AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise
AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F. Hirshman 1 , Ingvar Ekberg 2 , Sven Fröberg 2 , Olle Ljungqvist 2 3 , Anders Thorell 2 and Laurie J. Goodyear 1 1 Research Division, Joslin Diabe...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 50; no. 5; pp. 921 - 927 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.05.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise
Nicolas Musi 1 ,
Nobuharu Fujii 1 ,
Michael F. Hirshman 1 ,
Ingvar Ekberg 2 ,
Sven Fröberg 2 ,
Olle Ljungqvist 2 3 ,
Anders Thorell 2 and
Laurie J. Goodyear 1
1 Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School,
Boston, Massachusetts
2 Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden
3 Department of Surgery, Huddinge University Hospital, Huddinge, Sweden
Abstract
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal
increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise
increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK).
If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven
subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum
workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise.
Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change
in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained
elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had
similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent
approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have
normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of
AMPK may be an attractive target for the treatment of type 2 diabetes.
Footnotes
Address correspondence and reprint requests to Laurie J. Goodyear, PhD, Research Division, Joslin Diabetes Center, One Joslin
Place, Boston, MA 02215. E-mail: Laurie.Goodyear{at}joslin.harvard.edu .
Received for publication 21 December 2000 and accepted in revised form 14 February 2001. Posted on the World Wide Web at www.diabetes.org/diabetes on 16 March 2001.
ACC, acetyl-CoA carboxylase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK, AMP-activated protein kinase; AMPKK,
AMPK kinase; DTT, dithiothreitol; FFA, free fatty acid; PI, phosphatidylinositol; PCR, polymerase chain reaction; RT, reverse
transcriptase; TBST, Tris-buffered saline with Tween; W max , maximum workload; ZMP, 5-aminoimidazole-4-carboxamide ribonucleotide. |
---|---|
AbstractList | Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total a mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F. Hirshman 1 , Ingvar Ekberg 2 , Sven Fröberg 2 , Olle Ljungqvist 2 3 , Anders Thorell 2 and Laurie J. Goodyear 1 1 Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 2 Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden 3 Department of Surgery, Huddinge University Hospital, Huddinge, Sweden Abstract Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. Footnotes Address correspondence and reprint requests to Laurie J. Goodyear, PhD, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. E-mail: Laurie.Goodyear{at}joslin.harvard.edu . Received for publication 21 December 2000 and accepted in revised form 14 February 2001. Posted on the World Wide Web at www.diabetes.org/diabetes on 16 March 2001. ACC, acetyl-CoA carboxylase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK, AMP-activated protein kinase; AMPKK, AMPK kinase; DTT, dithiothreitol; FFA, free fatty acid; PI, phosphatidylinositol; PCR, polymerase chain reaction; RT, reverse transcriptase; TBST, Tris-buffered saline with Tween; W max , maximum workload; ZMP, 5-aminoimidazole-4-carboxamide ribonucleotide. Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. |
Audience | Professional |
Author | Sven Fröberg Nobuharu Fujii Michael F. Hirshman Ingvar Ekberg Laurie J. Goodyear Anders Thorell Nicolas Musi Olle Ljungqvist |
Author_xml | – sequence: 1 givenname: Nicolas surname: Musi fullname: Musi, Nicolas organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts – sequence: 2 givenname: Nobuharu surname: Fujii fullname: Fujii, Nobuharu organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts – sequence: 3 givenname: Michael F. surname: Hirshman fullname: Hirshman, Michael F. organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts – sequence: 4 givenname: Ingvar surname: Ekberg fullname: Ekberg, Ingvar organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden – sequence: 5 givenname: Sven surname: Fröberg fullname: Fröberg, Sven organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden – sequence: 6 givenname: Olle surname: Ljungqvist fullname: Ljungqvist, Olle organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden, Department of Surgery, Huddinge University Hospital, Huddinge, Sweden – sequence: 7 givenname: Anders surname: Thorell fullname: Thorell, Anders organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden – sequence: 8 givenname: Laurie J. surname: Goodyear fullname: Goodyear, Laurie J. organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1049913$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11334434$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-64074$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:1942587$$DView record from Swedish Publication Index |
BookMark | eNp10ltv0zAUAGALDbGt8AN4QRZCCBApdmzn8li1A6Zt2iTG5c2ynZPWXRoX22Hbv8dTOyoNTVEUK_7OOb6cQ7TXux4QeknJOGes_NRYpSFCGAsyFuM6p0_QAa1ZnbG8_LWHDgiheUbLutxHhyEsCSFFep6hfUoZ45zxA3Q1ObvIJibaPypCgy-8i2B7fGJ7FQC_S7Mn7_FxwDuSZs-GYDrArsXfBr0EEwP-aeMCX96uAed4tl0Wng3e9nN8dAPe2ADP0dNWdQFebL8j9P3z0eX0a3Z6_uV4OjnNjOAsZlzVqqEKqkITXSqjaFMQAQXTeUtBVUWjWtPqikMuWq0brqFtG5WzgglQoNkIZZu84RrWg5Zrb1fK30qnrNz-ukojkKKuKC-S__ion9kfE-n8PL2DLDgpeeJvN3zt3e8BQpQrGwx0nerBDUGWpKK0oiTB1w_g0g2-T1uXOS14IfKS7orPVQfS9sb1EW6icV0Hc5DpYKbnclIRVueluOOvtjkHvYLm31rvbzSBN1ugglFd61Wfzn7nCK_rZEeo3DDjXQgeWmlsVNGm6l7ZLjl512LyvsWkIFLI1GIpkj6I3OV-PObDJmZh54tr62Fn_sd_AW4B5Ts |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_2337_db07_1187 crossref_primary_10_1007_s40279_021_01610_x crossref_primary_10_2165_00007256_200434020_00003 crossref_primary_10_1152_japplphysiol_01219_2001 crossref_primary_10_1016_j_tifs_2020_01_017 crossref_primary_10_2337_dc10_9990 crossref_primary_10_1016_j_ecl_2008_06_006 crossref_primary_10_1038_s42255_024_01130_8 crossref_primary_10_1152_ajpendo_90811_2008 crossref_primary_10_1089_jmf_2009_0128 crossref_primary_10_1139_cjpp_2018_0737 crossref_primary_10_1152_ajpendo_00096_2005 crossref_primary_10_1155_2014_674684 crossref_primary_10_1152_ajpheart_00163_2007 crossref_primary_10_1152_japplphysiol_00642_2002 crossref_primary_10_1007_s40618_020_01260_2 crossref_primary_10_1371_journal_pone_0208757 crossref_primary_10_1371_journal_pone_0053533 crossref_primary_10_1038_nrendo_2009_78 crossref_primary_10_1152_ajpendo_00195_2015 crossref_primary_10_1152_ajpendo_00318_2002 crossref_primary_10_1152_physrev_00011_2008 crossref_primary_10_1210_jc_2003_031919 crossref_primary_10_4093_dmj_2012_36_3_211 crossref_primary_10_1371_journal_pone_0160239 crossref_primary_10_17116_profmed201619328_33 crossref_primary_10_2174_1381612826666200701205132 crossref_primary_10_3389_fmolb_2021_789087 crossref_primary_10_1016_j_mehy_2014_03_018 crossref_primary_10_3389_fphys_2022_867244 crossref_primary_10_1111_j_1600_0404_2008_01080_x crossref_primary_10_1016_j_ddstr_2005_05_019 crossref_primary_10_1016_S0006_291X_02_02465_8 crossref_primary_10_3390_cells10071822 crossref_primary_10_1128_MCB_00979_06 crossref_primary_10_1186_s13098_023_01097_8 crossref_primary_10_1038_srep28452 crossref_primary_10_3951_biomechanisms_26_1 crossref_primary_10_1016_j_mce_2012_06_013 crossref_primary_10_1371_journal_pone_0189004 crossref_primary_10_1080_17460441_2017_1255194 crossref_primary_10_3810_psm_2011_05_1909 crossref_primary_10_1152_ajpendo_00436_2002 crossref_primary_10_1139_h06_098 crossref_primary_10_1038_oby_2007_360 crossref_primary_10_1016_j_metabol_2005_09_003 crossref_primary_10_2337_diabetes_53_7_1655 crossref_primary_10_1016_j_peptides_2012_02_003 crossref_primary_10_1249_MSS_0b013e318173a037 crossref_primary_10_1371_journal_pone_0051709 crossref_primary_10_1007_s00125_006_0240_5 crossref_primary_10_1093_nar_gkq180 crossref_primary_10_1016_j_mam_2015_08_002 crossref_primary_10_1109_TNB_2011_2109008 crossref_primary_10_1186_1471_2105_7_394 crossref_primary_10_1517_13543784_16_3_291 crossref_primary_10_1139_apnm_2018_0633 crossref_primary_10_4093_jkd_2012_13_2_61 crossref_primary_10_1002_dmrr_1185 crossref_primary_10_1152_ajpcell_00022_2011 crossref_primary_10_1152_ajpendo_00193_2005 crossref_primary_10_1007_s42978_020_00061_6 crossref_primary_10_1113_JP276990 crossref_primary_10_1152_ajpendo_00672_2013 crossref_primary_10_1097_01_mol_0000319118_44995_9a crossref_primary_10_1155_2016_2868652 crossref_primary_10_1006_bbrc_2001_5275 crossref_primary_10_1249_MSS_0b013e3181eeb61c crossref_primary_10_1007_s42991_021_00146_x crossref_primary_10_1016_j_molcel_2020_12_008 crossref_primary_10_1096_fj_201700442R crossref_primary_10_1017_S0317167100007538 crossref_primary_10_2337_diabetes_52_4_926 crossref_primary_10_2337_db08_0038 crossref_primary_10_1177_1559827607311426 crossref_primary_10_1519_JSC_0000000000002410 crossref_primary_10_1080_078538902321012351 crossref_primary_10_3390_diabetology3030032 crossref_primary_10_1590_1414_431x20165129 crossref_primary_10_1152_ajpendo_00080_2004 crossref_primary_10_1517_17460441_3_10_1167 crossref_primary_10_1152_ajpendo_00429_2005 crossref_primary_10_1152_japplphysiol_00071_2002 crossref_primary_10_1371_journal_pone_0110446 crossref_primary_10_1139_bcb_2015_0012 crossref_primary_10_1111_j_1463_1326_2012_01585_x crossref_primary_10_1155_2010_213176 crossref_primary_10_1016_j_jdiacomp_2006_05_006 crossref_primary_10_1016_j_scispo_2021_08_009 crossref_primary_10_1152_japplphysiol_00250_2002 crossref_primary_10_2147_DMSO_S328694 crossref_primary_10_1002_dmrr_2451 crossref_primary_10_1519_JSC_0000000000002704 crossref_primary_10_1016_j_phymed_2018_09_011 crossref_primary_10_1152_ajpendo_00511_2019 crossref_primary_10_1038_nm_3826 crossref_primary_10_1016_j_bbadis_2014_06_012 crossref_primary_10_1074_jbc_M611214200 crossref_primary_10_4236_cm_2013_43010 crossref_primary_10_1016_S0960_8966_02_00186_4 crossref_primary_10_1038_s12276_018_0147_5 crossref_primary_10_1152_physiol_00012_2005 crossref_primary_10_1016_j_jjcc_2008_07_014 crossref_primary_10_1210_en_2008_0100 crossref_primary_10_1590_S1517_86922009000200003 crossref_primary_10_1017_S0029665110003915 crossref_primary_10_1152_ajpendo_00326_2003 crossref_primary_10_1194_jlr_M032904 crossref_primary_10_2337_db06_0062 crossref_primary_10_1139_apnm_2016_0382 crossref_primary_10_2147_DMSO_S228674 crossref_primary_10_1007_s40279_013_0140_z crossref_primary_10_1152_ajpendo_90362_2008 crossref_primary_10_1007_s00125_008_1108_7 crossref_primary_10_1074_jbc_M504208200 crossref_primary_10_2337_db06_1119 crossref_primary_10_2337_diabetes_53_suppl_3_S176 crossref_primary_10_1080_17461390701832645 crossref_primary_10_1152_japplphysiol_00167_2002 crossref_primary_10_1046_j_1365_201X_2003_01168_x crossref_primary_10_2337_db07_0706 crossref_primary_10_1007_s00125_009_1483_8 crossref_primary_10_1111_j_1463_1326_2007_00805_x crossref_primary_10_1002_cbin_10673 crossref_primary_10_1016_j_bbadis_2010_04_008 crossref_primary_10_1007_s11010_005_9030_5 crossref_primary_10_1007_s13105_015_0406_z crossref_primary_10_1016_j_cjca_2010_12_054 crossref_primary_10_1249_MSS_0000000000002800 crossref_primary_10_1016_j_freeradbiomed_2017_06_018 crossref_primary_10_1111_j_2042_3306_2006_tb05617_x crossref_primary_10_1152_ajpcell_00319_2003 crossref_primary_10_7600_jpfsm_1_59 crossref_primary_10_2337_db15_1034 crossref_primary_10_1016_j_tem_2015_02_009 crossref_primary_10_1515_teb_2024_2007 crossref_primary_10_3390_ijms19092753 crossref_primary_10_1177_1559827620912400 crossref_primary_10_1080_10284150400009998 crossref_primary_10_2337_diabetes_52_5_1066 crossref_primary_10_1007_s10522_008_9177_z crossref_primary_10_1152_ajpendo_00278_2003 crossref_primary_10_1074_jbc_M303521200 crossref_primary_10_1016_j_metabol_2007_07_017 crossref_primary_10_2337_db07_0255 crossref_primary_10_1007_s00125_007_0698_9 crossref_primary_10_1016_j_bbrc_2004_02_139 crossref_primary_10_1016_S0003_4266_05_81711_1 crossref_primary_10_1152_jappl_2001_91_3_1017 crossref_primary_10_1074_jbc_M402165200 crossref_primary_10_1111_j_1464_5491_2010_03098_x crossref_primary_10_1530_JOE_13_0532 crossref_primary_10_1590_S0004_27302009000400003 crossref_primary_10_1152_japplphysiol_00199_2003 crossref_primary_10_1152_ajpendo_00729_2007 crossref_primary_10_1016_j_pharmthera_2009_04_005 crossref_primary_10_1007_s40256_018_0266_3 crossref_primary_10_1016_j_mad_2012_09_001 crossref_primary_10_1152_ajpregu_00412_2014 crossref_primary_10_3389_fendo_2024_1389538 crossref_primary_10_1016_S1043_2760_03_00031_6 crossref_primary_10_1002_dmrr_173 crossref_primary_10_1089_met_2014_0040 crossref_primary_10_1017_jns_2024_66 crossref_primary_10_2337_db06_1716 crossref_primary_10_1079_PNS2004340 crossref_primary_10_1371_journal_pone_0029379 crossref_primary_10_1038_ijo_2015_241 crossref_primary_10_1142_S0192415X20500664 crossref_primary_10_1016_j_febslet_2005_02_052 crossref_primary_10_1034_j_1600_0838_2003_20120_x crossref_primary_10_1152_japplphysiol_00175_2005 crossref_primary_10_1038_s41586_019_1797_8 crossref_primary_10_1016_j_jdiacomp_2019_107412 crossref_primary_10_1016_j_cyto_2022_155952 crossref_primary_10_1590_1414_431x20176400 crossref_primary_10_1152_ajpendo_00237_2016 crossref_primary_10_1111_1440_1681_13131 crossref_primary_10_1016_j_diabres_2017_10_004 crossref_primary_10_1007_s12574_012_0134_0 crossref_primary_10_1111_j_1748_1716_2009_01969_x crossref_primary_10_1042_CS20220636 crossref_primary_10_1111_j_1748_1716_2010_02169_x crossref_primary_10_1177_1535370220928986 crossref_primary_10_1016_j_freeradbiomed_2024_09_004 crossref_primary_10_1161_CIRCULATIONAHA_105_550806 crossref_primary_10_1038_s41598_017_01603_9 crossref_primary_10_1152_ajpendo_00341_2005 crossref_primary_10_14814_phy2_12123 crossref_primary_10_1007_s00125_015_3663_z crossref_primary_10_1007_s11695_019_03800_z crossref_primary_10_1016_j_imr_2013_10_001 crossref_primary_10_1074_jbc_M304112200 crossref_primary_10_1016_j_bmc_2013_04_010 crossref_primary_10_1074_jbc_M512831200 crossref_primary_10_1139_H07_029 crossref_primary_10_1002_pmic_202300078 crossref_primary_10_1042_BJ20061479 crossref_primary_10_1038_aps_2011_57 crossref_primary_10_1507_endocrj_K09E_284 crossref_primary_10_3233_PPR_220688 crossref_primary_10_1007_s40200_018_0380_4 crossref_primary_10_1113_jphysiol_2005_082669 crossref_primary_10_2337_diabetes_52_6_1393 crossref_primary_10_1016_S1728_869X_10_60002_0 crossref_primary_10_1111_j_1463_1326_2004_00448_x crossref_primary_10_1152_ajpendo_00773_2009 crossref_primary_10_1128_MCB_01661_08 crossref_primary_10_1113_JP277619 crossref_primary_10_1152_japplphysiol_00915_2007 crossref_primary_10_1186_s43042_021_00200_w crossref_primary_10_1152_ajpendo_00042_2011 crossref_primary_10_2337_diabetes_51_9_2703 crossref_primary_10_2337_db07_1098 crossref_primary_10_1007_s00125_011_2326_y crossref_primary_10_1021_cr0204653 crossref_primary_10_2337_db13_0368 crossref_primary_10_1016_j_bbrc_2006_02_057 crossref_primary_10_1111_j_1748_1716_2009_01968_x crossref_primary_10_1038_sj_ijo_0803135 crossref_primary_10_1074_jbc_M115_647032 crossref_primary_10_1155_2011_253061 crossref_primary_10_1681_ASN_2010080822 crossref_primary_10_1016_j_ejphar_2020_173743 crossref_primary_10_2337_diabetes_51_3_567 crossref_primary_10_1016_j_metabol_2021_154887 crossref_primary_10_1152_ajpheart_00839_2013 crossref_primary_10_2337_db19_0050 crossref_primary_10_2337_diabetes_54_8_2365 crossref_primary_10_1134_S0006297915020017 crossref_primary_10_5713_ajas_2012_12153 crossref_primary_10_1042_BCJ20210185 crossref_primary_10_1111_j_1742_7843_2009_00402_x crossref_primary_10_2337_dc11_0925 crossref_primary_10_1111_j_1748_1716_2009_01979_x crossref_primary_10_1152_ajpendo_00333_2021 crossref_primary_10_1080_14756366_2022_2115035 crossref_primary_10_1113_jphysiol_2008_165639 crossref_primary_10_1007_s00421_005_1374_8 crossref_primary_10_1124_jpet_106_100982 crossref_primary_10_1016_j_jdiacomp_2008_02_006 crossref_primary_10_1016_j_metabol_2003_12_026 crossref_primary_10_1155_2012_268197 crossref_primary_10_2337_dc09_1305 crossref_primary_10_1007_BF02873574 crossref_primary_10_2337_diabetes_52_9_2205 crossref_primary_10_1007_s00018_022_04265_7 crossref_primary_10_4178_epih_e2021080 crossref_primary_10_1210_jc_2009_0897 crossref_primary_10_3390_ijms19113344 crossref_primary_10_1371_journal_pone_0080436 crossref_primary_10_1111_cpf_12404 crossref_primary_10_1152_japplphysiol_00126_2002 crossref_primary_10_1152_japplphysiol_00056_2015 crossref_primary_10_1152_ajpendo_00667_2011 crossref_primary_10_1039_C6RA12724J crossref_primary_10_1152_ajpendo_00207_2006 crossref_primary_10_2337_diabetes_51_7_2074 crossref_primary_10_1113_jphysiol_2002_018044 crossref_primary_10_1038_s41598_017_18081_8 crossref_primary_10_1083_jcb_201105010 crossref_primary_10_1007_s11172_015_1036_x crossref_primary_10_1111_j_1742_7843_2008_00234_x crossref_primary_10_1590_S1984_82502009000300003 crossref_primary_10_1249_01_mss_0000183852_31164_5a crossref_primary_10_1042_CS20090389 crossref_primary_10_2337_diabetes_55_03_06_db05_1418 crossref_primary_10_1016_j_molmet_2018_07_004 |
Cites_doi | 10.2337/diabetes.49.4.527 10.1152/jappl.2000.88.3.1072 10.1016/S0968-0004(98)01340-1 10.1111/j.1432-1033.1995.0558k.x 10.1152/jappl.1999.87.5.1990 10.1007/BF02658500 10.2337/diabetes.46.3.524 10.2337/diacare.21.1.S5 10.1016/S0014-5793(96)01209-4 10.2337/diacare.21.1.S40 10.2337/diabetes.47.8.1369 10.1111/j.1432-1033.1989.tb15185.x 10.1007/978-1-4615-5647-3_16 10.1152/jappl.1992.73.1.382 10.2337/diabetes.49.8.1295 10.1172/JCI117909 10.1172/JCI108050 10.1074/jbc.272.20.13255 10.1097/00003246-198405000-00011 10.1152/ajpheart.1999.277.2.H643 10.1172/JCI1557 10.1006/bbrc.2000.3073 10.1152/ajpregu.1994.267.1.R236 10.2337/diabetes.48.5.1192 10.1016/S0140-6736(57)92595-3 10.1146/annurev.biochem.67.1.821 10.1007/3-540-61343-9_8 10.1074/jbc.273.37.23758 10.1152/ajpendo.2000.279.5.E1202 10.1172/JCI112958 10.1007/BF02658504 10.1056/NEJM199907223410406 10.1152/ajpregu.1993.265.2.R447 10.1111/j.1469-7793.2000.t01-1-00221.x 10.1152/ajpendo.1997.273.6.E1107 10.1111/j.1475-097X.1988.tb00218.x 10.1042/bj3340177 10.1074/jbc.271.2.611 10.1152/ajpendo.1999.277.2.E208 10.1152/ajpendo.1996.270.2.E299 10.1152/jappl.1997.83.4.1104 10.1172/JCI116025 10.1042/bj2810267 10.1152/jappl.1998.85.5.1629 10.1172/JCI117600 10.1152/ajpendo.1999.276.5.E938 10.1152/ajpendo.1999.277.1.E1 10.1146/annurev.med.49.1.235 10.1152/ajpendo.1999.276.1.E1 10.1016/S0014-5793(99)00387-7 10.1152/ajpendo.1997.273.6.E1039 10.1152/ajpendo.1995.269.3.E583 10.1152/ajpendo.1997.272.2.E262 10.2337/diabetes.48.8.1667 |
ContentType | Journal Article |
Copyright | 2001 INIST-CNRS COPYRIGHT 2001 American Diabetes Association Copyright American Diabetes Association May 2001 |
Copyright_xml | – notice: 2001 INIST-CNRS – notice: COPYRIGHT 2001 American Diabetes Association – notice: Copyright American Diabetes Association May 2001 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 ADTPV AOWAS D91 |
DOI | 10.2337/diabetes.50.5.921 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Consumer Health Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic SwePub SwePub Articles SWEPUB Örebro universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 927 |
ExternalDocumentID | oai_swepub_ki_se_598146 oai_DiVA_org_oru_64074 77152782 A80392751 11334434 1049913 10_2337_diabetes_50_5_921 diabetes_50_5_921 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: AR45670 – fundername: NIAMS NIH HHS grantid: AR42338 |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZGI ZXP ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 1CY 354 6PF AAFWJ AAYOK AAYXX ACGFO AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM AAKAS ADGHP ADZCM AI. H~9 IQODW MVM O5R O5S PJZUB PPXIY PQGLB VH1 XOL YQJ AFHIN CGR CUY CVF ECM EIF NPM PKN PMFND 7XB 8FK K9. PKEHL Q9U 7X8 ADTPV AOWAS D91 PUEGO |
ID | FETCH-LOGICAL-c543t-4a9ad1ae86b0b7aca1d605e63b2f1ea86dafcfb84e25fbbd4beffda23635eaeb3 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Mon Aug 25 03:28:00 EDT 2025 Thu Aug 21 07:09:51 EDT 2025 Tue Aug 05 10:21:43 EDT 2025 Fri Jul 25 19:44:54 EDT 2025 Tue Jun 10 20:05:46 EDT 2025 Wed Feb 19 02:35:12 EST 2025 Mon Jul 21 09:10:02 EDT 2025 Tue Jul 01 04:24:23 EDT 2025 Thu Apr 24 22:56:27 EDT 2025 Fri Jan 15 19:45:52 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Endocrinopathy Physical exercise Human Enzymatic activity Enzyme Transferases Bicycle ergometer Striated muscle Non insulin dependent diabetes |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-4a9ad1ae86b0b7aca1d605e63b2f1ea86dafcfb84e25fbbd4beffda23635eaeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://diabetesjournals.org/diabetes/article-pdf/50/5/921/367466/921.pdf |
PMID | 11334434 |
PQID | 216465271 |
PQPubID | 34443 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_598146 gale_incontextcollege_GICCO_A80392751 pubmed_primary_11334434 pascalfrancis_primary_1049913 swepub_primary_oai_DiVA_org_oru_64074 crossref_citationtrail_10_2337_diabetes_50_5_921 proquest_miscellaneous_70811810 highwire_diabetes_diabetes_50_5_921 crossref_primary_10_2337_diabetes_50_5_921 proquest_journals_216465271 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-05-01 |
PublicationDateYYYYMMDD | 2001-05-01 |
PublicationDate_xml | – month: 05 year: 2001 text: 2001-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2001 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022031207192460200_R26 2022031207192460200_R27 2022031207192460200_R28 2022031207192460200_R29 2022031207192460200_R22 2022031207192460200_R23 2022031207192460200_R24 2022031207192460200_R25 2022031207192460200_R20 2022031207192460200_R21 2022031207192460200_R7 2022031207192460200_R6 2022031207192460200_R5 2022031207192460200_R4 2022031207192460200_R3 2022031207192460200_R19 2022031207192460200_R2 2022031207192460200_R1 2022031207192460200_R37 2022031207192460200_R38 2022031207192460200_R39 2022031207192460200_R33 2022031207192460200_R34 2022031207192460200_R9 2022031207192460200_R35 2022031207192460200_R8 2022031207192460200_R36 2022031207192460200_R30 2022031207192460200_R31 2022031207192460200_R32 2022031207192460200_R48 2022031207192460200_R49 2022031207192460200_R44 2022031207192460200_R45 2022031207192460200_R46 2022031207192460200_R47 2022031207192460200_R40 2022031207192460200_R41 2022031207192460200_R42 2022031207192460200_R43 2022031207192460200_R15 2022031207192460200_R16 2022031207192460200_R17 2022031207192460200_R18 2022031207192460200_R11 2022031207192460200_R55 2022031207192460200_R12 2022031207192460200_R56 2022031207192460200_R13 2022031207192460200_R57 2022031207192460200_R14 2022031207192460200_R51 2022031207192460200_R52 2022031207192460200_R53 2022031207192460200_R10 2022031207192460200_R54 2022031207192460200_R50 |
References_xml | – ident: 2022031207192460200_R22 doi: 10.2337/diabetes.49.4.527 – ident: 2022031207192460200_R35 doi: 10.1152/jappl.2000.88.3.1072 – ident: 2022031207192460200_R21 doi: 10.1016/S0968-0004(98)01340-1 – ident: 2022031207192460200_R31 doi: 10.1111/j.1432-1033.1995.0558k.x – ident: 2022031207192460200_R34 doi: 10.1152/jappl.1999.87.5.1990 – ident: 2022031207192460200_R47 doi: 10.1007/BF02658500 – ident: 2022031207192460200_R7 doi: 10.2337/diabetes.46.3.524 – ident: 2022031207192460200_R37 doi: 10.2337/diacare.21.1.S5 – ident: 2022031207192460200_R56 doi: 10.1016/S0014-5793(96)01209-4 – ident: 2022031207192460200_R1 doi: 10.2337/diacare.21.1.S40 – ident: 2022031207192460200_R17 doi: 10.2337/diabetes.47.8.1369 – ident: 2022031207192460200_R42 doi: 10.1111/j.1432-1033.1989.tb15185.x – ident: 2022031207192460200_R8 doi: 10.1007/978-1-4615-5647-3_16 – ident: 2022031207192460200_R12 doi: 10.1152/jappl.1992.73.1.382 – ident: 2022031207192460200_R54 doi: 10.2337/diabetes.49.8.1295 – ident: 2022031207192460200_R6 doi: 10.1172/JCI117909 – ident: 2022031207192460200_R51 doi: 10.1172/JCI108050 – ident: 2022031207192460200_R26 doi: 10.1074/jbc.272.20.13255 – ident: 2022031207192460200_R41 doi: 10.1097/00003246-198405000-00011 – ident: 2022031207192460200_R32 doi: 10.1152/ajpheart.1999.277.2.H643 – ident: 2022031207192460200_R11 doi: 10.1172/JCI1557 – ident: 2022031207192460200_R28 doi: 10.1006/bbrc.2000.3073 – ident: 2022031207192460200_R14 doi: 10.1152/ajpregu.1994.267.1.R236 – ident: 2022031207192460200_R15 doi: 10.2337/diabetes.48.5.1192 – ident: 2022031207192460200_R40 doi: 10.1016/S0140-6736(57)92595-3 – ident: 2022031207192460200_R20 doi: 10.1146/annurev.biochem.67.1.821 – ident: 2022031207192460200_R2 doi: 10.1007/3-540-61343-9_8 – ident: 2022031207192460200_R45 – ident: 2022031207192460200_R49 doi: 10.1074/jbc.273.37.23758 – ident: 2022031207192460200_R39 – ident: 2022031207192460200_R57 doi: 10.1152/ajpendo.2000.279.5.E1202 – ident: 2022031207192460200_R5 doi: 10.1172/JCI112958 – ident: 2022031207192460200_R10 doi: 10.1007/BF02658504 – ident: 2022031207192460200_R44 doi: 10.1056/NEJM199907223410406 – ident: 2022031207192460200_R13 doi: 10.1152/ajpregu.1993.265.2.R447 – ident: 2022031207192460200_R29 doi: 10.1111/j.1469-7793.2000.t01-1-00221.x – ident: 2022031207192460200_R16 doi: 10.1152/ajpendo.1997.273.6.E1107 – ident: 2022031207192460200_R38 doi: 10.1111/j.1475-097X.1988.tb00218.x – ident: 2022031207192460200_R55 doi: 10.1042/bj3340177 – ident: 2022031207192460200_R30 doi: 10.1074/jbc.271.2.611 – ident: 2022031207192460200_R27 doi: 10.1152/ajpendo.1999.277.2.E208 – ident: 2022031207192460200_R53 doi: 10.1152/ajpendo.1996.270.2.E299 – ident: 2022031207192460200_R46 – ident: 2022031207192460200_R23 doi: 10.1152/jappl.1997.83.4.1104 – ident: 2022031207192460200_R9 doi: 10.1172/JCI116025 – ident: 2022031207192460200_R48 doi: 10.1042/bj2810267 – ident: 2022031207192460200_R24 doi: 10.1152/jappl.1998.85.5.1629 – ident: 2022031207192460200_R43 doi: 10.1172/JCI117600 – ident: 2022031207192460200_R18 doi: 10.1152/ajpendo.1999.276.5.E938 – ident: 2022031207192460200_R36 doi: 10.1152/ajpendo.1999.277.1.E1 – ident: 2022031207192460200_R4 doi: 10.1146/annurev.med.49.1.235 – ident: 2022031207192460200_R19 doi: 10.1152/ajpendo.1999.276.1.E1 – ident: 2022031207192460200_R50 doi: 10.1016/S0014-5793(99)00387-7 – ident: 2022031207192460200_R3 doi: 10.1152/ajpendo.1997.273.6.E1039 – ident: 2022031207192460200_R52 doi: 10.1152/ajpendo.1995.269.3.E583 – ident: 2022031207192460200_R25 doi: 10.1152/ajpendo.1997.272.2.E262 – ident: 2022031207192460200_R33 doi: 10.2337/diabetes.48.8.1667 |
SSID | ssj0006060 |
Score | 2.204884 |
Snippet | AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise
Nicolas Musi 1 ,
Nobuharu Fujii 1 ,
Michael F.... Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation... |
SourceID | swepub proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 921 |
SubjectTerms | AMP-Activated Protein Kinases Biological and medical sciences Blood Glucose - metabolism Diabetes Diabetes Mellitus, Type 2 - enzymology Diabetes Mellitus, Type 2 - physiopathology Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Enzyme Activation Etiopathogenesis. Screening. Investigations. Target tissue resistance Exercise Exercise - physiology Gene Expression Regulation, Enzymologic Glucose Glucose Transporter Type 4 Glycated Hemoglobin A - analysis Glycogen - metabolism Health aspects Humans Insulin Kinases Kinetics Male Medical sciences Middle Aged Monosaccharide Transport Proteins - metabolism Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Muscle Proteins Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Muscle, Skeletal - physiopathology Musculoskeletal system Phosphorylation Physical Exertion - physiology Physiological aspects Protein kinases Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteins Reference Values Rest - physiology RNA, Messenger - genetics Transcription, Genetic Type 2 diabetes Workloads |
Title | AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise |
URI | http://diabetes.diabetesjournals.org/content/50/5/921.abstract https://www.ncbi.nlm.nih.gov/pubmed/11334434 https://www.proquest.com/docview/216465271 https://www.proquest.com/docview/70811810 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-64074 http://kipublications.ki.se/Default.aspx?queryparsed=id:1942587 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELdgkxBfEG_C2LDEQ4CULn7l8QmVsmkCdUyIoX6z7NhBVSEZS8Pfz10TtwxV-9CqrS9unDvbv3v4jpCXNhU2samLhVAylo6puFC5B4a4zMFXxz2eRp6epifn8tNMzYbYnHYIqwxr4mqhdk2JNvJDjomwFM_Y-4vfMRaNQufqUEHjJtnFzGUY0ZXN1vpWAti8P4HCOGbhzHqnJhciOwyGzZFKRmpUcHZlWwqLc8gYjAGTpoVnVvXFLrah0f9Sja62p-O75M6AK-m4F4R75Iav75Nb08Fz_oAsxtOzGA8x_AFw6egqPcO8pot5DdsYfQOtn9_SeUs3JND6q2uhM9pUtO0sGmxainZbinZbymkYHu3POtJQvukhOT8--jY5iYdCC3GppFjG0hTGMePzFPiWmdIwB1qOBzbyinmTp85UZWVz6bmqrHXS-qpyhgtAK96AOv6I7NRN7Z8QCojEC89sxQxgwdwAgLdpwmErLovS8TwiSXjOuhyykGMxjJ8atBFkjQ73rlWilQbWROTd-pKLPgXHdcSvkHkaU1vUGDtT9vYXDeOdfNHjPAFAmCmgexG4u-lkS2_7Vxj_z_-DpshERPaCIOhh7rd6LakReb5uhUmLnhhT-6ZrdQZADKBVEpHHvfRsOmZCSCkkjKMXp3UL5gH_OP8-1s3lD3h1Gl2wQPd6C93w0wI-ea0KNPM-vfZW98jtPrgOIzmfkZ3lZef3AW0t7cFqTsF7PmEHZPfD0enZ17-8IS8O |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKkEviDehlFqCIqi06fq1uzkgFPpQSppQoRb1Zuy1t4oCm9JNQPwo_iPjeJ1QFPXWQ6QkdmbtjO35ZsYzg9ArnTAd68REjAkecUNE1BaZBYaY1MBHQ62LRu4Pku4p_3gmzlbQnxAL465VhjNxdlCbce5s5DvUJcISNCXvL35ErmiUc66GChp-VfTs71-gsVXvDveAvVuUHuyf7HajuqhAlAvOJhFXbWWIslkCY0xVrogBRG9hyLQgVmWJUUVe6IxbKgqtDde2KIyiDCSzVaB6At1baJUz0GQaaPXD_uD48_zoB23Ax7wQ6vJ-pt6NShlLd4IptSXilmi1KbkiCIM4CDmK3RVNVQGXCl9eYxn-_S-56UwgHtxDd2skizt-6d1HK7Z8gG73a1_9QzTq9I8jFzbxE-CswbOEEMMSj4YlCE78Blp7b_Gwwosu0Pp9WgExPC5wNdXORFRhZynGzlKMKQ7Twz66EoeCUY_Q6Y1w4TFqlOPSPkUYMJBlluiCKECfmQKVQScxBeGft3NDsyaKw_8s8zrvuSu_8U2C_uNYI8PYpYilkMCaJtqe_-TCJ_24rvOWY550yTRKd1sn9xYfCfPd_SQ7WQwQNBXQ72Xg7oLIEmobVxj_z_NBNyWsidbDQpD1aVPJ-d5oos15KxwTzvejSjueVjIF6AdgLm6iJ371LAgTxjhnHObhl9O8xWUe3xt-6cjx5Tm8ptI5faHf6yX96q9G8M5K0XaG5WfXDnUT3eme9I_k0eGgt47W_NU-d4_0OWpMLqd2A7DeRL-odxhGX296U_8F905vXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP8pY8wSDAFS2tiOk_QBoWpl2igde2Cob54dO6gqpGNpQXw0vh13ddwyVO1tD5Xa-nqxe2ff7872HSEvTCpMbFIbCSGTKLFMRl2ZOxCIzSx8tNzhbeThcXp4mnwYydEG-RPuwuCxyrAmLhZqOy0wRt7hmAhL8ox1yuZUxEn_4N35jwgLSOFGa6im4TVk4H7_Au-tfnvUB1HvcX7w_vP-YdQUGIgKmYhZlOiutky7PIX-ZrrQzAK6d9B9XjKn89TqsihNnjguS2NsYlxZWs0FWGmnwQ0FvjfIzUxIhlMsGy19vRj8An_7hXHMAJr5DVUuRNYJQdW2jNuy3eXskkkMhiFkK8bDmroGeZW-0MY6JPxfmtOFaTy4Q243mJb2vBLeJRuuuke2hs2u_X0y6Q1PIrxA8ROAraWL1BDjik7GFZhQ-gpaB6_puKYrEmj9Pq-BGZ2WtJ4bDBbVFGPGFGPGlNMwPOrvWdJQOuoBOb0WGTwkm9W0co8JBTTkhGOmZBpwaK7BeTBpzAEGFN3C8rxF4vA_q6LJgI6FOL4p8IRQNCr0XclYSQWiaZE3y5-c-_QfVxHvofAUptWoUEMLH_tRMN79T6qXxwBGMwl0z4N0V0zWcNu5JPh_ng9eKhMtsh0UQTXrTq2Ws6RFdpetsGDgLpCu3HReqwxAIMC6uEUeee1ZMWZCJIlIYBxenZYtmIO8P_7SU9OLr_CaK9z-BbqXa-iarybwzinZxRDzkyu7uku2YCqrj0fHg21yy5_xwwOlT8nm7GLudgD0zcyzxfSi5Oy65_NfjWFyLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMP-Activated+Protein+Kinase+is+activated+in+muscle+of+subjects+with+type+2+diabetes+during+exercise.+%28Rapid+Publication%29&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Musi%2C+Nicolas&rft.au=Fujii%2C+Nobuharu&rft.au=Hirshman%2C+Michael+F&rft.au=Ekberg%2C+Ingvar&rft.date=2001-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=50&rft.issue=5&rft.spage=921&rft_id=info:doi/10.2337%2Fdiabetes.50.5.921&rft.externalDocID=A80392751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |