Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium
Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting gra...
Saved in:
Published in | Theoretical and applied genetics Vol. 133; no. 3; pp. 993 - 1008 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key message
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate.
As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (
Vitis vinifera
L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina
®
SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K
+
accumulation capacities. |
---|---|
AbstractList | Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina.sup.® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K.sup.+ accumulation capacities. Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities. Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine ( Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina ® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K + accumulation capacities. KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K⁺ accumulation capacities. In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.KEY MESSAGEIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities. Key messageIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate.As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities. In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K accumulation capacities. |
Audience | Academic |
Author | Le Paslier, Marie Christine Bérard, Aurélie Butterlin, Gisèle Rustenholz, Camille Merdinoglu, Didier Gaillard, Isabelle Jaegli, Nathalie Duchêne, Éric Dumas, Vincent Chauveau, Aurélie |
Author_xml | – sequence: 1 givenname: Éric orcidid: 0000-0003-2712-1892 surname: Duchêne fullname: Duchêne, Éric email: eric.duchene@inrae.fr organization: SVQV, Univ. Strasbourg, INRAE – sequence: 2 givenname: Vincent surname: Dumas fullname: Dumas, Vincent organization: SVQV, Univ. Strasbourg, INRAE – sequence: 3 givenname: Gisèle surname: Butterlin fullname: Butterlin, Gisèle organization: SVQV, Univ. Strasbourg, INRAE – sequence: 4 givenname: Nathalie surname: Jaegli fullname: Jaegli, Nathalie organization: SVQV, Univ. Strasbourg, INRAE – sequence: 5 givenname: Camille surname: Rustenholz fullname: Rustenholz, Camille organization: SVQV, Univ. Strasbourg, INRAE – sequence: 6 givenname: Aurélie surname: Chauveau fullname: Chauveau, Aurélie organization: EPGV, INRAE, Univ. Paris-Saclay – sequence: 7 givenname: Aurélie surname: Bérard fullname: Bérard, Aurélie organization: EPGV, INRAE, Univ. Paris-Saclay – sequence: 8 givenname: Marie Christine surname: Le Paslier fullname: Le Paslier, Marie Christine organization: EPGV, INRAE, Univ. Paris-Saclay – sequence: 9 givenname: Isabelle surname: Gaillard fullname: Gaillard, Isabelle organization: BPMP, Univ. Montpellier, CNRS, INRAE, SupAgro – sequence: 10 givenname: Didier surname: Merdinoglu fullname: Merdinoglu, Didier organization: SVQV, Univ. Strasbourg, INRAE |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31932953$$D View this record in MEDLINE/PubMed https://hal.science/hal-02465402$$DView record in HAL |
BookMark | eNqFkstqHDEQRZvgEI-d_EAWQZBNvGin9OrH0pjENgwE8lgLtbp6LNMjTSS1k_n7qD2OzZjgoIWgOPeqVHWPigPnHRbFWwqnFKD-GAEoYyXQtgQumSjbF8WCCs5KxgQ7KBYAAkpZS3ZYHMV4AwBMAn9VHHLactZKvijCBTpM1pBbHaxO1rtI_EC0sb1NW2IdWQW9QdJhCBYj0QGJ8S4FP47Yk25L0jVmLGHYjHqbufQL0REfVtpl29koq1xPNj7pGO20fl28HPQY8c39fVz8-Pzp-_llufxycXV-tiyNFDyVFTXIazCmMU1vEKgQbVUJQ1F3vGcNNUOHAwNaiao2iL3oZEWbHnpoupYhPy5Odr7XelSbYNc6bJXXVl2eLdVcAyYqKYDd0sx-2LGb4H9OGJNa22hwHLVDP0XFpKQtZbSG_6OcN9DWshEZff8EvfFTcPnTmZKiZXXD4ZFa6RGVdYNPQZvZVJ1VNC-sZrLN1Ok_qHx6XNu8ERxsru8JTvYE89bwd1rpKUZ19e3rPvvuvtGpW2P_MK2_OckA2wEm-BgDDg8IBTWHUe3CqHIY1V0Y1ezaPBEZm-4yllu34_NSvpPG_I5bYXic3DOqP3qM72E |
CitedBy_id | crossref_primary_10_1016_j_foodres_2020_109946 crossref_primary_10_3390_plants10030551 crossref_primary_10_1016_j_plantsci_2022_111539 crossref_primary_10_3389_fpls_2021_633846 crossref_primary_10_1016_j_scienta_2024_113015 crossref_primary_10_1016_j_pmpp_2024_102318 crossref_primary_10_1186_s12870_021_03266_1 crossref_primary_10_3389_fpls_2020_01175 crossref_primary_10_3390_agronomy13102530 crossref_primary_10_3390_plants14010104 crossref_primary_10_1051_bioconf_20236802005 crossref_primary_10_1016_j_atech_2022_100088 crossref_primary_10_3390_horticulturae8080679 crossref_primary_10_1007_s00122_022_04225_6 crossref_primary_10_1007_s00217_022_03961_9 crossref_primary_10_3390_ijms221910398 crossref_primary_10_1111_ajgw_12497 crossref_primary_10_3390_polym17060750 crossref_primary_10_1093_hr_uhad151 crossref_primary_10_3390_plants11050696 crossref_primary_10_1007_s11356_021_15599_3 crossref_primary_10_1093_hr_uhae225 crossref_primary_10_3389_fpls_2021_643024 crossref_primary_10_1093_g3journal_jkad067 crossref_primary_10_1093_hr_uhac009 crossref_primary_10_1016_j_foodchem_2024_142432 |
Cites_doi | 10.3835/plantgenome2015.03.0016 10.1093/jxb/ert035 10.3389/fpls.2017.01629 10.1007/s00122-008-0919-8 10.1186/1471-2229-12-148 10.1007/s10681-012-0622-3 10.1111/nph.14139 10.1093/jxb/eru343 10.3389/fpls.2017.00053 10.1111/j.1438-8677.2010.00353.x 10.5344/ajev.1988.39.1.71 10.1111/tpj.12092 10.1007/s00425-013-1888-y 10.1016/j.jplph.2014.01.009 10.1016/j.phytochem.2009.08.006 10.1104/pp.104.058453 10.1021/je010105x 10.1111/j.1755-0238.2003.tb00265.x 10.1186/s12870-015-0588-0 10.1016/j.foodres.2010.05.001 10.3354/cr01094 10.1186/s12870-015-0428-2 10.3354/cr00850 10.5344/ajev.1971.22.2.71 10.1016/S0981-9428(98)80078-8 10.1016/j.scienta.2014.04.016 10.1007/s00122-011-1734-1 10.1111/j.1755-0238.2012.00189.x 10.1074/jbc.RA117.000851 10.21273/HORTSCI.43.3.957 10.1111/nph.15604 10.4238/2013.April.2.11 10.1111/nph.14615 10.1007/s10681-016-1737-8 10.1007/s00484-013-0724-1 10.1371/journal.pone.0192540 10.21273/JASHS.96.3.372 10.1093/bioinformatics/btg112 10.1371/journal.pone.0149560 10.1007/s00425-013-2004-z 10.1111/j.1755-0238.2012.00194.x 10.1007/BF00022454 10.1007/s00484-013-0715-2 10.1016/j.plaphy.2017.10.008 10.1186/1471-2229-9-145 10.1111/ajgw.12051 10.1017/S1931436100001565 10.1081/PLN-120015538 10.1051/agro:2004057 10.3390/ijms20030715 10.1111/j.1755-0238.2004.tb00016.x 10.1186/s12870-016-0850-0 10.1111/tpj.13957 10.1073/pnas.0510864103 10.1016/j.scienta.2014.07.039 10.1016/j.gdata.2017.09.002 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 COPYRIGHT 2020 Springer Theoretical and Applied Genetics is a copyright of Springer, (2020). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Theoretical and Applied Genetics is a copyright of Springer, (2020). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 1XC |
DOI | 10.1007/s00122-019-03524-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1432-2242 |
EndPage | 1008 |
ExternalDocumentID | oai_HAL_hal_02465402v1 A615037259 31932953 10_1007_s00122_019_03524_9 |
Genre | Journal Article |
GeographicLocations | France United States Israel |
GeographicLocations_xml | – name: Israel – name: France – name: United States |
GrantInformation_xml | – fundername: FranceAgrimer funderid: http://dx.doi.org/10.13039/501100003199 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z83 Z85 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7SS 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c543t-61ce370cc8c8dce01449664c1eab3d281cfbef2016467ceed4b5618d0d08b92e3 |
IEDL.DBID | U2A |
ISSN | 0040-5752 1432-2242 |
IngestDate | Fri Jun 13 07:01:52 EDT 2025 Fri Jul 11 04:19:08 EDT 2025 Fri Jul 11 12:32:43 EDT 2025 Fri Jul 25 10:26:23 EDT 2025 Tue Jun 17 21:27:43 EDT 2025 Tue Jun 10 20:26:23 EDT 2025 Fri Jun 27 03:38:47 EDT 2025 Mon Jul 21 06:03:53 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 04:36:22 EDT 2025 Fri Feb 21 02:35:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | amélioration de la vigne acidité du vin adaptation au changement climatique réchauffement climatique baie de raisin |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-61ce370cc8c8dce01449664c1eab3d281cfbef2016467ceed4b5618d0d08b92e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2712-1892 0000-0001-8568-0495 0000-0001-5355-3408 0000-0002-9163-6631 0000-0001-6089-3048 0000-0002-7993-4046 |
PMID | 31932953 |
PQID | 2354927830 |
PQPubID | 54040 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02465402v1 proquest_miscellaneous_2551912170 proquest_miscellaneous_2338097584 proquest_journals_2354927830 gale_infotracmisc_A615037259 gale_infotracacademiconefile_A615037259 gale_incontextgauss_ISR_A615037259 pubmed_primary_31932953 crossref_primary_10_1007_s00122_019_03524_9 crossref_citationtrail_10_1007_s00122_019_03524_9 springer_journals_10_1007_s00122_019_03524_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Plant Breeding Research |
PublicationTitle | Theoretical and applied genetics |
PublicationTitleAbbrev | Theor Appl Genet |
PublicationTitleAlternate | Theor Appl Genet |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
References | Barnuud, Zerihun, Gibberd, Bates (CR6) 2014; 58 Sharma, Dreyer, Kochian, Pineros (CR60) 2016; 7 Hurth, Suh, Kretzschmar, Geis, Bregante, Gambale, Martinoia, Neuhaus (CR37) 2005; 137 Keller, Shrestha (CR41) 2014; 239 Ojeda, Rousseau, Escudier (CR54) 2011; 128 Houel, Chatbanyong, Doligez, Rienth, Foria, Luchaire, Roux, Adiveze, Lopez, Farnos, Pellegrino, This, Romieu, Torregrosa (CR35) 2015; 15 Shiraishi (CR61) 1995; 81 Boulton (CR10) 1980; 19 Duchêne, Dumas, Jaegli, Merdinoglu (CR29) 2012; 18 Ban, Mitani, Sato, Kono, Hayashi (CR5) 2016; 211 Voelker, Gomez-Porras, Becker, Hamamoto, Uozumi, Gambale, Mueller-Roeber, Czempinski, Dreyer (CR69) 2010; 12 Anschutz, Becker, Shabala (CR3) 2014; 171 Lobit, Soing, Génard, Habib (CR47) 2002; 25 Duchêne, Dumas, Jaegli, Merdinoglu (CR30) 2014; 20 Viana, Riaz, Walker (CR68) 2013; 12 Chen, Wang, Fang, Liang, Li, Wu (CR14) 2015; 15 Ribéreau-Gayon, Dubourdieu, Donèche, Lonvaud (CR56) 2006 Arrobas, Ferreira, Freitas, Verdial, Rodrigues (CR4) 2014; 172 Kliewer (CR42) 1971; 96 DeBolt, Ristic, Iland, Ford (CR23) 2008; 43 Hale (CR34) 1977; 16 Palliotti, Tombesi, Silvestroni, Lanari, Gatti, Poni (CR55) 2014; 178 Wang, Fang, Xin, Wang, Li (CR71) 2012; 12 Kodur, Tisdall, Clingeleffer, Walker (CR43) 2013; 52 Mpelasoka, Schachtman, Treeby, Thomas (CR51) 2003; 9 Dai, Wu, Baldazzi, van Leeuwen, Bertin, Gautier, Wu, Duchêne, Gomès, Delrot, Lescourret, Génard (CR19) 2016; 7 Terrier, Deguilloux, Sauvage, Martinoia, Romieu (CR66) 1998; 36 Nieves-Cordones, Andrianteranagna, Cuellar, Cherel, Gibrat, Boeglin, Moreau, Paris, Verdeil, Zimmermann, Gaillard (CR53) 2019; 222 CR45 Ma, Liao, Zheng, Chen, Wu, Ogutu, Li, Korban, Han (CR48) 2015 Mira de Orduña (CR50) 2010; 43 DeBolt, Hardie, Tyerman, Ford (CR21) 2004; 10 Canaguier, Grimplet, Di Gaspero, Scalabrin, Duchêne, Choisne, Mohellibi, Guichard, Rombauts, Le Clainche, Bérard, Chauveau, Bounon, Rustenholz, Morgante, Le Paslier, Brunel, Adam-Blondon (CR13) 2017; 14 Iland, Coombe (CR38) 1988; 39 Huglin, Schneider (CR36) 1998 Broman, Wu, Sen, Churchill (CR11) 2003; 19 Duchêne, Butterlin, Claudel, Dumas, Jaegli, Merdinoglu (CR25) 2009; 118 Ilc, Halter, Miesch, Lauvoisard, Kriegshauser, Ilg, Baltenweck, Hugueney, Werck-Reichhart, Duchêne, Navrot (CR39) 2017; 213 Laucou, Launay, Bacilieri, Lacombe, Adam-Blondon, Berard, Chauveau, de Andres, Hausmann, Ibanez, Le Paslier, Maghradze, Martinez-Zapater, Maul, Ponnaiah, Topfer, Peros, Boursiquot (CR44) 2018; 13 DeBolt, Cook, Ford (CR22) 2006; 103 Neethling, Barbeau, Bonnefoy, Quenol (CR52) 2012; 53 Core Team (CR17) 2016 Sweetman, Deluc, Cramer, Ford, Soole (CR64) 2009; 70 Barnuud, Zerihun, Mpelasoka, Gibberd, Bates (CR7) 2014; 58 Cherel, Gaillard (CR15) 2019; 20 Yang, Fresnedo-Ramirez, Sun, Manns, Sacks, Mansfield, Luby, Londo, Reisch, Cadle-Davidson, Fennell (CR72) 2016; 11 Sousa, Lopes (CR62) 2001; 46 Jia, Shen, Wang, Wu, Xu, Zhang, Han (CR40) 2018; 95 Cuellar, Azeem, Andrianteranagna, Pascaud, Verdeil, Sentenac, Zimmermann, Gaillard (CR18) 2013; 73 Alston, Fuller, Lapsley, Soleas (CR1) 2011; 6 Lecourieux, Kappel, Pieri, Charon, Pillet, Hilbert, Renaud, Gomes, Delrot, Lecourieux (CR46) 2017; 8 Ruffner (CR59) 1982; 21 Spring, Verdenal, Zufferey, Gindro, Viret (CR63) 2012; 44 Walker, Blackmore (CR70) 2012; 18 Duchêne, Schneider (CR24) 2005; 25 Etienne, Genard, Lobit, Mbeguie, Bugaud (CR31) 2013; 64 Bayo-Canha, Fernandez-Fernandez, Martinez-Cutillas, Ruiz-Garcia (CR9) 2012; 186 Duchêne, Butterlin, Dumas, Merdinoglu (CR28) 2012; 124 CR27 De Angeli, Baetz, Francisco, Zhang, Chaves, Regalado (CR20) 2013; 238 Rienth, Torregrosa, Sarah, Ardisson, Brillouet, Romieu (CR57) 2016; 16 CR67 Amato, Cavallini, Zenoni, Finezzo, Begheldo, Ruperti, Tornielli (CR2) 2016; 7 Bauchet, Grenier, Samson, Segura, Kende, Beekwilder, Cankar, Gallois, Gricourt, Bonnet, Baxter, Grivet, Causse (CR8) 2017; 215 Sweetman, Sadras, Hancock, Soole, Ford (CR65) 2014; 65 Duchêne, Huard, Dumas, Schneider, Merdinoglu (CR26) 2010; 41 Rogiers, Coetzee, Walker, Deloire, Tyerman (CR58) 2017; 8 Frei, Eisenach, Martinoia, Hussein, Chen, Arrivault, Neuhaus (CR33) 2018; 293 Etourneaud, Loue (CR32) 1984; 101 Coetzee, Walker, Deloire, Barril, Clarke, Rogiers (CR16) 2017; 120 Buttrose, Hale, Kliewer (CR12) 1971; 22 Melino, Soole, Ford (CR49) 2009; 9 P Sousa (3524_CR62) 2001; 46 F Lecourieux (3524_CR46) 2017; 8 C Sweetman (3524_CR64) 2009; 70 M Rienth (3524_CR57) 2016; 16 MS Buttrose (3524_CR12) 1971; 22 A Bayo-Canha (3524_CR9) 2012; 186 E Duchêne (3524_CR24) 2005; 25 S Kodur (3524_CR43) 2013; 52 ZA Coetzee (3524_CR16) 2017; 120 F Etourneaud (3524_CR32) 1984; 101 C Houel (3524_CR35) 2015; 15 M Keller (3524_CR41) 2014; 239 V Laucou (3524_CR44) 2018; 13 A Amato (3524_CR2) 2016; 7 A Canaguier (3524_CR13) 2017; 14 J Chen (3524_CR14) 2015; 15 T Ilc (3524_CR39) 2017; 213 Y Ban (3524_CR5) 2016; 211 NN Barnuud (3524_CR6) 2014; 58 3524_CR45 U Anschutz (3524_CR3) 2014; 171 P Huglin (3524_CR36) 1998 S DeBolt (3524_CR22) 2006; 103 N Terrier (3524_CR66) 1998; 36 E Neethling (3524_CR52) 2012; 53 MA Hurth (3524_CR37) 2005; 137 AP Viana (3524_CR68) 2013; 12 G Bauchet (3524_CR8) 2017; 215 E Duchêne (3524_CR26) 2010; 41 B Ma (3524_CR48) 2015 NN Barnuud (3524_CR7) 2014; 58 R Core Team (3524_CR17) 2016 E Duchêne (3524_CR29) 2012; 18 CR Hale (3524_CR34) 1977; 16 JL Spring (3524_CR63) 2012; 44 R Mira de Orduña (3524_CR50) 2010; 43 A Palliotti (3524_CR55) 2014; 178 T Sharma (3524_CR60) 2016; 7 DJ Jia (3524_CR40) 2018; 95 C Voelker (3524_CR69) 2010; 12 M Nieves-Cordones (3524_CR53) 2019; 222 A Etienne (3524_CR31) 2013; 64 P Ribéreau-Gayon (3524_CR56) 2006 E Duchêne (3524_CR25) 2009; 118 VJ Melino (3524_CR49) 2009; 9 JM Alston (3524_CR1) 2011; 6 BS Mpelasoka (3524_CR51) 2003; 9 M Arrobas (3524_CR4) 2014; 172 HP Ruffner (3524_CR59) 1982; 21 3524_CR27 B Frei (3524_CR33) 2018; 293 R Boulton (3524_CR10) 1980; 19 3524_CR67 I Cherel (3524_CR15) 2019; 20 E Duchêne (3524_CR30) 2014; 20 N Wang (3524_CR71) 2012; 12 S DeBolt (3524_CR21) 2004; 10 H Ojeda (3524_CR54) 2011; 128 A De Angeli (3524_CR20) 2013; 238 PG Iland (3524_CR38) 1988; 39 SY Rogiers (3524_CR58) 2017; 8 S Yang (3524_CR72) 2016; 11 S DeBolt (3524_CR23) 2008; 43 C Sweetman (3524_CR65) 2014; 65 Z Dai (3524_CR19) 2016; 7 P Lobit (3524_CR47) 2002; 25 WM Kliewer (3524_CR42) 1971; 96 M Shiraishi (3524_CR61) 1995; 81 KW Broman (3524_CR11) 2003; 19 RR Walker (3524_CR70) 2012; 18 T Cuellar (3524_CR18) 2013; 73 E Duchêne (3524_CR28) 2012; 124 |
References_xml | – ident: CR45 – volume: 43 start-page: 957 year: 2008 end-page: 961 ident: CR23 article-title: Altered light interception reduces grape berry weight and modulates organic acid biosynthesis during development publication-title: HortScience – volume: 137 start-page: 901 year: 2005 end-page: 910 ident: CR37 article-title: Impaired pH homeostasis in arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast publication-title: Plant Physiol – volume: 96 start-page: 372 year: 1971 end-page: 377 ident: CR42 article-title: Effect of day temperature and light intensity on concentration of malic and tartaric acids in grapes publication-title: J Am Soc Hortic Sci – year: 1998 ident: CR36 publication-title: Biologie et écologie de la vigne – volume: 7 start-page: 1979 year: 2016 ident: CR2 article-title: A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis publication-title: Front Plant Sci – volume: 18 start-page: 319 year: 2012 end-page: 328 ident: CR29 article-title: Deciphering the ability of different grapevine genotypes to accumulate sugar in berries publication-title: Aust J Grape Wine Res – volume: 20 start-page: 91 year: 2014 end-page: 99 ident: CR30 article-title: Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny publication-title: Aust J Grape Wine Res – volume: 186 start-page: 393 year: 2012 end-page: 407 ident: CR9 article-title: Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny publication-title: Euphytica – volume: 171 start-page: 670 year: 2014 end-page: 687 ident: CR3 article-title: Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment publication-title: J Plant Physiol – volume: 15 start-page: 28 year: 2015 ident: CR14 article-title: Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries publication-title: BMC Plant Biol – volume: 95 start-page: 427 year: 2018 end-page: 443 ident: CR40 article-title: Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII publication-title: Plant J – volume: 13 start-page: e0192540 year: 2018 ident: CR44 article-title: Extended diversity analysis of cultivated grapevine with 10 K genome-wide SNPs publication-title: PLoS ONE – volume: 16 start-page: 164 year: 2016 ident: CR57 article-title: Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome publication-title: BMC Plant Biol – volume: 22 start-page: 71 year: 1971 end-page: 75 ident: CR12 article-title: Effect of temperature on the composition of “Cabernet-Sauvignon” berries publication-title: Am J Enol Vitic – volume: 43 start-page: 1844 year: 2010 end-page: 1855 ident: CR50 article-title: Climate change associated effects on grape and wine quality and production publication-title: Food Res Int – volume: 6 start-page: 135 year: 2011 end-page: 159 ident: CR1 article-title: Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes publication-title: J Wine Econ – volume: 7 start-page: 649 year: 2016 ident: CR19 article-title: Inter-species comparative analysis of components of soluble sugar concentration in fleshy fruits publication-title: Front Plant Sci – volume: 178 start-page: 43 year: 2014 end-page: 54 ident: CR55 article-title: Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: a review publication-title: Sci Hortic – volume: 120 start-page: 252 year: 2017 end-page: 260 ident: CR16 article-title: Impact of reduced atmospheric CO and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries ( L.) publication-title: Plant Physiol Biochem – volume: 36 start-page: 367 year: 1998 end-page: 377 ident: CR66 article-title: Proton pumps and anion transport in : the inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast publication-title: Plant Physiol Biochem – volume: 12 start-page: 951 year: 2013 end-page: 964 ident: CR68 article-title: Genetic dissection of agronomic traits within a segregating population of breeding table grapes publication-title: Genet Mol Res – volume: 65 start-page: 5975 year: 2014 end-page: 5988 ident: CR65 article-title: Metabolic effects of elevated temperature on organic acid degradation in ripening fruit publication-title: J Exp Bot – volume: 211 start-page: 295 year: 2016 end-page: 310 ident: CR5 article-title: Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape ( × ) publication-title: Euphytica – volume: 103 start-page: 5608 year: 2006 end-page: 5613 ident: CR22 article-title: L-tartaric acid synthesis from vitamin C in higher plants publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 1629 year: 2017 ident: CR58 article-title: Potassium in the grape ( L.) berry: transport and function publication-title: Front Plant Sci – volume: 44 start-page: 298 year: 2012 end-page: 307 ident: CR63 article-title: Influence du porte-greffe sur le comportement du cépage Cornalin dans le Valais central publication-title: Revue Suisse Vitic Arboric Hortic – ident: CR67 – volume: 14 start-page: 56 year: 2017 end-page: 62 ident: CR13 article-title: A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3) publication-title: Genom Data – volume: 70 start-page: 1329 year: 2009 end-page: 1344 ident: CR64 article-title: Regulation of malate metabolism in grape berry and other developing fruits publication-title: Phytochem – volume: 12 start-page: 56 issue: Suppl 1 year: 2010 end-page: 63 ident: CR69 article-title: Roles of tandem-pore K channels in plants—a puzzle still to be solved publication-title: Plant Biol – volume: 128 start-page: 391 year: 2011 end-page: 397 ident: CR54 article-title: Control of acidity and pH in musts and wines through two accessible short-term innovations in vineyards and wineries: minimal pruning and electrodialysis with bipolar membranes publication-title: Prog Agric Vitic – volume: 21 start-page: 247 year: 1982 end-page: 259 ident: CR59 article-title: Metabolism of tartaric and malic acids in —a review. A publication-title: Vitis – volume: 10 start-page: 134 year: 2004 end-page: 142 ident: CR21 article-title: Composition and synthesis of raphide crystals and druse crystals in berries of L. cv. Cabernet Sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies publication-title: Aust J Grape Wine Res – volume: 172 start-page: 191 year: 2014 end-page: 198 ident: CR4 article-title: Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts publication-title: Sci Hortic – volume: 8 start-page: 53 year: 2017 ident: CR46 article-title: Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries publication-title: Front Plant Sci – volume: 118 start-page: 541 year: 2009 end-page: 552 ident: CR25 article-title: A grapevine ( L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content publication-title: Theor Appl Genet – volume: 81 start-page: 13 year: 1995 end-page: 20 ident: CR61 article-title: Proposed descriptors for organic acids to evaluate grape germplasm publication-title: Euphytica – volume: 15 start-page: 205 year: 2015 ident: CR35 article-title: Identification of stable QTLs for vegetative and reproductive traits in the microvine ( L.) using the 18 K Infinium chip publication-title: BMC Plant Biol – volume: 9 start-page: 145 year: 2009 ident: CR49 article-title: Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries publication-title: BMC Plant Biol – volume: 39 start-page: 71 year: 1988 end-page: 76 ident: CR38 article-title: Malate, tartrate, potassium, and sodium in flesh and skin of Shiraz grapes during ripening—concentration and compartmentation publication-title: Am J Enol Vitic – year: 2016 ident: CR17 publication-title: R: a language and environment for statistical computing – volume: 19 start-page: 113 year: 1980 end-page: 120 ident: CR10 article-title: The relationships between total acidity, titratable acidity and pH in grape tissue publication-title: Vitis – volume: 239 start-page: 633 year: 2014 end-page: 642 ident: CR41 article-title: Solute accumulation differs in the vacuoles and apoplast of ripening grape berries publication-title: Planta – volume: 73 start-page: 1006 year: 2013 end-page: 1018 ident: CR18 article-title: Potassium transport in developing fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells publication-title: Plant J – volume: 18 start-page: 183 year: 2012 end-page: 193 ident: CR70 article-title: Potassium concentration and pH inter-relationships in grape juice and wine of Chardonnay and Shiraz from a range of rootstocks in different environments publication-title: Aust J Grape Wine Res – volume: 215 start-page: 624 year: 2017 end-page: 641 ident: CR8 article-title: Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement publication-title: New Phytol – volume: 64 start-page: 1451 year: 2013 end-page: 1469 ident: CR31 article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells publication-title: J Exp Bot – volume: 9 start-page: 154 year: 2003 end-page: 168 ident: CR51 article-title: A review of potassium nutrition in grapevines with special emphasis on berry accumulation publication-title: Aust J Grape Wine Res – year: 2006 ident: CR56 publication-title: Handbook of enology volume 1. The microbiology of wine and vinifications – volume: 58 start-page: 1279 year: 2014 end-page: 1293 ident: CR7 article-title: Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions publication-title: Int J Biometeorol – volume: 101 start-page: 561 year: 1984 end-page: 568 ident: CR32 article-title: Le diagnostic pétiolaire de la vigne en relation avec l’interprétation de l’analyse de sol pour le potassium et le magnesium. [Petiolar diagnosis of the vine in relation with the interpretation of the analysis of soil for potassium and magnesium] publication-title: Prog Agric Vitic – volume: 46 start-page: 1362 year: 2001 end-page: 1364 ident: CR62 article-title: Solubilities of potassium hydrogen tartrate and potassium chloride in water + ethanol mixtures publication-title: J Chem Eng Data – volume: 213 start-page: 264 year: 2017 end-page: 274 ident: CR39 article-title: A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine publication-title: New Phytol – volume: 41 start-page: 193 year: 2010 end-page: 204 ident: CR26 article-title: The challenge of adapting grapevine varieties to climate change publication-title: Clim Res – ident: CR27 – volume: 53 start-page: 89 year: 2012 end-page: 101 ident: CR52 article-title: Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley publication-title: Clim Res – volume: 124 start-page: 623 year: 2012 end-page: 635 ident: CR28 article-title: Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages publication-title: Theor Appl Genet – volume: 7 start-page: 1488 year: 2016 ident: CR60 article-title: The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security publication-title: Front Plant Sci – volume: 25 start-page: 93 year: 2005 end-page: 99 ident: CR24 article-title: Grapevine and climatic changes: a glance at the situation in Alsace publication-title: Agron Sustain Dev – volume: 293 start-page: 4180 year: 2018 end-page: 4190 ident: CR33 article-title: Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis publication-title: J Biol Chem – volume: 20 start-page: 715 year: 2019 ident: CR15 article-title: The complex fine-tuning of K fluxes in plants in relation to osmotic and ionic abiotic stresses publication-title: Int J Mol Sci – volume: 25 start-page: 2775 year: 2002 end-page: 2792 ident: CR47 article-title: Theoretical analysis of relationships between composition, pH, and titratable acidity of peach fruit publication-title: J Plant Nutr – year: 2015 ident: CR48 article-title: Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple publication-title: Plant Genome doi: 10.3835/plantgenome2015.03.0016 – volume: 16 start-page: 9 year: 1977 end-page: 19 ident: CR34 article-title: Relation between potassium and the malate and tartrate contents of grape berries publication-title: Vitis – volume: 222 start-page: 286 year: 2019 end-page: 300 ident: CR53 article-title: Characterization of the grapevine Shaker K channel VvK3.1 supports its function in massive potassium fluxes necessary for berry potassium loading and pulvinus-actuated leaf movements publication-title: New Phytol – volume: 19 start-page: 889 year: 2003 end-page: 890 ident: CR11 article-title: R/qtl: QTL mapping in experimental crosses publication-title: Bioinformatics – volume: 12 start-page: 148 year: 2012 ident: CR71 article-title: Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing publication-title: BMC Plant Biol – volume: 238 start-page: 283 year: 2013 end-page: 291 ident: CR20 article-title: The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of publication-title: Planta – volume: 58 start-page: 1207 year: 2014 end-page: 1223 ident: CR6 article-title: Berry composition and climate: responses and empirical models publication-title: Int J Biometeorol – volume: 11 start-page: e0149560 year: 2016 ident: CR72 article-title: Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family publication-title: PLoS ONE – volume: 52 start-page: 125 year: 2013 end-page: 128 ident: CR43 article-title: Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks ( ) publication-title: Vitis – volume: 64 start-page: 1451 year: 2013 ident: 3524_CR31 publication-title: J Exp Bot doi: 10.1093/jxb/ert035 – volume: 8 start-page: 1629 year: 2017 ident: 3524_CR58 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01629 – volume: 118 start-page: 541 year: 2009 ident: 3524_CR25 publication-title: Theor Appl Genet doi: 10.1007/s00122-008-0919-8 – volume: 12 start-page: 148 year: 2012 ident: 3524_CR71 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-12-148 – volume: 7 start-page: 649 year: 2016 ident: 3524_CR19 publication-title: Front Plant Sci – volume: 186 start-page: 393 year: 2012 ident: 3524_CR9 publication-title: Euphytica doi: 10.1007/s10681-012-0622-3 – volume: 213 start-page: 264 year: 2017 ident: 3524_CR39 publication-title: New Phytol doi: 10.1111/nph.14139 – volume: 65 start-page: 5975 year: 2014 ident: 3524_CR65 publication-title: J Exp Bot doi: 10.1093/jxb/eru343 – volume: 8 start-page: 53 year: 2017 ident: 3524_CR46 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00053 – volume: 12 start-page: 56 issue: Suppl 1 year: 2010 ident: 3524_CR69 publication-title: Plant Biol doi: 10.1111/j.1438-8677.2010.00353.x – volume: 39 start-page: 71 year: 1988 ident: 3524_CR38 publication-title: Am J Enol Vitic doi: 10.5344/ajev.1988.39.1.71 – volume: 73 start-page: 1006 year: 2013 ident: 3524_CR18 publication-title: Plant J doi: 10.1111/tpj.12092 – volume: 7 start-page: 1979 year: 2016 ident: 3524_CR2 publication-title: Front Plant Sci – volume: 238 start-page: 283 year: 2013 ident: 3524_CR20 publication-title: Planta doi: 10.1007/s00425-013-1888-y – ident: 3524_CR45 – volume: 171 start-page: 670 year: 2014 ident: 3524_CR3 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2014.01.009 – volume: 70 start-page: 1329 year: 2009 ident: 3524_CR64 publication-title: Phytochem doi: 10.1016/j.phytochem.2009.08.006 – volume: 137 start-page: 901 year: 2005 ident: 3524_CR37 publication-title: Plant Physiol doi: 10.1104/pp.104.058453 – volume: 46 start-page: 1362 year: 2001 ident: 3524_CR62 publication-title: J Chem Eng Data doi: 10.1021/je010105x – volume: 9 start-page: 154 year: 2003 ident: 3524_CR51 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2003.tb00265.x – volume: 15 start-page: 205 year: 2015 ident: 3524_CR35 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0588-0 – volume: 43 start-page: 1844 year: 2010 ident: 3524_CR50 publication-title: Food Res Int doi: 10.1016/j.foodres.2010.05.001 – volume: 53 start-page: 89 year: 2012 ident: 3524_CR52 publication-title: Clim Res doi: 10.3354/cr01094 – volume-title: R: a language and environment for statistical computing year: 2016 ident: 3524_CR17 – volume: 128 start-page: 391 year: 2011 ident: 3524_CR54 publication-title: Prog Agric Vitic – volume: 15 start-page: 28 year: 2015 ident: 3524_CR14 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0428-2 – volume: 52 start-page: 125 year: 2013 ident: 3524_CR43 publication-title: Vitis – volume: 41 start-page: 193 year: 2010 ident: 3524_CR26 publication-title: Clim Res doi: 10.3354/cr00850 – volume: 22 start-page: 71 year: 1971 ident: 3524_CR12 publication-title: Am J Enol Vitic doi: 10.5344/ajev.1971.22.2.71 – volume: 19 start-page: 113 year: 1980 ident: 3524_CR10 publication-title: Vitis – volume: 16 start-page: 9 year: 1977 ident: 3524_CR34 publication-title: Vitis – volume: 36 start-page: 367 year: 1998 ident: 3524_CR66 publication-title: Plant Physiol Biochem doi: 10.1016/S0981-9428(98)80078-8 – volume: 172 start-page: 191 year: 2014 ident: 3524_CR4 publication-title: Sci Hortic doi: 10.1016/j.scienta.2014.04.016 – volume: 124 start-page: 623 year: 2012 ident: 3524_CR28 publication-title: Theor Appl Genet doi: 10.1007/s00122-011-1734-1 – volume: 18 start-page: 183 year: 2012 ident: 3524_CR70 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2012.00189.x – volume: 293 start-page: 4180 year: 2018 ident: 3524_CR33 publication-title: J Biol Chem doi: 10.1074/jbc.RA117.000851 – volume: 7 start-page: 1488 year: 2016 ident: 3524_CR60 publication-title: Front Plant Sci – volume: 43 start-page: 957 year: 2008 ident: 3524_CR23 publication-title: HortScience doi: 10.21273/HORTSCI.43.3.957 – volume: 222 start-page: 286 year: 2019 ident: 3524_CR53 publication-title: New Phytol doi: 10.1111/nph.15604 – ident: 3524_CR67 – volume-title: Biologie et écologie de la vigne year: 1998 ident: 3524_CR36 – volume: 12 start-page: 951 year: 2013 ident: 3524_CR68 publication-title: Genet Mol Res doi: 10.4238/2013.April.2.11 – volume: 215 start-page: 624 year: 2017 ident: 3524_CR8 publication-title: New Phytol doi: 10.1111/nph.14615 – volume: 211 start-page: 295 year: 2016 ident: 3524_CR5 publication-title: Euphytica doi: 10.1007/s10681-016-1737-8 – volume: 58 start-page: 1279 year: 2014 ident: 3524_CR7 publication-title: Int J Biometeorol doi: 10.1007/s00484-013-0724-1 – volume: 13 start-page: e0192540 year: 2018 ident: 3524_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192540 – volume: 96 start-page: 372 year: 1971 ident: 3524_CR42 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.96.3.372 – volume: 19 start-page: 889 year: 2003 ident: 3524_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg112 – year: 2015 ident: 3524_CR48 publication-title: Plant Genome doi: 10.3835/plantgenome2015.03.0016 – volume: 11 start-page: e0149560 year: 2016 ident: 3524_CR72 publication-title: PLoS ONE doi: 10.1371/journal.pone.0149560 – volume: 44 start-page: 298 year: 2012 ident: 3524_CR63 publication-title: Revue Suisse Vitic Arboric Hortic – volume: 239 start-page: 633 year: 2014 ident: 3524_CR41 publication-title: Planta doi: 10.1007/s00425-013-2004-z – volume-title: Handbook of enology volume 1. The microbiology of wine and vinifications year: 2006 ident: 3524_CR56 – volume: 18 start-page: 319 year: 2012 ident: 3524_CR29 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2012.00194.x – volume: 21 start-page: 247 year: 1982 ident: 3524_CR59 publication-title: Vitis – volume: 81 start-page: 13 year: 1995 ident: 3524_CR61 publication-title: Euphytica doi: 10.1007/BF00022454 – volume: 58 start-page: 1207 year: 2014 ident: 3524_CR6 publication-title: Int J Biometeorol doi: 10.1007/s00484-013-0715-2 – volume: 120 start-page: 252 year: 2017 ident: 3524_CR16 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.10.008 – volume: 9 start-page: 145 year: 2009 ident: 3524_CR49 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-9-145 – volume: 101 start-page: 561 year: 1984 ident: 3524_CR32 publication-title: Prog Agric Vitic – volume: 20 start-page: 91 year: 2014 ident: 3524_CR30 publication-title: Aust J Grape Wine Res doi: 10.1111/ajgw.12051 – volume: 6 start-page: 135 year: 2011 ident: 3524_CR1 publication-title: J Wine Econ doi: 10.1017/S1931436100001565 – volume: 25 start-page: 2775 year: 2002 ident: 3524_CR47 publication-title: J Plant Nutr doi: 10.1081/PLN-120015538 – volume: 25 start-page: 93 year: 2005 ident: 3524_CR24 publication-title: Agron Sustain Dev doi: 10.1051/agro:2004057 – volume: 20 start-page: 715 year: 2019 ident: 3524_CR15 publication-title: Int J Mol Sci doi: 10.3390/ijms20030715 – volume: 10 start-page: 134 year: 2004 ident: 3524_CR21 publication-title: Aust J Grape Wine Res doi: 10.1111/j.1755-0238.2004.tb00016.x – volume: 16 start-page: 164 year: 2016 ident: 3524_CR57 publication-title: BMC Plant Biol doi: 10.1186/s12870-016-0850-0 – volume: 95 start-page: 427 year: 2018 ident: 3524_CR40 publication-title: Plant J doi: 10.1111/tpj.13957 – volume: 103 start-page: 5608 year: 2006 ident: 3524_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510864103 – volume: 178 start-page: 43 year: 2014 ident: 3524_CR55 publication-title: Sci Hortic doi: 10.1016/j.scienta.2014.07.039 – volume: 14 start-page: 56 year: 2017 ident: 3524_CR13 publication-title: Genom Data doi: 10.1016/j.gdata.2017.09.002 – ident: 3524_CR27 |
SSID | ssj0002503 |
Score | 2.4701731 |
Snippet | Key message
In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best... In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to... Key message Key message In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best... Key messageIn a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best... KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties... |
SourceID | hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 993 |
SubjectTerms | Acidity Acids Acids - metabolism Agriculture Alleles Biochemistry Biomedical and Life Sciences Biotechnology Biotechnology industry Chromosome Mapping Chromosomes Climate Change Climatic conditions Fruit - genetics Fruits Genes, Plant Genetic aspects Genetic crosses Genetic diversity Genetic Variation genomics Genotype Genotypes genotyping Global warming Grapes High temperature High-Throughput Nucleotide Sequencing Hot Temperature Hybridization Hydrogen-Ion Concentration Life Sciences Malates - metabolism Malic acid Oligonucleotide Array Sequence Analysis Organic acids Original Article pH effects pH stability Phenotype Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Potassium Potassium - metabolism progeny Quantitative genetics Quantitative Trait Loci quantitative traits Simple sequence repeats Single-nucleotide polymorphism Tartaric acid Vegetal Biology Vitis - genetics Vitis vinifera |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYEBJ7QDC-AgOZCYkHiJbYThM_oQoxFQQ8AJP6ZsVfo1JJuqad1P-eO8fNVE30tbm4Tu7i-935_DtC3oITkdWotKlkpkiF9SLVvpBpLQ2zJTel1JjQ__5jNLkQX6fFNCbculhWuV0Tw0JtW4M58jPGkUusrHj2cXGVYtco3F2NLTQOyF2kLkOrLqdDwIXufaiaA1jC4qGZcHQu7ClBIC1TZAQVqdxxTHF5PviD1ZG3oeetbdPgjc4fkgcRRtJxr_dH5I5rjsnR-HIZqTTcMbnXt5ncPCZL5JYGQXoNgXGfoaOtp7WZWcDgdNZQpK12VCNLo-tovXQ0lrDPnaV6QwEl0lkoT5zXGxpru2jfEcqEgeCuxtJFuwIwPlv_fUIuzj___jRJY6-F1BSCryCCNI6XmTGVqaxxGGdBICRM7mrNLaty47XzLNCRlehYhQbkVdnMZpWWzPGn5LBpG_ecUG_9SBuAZr52wliubc0FY07UWeG8yBKSb1-0MpGIHPthzNVAoRyUo0A5KihHyYS8H-5Z9DQce6VPUX8K-S0aLKC5rNddp778-qnGSIDPSwj6EvIuCvkW_t7U8TwCPARSYu1InuxIwgdodi6fgpkM00K-7sn4m8LfAACNABKz6xzG2FqRiqtEp25sOiFvhss4PFa-Na5dowyvMglRndgjA7BX5hBcwjjPegsdpsMRocuCJ-TD1mRvJvD_V_hi_3xfkvsMEw-hGO-EHK6Wa_cK0NlKvw6f4D9kdzJk priority: 102 providerName: ProQuest |
Title | Genetic variations of acidity in grape berries are controlled by the interplay between organic acids and potassium |
URI | https://link.springer.com/article/10.1007/s00122-019-03524-9 https://www.ncbi.nlm.nih.gov/pubmed/31932953 https://www.proquest.com/docview/2354927830 https://www.proquest.com/docview/2338097584 https://www.proquest.com/docview/2551912170 https://hal.science/hal-02465402 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELborpDggGB5FZbKrJA4QKTEdpr4mKKW8qrQQqVysuJHlkolWfWxUv89M4kTVC2sxClSM5k6Hsf-xv78mZBXMIjIdJjYQDITB8IWItBFLINcGmYTbhKpcUL_y2w4nYuPi3jhN4VtWrZ7uyRZ99TdZrd6FQhSXxmghqcIZI8cx5C7I5FrzrKu_4VBvePKARhhfqvM330cDEe-U-79RE7kdcB5bbG0HoMm98k9Dx5p1kT7AbnlyhNyN7tYewENd0JuN4dL7h-SNSpKgyG9gnS4mZejVUFzs7SAvOmypChW7ahGbUa3ofnaUU9cXzlL9Z4CNqTLmpS4yvfUM7pocw6UqR3BU6Wll9UWIPhy9-sRmU_G399NA3_CQmBiwbeQNxrHk9CY1KTWOMyuIP0RJnK55palkSm0K1gtQpbgcCo04K3UhjZMtWSOPyZHZVW6p4QWthhqA4CsyJ0wlmubc8GYE3kYu0KEfRK1Fa2Mlx_HUzBWqhNOroOjIDiqDo6SffKme-ayEd-40foM46dQ1aJE2sxFvtts1Idv5ypD2XueQKrXJ6-9UVHB35vc70KAl0AhrAPL0wNL-OzMwe0zaCZdsVCle5p9VvgbwJ4hAGF2FYGPthUp3zdsFOOoipekHOrkZXcb3SPfrXTVDm14GkrI5cQNNgB2ZQQpJfh50rTQrjgccbmMeZ-8bZvsnwL8uwqf_Z_5c3KH4fRDTck7JUfb9c69AIy21QPSSxbJgBxnk9Fohtf3Pz6N4Toaz76eD-oP9jec1zTM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQ8IBhfgQFmAvEwIlLbaeIHhCpgalm3B9ikvpnEdkalkpR-DPWf4m_kznEyVRN922tycZzc2fc7-_w7Ql6DE5FpNzGhZDoOhSlEmBexDDOpmUm4TmSOC_rHJ93-mfg6ikdb5G9zFgbTKps50U3UptK4Rv6eceQSS1IefZz-DrFqFO6uNiU0arM4sqs_ELLNPww-g37fMHb45fRTP_RVBUIdC76AWElbnkRapzo12mJEAZBf6I7Ncm5Y2tFFbgvmiLcSdCEiB4yRmshEaS6Z5dDuNrkBjjfCYC8ZtQEewok2Sw9gEPOHdNxRPbeHBYG7DJGBVIRyzRF6d7D9E7Mxr0LdK9u0zvsd3iN3PWylvdrO7pMtW-6SO73zmafusLvkZl3WcvWAzJDLGgTpBQTi9YogrQqa6bEBzE_HJUWabEtzZIW0c5rNLPUp8xNraL6igErp2KVDTrIV9blktK5ApV1D8FRp6LRaAPgfL389JGfXooVHZKesSvuE0MIU3VwDFCwyK7Thucm4YMyKLIptIaKAdJofrbQnPsf6GxPVUjY75ShQjnLKUTIgB-0z05r2Y6P0PupPIZ9GiQk759lyPleD799UDwn3eQJBZkDeeqGigtfrzJ9_gI9ACq41yb01SRjweu32PphJ2y3kB-_3hgqvAeDqAgRnFx1oo7Ei5WelubocQwF51d7G5jHTrrTVEmV4GkmIIsUGGYDZsgPBLLTzuLbQtjscIwIZ84C8a0z2sgP__4VPN_f3JbnVPz0equHg5OgZuc1w0cMlAu6RncVsaZ8DMlzkL9xwpOTHdY__fypUcA8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2TiB4QDC-CgPMBOIBoiW208QPCBW2qmWjmsYm7c0ktjMqlaT0Y6h_jV_HvYmTqZro216bG9fJvbbPca7PJeQNLCIy7kTGk0yHnjCZ8NIslF4iNTMR15FMcUP_27DTPxNfz8PzDfK3PguDaZX1nFhO1KbQuEe-xzhqiUUx9_cylxZxvN_7NPntYQUp_NJal9OoQuTQLv8AfZt9HOyDr98y1js4_dL3XIUBT4eCz4E3acsjX-tYx0ZbZBcA_4UObJJyw-JAZ6nNWCnCFeFyIlLAG7HxjR-nklkO7W6SrQhZUYtsfT4YHp806wCAiyZnD0ARc0d2yoN75RctoPHSQz1S4cmVZdEtDps_MTfzOvC99tG2XAt798k9B2Jpt4q6B2TD5tvkbvdi6oQ87Da5VRW5XD4kU1S2BkN6CbS82h-kRUYTPTLAAOgopyiabWmKGpF2RpOppS6BfmwNTZcUMCodlcmR42RJXWYZrepR6bIhuCs3dFLMgQqMFr8ekbMb8cNj0sqL3D4lNDNZJ9UADLPECm14ahIuGLMi8UObCb9NgvpFK-1k0LEax1g1As6lcxQ4R5XOUbJN3jf3TCoRkLXWu-g_heoaOcbpRbKYzdTg-4nqovw-j4Bytsk7Z5QV8Pc6cach4CFQkGvFcmfFEoa_Xrm8C2HSdAvVwvvdI4W_AfzqACBnlwG0UUeRcnPUTF2NqDZ53VzG5jHvLrfFAm147EvglGKNDYBuGQC1hXaeVBHadIcjP5Ahb5MPdchedeD_r_DZ-v6-Irdh7KujwfDwObnDcAekzArcIa35dGFfAEycpy_deKTkx01PAf8A_wx1qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+variations+of+acidity+in+grape+berries+are+controlled+by+the+interplay+between+organic+acids+and+potassium&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Duch%C3%AAne%2C+%C3%89ric&rft.au=Dumas%2C+Vincent&rft.au=Butterlin%2C+Gis%C3%A8le&rft.au=Jaegli%2C+Nathalie&rft.date=2020-03-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=133&rft.issue=3&rft.spage=993&rft_id=info:doi/10.1007%2Fs00122-019-03524-9&rft.externalDocID=A615037259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |