Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium

Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting gra...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 133; no. 3; pp. 993 - 1008
Main Authors Duchêne, Éric, Dumas, Vincent, Butterlin, Gisèle, Jaegli, Nathalie, Rustenholz, Camille, Chauveau, Aurélie, Bérard, Aurélie, Le Paslier, Marie Christine, Gaillard, Isabelle, Merdinoglu, Didier
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine ( Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina ® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K + accumulation capacities.
AbstractList Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina.sup.® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K.sup.+ accumulation capacities.
Key message
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine ( Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina ® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K + accumulation capacities.
KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K⁺ accumulation capacities.
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.KEY MESSAGEIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
Key messageIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate.As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K accumulation capacities.
Audience Academic
Author Le Paslier, Marie Christine
Bérard, Aurélie
Butterlin, Gisèle
Rustenholz, Camille
Merdinoglu, Didier
Gaillard, Isabelle
Jaegli, Nathalie
Duchêne, Éric
Dumas, Vincent
Chauveau, Aurélie
Author_xml – sequence: 1
  givenname: Éric
  orcidid: 0000-0003-2712-1892
  surname: Duchêne
  fullname: Duchêne, Éric
  email: eric.duchene@inrae.fr
  organization: SVQV, Univ. Strasbourg, INRAE
– sequence: 2
  givenname: Vincent
  surname: Dumas
  fullname: Dumas, Vincent
  organization: SVQV, Univ. Strasbourg, INRAE
– sequence: 3
  givenname: Gisèle
  surname: Butterlin
  fullname: Butterlin, Gisèle
  organization: SVQV, Univ. Strasbourg, INRAE
– sequence: 4
  givenname: Nathalie
  surname: Jaegli
  fullname: Jaegli, Nathalie
  organization: SVQV, Univ. Strasbourg, INRAE
– sequence: 5
  givenname: Camille
  surname: Rustenholz
  fullname: Rustenholz, Camille
  organization: SVQV, Univ. Strasbourg, INRAE
– sequence: 6
  givenname: Aurélie
  surname: Chauveau
  fullname: Chauveau, Aurélie
  organization: EPGV, INRAE, Univ. Paris-Saclay
– sequence: 7
  givenname: Aurélie
  surname: Bérard
  fullname: Bérard, Aurélie
  organization: EPGV, INRAE, Univ. Paris-Saclay
– sequence: 8
  givenname: Marie Christine
  surname: Le Paslier
  fullname: Le Paslier, Marie Christine
  organization: EPGV, INRAE, Univ. Paris-Saclay
– sequence: 9
  givenname: Isabelle
  surname: Gaillard
  fullname: Gaillard, Isabelle
  organization: BPMP, Univ. Montpellier, CNRS, INRAE, SupAgro
– sequence: 10
  givenname: Didier
  surname: Merdinoglu
  fullname: Merdinoglu, Didier
  organization: SVQV, Univ. Strasbourg, INRAE
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31932953$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02465402$$DView record in HAL
BookMark eNqFkstqHDEQRZvgEI-d_EAWQZBNvGin9OrH0pjENgwE8lgLtbp6LNMjTSS1k_n7qD2OzZjgoIWgOPeqVHWPigPnHRbFWwqnFKD-GAEoYyXQtgQumSjbF8WCCs5KxgQ7KBYAAkpZS3ZYHMV4AwBMAn9VHHLactZKvijCBTpM1pBbHaxO1rtI_EC0sb1NW2IdWQW9QdJhCBYj0QGJ8S4FP47Yk25L0jVmLGHYjHqbufQL0REfVtpl29koq1xPNj7pGO20fl28HPQY8c39fVz8-Pzp-_llufxycXV-tiyNFDyVFTXIazCmMU1vEKgQbVUJQ1F3vGcNNUOHAwNaiao2iL3oZEWbHnpoupYhPy5Odr7XelSbYNc6bJXXVl2eLdVcAyYqKYDd0sx-2LGb4H9OGJNa22hwHLVDP0XFpKQtZbSG_6OcN9DWshEZff8EvfFTcPnTmZKiZXXD4ZFa6RGVdYNPQZvZVJ1VNC-sZrLN1Ok_qHx6XNu8ERxsru8JTvYE89bwd1rpKUZ19e3rPvvuvtGpW2P_MK2_OckA2wEm-BgDDg8IBTWHUe3CqHIY1V0Y1ezaPBEZm-4yllu34_NSvpPG_I5bYXic3DOqP3qM72E
CitedBy_id crossref_primary_10_1016_j_foodres_2020_109946
crossref_primary_10_3390_plants10030551
crossref_primary_10_1016_j_plantsci_2022_111539
crossref_primary_10_3389_fpls_2021_633846
crossref_primary_10_1016_j_scienta_2024_113015
crossref_primary_10_1016_j_pmpp_2024_102318
crossref_primary_10_1186_s12870_021_03266_1
crossref_primary_10_3389_fpls_2020_01175
crossref_primary_10_3390_agronomy13102530
crossref_primary_10_3390_plants14010104
crossref_primary_10_1051_bioconf_20236802005
crossref_primary_10_1016_j_atech_2022_100088
crossref_primary_10_3390_horticulturae8080679
crossref_primary_10_1007_s00122_022_04225_6
crossref_primary_10_1007_s00217_022_03961_9
crossref_primary_10_3390_ijms221910398
crossref_primary_10_1111_ajgw_12497
crossref_primary_10_3390_polym17060750
crossref_primary_10_1093_hr_uhad151
crossref_primary_10_3390_plants11050696
crossref_primary_10_1007_s11356_021_15599_3
crossref_primary_10_1093_hr_uhae225
crossref_primary_10_3389_fpls_2021_643024
crossref_primary_10_1093_g3journal_jkad067
crossref_primary_10_1093_hr_uhac009
crossref_primary_10_1016_j_foodchem_2024_142432
Cites_doi 10.3835/plantgenome2015.03.0016
10.1093/jxb/ert035
10.3389/fpls.2017.01629
10.1007/s00122-008-0919-8
10.1186/1471-2229-12-148
10.1007/s10681-012-0622-3
10.1111/nph.14139
10.1093/jxb/eru343
10.3389/fpls.2017.00053
10.1111/j.1438-8677.2010.00353.x
10.5344/ajev.1988.39.1.71
10.1111/tpj.12092
10.1007/s00425-013-1888-y
10.1016/j.jplph.2014.01.009
10.1016/j.phytochem.2009.08.006
10.1104/pp.104.058453
10.1021/je010105x
10.1111/j.1755-0238.2003.tb00265.x
10.1186/s12870-015-0588-0
10.1016/j.foodres.2010.05.001
10.3354/cr01094
10.1186/s12870-015-0428-2
10.3354/cr00850
10.5344/ajev.1971.22.2.71
10.1016/S0981-9428(98)80078-8
10.1016/j.scienta.2014.04.016
10.1007/s00122-011-1734-1
10.1111/j.1755-0238.2012.00189.x
10.1074/jbc.RA117.000851
10.21273/HORTSCI.43.3.957
10.1111/nph.15604
10.4238/2013.April.2.11
10.1111/nph.14615
10.1007/s10681-016-1737-8
10.1007/s00484-013-0724-1
10.1371/journal.pone.0192540
10.21273/JASHS.96.3.372
10.1093/bioinformatics/btg112
10.1371/journal.pone.0149560
10.1007/s00425-013-2004-z
10.1111/j.1755-0238.2012.00194.x
10.1007/BF00022454
10.1007/s00484-013-0715-2
10.1016/j.plaphy.2017.10.008
10.1186/1471-2229-9-145
10.1111/ajgw.12051
10.1017/S1931436100001565
10.1081/PLN-120015538
10.1051/agro:2004057
10.3390/ijms20030715
10.1111/j.1755-0238.2004.tb00016.x
10.1186/s12870-016-0850-0
10.1111/tpj.13957
10.1073/pnas.0510864103
10.1016/j.scienta.2014.07.039
10.1016/j.gdata.2017.09.002
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Theoretical and Applied Genetics is a copyright of Springer, (2020). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Theoretical and Applied Genetics is a copyright of Springer, (2020). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
1XC
DOI 10.1007/s00122-019-03524-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList




AGRICOLA
MEDLINE - Academic
ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
EndPage 1008
ExternalDocumentID oai_HAL_hal_02465402v1
A615037259
31932953
10_1007_s00122_019_03524_9
Genre Journal Article
GeographicLocations France
United States
Israel
GeographicLocations_xml – name: Israel
– name: France
– name: United States
GrantInformation_xml – fundername: FranceAgrimer
  funderid: http://dx.doi.org/10.13039/501100003199
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7SS
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c543t-61ce370cc8c8dce01449664c1eab3d281cfbef2016467ceed4b5618d0d08b92e3
IEDL.DBID U2A
ISSN 0040-5752
1432-2242
IngestDate Fri Jun 13 07:01:52 EDT 2025
Fri Jul 11 04:19:08 EDT 2025
Fri Jul 11 12:32:43 EDT 2025
Fri Jul 25 10:26:23 EDT 2025
Tue Jun 17 21:27:43 EDT 2025
Tue Jun 10 20:26:23 EDT 2025
Fri Jun 27 03:38:47 EDT 2025
Mon Jul 21 06:03:53 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 04:36:22 EDT 2025
Fri Feb 21 02:35:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords amélioration de la vigne
acidité du vin
adaptation au changement climatique
réchauffement climatique
baie de raisin
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-61ce370cc8c8dce01449664c1eab3d281cfbef2016467ceed4b5618d0d08b92e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2712-1892
0000-0001-8568-0495
0000-0001-5355-3408
0000-0002-9163-6631
0000-0001-6089-3048
0000-0002-7993-4046
PMID 31932953
PQID 2354927830
PQPubID 54040
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02465402v1
proquest_miscellaneous_2551912170
proquest_miscellaneous_2338097584
proquest_journals_2354927830
gale_infotracmisc_A615037259
gale_infotracacademiconefile_A615037259
gale_incontextgauss_ISR_A615037259
pubmed_primary_31932953
crossref_primary_10_1007_s00122_019_03524_9
crossref_citationtrail_10_1007_s00122_019_03524_9
springer_journals_10_1007_s00122_019_03524_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationTitleAlternate Theor Appl Genet
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References Barnuud, Zerihun, Gibberd, Bates (CR6) 2014; 58
Sharma, Dreyer, Kochian, Pineros (CR60) 2016; 7
Hurth, Suh, Kretzschmar, Geis, Bregante, Gambale, Martinoia, Neuhaus (CR37) 2005; 137
Keller, Shrestha (CR41) 2014; 239
Ojeda, Rousseau, Escudier (CR54) 2011; 128
Houel, Chatbanyong, Doligez, Rienth, Foria, Luchaire, Roux, Adiveze, Lopez, Farnos, Pellegrino, This, Romieu, Torregrosa (CR35) 2015; 15
Shiraishi (CR61) 1995; 81
Boulton (CR10) 1980; 19
Duchêne, Dumas, Jaegli, Merdinoglu (CR29) 2012; 18
Ban, Mitani, Sato, Kono, Hayashi (CR5) 2016; 211
Voelker, Gomez-Porras, Becker, Hamamoto, Uozumi, Gambale, Mueller-Roeber, Czempinski, Dreyer (CR69) 2010; 12
Anschutz, Becker, Shabala (CR3) 2014; 171
Lobit, Soing, Génard, Habib (CR47) 2002; 25
Duchêne, Dumas, Jaegli, Merdinoglu (CR30) 2014; 20
Viana, Riaz, Walker (CR68) 2013; 12
Chen, Wang, Fang, Liang, Li, Wu (CR14) 2015; 15
Ribéreau-Gayon, Dubourdieu, Donèche, Lonvaud (CR56) 2006
Arrobas, Ferreira, Freitas, Verdial, Rodrigues (CR4) 2014; 172
Kliewer (CR42) 1971; 96
DeBolt, Ristic, Iland, Ford (CR23) 2008; 43
Hale (CR34) 1977; 16
Palliotti, Tombesi, Silvestroni, Lanari, Gatti, Poni (CR55) 2014; 178
Wang, Fang, Xin, Wang, Li (CR71) 2012; 12
Kodur, Tisdall, Clingeleffer, Walker (CR43) 2013; 52
Mpelasoka, Schachtman, Treeby, Thomas (CR51) 2003; 9
Dai, Wu, Baldazzi, van Leeuwen, Bertin, Gautier, Wu, Duchêne, Gomès, Delrot, Lescourret, Génard (CR19) 2016; 7
Terrier, Deguilloux, Sauvage, Martinoia, Romieu (CR66) 1998; 36
Nieves-Cordones, Andrianteranagna, Cuellar, Cherel, Gibrat, Boeglin, Moreau, Paris, Verdeil, Zimmermann, Gaillard (CR53) 2019; 222
CR45
Ma, Liao, Zheng, Chen, Wu, Ogutu, Li, Korban, Han (CR48) 2015
Mira de Orduña (CR50) 2010; 43
DeBolt, Hardie, Tyerman, Ford (CR21) 2004; 10
Canaguier, Grimplet, Di Gaspero, Scalabrin, Duchêne, Choisne, Mohellibi, Guichard, Rombauts, Le Clainche, Bérard, Chauveau, Bounon, Rustenholz, Morgante, Le Paslier, Brunel, Adam-Blondon (CR13) 2017; 14
Iland, Coombe (CR38) 1988; 39
Huglin, Schneider (CR36) 1998
Broman, Wu, Sen, Churchill (CR11) 2003; 19
Duchêne, Butterlin, Claudel, Dumas, Jaegli, Merdinoglu (CR25) 2009; 118
Ilc, Halter, Miesch, Lauvoisard, Kriegshauser, Ilg, Baltenweck, Hugueney, Werck-Reichhart, Duchêne, Navrot (CR39) 2017; 213
Laucou, Launay, Bacilieri, Lacombe, Adam-Blondon, Berard, Chauveau, de Andres, Hausmann, Ibanez, Le Paslier, Maghradze, Martinez-Zapater, Maul, Ponnaiah, Topfer, Peros, Boursiquot (CR44) 2018; 13
DeBolt, Cook, Ford (CR22) 2006; 103
Neethling, Barbeau, Bonnefoy, Quenol (CR52) 2012; 53
Core Team (CR17) 2016
Sweetman, Deluc, Cramer, Ford, Soole (CR64) 2009; 70
Barnuud, Zerihun, Mpelasoka, Gibberd, Bates (CR7) 2014; 58
Cherel, Gaillard (CR15) 2019; 20
Yang, Fresnedo-Ramirez, Sun, Manns, Sacks, Mansfield, Luby, Londo, Reisch, Cadle-Davidson, Fennell (CR72) 2016; 11
Sousa, Lopes (CR62) 2001; 46
Jia, Shen, Wang, Wu, Xu, Zhang, Han (CR40) 2018; 95
Cuellar, Azeem, Andrianteranagna, Pascaud, Verdeil, Sentenac, Zimmermann, Gaillard (CR18) 2013; 73
Alston, Fuller, Lapsley, Soleas (CR1) 2011; 6
Lecourieux, Kappel, Pieri, Charon, Pillet, Hilbert, Renaud, Gomes, Delrot, Lecourieux (CR46) 2017; 8
Ruffner (CR59) 1982; 21
Spring, Verdenal, Zufferey, Gindro, Viret (CR63) 2012; 44
Walker, Blackmore (CR70) 2012; 18
Duchêne, Schneider (CR24) 2005; 25
Etienne, Genard, Lobit, Mbeguie, Bugaud (CR31) 2013; 64
Bayo-Canha, Fernandez-Fernandez, Martinez-Cutillas, Ruiz-Garcia (CR9) 2012; 186
Duchêne, Butterlin, Dumas, Merdinoglu (CR28) 2012; 124
CR27
De Angeli, Baetz, Francisco, Zhang, Chaves, Regalado (CR20) 2013; 238
Rienth, Torregrosa, Sarah, Ardisson, Brillouet, Romieu (CR57) 2016; 16
CR67
Amato, Cavallini, Zenoni, Finezzo, Begheldo, Ruperti, Tornielli (CR2) 2016; 7
Bauchet, Grenier, Samson, Segura, Kende, Beekwilder, Cankar, Gallois, Gricourt, Bonnet, Baxter, Grivet, Causse (CR8) 2017; 215
Sweetman, Sadras, Hancock, Soole, Ford (CR65) 2014; 65
Duchêne, Huard, Dumas, Schneider, Merdinoglu (CR26) 2010; 41
Rogiers, Coetzee, Walker, Deloire, Tyerman (CR58) 2017; 8
Frei, Eisenach, Martinoia, Hussein, Chen, Arrivault, Neuhaus (CR33) 2018; 293
Etourneaud, Loue (CR32) 1984; 101
Coetzee, Walker, Deloire, Barril, Clarke, Rogiers (CR16) 2017; 120
Buttrose, Hale, Kliewer (CR12) 1971; 22
Melino, Soole, Ford (CR49) 2009; 9
P Sousa (3524_CR62) 2001; 46
F Lecourieux (3524_CR46) 2017; 8
C Sweetman (3524_CR64) 2009; 70
M Rienth (3524_CR57) 2016; 16
MS Buttrose (3524_CR12) 1971; 22
A Bayo-Canha (3524_CR9) 2012; 186
E Duchêne (3524_CR24) 2005; 25
S Kodur (3524_CR43) 2013; 52
ZA Coetzee (3524_CR16) 2017; 120
F Etourneaud (3524_CR32) 1984; 101
C Houel (3524_CR35) 2015; 15
M Keller (3524_CR41) 2014; 239
V Laucou (3524_CR44) 2018; 13
A Amato (3524_CR2) 2016; 7
A Canaguier (3524_CR13) 2017; 14
J Chen (3524_CR14) 2015; 15
T Ilc (3524_CR39) 2017; 213
Y Ban (3524_CR5) 2016; 211
NN Barnuud (3524_CR6) 2014; 58
3524_CR45
U Anschutz (3524_CR3) 2014; 171
P Huglin (3524_CR36) 1998
S DeBolt (3524_CR22) 2006; 103
N Terrier (3524_CR66) 1998; 36
E Neethling (3524_CR52) 2012; 53
MA Hurth (3524_CR37) 2005; 137
AP Viana (3524_CR68) 2013; 12
G Bauchet (3524_CR8) 2017; 215
E Duchêne (3524_CR26) 2010; 41
B Ma (3524_CR48) 2015
NN Barnuud (3524_CR7) 2014; 58
R Core Team (3524_CR17) 2016
E Duchêne (3524_CR29) 2012; 18
CR Hale (3524_CR34) 1977; 16
JL Spring (3524_CR63) 2012; 44
R Mira de Orduña (3524_CR50) 2010; 43
A Palliotti (3524_CR55) 2014; 178
T Sharma (3524_CR60) 2016; 7
DJ Jia (3524_CR40) 2018; 95
C Voelker (3524_CR69) 2010; 12
M Nieves-Cordones (3524_CR53) 2019; 222
A Etienne (3524_CR31) 2013; 64
P Ribéreau-Gayon (3524_CR56) 2006
E Duchêne (3524_CR25) 2009; 118
VJ Melino (3524_CR49) 2009; 9
JM Alston (3524_CR1) 2011; 6
BS Mpelasoka (3524_CR51) 2003; 9
M Arrobas (3524_CR4) 2014; 172
HP Ruffner (3524_CR59) 1982; 21
3524_CR27
B Frei (3524_CR33) 2018; 293
R Boulton (3524_CR10) 1980; 19
3524_CR67
I Cherel (3524_CR15) 2019; 20
E Duchêne (3524_CR30) 2014; 20
N Wang (3524_CR71) 2012; 12
S DeBolt (3524_CR21) 2004; 10
H Ojeda (3524_CR54) 2011; 128
A De Angeli (3524_CR20) 2013; 238
PG Iland (3524_CR38) 1988; 39
SY Rogiers (3524_CR58) 2017; 8
S Yang (3524_CR72) 2016; 11
S DeBolt (3524_CR23) 2008; 43
C Sweetman (3524_CR65) 2014; 65
Z Dai (3524_CR19) 2016; 7
P Lobit (3524_CR47) 2002; 25
WM Kliewer (3524_CR42) 1971; 96
M Shiraishi (3524_CR61) 1995; 81
KW Broman (3524_CR11) 2003; 19
RR Walker (3524_CR70) 2012; 18
T Cuellar (3524_CR18) 2013; 73
E Duchêne (3524_CR28) 2012; 124
References_xml – ident: CR45
– volume: 43
  start-page: 957
  year: 2008
  end-page: 961
  ident: CR23
  article-title: Altered light interception reduces grape berry weight and modulates organic acid biosynthesis during development
  publication-title: HortScience
– volume: 137
  start-page: 901
  year: 2005
  end-page: 910
  ident: CR37
  article-title: Impaired pH homeostasis in arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast
  publication-title: Plant Physiol
– volume: 96
  start-page: 372
  year: 1971
  end-page: 377
  ident: CR42
  article-title: Effect of day temperature and light intensity on concentration of malic and tartaric acids in grapes
  publication-title: J Am Soc Hortic Sci
– year: 1998
  ident: CR36
  publication-title: Biologie et écologie de la vigne
– volume: 7
  start-page: 1979
  year: 2016
  ident: CR2
  article-title: A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis
  publication-title: Front Plant Sci
– volume: 18
  start-page: 319
  year: 2012
  end-page: 328
  ident: CR29
  article-title: Deciphering the ability of different grapevine genotypes to accumulate sugar in berries
  publication-title: Aust J Grape Wine Res
– volume: 20
  start-page: 91
  year: 2014
  end-page: 99
  ident: CR30
  article-title: Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny
  publication-title: Aust J Grape Wine Res
– volume: 186
  start-page: 393
  year: 2012
  end-page: 407
  ident: CR9
  article-title: Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny
  publication-title: Euphytica
– volume: 171
  start-page: 670
  year: 2014
  end-page: 687
  ident: CR3
  article-title: Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment
  publication-title: J Plant Physiol
– volume: 15
  start-page: 28
  year: 2015
  ident: CR14
  article-title: Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries
  publication-title: BMC Plant Biol
– volume: 95
  start-page: 427
  year: 2018
  end-page: 443
  ident: CR40
  article-title: Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII
  publication-title: Plant J
– volume: 13
  start-page: e0192540
  year: 2018
  ident: CR44
  article-title: Extended diversity analysis of cultivated grapevine with 10 K genome-wide SNPs
  publication-title: PLoS ONE
– volume: 16
  start-page: 164
  year: 2016
  ident: CR57
  article-title: Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome
  publication-title: BMC Plant Biol
– volume: 22
  start-page: 71
  year: 1971
  end-page: 75
  ident: CR12
  article-title: Effect of temperature on the composition of “Cabernet-Sauvignon” berries
  publication-title: Am J Enol Vitic
– volume: 43
  start-page: 1844
  year: 2010
  end-page: 1855
  ident: CR50
  article-title: Climate change associated effects on grape and wine quality and production
  publication-title: Food Res Int
– volume: 6
  start-page: 135
  year: 2011
  end-page: 159
  ident: CR1
  article-title: Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes
  publication-title: J Wine Econ
– volume: 7
  start-page: 649
  year: 2016
  ident: CR19
  article-title: Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits
  publication-title: Front Plant Sci
– volume: 178
  start-page: 43
  year: 2014
  end-page: 54
  ident: CR55
  article-title: Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: a review
  publication-title: Sci Hortic
– volume: 120
  start-page: 252
  year: 2017
  end-page: 260
  ident: CR16
  article-title: Impact of reduced atmospheric CO and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries ( L.)
  publication-title: Plant Physiol Biochem
– volume: 36
  start-page: 367
  year: 1998
  end-page: 377
  ident: CR66
  article-title: Proton pumps and anion transport in : the inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast
  publication-title: Plant Physiol Biochem
– volume: 12
  start-page: 951
  year: 2013
  end-page: 964
  ident: CR68
  article-title: Genetic dissection of agronomic traits within a segregating population of breeding table grapes
  publication-title: Genet Mol Res
– volume: 65
  start-page: 5975
  year: 2014
  end-page: 5988
  ident: CR65
  article-title: Metabolic effects of elevated temperature on organic acid degradation in ripening fruit
  publication-title: J Exp Bot
– volume: 211
  start-page: 295
  year: 2016
  end-page: 310
  ident: CR5
  article-title: Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape ( × )
  publication-title: Euphytica
– volume: 103
  start-page: 5608
  year: 2006
  end-page: 5613
  ident: CR22
  article-title: L-tartaric acid synthesis from vitamin C in higher plants
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 1629
  year: 2017
  ident: CR58
  article-title: Potassium in the grape ( L.) berry: transport and function
  publication-title: Front Plant Sci
– volume: 44
  start-page: 298
  year: 2012
  end-page: 307
  ident: CR63
  article-title: Influence du porte-greffe sur le comportement du cépage Cornalin dans le Valais central
  publication-title: Revue Suisse Vitic Arboric Hortic
– ident: CR67
– volume: 14
  start-page: 56
  year: 2017
  end-page: 62
  ident: CR13
  article-title: A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3)
  publication-title: Genom Data
– volume: 70
  start-page: 1329
  year: 2009
  end-page: 1344
  ident: CR64
  article-title: Regulation of malate metabolism in grape berry and other developing fruits
  publication-title: Phytochem
– volume: 12
  start-page: 56
  issue: Suppl 1
  year: 2010
  end-page: 63
  ident: CR69
  article-title: Roles of tandem-pore K channels in plants—a puzzle still to be solved
  publication-title: Plant Biol
– volume: 128
  start-page: 391
  year: 2011
  end-page: 397
  ident: CR54
  article-title: Control of acidity and pH in musts and wines through two accessible short-term innovations in vineyards and wineries: minimal pruning and electrodialysis with bipolar membranes
  publication-title: Prog Agric Vitic
– volume: 21
  start-page: 247
  year: 1982
  end-page: 259
  ident: CR59
  article-title: Metabolism of tartaric and malic acids in —a review. A
  publication-title: Vitis
– volume: 10
  start-page: 134
  year: 2004
  end-page: 142
  ident: CR21
  article-title: Composition and synthesis of raphide crystals and druse crystals in berries of L. cv. Cabernet Sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies
  publication-title: Aust J Grape Wine Res
– volume: 172
  start-page: 191
  year: 2014
  end-page: 198
  ident: CR4
  article-title: Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts
  publication-title: Sci Hortic
– volume: 8
  start-page: 53
  year: 2017
  ident: CR46
  article-title: Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries
  publication-title: Front Plant Sci
– volume: 118
  start-page: 541
  year: 2009
  end-page: 552
  ident: CR25
  article-title: A grapevine ( L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content
  publication-title: Theor Appl Genet
– volume: 81
  start-page: 13
  year: 1995
  end-page: 20
  ident: CR61
  article-title: Proposed descriptors for organic acids to evaluate grape germplasm
  publication-title: Euphytica
– volume: 15
  start-page: 205
  year: 2015
  ident: CR35
  article-title: Identification of stable QTLs for vegetative and reproductive traits in the microvine ( L.) using the 18 K Infinium chip
  publication-title: BMC Plant Biol
– volume: 9
  start-page: 145
  year: 2009
  ident: CR49
  article-title: Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries
  publication-title: BMC Plant Biol
– volume: 39
  start-page: 71
  year: 1988
  end-page: 76
  ident: CR38
  article-title: Malate, tartrate, potassium, and sodium in flesh and skin of Shiraz grapes during ripening—concentration and compartmentation
  publication-title: Am J Enol Vitic
– year: 2016
  ident: CR17
  publication-title: R: a language and environment for statistical computing
– volume: 19
  start-page: 113
  year: 1980
  end-page: 120
  ident: CR10
  article-title: The relationships between total acidity, titratable acidity and pH in grape tissue
  publication-title: Vitis
– volume: 239
  start-page: 633
  year: 2014
  end-page: 642
  ident: CR41
  article-title: Solute accumulation differs in the vacuoles and apoplast of ripening grape berries
  publication-title: Planta
– volume: 73
  start-page: 1006
  year: 2013
  end-page: 1018
  ident: CR18
  article-title: Potassium transport in developing fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells
  publication-title: Plant J
– volume: 18
  start-page: 183
  year: 2012
  end-page: 193
  ident: CR70
  article-title: Potassium concentration and pH inter-relationships in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in different environments
  publication-title: Aust J Grape Wine Res
– volume: 215
  start-page: 624
  year: 2017
  end-page: 641
  ident: CR8
  article-title: Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement
  publication-title: New Phytol
– volume: 64
  start-page: 1451
  year: 2013
  end-page: 1469
  ident: CR31
  article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells
  publication-title: J Exp Bot
– volume: 9
  start-page: 154
  year: 2003
  end-page: 168
  ident: CR51
  article-title: A review of potassium nutrition in grapevines with special emphasis on berry accumulation
  publication-title: Aust J Grape Wine Res
– year: 2006
  ident: CR56
  publication-title: Handbook of enology volume 1. The microbiology of wine and vinifications
– volume: 58
  start-page: 1279
  year: 2014
  end-page: 1293
  ident: CR7
  article-title: Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions
  publication-title: Int J Biometeorol
– volume: 101
  start-page: 561
  year: 1984
  end-page: 568
  ident: CR32
  article-title: Le diagnostic pétiolaire de la vigne en relation avec l’interprétation de l’analyse de sol pour le potassium et le magnesium. [Petiolar diagnosis of the vine in relation with the interpretation of the analysis of soil for potassium and magnesium]
  publication-title: Prog Agric Vitic
– volume: 46
  start-page: 1362
  year: 2001
  end-page: 1364
  ident: CR62
  article-title: Solubilities of potassium hydrogen tartrate and potassium chloride in water + ethanol mixtures
  publication-title: J Chem Eng Data
– volume: 213
  start-page: 264
  year: 2017
  end-page: 274
  ident: CR39
  article-title: A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine
  publication-title: New Phytol
– volume: 41
  start-page: 193
  year: 2010
  end-page: 204
  ident: CR26
  article-title: The challenge of adapting grapevine varieties to climate change
  publication-title: Clim Res
– ident: CR27
– volume: 53
  start-page: 89
  year: 2012
  end-page: 101
  ident: CR52
  article-title: Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley
  publication-title: Clim Res
– volume: 124
  start-page: 623
  year: 2012
  end-page: 635
  ident: CR28
  article-title: Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages
  publication-title: Theor Appl Genet
– volume: 7
  start-page: 1488
  year: 2016
  ident: CR60
  article-title: The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security
  publication-title: Front Plant Sci
– volume: 25
  start-page: 93
  year: 2005
  end-page: 99
  ident: CR24
  article-title: Grapevine and climatic changes: a glance at the situation in Alsace
  publication-title: Agron Sustain Dev
– volume: 293
  start-page: 4180
  year: 2018
  end-page: 4190
  ident: CR33
  article-title: Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis
  publication-title: J Biol Chem
– volume: 20
  start-page: 715
  year: 2019
  ident: CR15
  article-title: The complex fine-tuning of K fluxes in plants in relation to osmotic and ionic abiotic stresses
  publication-title: Int J Mol Sci
– volume: 25
  start-page: 2775
  year: 2002
  end-page: 2792
  ident: CR47
  article-title: Theoretical analysis of relationships between composition, pH, and titratable acidity of peach fruit
  publication-title: J Plant Nutr
– year: 2015
  ident: CR48
  article-title: Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2015.03.0016
– volume: 16
  start-page: 9
  year: 1977
  end-page: 19
  ident: CR34
  article-title: Relation between potassium and the malate and tartrate contents of grape berries
  publication-title: Vitis
– volume: 222
  start-page: 286
  year: 2019
  end-page: 300
  ident: CR53
  article-title: Characterization of the grapevine Shaker K channel VvK3.1 supports its function in massive potassium fluxes necessary for berry potassium loading and pulvinus-actuated leaf movements
  publication-title: New Phytol
– volume: 19
  start-page: 889
  year: 2003
  end-page: 890
  ident: CR11
  article-title: R/qtl: QTL mapping in experimental crosses
  publication-title: Bioinformatics
– volume: 12
  start-page: 148
  year: 2012
  ident: CR71
  article-title: Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing
  publication-title: BMC Plant Biol
– volume: 238
  start-page: 283
  year: 2013
  end-page: 291
  ident: CR20
  article-title: The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of
  publication-title: Planta
– volume: 58
  start-page: 1207
  year: 2014
  end-page: 1223
  ident: CR6
  article-title: Berry composition and climate: responses and empirical models
  publication-title: Int J Biometeorol
– volume: 11
  start-page: e0149560
  year: 2016
  ident: CR72
  article-title: Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family
  publication-title: PLoS ONE
– volume: 52
  start-page: 125
  year: 2013
  end-page: 128
  ident: CR43
  article-title: Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks ( )
  publication-title: Vitis
– volume: 64
  start-page: 1451
  year: 2013
  ident: 3524_CR31
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert035
– volume: 8
  start-page: 1629
  year: 2017
  ident: 3524_CR58
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01629
– volume: 118
  start-page: 541
  year: 2009
  ident: 3524_CR25
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0919-8
– volume: 12
  start-page: 148
  year: 2012
  ident: 3524_CR71
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-12-148
– volume: 7
  start-page: 649
  year: 2016
  ident: 3524_CR19
  publication-title: Front Plant Sci
– volume: 186
  start-page: 393
  year: 2012
  ident: 3524_CR9
  publication-title: Euphytica
  doi: 10.1007/s10681-012-0622-3
– volume: 213
  start-page: 264
  year: 2017
  ident: 3524_CR39
  publication-title: New Phytol
  doi: 10.1111/nph.14139
– volume: 65
  start-page: 5975
  year: 2014
  ident: 3524_CR65
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru343
– volume: 8
  start-page: 53
  year: 2017
  ident: 3524_CR46
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00053
– volume: 12
  start-page: 56
  issue: Suppl 1
  year: 2010
  ident: 3524_CR69
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.2010.00353.x
– volume: 39
  start-page: 71
  year: 1988
  ident: 3524_CR38
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.1988.39.1.71
– volume: 73
  start-page: 1006
  year: 2013
  ident: 3524_CR18
  publication-title: Plant J
  doi: 10.1111/tpj.12092
– volume: 7
  start-page: 1979
  year: 2016
  ident: 3524_CR2
  publication-title: Front Plant Sci
– volume: 238
  start-page: 283
  year: 2013
  ident: 3524_CR20
  publication-title: Planta
  doi: 10.1007/s00425-013-1888-y
– ident: 3524_CR45
– volume: 171
  start-page: 670
  year: 2014
  ident: 3524_CR3
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2014.01.009
– volume: 70
  start-page: 1329
  year: 2009
  ident: 3524_CR64
  publication-title: Phytochem
  doi: 10.1016/j.phytochem.2009.08.006
– volume: 137
  start-page: 901
  year: 2005
  ident: 3524_CR37
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.058453
– volume: 46
  start-page: 1362
  year: 2001
  ident: 3524_CR62
  publication-title: J Chem Eng Data
  doi: 10.1021/je010105x
– volume: 9
  start-page: 154
  year: 2003
  ident: 3524_CR51
  publication-title: Aust J Grape Wine Res
  doi: 10.1111/j.1755-0238.2003.tb00265.x
– volume: 15
  start-page: 205
  year: 2015
  ident: 3524_CR35
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0588-0
– volume: 43
  start-page: 1844
  year: 2010
  ident: 3524_CR50
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2010.05.001
– volume: 53
  start-page: 89
  year: 2012
  ident: 3524_CR52
  publication-title: Clim Res
  doi: 10.3354/cr01094
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: 3524_CR17
– volume: 128
  start-page: 391
  year: 2011
  ident: 3524_CR54
  publication-title: Prog Agric Vitic
– volume: 15
  start-page: 28
  year: 2015
  ident: 3524_CR14
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0428-2
– volume: 52
  start-page: 125
  year: 2013
  ident: 3524_CR43
  publication-title: Vitis
– volume: 41
  start-page: 193
  year: 2010
  ident: 3524_CR26
  publication-title: Clim Res
  doi: 10.3354/cr00850
– volume: 22
  start-page: 71
  year: 1971
  ident: 3524_CR12
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.1971.22.2.71
– volume: 19
  start-page: 113
  year: 1980
  ident: 3524_CR10
  publication-title: Vitis
– volume: 16
  start-page: 9
  year: 1977
  ident: 3524_CR34
  publication-title: Vitis
– volume: 36
  start-page: 367
  year: 1998
  ident: 3524_CR66
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(98)80078-8
– volume: 172
  start-page: 191
  year: 2014
  ident: 3524_CR4
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2014.04.016
– volume: 124
  start-page: 623
  year: 2012
  ident: 3524_CR28
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1734-1
– volume: 18
  start-page: 183
  year: 2012
  ident: 3524_CR70
  publication-title: Aust J Grape Wine Res
  doi: 10.1111/j.1755-0238.2012.00189.x
– volume: 293
  start-page: 4180
  year: 2018
  ident: 3524_CR33
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA117.000851
– volume: 7
  start-page: 1488
  year: 2016
  ident: 3524_CR60
  publication-title: Front Plant Sci
– volume: 43
  start-page: 957
  year: 2008
  ident: 3524_CR23
  publication-title: HortScience
  doi: 10.21273/HORTSCI.43.3.957
– volume: 222
  start-page: 286
  year: 2019
  ident: 3524_CR53
  publication-title: New Phytol
  doi: 10.1111/nph.15604
– ident: 3524_CR67
– volume-title: Biologie et écologie de la vigne
  year: 1998
  ident: 3524_CR36
– volume: 12
  start-page: 951
  year: 2013
  ident: 3524_CR68
  publication-title: Genet Mol Res
  doi: 10.4238/2013.April.2.11
– volume: 215
  start-page: 624
  year: 2017
  ident: 3524_CR8
  publication-title: New Phytol
  doi: 10.1111/nph.14615
– volume: 211
  start-page: 295
  year: 2016
  ident: 3524_CR5
  publication-title: Euphytica
  doi: 10.1007/s10681-016-1737-8
– volume: 58
  start-page: 1279
  year: 2014
  ident: 3524_CR7
  publication-title: Int J Biometeorol
  doi: 10.1007/s00484-013-0724-1
– volume: 13
  start-page: e0192540
  year: 2018
  ident: 3524_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192540
– volume: 96
  start-page: 372
  year: 1971
  ident: 3524_CR42
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.96.3.372
– volume: 19
  start-page: 889
  year: 2003
  ident: 3524_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg112
– year: 2015
  ident: 3524_CR48
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2015.03.0016
– volume: 11
  start-page: e0149560
  year: 2016
  ident: 3524_CR72
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149560
– volume: 44
  start-page: 298
  year: 2012
  ident: 3524_CR63
  publication-title: Revue Suisse Vitic Arboric Hortic
– volume: 239
  start-page: 633
  year: 2014
  ident: 3524_CR41
  publication-title: Planta
  doi: 10.1007/s00425-013-2004-z
– volume-title: Handbook of enology volume 1. The microbiology of wine and vinifications
  year: 2006
  ident: 3524_CR56
– volume: 18
  start-page: 319
  year: 2012
  ident: 3524_CR29
  publication-title: Aust J Grape Wine Res
  doi: 10.1111/j.1755-0238.2012.00194.x
– volume: 21
  start-page: 247
  year: 1982
  ident: 3524_CR59
  publication-title: Vitis
– volume: 81
  start-page: 13
  year: 1995
  ident: 3524_CR61
  publication-title: Euphytica
  doi: 10.1007/BF00022454
– volume: 58
  start-page: 1207
  year: 2014
  ident: 3524_CR6
  publication-title: Int J Biometeorol
  doi: 10.1007/s00484-013-0715-2
– volume: 120
  start-page: 252
  year: 2017
  ident: 3524_CR16
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.10.008
– volume: 9
  start-page: 145
  year: 2009
  ident: 3524_CR49
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-9-145
– volume: 101
  start-page: 561
  year: 1984
  ident: 3524_CR32
  publication-title: Prog Agric Vitic
– volume: 20
  start-page: 91
  year: 2014
  ident: 3524_CR30
  publication-title: Aust J Grape Wine Res
  doi: 10.1111/ajgw.12051
– volume: 6
  start-page: 135
  year: 2011
  ident: 3524_CR1
  publication-title: J Wine Econ
  doi: 10.1017/S1931436100001565
– volume: 25
  start-page: 2775
  year: 2002
  ident: 3524_CR47
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120015538
– volume: 25
  start-page: 93
  year: 2005
  ident: 3524_CR24
  publication-title: Agron Sustain Dev
  doi: 10.1051/agro:2004057
– volume: 20
  start-page: 715
  year: 2019
  ident: 3524_CR15
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20030715
– volume: 10
  start-page: 134
  year: 2004
  ident: 3524_CR21
  publication-title: Aust J Grape Wine Res
  doi: 10.1111/j.1755-0238.2004.tb00016.x
– volume: 16
  start-page: 164
  year: 2016
  ident: 3524_CR57
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-016-0850-0
– volume: 95
  start-page: 427
  year: 2018
  ident: 3524_CR40
  publication-title: Plant J
  doi: 10.1111/tpj.13957
– volume: 103
  start-page: 5608
  year: 2006
  ident: 3524_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0510864103
– volume: 178
  start-page: 43
  year: 2014
  ident: 3524_CR55
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2014.07.039
– volume: 14
  start-page: 56
  year: 2017
  ident: 3524_CR13
  publication-title: Genom Data
  doi: 10.1016/j.gdata.2017.09.002
– ident: 3524_CR27
SSID ssj0002503
Score 2.4701731
Snippet Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best...
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to...
Key message
Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best...
Key messageIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best...
KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 993
SubjectTerms Acidity
Acids
Acids - metabolism
Agriculture
Alleles
Biochemistry
Biomedical and Life Sciences
Biotechnology
Biotechnology industry
Chromosome Mapping
Chromosomes
Climate Change
Climatic conditions
Fruit - genetics
Fruits
Genes, Plant
Genetic aspects
Genetic crosses
Genetic diversity
Genetic Variation
genomics
Genotype
Genotypes
genotyping
Global warming
Grapes
High temperature
High-Throughput Nucleotide Sequencing
Hot Temperature
Hybridization
Hydrogen-Ion Concentration
Life Sciences
Malates - metabolism
Malic acid
Oligonucleotide Array Sequence Analysis
Organic acids
Original Article
pH effects
pH stability
Phenotype
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Potassium
Potassium - metabolism
progeny
Quantitative genetics
Quantitative Trait Loci
quantitative traits
Simple sequence repeats
Single-nucleotide polymorphism
Tartaric acid
Vegetal Biology
Vitis - genetics
Vitis vinifera
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYEBJ7QDC-AgOZCYkHiJbYThM_oQoxFQQ8AJP6ZsVfo1JJuqad1P-eO8fNVE30tbm4Tu7i-935_DtC3oITkdWotKlkpkiF9SLVvpBpLQ2zJTel1JjQ__5jNLkQX6fFNCbculhWuV0Tw0JtW4M58jPGkUusrHj2cXGVYtco3F2NLTQOyF2kLkOrLqdDwIXufaiaA1jC4qGZcHQu7ClBIC1TZAQVqdxxTHF5PviD1ZG3oeetbdPgjc4fkgcRRtJxr_dH5I5rjsnR-HIZqTTcMbnXt5ncPCZL5JYGQXoNgXGfoaOtp7WZWcDgdNZQpK12VCNLo-tovXQ0lrDPnaV6QwEl0lkoT5zXGxpru2jfEcqEgeCuxtJFuwIwPlv_fUIuzj___jRJY6-F1BSCryCCNI6XmTGVqaxxGGdBICRM7mrNLaty47XzLNCRlehYhQbkVdnMZpWWzPGn5LBpG_ecUG_9SBuAZr52wliubc0FY07UWeG8yBKSb1-0MpGIHPthzNVAoRyUo0A5KihHyYS8H-5Z9DQce6VPUX8K-S0aLKC5rNddp778-qnGSIDPSwj6EvIuCvkW_t7U8TwCPARSYu1InuxIwgdodi6fgpkM00K-7sn4m8LfAACNABKz6xzG2FqRiqtEp25sOiFvhss4PFa-Na5dowyvMglRndgjA7BX5hBcwjjPegsdpsMRocuCJ-TD1mRvJvD_V_hi_3xfkvsMEw-hGO-EHK6Wa_cK0NlKvw6f4D9kdzJk
  priority: 102
  providerName: ProQuest
Title Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium
URI https://link.springer.com/article/10.1007/s00122-019-03524-9
https://www.ncbi.nlm.nih.gov/pubmed/31932953
https://www.proquest.com/docview/2354927830
https://www.proquest.com/docview/2338097584
https://www.proquest.com/docview/2551912170
https://hal.science/hal-02465402
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELborpDggGB5FZbKrJA4QKTEdpr4mKKW8qrQQqVysuJHlkolWfWxUv89M4kTVC2sxClSM5k6Hsf-xv78mZBXMIjIdJjYQDITB8IWItBFLINcGmYTbhKpcUL_y2w4nYuPi3jhN4VtWrZ7uyRZ99TdZrd6FQhSXxmghqcIZI8cx5C7I5FrzrKu_4VBvePKARhhfqvM330cDEe-U-79RE7kdcB5bbG0HoMm98k9Dx5p1kT7AbnlyhNyN7tYewENd0JuN4dL7h-SNSpKgyG9gnS4mZejVUFzs7SAvOmypChW7ahGbUa3ofnaUU9cXzlL9Z4CNqTLmpS4yvfUM7pocw6UqR3BU6Wll9UWIPhy9-sRmU_G399NA3_CQmBiwbeQNxrHk9CY1KTWOMyuIP0RJnK55palkSm0K1gtQpbgcCo04K3UhjZMtWSOPyZHZVW6p4QWthhqA4CsyJ0wlmubc8GYE3kYu0KEfRK1Fa2Mlx_HUzBWqhNOroOjIDiqDo6SffKme-ayEd-40foM46dQ1aJE2sxFvtts1Idv5ypD2XueQKrXJ6-9UVHB35vc70KAl0AhrAPL0wNL-OzMwe0zaCZdsVCle5p9VvgbwJ4hAGF2FYGPthUp3zdsFOOoipekHOrkZXcb3SPfrXTVDm14GkrI5cQNNgB2ZQQpJfh50rTQrjgccbmMeZ-8bZvsnwL8uwqf_Z_5c3KH4fRDTck7JUfb9c69AIy21QPSSxbJgBxnk9Fohtf3Pz6N4Toaz76eD-oP9jec1zTM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQ8IBhfgQFmAvEwIlLbaeIHhCpgalm3B9ikvpnEdkalkpR-DPWf4m_kznEyVRN922tycZzc2fc7-_w7Ql6DE5FpNzGhZDoOhSlEmBexDDOpmUm4TmSOC_rHJ93-mfg6ikdb5G9zFgbTKps50U3UptK4Rv6eceQSS1IefZz-DrFqFO6uNiU0arM4sqs_ELLNPww-g37fMHb45fRTP_RVBUIdC76AWElbnkRapzo12mJEAZBf6I7Ncm5Y2tFFbgvmiLcSdCEiB4yRmshEaS6Z5dDuNrkBjjfCYC8ZtQEewok2Sw9gEPOHdNxRPbeHBYG7DJGBVIRyzRF6d7D9E7Mxr0LdK9u0zvsd3iN3PWylvdrO7pMtW-6SO73zmafusLvkZl3WcvWAzJDLGgTpBQTi9YogrQqa6bEBzE_HJUWabEtzZIW0c5rNLPUp8xNraL6igErp2KVDTrIV9blktK5ApV1D8FRp6LRaAPgfL389JGfXooVHZKesSvuE0MIU3VwDFCwyK7Thucm4YMyKLIptIaKAdJofrbQnPsf6GxPVUjY75ShQjnLKUTIgB-0z05r2Y6P0PupPIZ9GiQk759lyPleD799UDwn3eQJBZkDeeqGigtfrzJ9_gI9ACq41yb01SRjweu32PphJ2y3kB-_3hgqvAeDqAgRnFx1oo7Ei5WelubocQwF51d7G5jHTrrTVEmV4GkmIIsUGGYDZsgPBLLTzuLbQtjscIwIZ84C8a0z2sgP__4VPN_f3JbnVPz0equHg5OgZuc1w0cMlAu6RncVsaZ8DMlzkL9xwpOTHdY__fypUcA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2TiB4QDC-CgPMBOIBoiW208QPCBW2qmWjmsYm7c0ktjMqlaT0Y6h_jV_HvYmTqZro216bG9fJvbbPca7PJeQNLCIy7kTGk0yHnjCZ8NIslF4iNTMR15FMcUP_27DTPxNfz8PzDfK3PguDaZX1nFhO1KbQuEe-xzhqiUUx9_cylxZxvN_7NPntYQUp_NJal9OoQuTQLv8AfZt9HOyDr98y1js4_dL3XIUBT4eCz4E3acsjX-tYx0ZbZBcA_4UObJJyw-JAZ6nNWCnCFeFyIlLAG7HxjR-nklkO7W6SrQhZUYtsfT4YHp806wCAiyZnD0ARc0d2yoN75RctoPHSQz1S4cmVZdEtDps_MTfzOvC99tG2XAt798k9B2Jpt4q6B2TD5tvkbvdi6oQ87Da5VRW5XD4kU1S2BkN6CbS82h-kRUYTPTLAAOgopyiabWmKGpF2RpOppS6BfmwNTZcUMCodlcmR42RJXWYZrepR6bIhuCs3dFLMgQqMFr8ekbMb8cNj0sqL3D4lNDNZJ9UADLPECm14ahIuGLMi8UObCb9NgvpFK-1k0LEax1g1As6lcxQ4R5XOUbJN3jf3TCoRkLXWu-g_heoaOcbpRbKYzdTg-4nqovw-j4Bytsk7Z5QV8Pc6cach4CFQkGvFcmfFEoa_Xrm8C2HSdAvVwvvdI4W_AfzqACBnlwG0UUeRcnPUTF2NqDZ53VzG5jHvLrfFAm147EvglGKNDYBuGQC1hXaeVBHadIcjP5Ahb5MPdchedeD_r_DZ-v6-Irdh7KujwfDwObnDcAekzArcIa35dGFfAEycpy_deKTkx01PAf8A_wx1qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+variations+of+acidity+in+grape+berries+are+controlled+by+the+interplay+between+organic+acids+and+potassium&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Duch%C3%AAne%2C+%C3%89ric&rft.au=Dumas%2C+Vincent&rft.au=Butterlin%2C+Gis%C3%A8le&rft.au=Jaegli%2C+Nathalie&rft.date=2020-03-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=133&rft.issue=3&rft.spage=993&rft_id=info:doi/10.1007%2Fs00122-019-03524-9&rft.externalDocID=A615037259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon