgtrhZIvN708_wCNd1Ra |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VVAJeOAqIQIEV4npxYm98PiDUgyihpCpHRd-W9R5tRbBD7AiVn8BP4q_wZ5hZrwtBKm994NH2rG2N5_TOfEPIo8woZuI49BTLEVRb5F4KiuWxyChfCZFrW4w52Y1H--Grg-hghfxoe2GwrLK1idZQq1LiP_I-Y1kK3hHkpW9cWcTe9vDF7IuHE6Rwp7Udp9GIyI4--QrpW_V8vA3f-jFjw5fvt0aemzDgySgc1F5sdKZEClF8FCglEiOzMDe-SaNMG5YIpqQGjxxo8PJaBwIMW5wGcRIoYSCSEAO47wWymsZpxDpkdXM4efOh9QMxy_xmTxvBd0MWNsBCEDGF_Vp6AfIjCEBKEeTnD59oRwec5SCs1xteJT9bfjXFLp96izrvyW9_QUn-nwy9Rq64YJxuNNpznazoYo1ccnPhj07WSHcCOUU5t1sP9Andmh5DgG-PbpDvI6wkKkEBdbmoaIWl6XAzUSjq8L6mdGbRSwtaGlot5kZITbGf32oDbXqu7YLPkMLQHKtMgQKIISqnewI3DAtQXwrGnNpSQyBq6uoo9j7ZpfBl45tk_1zYdIt0irLQtwnFrdQM4mCWRyxUqcrBhpsMskBfxBpOd0mvlS0uHew7Th-Zckj_UBh5LXkw4CiMHIWxS56dLpg1iCdnk26isJ6SIVS5PVHOD7mzfLBWwLskKhPCD3MdpJkxvpaB8QXiGyZd8hBFnSMYSYFSeCgWVcXH797yjRjhbiEjhyc9dUSmhLeXwjWPAA8Qv2yJcn2JEqylXL7cagN31rriv1Xhzr8vPyAXQUf46_Huzl1yGVmApUMsWSeder7Q9yA-rfP7zhBQ8vG8VeUXlayg5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+spatial+and+temporal+pattern+of+surface+elevation+change+and+mass+balance+of+the+Patagonian+ice+fields+between+2000+and+2016&rft.jtitle=The+cryosphere&rft.au=Abdel+Jaber%2C+Wael&rft.au=Rott%2C+Helmut&rft.au=Floricioiu%2C+Dana&rft.au=Wuite%2C+Jan&rft.date=2019-09-27&rft.pub=Copernicus+GmbH&rft.issn=1994-0416&rft.volume=13&rft.issue=9&rft.spage=2511&rft_id=info:doi/10.5194%2Ftc-13-2511-2019&rft.externalDocID=A600989969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon |