AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise

AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F. Hirshman 1 , Ingvar Ekberg 2 , Sven Fröberg 2 , Olle Ljungqvist 2 3 , Anders Thorell 2 and Laurie J. Goodyear 1 1 Research Division, Joslin Diabe...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 50; no. 5; pp. 921 - 927
Main Authors Musi, Nicolas, Fujii, Nobuharu, Hirshman, Michael F., Ekberg, Ingvar, Fröberg, Sven, Ljungqvist, Olle, Thorell, Anders, Goodyear, Laurie J.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.05.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F. Hirshman 1 , Ingvar Ekberg 2 , Sven Fröberg 2 , Olle Ljungqvist 2 3 , Anders Thorell 2 and Laurie J. Goodyear 1 1 Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 2 Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden 3 Department of Surgery, Huddinge University Hospital, Huddinge, Sweden Abstract Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. Footnotes Address correspondence and reprint requests to Laurie J. Goodyear, PhD, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. E-mail: Laurie.Goodyear{at}joslin.harvard.edu . Received for publication 21 December 2000 and accepted in revised form 14 February 2001. Posted on the World Wide Web at www.diabetes.org/diabetes on 16 March 2001. ACC, acetyl-CoA carboxylase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK, AMP-activated protein kinase; AMPKK, AMPK kinase; DTT, dithiothreitol; FFA, free fatty acid; PI, phosphatidylinositol; PCR, polymerase chain reaction; RT, reverse transcriptase; TBST, Tris-buffered saline with Tween; W max , maximum workload; ZMP, 5-aminoimidazole-4-carboxamide ribonucleotide.
AbstractList Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total a mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.
AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F. Hirshman 1 , Ingvar Ekberg 2 , Sven Fröberg 2 , Olle Ljungqvist 2 3 , Anders Thorell 2 and Laurie J. Goodyear 1 1 Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 2 Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden 3 Department of Surgery, Huddinge University Hospital, Huddinge, Sweden Abstract Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes. Footnotes Address correspondence and reprint requests to Laurie J. Goodyear, PhD, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. E-mail: Laurie.Goodyear{at}joslin.harvard.edu . Received for publication 21 December 2000 and accepted in revised form 14 February 2001. Posted on the World Wide Web at www.diabetes.org/diabetes on 16 March 2001. ACC, acetyl-CoA carboxylase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleoside; AMPK, AMP-activated protein kinase; AMPKK, AMPK kinase; DTT, dithiothreitol; FFA, free fatty acid; PI, phosphatidylinositol; PCR, polymerase chain reaction; RT, reverse transcriptase; TBST, Tris-buffered saline with Tween; W max , maximum workload; ZMP, 5-aminoimidazole-4-carboxamide ribonucleotide.
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK α2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK α1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK α1, α2, and β1 in muscle compared with control subjects. AMPK α2 was shown to represent approximately two-thirds of the total α mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK α2 activity and normal expression of the α1, α2 and β1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation and glucose uptake in these patients. Several groups have recently hypothesized that exercise increases glucose uptake via an insulin-independent mechanism mediated by the activation of AMP-activated protein kinase (AMPK). If this hypothesis is correct, people with type 2 diabetes should have normal AMPK activation in response to exercise. Seven subjects with type 2 diabetes and eight matched control subjects exercised on a cycle ergometer for 45 min at 70% of maximum workload. Biopsies of vastus lateralis muscle were taken before exercise, after 20 and 45 min of exercise, and at 30 min postexercise. Blood glucose concentrations decreased from 7.6 to 4.77 mmol/l with 45 min of exercise in the diabetic group and did not change in the control group. Exercise significantly increased AMPK alpha2 activity 2.7-fold over basal at 20 min in both groups and remained elevated throughout the protocol, but there was no effect of exercise on AMPK alpha1 activity. Subjects with type 2 diabetes had similar protein expression of AMPK alpha1, alpha2, and beta1 in muscle compared with control subjects. AMPK alpha2 was shown to represent approximately two-thirds of the total alpha mRNA in the muscle from both groups. In conclusion, people with type 2 diabetes have normal exercise-induced AMPK alpha2 activity and normal expression of the alpha1, alpha2 and beta1 isoforms. Pharmacological activation of AMPK may be an attractive target for the treatment of type 2 diabetes.
Audience Professional
Author Sven Fröberg
Nobuharu Fujii
Michael F. Hirshman
Ingvar Ekberg
Laurie J. Goodyear
Anders Thorell
Nicolas Musi
Olle Ljungqvist
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Musi
  fullname: Musi, Nicolas
  organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
– sequence: 2
  givenname: Nobuharu
  surname: Fujii
  fullname: Fujii, Nobuharu
  organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
– sequence: 3
  givenname: Michael F.
  surname: Hirshman
  fullname: Hirshman, Michael F.
  organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
– sequence: 4
  givenname: Ingvar
  surname: Ekberg
  fullname: Ekberg, Ingvar
  organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden
– sequence: 5
  givenname: Sven
  surname: Fröberg
  fullname: Fröberg, Sven
  organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden
– sequence: 6
  givenname: Olle
  surname: Ljungqvist
  fullname: Ljungqvist, Olle
  organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden, Department of Surgery, Huddinge University Hospital, Huddinge, Sweden
– sequence: 7
  givenname: Anders
  surname: Thorell
  fullname: Thorell, Anders
  organization: Karolinska Institute, Centre of Gastrointestinal Disease, Ersta Hospital, Stockholm, Sweden
– sequence: 8
  givenname: Laurie J.
  surname: Goodyear
  fullname: Goodyear, Laurie J.
  organization: Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1049913$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11334434$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-64074$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:1942587$$DView record from Swedish Publication Index
BookMark eNp10ltv0zAUAGALDbGt8AN4QRZCCBApdmzn8li1A6Zt2iTG5c2ynZPWXRoX22Hbv8dTOyoNTVEUK_7OOb6cQ7TXux4QeknJOGes_NRYpSFCGAsyFuM6p0_QAa1ZnbG8_LWHDgiheUbLutxHhyEsCSFFep6hfUoZ45zxA3Q1ObvIJibaPypCgy-8i2B7fGJ7FQC_S7Mn7_FxwDuSZs-GYDrArsXfBr0EEwP-aeMCX96uAed4tl0Wng3e9nN8dAPe2ADP0dNWdQFebL8j9P3z0eX0a3Z6_uV4OjnNjOAsZlzVqqEKqkITXSqjaFMQAQXTeUtBVUWjWtPqikMuWq0brqFtG5WzgglQoNkIZZu84RrWg5Zrb1fK30qnrNz-ukojkKKuKC-S__ion9kfE-n8PL2DLDgpeeJvN3zt3e8BQpQrGwx0nerBDUGWpKK0oiTB1w_g0g2-T1uXOS14IfKS7orPVQfS9sb1EW6icV0Hc5DpYKbnclIRVueluOOvtjkHvYLm31rvbzSBN1ugglFd61Wfzn7nCK_rZEeo3DDjXQgeWmlsVNGm6l7ZLjl512LyvsWkIFLI1GIpkj6I3OV-PObDJmZh54tr62Fn_sd_AW4B5Ts
CODEN DIAEAZ
CitedBy_id crossref_primary_10_2337_db07_1187
crossref_primary_10_1007_s40279_021_01610_x
crossref_primary_10_2165_00007256_200434020_00003
crossref_primary_10_1152_japplphysiol_01219_2001
crossref_primary_10_1016_j_tifs_2020_01_017
crossref_primary_10_2337_dc10_9990
crossref_primary_10_1016_j_ecl_2008_06_006
crossref_primary_10_1038_s42255_024_01130_8
crossref_primary_10_1152_ajpendo_90811_2008
crossref_primary_10_1089_jmf_2009_0128
crossref_primary_10_1139_cjpp_2018_0737
crossref_primary_10_1152_ajpendo_00096_2005
crossref_primary_10_1155_2014_674684
crossref_primary_10_1152_ajpheart_00163_2007
crossref_primary_10_1152_japplphysiol_00642_2002
crossref_primary_10_1007_s40618_020_01260_2
crossref_primary_10_1371_journal_pone_0208757
crossref_primary_10_1371_journal_pone_0053533
crossref_primary_10_1038_nrendo_2009_78
crossref_primary_10_1152_ajpendo_00195_2015
crossref_primary_10_1152_ajpendo_00318_2002
crossref_primary_10_1152_physrev_00011_2008
crossref_primary_10_1210_jc_2003_031919
crossref_primary_10_4093_dmj_2012_36_3_211
crossref_primary_10_1371_journal_pone_0160239
crossref_primary_10_17116_profmed201619328_33
crossref_primary_10_2174_1381612826666200701205132
crossref_primary_10_3389_fmolb_2021_789087
crossref_primary_10_1016_j_mehy_2014_03_018
crossref_primary_10_3389_fphys_2022_867244
crossref_primary_10_1111_j_1600_0404_2008_01080_x
crossref_primary_10_1016_j_ddstr_2005_05_019
crossref_primary_10_1016_S0006_291X_02_02465_8
crossref_primary_10_3390_cells10071822
crossref_primary_10_1128_MCB_00979_06
crossref_primary_10_1186_s13098_023_01097_8
crossref_primary_10_1038_srep28452
crossref_primary_10_3951_biomechanisms_26_1
crossref_primary_10_1016_j_mce_2012_06_013
crossref_primary_10_1371_journal_pone_0189004
crossref_primary_10_1080_17460441_2017_1255194
crossref_primary_10_3810_psm_2011_05_1909
crossref_primary_10_1152_ajpendo_00436_2002
crossref_primary_10_1139_h06_098
crossref_primary_10_1038_oby_2007_360
crossref_primary_10_1016_j_metabol_2005_09_003
crossref_primary_10_2337_diabetes_53_7_1655
crossref_primary_10_1016_j_peptides_2012_02_003
crossref_primary_10_1249_MSS_0b013e318173a037
crossref_primary_10_1371_journal_pone_0051709
crossref_primary_10_1007_s00125_006_0240_5
crossref_primary_10_1093_nar_gkq180
crossref_primary_10_1016_j_mam_2015_08_002
crossref_primary_10_1109_TNB_2011_2109008
crossref_primary_10_1186_1471_2105_7_394
crossref_primary_10_1517_13543784_16_3_291
crossref_primary_10_1139_apnm_2018_0633
crossref_primary_10_4093_jkd_2012_13_2_61
crossref_primary_10_1002_dmrr_1185
crossref_primary_10_1152_ajpcell_00022_2011
crossref_primary_10_1152_ajpendo_00193_2005
crossref_primary_10_1007_s42978_020_00061_6
crossref_primary_10_1113_JP276990
crossref_primary_10_1152_ajpendo_00672_2013
crossref_primary_10_1097_01_mol_0000319118_44995_9a
crossref_primary_10_1155_2016_2868652
crossref_primary_10_1006_bbrc_2001_5275
crossref_primary_10_1249_MSS_0b013e3181eeb61c
crossref_primary_10_1007_s42991_021_00146_x
crossref_primary_10_1016_j_molcel_2020_12_008
crossref_primary_10_1096_fj_201700442R
crossref_primary_10_1017_S0317167100007538
crossref_primary_10_2337_diabetes_52_4_926
crossref_primary_10_2337_db08_0038
crossref_primary_10_1177_1559827607311426
crossref_primary_10_1519_JSC_0000000000002410
crossref_primary_10_1080_078538902321012351
crossref_primary_10_3390_diabetology3030032
crossref_primary_10_1590_1414_431x20165129
crossref_primary_10_1152_ajpendo_00080_2004
crossref_primary_10_1517_17460441_3_10_1167
crossref_primary_10_1152_ajpendo_00429_2005
crossref_primary_10_1152_japplphysiol_00071_2002
crossref_primary_10_1371_journal_pone_0110446
crossref_primary_10_1139_bcb_2015_0012
crossref_primary_10_1111_j_1463_1326_2012_01585_x
crossref_primary_10_1155_2010_213176
crossref_primary_10_1016_j_jdiacomp_2006_05_006
crossref_primary_10_1016_j_scispo_2021_08_009
crossref_primary_10_1152_japplphysiol_00250_2002
crossref_primary_10_2147_DMSO_S328694
crossref_primary_10_1002_dmrr_2451
crossref_primary_10_1519_JSC_0000000000002704
crossref_primary_10_1016_j_phymed_2018_09_011
crossref_primary_10_1152_ajpendo_00511_2019
crossref_primary_10_1038_nm_3826
crossref_primary_10_1016_j_bbadis_2014_06_012
crossref_primary_10_1074_jbc_M611214200
crossref_primary_10_4236_cm_2013_43010
crossref_primary_10_1016_S0960_8966_02_00186_4
crossref_primary_10_1038_s12276_018_0147_5
crossref_primary_10_1152_physiol_00012_2005
crossref_primary_10_1016_j_jjcc_2008_07_014
crossref_primary_10_1210_en_2008_0100
crossref_primary_10_1590_S1517_86922009000200003
crossref_primary_10_1017_S0029665110003915
crossref_primary_10_1152_ajpendo_00326_2003
crossref_primary_10_1194_jlr_M032904
crossref_primary_10_2337_db06_0062
crossref_primary_10_1139_apnm_2016_0382
crossref_primary_10_2147_DMSO_S228674
crossref_primary_10_1007_s40279_013_0140_z
crossref_primary_10_1152_ajpendo_90362_2008
crossref_primary_10_1007_s00125_008_1108_7
crossref_primary_10_1074_jbc_M504208200
crossref_primary_10_2337_db06_1119
crossref_primary_10_2337_diabetes_53_suppl_3_S176
crossref_primary_10_1080_17461390701832645
crossref_primary_10_1152_japplphysiol_00167_2002
crossref_primary_10_1046_j_1365_201X_2003_01168_x
crossref_primary_10_2337_db07_0706
crossref_primary_10_1007_s00125_009_1483_8
crossref_primary_10_1111_j_1463_1326_2007_00805_x
crossref_primary_10_1002_cbin_10673
crossref_primary_10_1016_j_bbadis_2010_04_008
crossref_primary_10_1007_s11010_005_9030_5
crossref_primary_10_1007_s13105_015_0406_z
crossref_primary_10_1016_j_cjca_2010_12_054
crossref_primary_10_1249_MSS_0000000000002800
crossref_primary_10_1016_j_freeradbiomed_2017_06_018
crossref_primary_10_1111_j_2042_3306_2006_tb05617_x
crossref_primary_10_1152_ajpcell_00319_2003
crossref_primary_10_7600_jpfsm_1_59
crossref_primary_10_2337_db15_1034
crossref_primary_10_1016_j_tem_2015_02_009
crossref_primary_10_1515_teb_2024_2007
crossref_primary_10_3390_ijms19092753
crossref_primary_10_1177_1559827620912400
crossref_primary_10_1080_10284150400009998
crossref_primary_10_2337_diabetes_52_5_1066
crossref_primary_10_1007_s10522_008_9177_z
crossref_primary_10_1152_ajpendo_00278_2003
crossref_primary_10_1074_jbc_M303521200
crossref_primary_10_1016_j_metabol_2007_07_017
crossref_primary_10_2337_db07_0255
crossref_primary_10_1007_s00125_007_0698_9
crossref_primary_10_1016_j_bbrc_2004_02_139
crossref_primary_10_1016_S0003_4266_05_81711_1
crossref_primary_10_1152_jappl_2001_91_3_1017
crossref_primary_10_1074_jbc_M402165200
crossref_primary_10_1111_j_1464_5491_2010_03098_x
crossref_primary_10_1530_JOE_13_0532
crossref_primary_10_1590_S0004_27302009000400003
crossref_primary_10_1152_japplphysiol_00199_2003
crossref_primary_10_1152_ajpendo_00729_2007
crossref_primary_10_1016_j_pharmthera_2009_04_005
crossref_primary_10_1007_s40256_018_0266_3
crossref_primary_10_1016_j_mad_2012_09_001
crossref_primary_10_1152_ajpregu_00412_2014
crossref_primary_10_3389_fendo_2024_1389538
crossref_primary_10_1016_S1043_2760_03_00031_6
crossref_primary_10_1002_dmrr_173
crossref_primary_10_1089_met_2014_0040
crossref_primary_10_1017_jns_2024_66
crossref_primary_10_2337_db06_1716
crossref_primary_10_1079_PNS2004340
crossref_primary_10_1371_journal_pone_0029379
crossref_primary_10_1038_ijo_2015_241
crossref_primary_10_1142_S0192415X20500664
crossref_primary_10_1016_j_febslet_2005_02_052
crossref_primary_10_1034_j_1600_0838_2003_20120_x
crossref_primary_10_1152_japplphysiol_00175_2005
crossref_primary_10_1038_s41586_019_1797_8
crossref_primary_10_1016_j_jdiacomp_2019_107412
crossref_primary_10_1016_j_cyto_2022_155952
crossref_primary_10_1590_1414_431x20176400
crossref_primary_10_1152_ajpendo_00237_2016
crossref_primary_10_1111_1440_1681_13131
crossref_primary_10_1016_j_diabres_2017_10_004
crossref_primary_10_1007_s12574_012_0134_0
crossref_primary_10_1111_j_1748_1716_2009_01969_x
crossref_primary_10_1042_CS20220636
crossref_primary_10_1111_j_1748_1716_2010_02169_x
crossref_primary_10_1177_1535370220928986
crossref_primary_10_1016_j_freeradbiomed_2024_09_004
crossref_primary_10_1161_CIRCULATIONAHA_105_550806
crossref_primary_10_1038_s41598_017_01603_9
crossref_primary_10_1152_ajpendo_00341_2005
crossref_primary_10_14814_phy2_12123
crossref_primary_10_1007_s00125_015_3663_z
crossref_primary_10_1007_s11695_019_03800_z
crossref_primary_10_1016_j_imr_2013_10_001
crossref_primary_10_1074_jbc_M304112200
crossref_primary_10_1016_j_bmc_2013_04_010
crossref_primary_10_1074_jbc_M512831200
crossref_primary_10_1139_H07_029
crossref_primary_10_1002_pmic_202300078
crossref_primary_10_1042_BJ20061479
crossref_primary_10_1038_aps_2011_57
crossref_primary_10_1507_endocrj_K09E_284
crossref_primary_10_3233_PPR_220688
crossref_primary_10_1007_s40200_018_0380_4
crossref_primary_10_1113_jphysiol_2005_082669
crossref_primary_10_2337_diabetes_52_6_1393
crossref_primary_10_1016_S1728_869X_10_60002_0
crossref_primary_10_1111_j_1463_1326_2004_00448_x
crossref_primary_10_1152_ajpendo_00773_2009
crossref_primary_10_1128_MCB_01661_08
crossref_primary_10_1113_JP277619
crossref_primary_10_1152_japplphysiol_00915_2007
crossref_primary_10_1186_s43042_021_00200_w
crossref_primary_10_1152_ajpendo_00042_2011
crossref_primary_10_2337_diabetes_51_9_2703
crossref_primary_10_2337_db07_1098
crossref_primary_10_1007_s00125_011_2326_y
crossref_primary_10_1021_cr0204653
crossref_primary_10_2337_db13_0368
crossref_primary_10_1016_j_bbrc_2006_02_057
crossref_primary_10_1111_j_1748_1716_2009_01968_x
crossref_primary_10_1038_sj_ijo_0803135
crossref_primary_10_1074_jbc_M115_647032
crossref_primary_10_1155_2011_253061
crossref_primary_10_1681_ASN_2010080822
crossref_primary_10_1016_j_ejphar_2020_173743
crossref_primary_10_2337_diabetes_51_3_567
crossref_primary_10_1016_j_metabol_2021_154887
crossref_primary_10_1152_ajpheart_00839_2013
crossref_primary_10_2337_db19_0050
crossref_primary_10_2337_diabetes_54_8_2365
crossref_primary_10_1134_S0006297915020017
crossref_primary_10_5713_ajas_2012_12153
crossref_primary_10_1042_BCJ20210185
crossref_primary_10_1111_j_1742_7843_2009_00402_x
crossref_primary_10_2337_dc11_0925
crossref_primary_10_1111_j_1748_1716_2009_01979_x
crossref_primary_10_1152_ajpendo_00333_2021
crossref_primary_10_1080_14756366_2022_2115035
crossref_primary_10_1113_jphysiol_2008_165639
crossref_primary_10_1007_s00421_005_1374_8
crossref_primary_10_1124_jpet_106_100982
crossref_primary_10_1016_j_jdiacomp_2008_02_006
crossref_primary_10_1016_j_metabol_2003_12_026
crossref_primary_10_1155_2012_268197
crossref_primary_10_2337_dc09_1305
crossref_primary_10_1007_BF02873574
crossref_primary_10_2337_diabetes_52_9_2205
crossref_primary_10_1007_s00018_022_04265_7
crossref_primary_10_4178_epih_e2021080
crossref_primary_10_1210_jc_2009_0897
crossref_primary_10_3390_ijms19113344
crossref_primary_10_1371_journal_pone_0080436
crossref_primary_10_1111_cpf_12404
crossref_primary_10_1152_japplphysiol_00126_2002
crossref_primary_10_1152_japplphysiol_00056_2015
crossref_primary_10_1152_ajpendo_00667_2011
crossref_primary_10_1039_C6RA12724J
crossref_primary_10_1152_ajpendo_00207_2006
crossref_primary_10_2337_diabetes_51_7_2074
crossref_primary_10_1113_jphysiol_2002_018044
crossref_primary_10_1038_s41598_017_18081_8
crossref_primary_10_1083_jcb_201105010
crossref_primary_10_1007_s11172_015_1036_x
crossref_primary_10_1111_j_1742_7843_2008_00234_x
crossref_primary_10_1590_S1984_82502009000300003
crossref_primary_10_1249_01_mss_0000183852_31164_5a
crossref_primary_10_1042_CS20090389
crossref_primary_10_2337_diabetes_55_03_06_db05_1418
crossref_primary_10_1016_j_molmet_2018_07_004
Cites_doi 10.2337/diabetes.49.4.527
10.1152/jappl.2000.88.3.1072
10.1016/S0968-0004(98)01340-1
10.1111/j.1432-1033.1995.0558k.x
10.1152/jappl.1999.87.5.1990
10.1007/BF02658500
10.2337/diabetes.46.3.524
10.2337/diacare.21.1.S5
10.1016/S0014-5793(96)01209-4
10.2337/diacare.21.1.S40
10.2337/diabetes.47.8.1369
10.1111/j.1432-1033.1989.tb15185.x
10.1007/978-1-4615-5647-3_16
10.1152/jappl.1992.73.1.382
10.2337/diabetes.49.8.1295
10.1172/JCI117909
10.1172/JCI108050
10.1074/jbc.272.20.13255
10.1097/00003246-198405000-00011
10.1152/ajpheart.1999.277.2.H643
10.1172/JCI1557
10.1006/bbrc.2000.3073
10.1152/ajpregu.1994.267.1.R236
10.2337/diabetes.48.5.1192
10.1016/S0140-6736(57)92595-3
10.1146/annurev.biochem.67.1.821
10.1007/3-540-61343-9_8
10.1074/jbc.273.37.23758
10.1152/ajpendo.2000.279.5.E1202
10.1172/JCI112958
10.1007/BF02658504
10.1056/NEJM199907223410406
10.1152/ajpregu.1993.265.2.R447
10.1111/j.1469-7793.2000.t01-1-00221.x
10.1152/ajpendo.1997.273.6.E1107
10.1111/j.1475-097X.1988.tb00218.x
10.1042/bj3340177
10.1074/jbc.271.2.611
10.1152/ajpendo.1999.277.2.E208
10.1152/ajpendo.1996.270.2.E299
10.1152/jappl.1997.83.4.1104
10.1172/JCI116025
10.1042/bj2810267
10.1152/jappl.1998.85.5.1629
10.1172/JCI117600
10.1152/ajpendo.1999.276.5.E938
10.1152/ajpendo.1999.277.1.E1
10.1146/annurev.med.49.1.235
10.1152/ajpendo.1999.276.1.E1
10.1016/S0014-5793(99)00387-7
10.1152/ajpendo.1997.273.6.E1039
10.1152/ajpendo.1995.269.3.E583
10.1152/ajpendo.1997.272.2.E262
10.2337/diabetes.48.8.1667
ContentType Journal Article
Copyright 2001 INIST-CNRS
COPYRIGHT 2001 American Diabetes Association
Copyright American Diabetes Association May 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: COPYRIGHT 2001 American Diabetes Association
– notice: Copyright American Diabetes Association May 2001
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
ADTPV
AOWAS
D91
DOI 10.2337/diabetes.50.5.921
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Örebro universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Research Library Prep

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 927
ExternalDocumentID oai_swepub_ki_se_598146
oai_DiVA_org_oru_64074
77152782
A80392751
11334434
1049913
10_2337_diabetes_50_5_921
diabetes_50_5_921
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: AR45670
– fundername: NIAMS NIH HHS
  grantid: AR42338
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZGI
ZXP
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
1CY
354
6PF
AAFWJ
AAYOK
AAYXX
ACGFO
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
AAKAS
ADGHP
ADZCM
AI.
H~9
IQODW
MVM
O5R
O5S
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
ADTPV
AOWAS
D91
PUEGO
ID FETCH-LOGICAL-c543t-4a9ad1ae86b0b7aca1d605e63b2f1ea86dafcfb84e25fbbd4beffda23635eaeb3
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Mon Aug 25 03:28:00 EDT 2025
Thu Aug 21 07:09:51 EDT 2025
Tue Aug 05 10:21:43 EDT 2025
Fri Jul 25 19:44:54 EDT 2025
Tue Jun 10 20:05:46 EDT 2025
Wed Feb 19 02:35:12 EST 2025
Mon Jul 21 09:10:02 EDT 2025
Tue Jul 01 04:24:23 EDT 2025
Thu Apr 24 22:56:27 EDT 2025
Fri Jan 15 19:45:52 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Endocrinopathy
Physical exercise
Human
Enzymatic activity
Enzyme
Transferases
Bicycle ergometer
Striated muscle
Non insulin dependent diabetes
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-4a9ad1ae86b0b7aca1d605e63b2f1ea86dafcfb84e25fbbd4beffda23635eaeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://diabetesjournals.org/diabetes/article-pdf/50/5/921/367466/921.pdf
PMID 11334434
PQID 216465271
PQPubID 34443
PageCount 7
ParticipantIDs swepub_primary_oai_swepub_ki_se_598146
gale_incontextcollege_GICCO_A80392751
pubmed_primary_11334434
pascalfrancis_primary_1049913
swepub_primary_oai_DiVA_org_oru_64074
crossref_citationtrail_10_2337_diabetes_50_5_921
proquest_miscellaneous_70811810
highwire_diabetes_diabetes_50_5_921
crossref_primary_10_2337_diabetes_50_5_921
proquest_journals_216465271
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-05-01
PublicationDateYYYYMMDD 2001-05-01
PublicationDate_xml – month: 05
  year: 2001
  text: 2001-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2001
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031207192460200_R26
2022031207192460200_R27
2022031207192460200_R28
2022031207192460200_R29
2022031207192460200_R22
2022031207192460200_R23
2022031207192460200_R24
2022031207192460200_R25
2022031207192460200_R20
2022031207192460200_R21
2022031207192460200_R7
2022031207192460200_R6
2022031207192460200_R5
2022031207192460200_R4
2022031207192460200_R3
2022031207192460200_R19
2022031207192460200_R2
2022031207192460200_R1
2022031207192460200_R37
2022031207192460200_R38
2022031207192460200_R39
2022031207192460200_R33
2022031207192460200_R34
2022031207192460200_R9
2022031207192460200_R35
2022031207192460200_R8
2022031207192460200_R36
2022031207192460200_R30
2022031207192460200_R31
2022031207192460200_R32
2022031207192460200_R48
2022031207192460200_R49
2022031207192460200_R44
2022031207192460200_R45
2022031207192460200_R46
2022031207192460200_R47
2022031207192460200_R40
2022031207192460200_R41
2022031207192460200_R42
2022031207192460200_R43
2022031207192460200_R15
2022031207192460200_R16
2022031207192460200_R17
2022031207192460200_R18
2022031207192460200_R11
2022031207192460200_R55
2022031207192460200_R12
2022031207192460200_R56
2022031207192460200_R13
2022031207192460200_R57
2022031207192460200_R14
2022031207192460200_R51
2022031207192460200_R52
2022031207192460200_R53
2022031207192460200_R10
2022031207192460200_R54
2022031207192460200_R50
References_xml – ident: 2022031207192460200_R22
  doi: 10.2337/diabetes.49.4.527
– ident: 2022031207192460200_R35
  doi: 10.1152/jappl.2000.88.3.1072
– ident: 2022031207192460200_R21
  doi: 10.1016/S0968-0004(98)01340-1
– ident: 2022031207192460200_R31
  doi: 10.1111/j.1432-1033.1995.0558k.x
– ident: 2022031207192460200_R34
  doi: 10.1152/jappl.1999.87.5.1990
– ident: 2022031207192460200_R47
  doi: 10.1007/BF02658500
– ident: 2022031207192460200_R7
  doi: 10.2337/diabetes.46.3.524
– ident: 2022031207192460200_R37
  doi: 10.2337/diacare.21.1.S5
– ident: 2022031207192460200_R56
  doi: 10.1016/S0014-5793(96)01209-4
– ident: 2022031207192460200_R1
  doi: 10.2337/diacare.21.1.S40
– ident: 2022031207192460200_R17
  doi: 10.2337/diabetes.47.8.1369
– ident: 2022031207192460200_R42
  doi: 10.1111/j.1432-1033.1989.tb15185.x
– ident: 2022031207192460200_R8
  doi: 10.1007/978-1-4615-5647-3_16
– ident: 2022031207192460200_R12
  doi: 10.1152/jappl.1992.73.1.382
– ident: 2022031207192460200_R54
  doi: 10.2337/diabetes.49.8.1295
– ident: 2022031207192460200_R6
  doi: 10.1172/JCI117909
– ident: 2022031207192460200_R51
  doi: 10.1172/JCI108050
– ident: 2022031207192460200_R26
  doi: 10.1074/jbc.272.20.13255
– ident: 2022031207192460200_R41
  doi: 10.1097/00003246-198405000-00011
– ident: 2022031207192460200_R32
  doi: 10.1152/ajpheart.1999.277.2.H643
– ident: 2022031207192460200_R11
  doi: 10.1172/JCI1557
– ident: 2022031207192460200_R28
  doi: 10.1006/bbrc.2000.3073
– ident: 2022031207192460200_R14
  doi: 10.1152/ajpregu.1994.267.1.R236
– ident: 2022031207192460200_R15
  doi: 10.2337/diabetes.48.5.1192
– ident: 2022031207192460200_R40
  doi: 10.1016/S0140-6736(57)92595-3
– ident: 2022031207192460200_R20
  doi: 10.1146/annurev.biochem.67.1.821
– ident: 2022031207192460200_R2
  doi: 10.1007/3-540-61343-9_8
– ident: 2022031207192460200_R45
– ident: 2022031207192460200_R49
  doi: 10.1074/jbc.273.37.23758
– ident: 2022031207192460200_R39
– ident: 2022031207192460200_R57
  doi: 10.1152/ajpendo.2000.279.5.E1202
– ident: 2022031207192460200_R5
  doi: 10.1172/JCI112958
– ident: 2022031207192460200_R10
  doi: 10.1007/BF02658504
– ident: 2022031207192460200_R44
  doi: 10.1056/NEJM199907223410406
– ident: 2022031207192460200_R13
  doi: 10.1152/ajpregu.1993.265.2.R447
– ident: 2022031207192460200_R29
  doi: 10.1111/j.1469-7793.2000.t01-1-00221.x
– ident: 2022031207192460200_R16
  doi: 10.1152/ajpendo.1997.273.6.E1107
– ident: 2022031207192460200_R38
  doi: 10.1111/j.1475-097X.1988.tb00218.x
– ident: 2022031207192460200_R55
  doi: 10.1042/bj3340177
– ident: 2022031207192460200_R30
  doi: 10.1074/jbc.271.2.611
– ident: 2022031207192460200_R27
  doi: 10.1152/ajpendo.1999.277.2.E208
– ident: 2022031207192460200_R53
  doi: 10.1152/ajpendo.1996.270.2.E299
– ident: 2022031207192460200_R46
– ident: 2022031207192460200_R23
  doi: 10.1152/jappl.1997.83.4.1104
– ident: 2022031207192460200_R9
  doi: 10.1172/JCI116025
– ident: 2022031207192460200_R48
  doi: 10.1042/bj2810267
– ident: 2022031207192460200_R24
  doi: 10.1152/jappl.1998.85.5.1629
– ident: 2022031207192460200_R43
  doi: 10.1172/JCI117600
– ident: 2022031207192460200_R18
  doi: 10.1152/ajpendo.1999.276.5.E938
– ident: 2022031207192460200_R36
  doi: 10.1152/ajpendo.1999.277.1.E1
– ident: 2022031207192460200_R4
  doi: 10.1146/annurev.med.49.1.235
– ident: 2022031207192460200_R19
  doi: 10.1152/ajpendo.1999.276.1.E1
– ident: 2022031207192460200_R50
  doi: 10.1016/S0014-5793(99)00387-7
– ident: 2022031207192460200_R3
  doi: 10.1152/ajpendo.1997.273.6.E1039
– ident: 2022031207192460200_R52
  doi: 10.1152/ajpendo.1995.269.3.E583
– ident: 2022031207192460200_R25
  doi: 10.1152/ajpendo.1997.272.2.E262
– ident: 2022031207192460200_R33
  doi: 10.2337/diabetes.48.8.1667
SSID ssj0006060
Score 2.204884
Snippet AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise Nicolas Musi 1 , Nobuharu Fujii 1 , Michael F....
Insulin-stimulated GLUT4 translocation is impaired in people with type 2 diabetes. In contrast, exercise results in a normal increase in GLUT4 translocation...
SourceID swepub
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 921
SubjectTerms AMP-Activated Protein Kinases
Biological and medical sciences
Blood Glucose - metabolism
Diabetes
Diabetes Mellitus, Type 2 - enzymology
Diabetes Mellitus, Type 2 - physiopathology
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Enzyme Activation
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Exercise
Exercise - physiology
Gene Expression Regulation, Enzymologic
Glucose
Glucose Transporter Type 4
Glycated Hemoglobin A - analysis
Glycogen - metabolism
Health aspects
Humans
Insulin
Kinases
Kinetics
Male
Medical sciences
Middle Aged
Monosaccharide Transport Proteins - metabolism
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Muscle Proteins
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Muscle, Skeletal - physiopathology
Musculoskeletal system
Phosphorylation
Physical Exertion - physiology
Physiological aspects
Protein kinases
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteins
Reference Values
Rest - physiology
RNA, Messenger - genetics
Transcription, Genetic
Type 2 diabetes
Workloads
Title AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise
URI http://diabetes.diabetesjournals.org/content/50/5/921.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11334434
https://www.proquest.com/docview/216465271
https://www.proquest.com/docview/70811810
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-64074
http://kipublications.ki.se/Default.aspx?queryparsed=id:1942587
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELdgkxBfEG_C2LDEQ4CULn7l8QmVsmkCdUyIoX6z7NhBVSEZS8Pfz10TtwxV-9CqrS9unDvbv3v4jpCXNhU2samLhVAylo6puFC5B4a4zMFXxz2eRp6epifn8tNMzYbYnHYIqwxr4mqhdk2JNvJDjomwFM_Y-4vfMRaNQufqUEHjJtnFzGUY0ZXN1vpWAti8P4HCOGbhzHqnJhciOwyGzZFKRmpUcHZlWwqLc8gYjAGTpoVnVvXFLrah0f9Sja62p-O75M6AK-m4F4R75Iav75Nb08Fz_oAsxtOzGA8x_AFw6egqPcO8pot5DdsYfQOtn9_SeUs3JND6q2uhM9pUtO0sGmxainZbinZbymkYHu3POtJQvukhOT8--jY5iYdCC3GppFjG0hTGMePzFPiWmdIwB1qOBzbyinmTp85UZWVz6bmqrHXS-qpyhgtAK96AOv6I7NRN7Z8QCojEC89sxQxgwdwAgLdpwmErLovS8TwiSXjOuhyykGMxjJ8atBFkjQ73rlWilQbWROTd-pKLPgXHdcSvkHkaU1vUGDtT9vYXDeOdfNHjPAFAmCmgexG4u-lkS2_7Vxj_z_-DpshERPaCIOhh7rd6LakReb5uhUmLnhhT-6ZrdQZADKBVEpHHvfRsOmZCSCkkjKMXp3UL5gH_OP8-1s3lD3h1Gl2wQPd6C93w0wI-ea0KNPM-vfZW98jtPrgOIzmfkZ3lZef3AW0t7cFqTsF7PmEHZPfD0enZ17-8IS8O
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKkEviDehlFqCIqi06fq1uzkgFPpQSppQoRb1Zuy1t4oCm9JNQPwo_iPjeJ1QFPXWQ6QkdmbtjO35ZsYzg9ArnTAd68REjAkecUNE1BaZBYaY1MBHQ62LRu4Pku4p_3gmzlbQnxAL465VhjNxdlCbce5s5DvUJcISNCXvL35ErmiUc66GChp-VfTs71-gsVXvDveAvVuUHuyf7HajuqhAlAvOJhFXbWWIslkCY0xVrogBRG9hyLQgVmWJUUVe6IxbKgqtDde2KIyiDCSzVaB6At1baJUz0GQaaPXD_uD48_zoB23Ax7wQ6vJ-pt6NShlLd4IptSXilmi1KbkiCIM4CDmK3RVNVQGXCl9eYxn-_S-56UwgHtxDd2skizt-6d1HK7Z8gG73a1_9QzTq9I8jFzbxE-CswbOEEMMSj4YlCE78Blp7b_Gwwosu0Pp9WgExPC5wNdXORFRhZynGzlKMKQ7Twz66EoeCUY_Q6Y1w4TFqlOPSPkUYMJBlluiCKECfmQKVQScxBeGft3NDsyaKw_8s8zrvuSu_8U2C_uNYI8PYpYilkMCaJtqe_-TCJ_24rvOWY550yTRKd1sn9xYfCfPd_SQ7WQwQNBXQ72Xg7oLIEmobVxj_z_NBNyWsidbDQpD1aVPJ-d5oos15KxwTzvejSjueVjIF6AdgLm6iJ371LAgTxjhnHObhl9O8xWUe3xt-6cjx5Tm8ptI5faHf6yX96q9G8M5K0XaG5WfXDnUT3eme9I_k0eGgt47W_NU-d4_0OWpMLqd2A7DeRL-odxhGX296U_8F905vXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP8pY8wSDAFS2tiOk_QBoWpl2igde2Cob54dO6gqpGNpQXw0vh13ddwyVO1tD5Xa-nqxe2ff7872HSEvTCpMbFIbCSGTKLFMRl2ZOxCIzSx8tNzhbeThcXp4mnwYydEG-RPuwuCxyrAmLhZqOy0wRt7hmAhL8ox1yuZUxEn_4N35jwgLSOFGa6im4TVk4H7_Au-tfnvUB1HvcX7w_vP-YdQUGIgKmYhZlOiutky7PIX-ZrrQzAK6d9B9XjKn89TqsihNnjguS2NsYlxZWs0FWGmnwQ0FvjfIzUxIhlMsGy19vRj8An_7hXHMAJr5DVUuRNYJQdW2jNuy3eXskkkMhiFkK8bDmroGeZW-0MY6JPxfmtOFaTy4Q243mJb2vBLeJRuuuke2hs2u_X0y6Q1PIrxA8ROAraWL1BDjik7GFZhQ-gpaB6_puKYrEmj9Pq-BGZ2WtJ4bDBbVFGPGFGPGlNMwPOrvWdJQOuoBOb0WGTwkm9W0co8JBTTkhGOmZBpwaK7BeTBpzAEGFN3C8rxF4vA_q6LJgI6FOL4p8IRQNCr0XclYSQWiaZE3y5-c-_QfVxHvofAUptWoUEMLH_tRMN79T6qXxwBGMwl0z4N0V0zWcNu5JPh_ng9eKhMtsh0UQTXrTq2Ws6RFdpetsGDgLpCu3HReqwxAIMC6uEUeee1ZMWZCJIlIYBxenZYtmIO8P_7SU9OLr_CaK9z-BbqXa-iarybwzinZxRDzkyu7uku2YCqrj0fHg21yy5_xwwOlT8nm7GLudgD0zcyzxfSi5Oy65_NfjWFyLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMP-Activated+Protein+Kinase+is+activated+in+muscle+of+subjects+with+type+2+diabetes+during+exercise.+%28Rapid+Publication%29&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Musi%2C+Nicolas&rft.au=Fujii%2C+Nobuharu&rft.au=Hirshman%2C+Michael+F&rft.au=Ekberg%2C+Ingvar&rft.date=2001-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=50&rft.issue=5&rft.spage=921&rft_id=info:doi/10.2337%2Fdiabetes.50.5.921&rft.externalDocID=A80392751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon