Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection

Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 14; no. 12; p. 1794
Main Authors Xu, Tingyu, Cui, Haowei, Song, Yunsheng, Zhang, Chao, Alghamdi, Turki, Aborokbah, Majed
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.06.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.
AbstractList Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists' judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists' scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists' social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists' judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists' scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists' social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.
Audience Academic
Author Cui, Haowei
Xu, Tingyu
Song, Yunsheng
Zhang, Chao
Aborokbah, Majed
Alghamdi, Turki
AuthorAffiliation 1 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; xutingyu@sxu.edu.cn (T.X.); cuihaowei@sxu.edu.cn (H.C.)
3 Faculty of Computer, Islamic University of Madinah, Madinah 42351, Saudi Arabia; dr.turki2@iu.edu.sa
2 College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China; songys@sdau.edu.cn
4 Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia; m.aborokbah@ut.edu.sa
AuthorAffiliation_xml – name: 2 College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China; songys@sdau.edu.cn
– name: 3 Faculty of Computer, Islamic University of Madinah, Madinah 42351, Saudi Arabia; dr.turki2@iu.edu.sa
– name: 1 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; xutingyu@sxu.edu.cn (T.X.); cuihaowei@sxu.edu.cn (H.C.)
– name: 4 Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia; m.aborokbah@ut.edu.sa
Author_xml – sequence: 1
  givenname: Tingyu
  surname: Xu
  fullname: Xu, Tingyu
– sequence: 2
  givenname: Haowei
  surname: Cui
  fullname: Cui, Haowei
– sequence: 3
  givenname: Yunsheng
  orcidid: 0000-0002-3697-7134
  surname: Song
  fullname: Song, Yunsheng
– sequence: 4
  givenname: Chao
  orcidid: 0000-0001-6248-9962
  surname: Zhang
  fullname: Zhang, Chao
– sequence: 5
  givenname: Turki
  orcidid: 0000-0001-5286-1863
  surname: Alghamdi
  fullname: Alghamdi, Turki
– sequence: 6
  givenname: Majed
  orcidid: 0000-0001-7376-1458
  surname: Aborokbah
  fullname: Aborokbah, Majed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40573782$$D View this record in MEDLINE/PubMed
BookMark eNptk01v1DAQhiNUREvplSOyxAUOKevYsRMu1bL9YKVKK7UgjpHjTFKXxA7-2FL-KH8Hp1vaLiKOlGj8zGvP6_HLZEcbDUnyGs8OCSlnH8ZeaO8wxRnmJX2W7GVZRlLOKd958r-bHDh3PYtPEV_MXiS7dJZzwotsL_n97QqER4vQe7UWXhmNLoPyola98rfoZC36sAnfKH-FLr1VI6CL4Dw6Vg6Eg49ortG8s0pGjWBFj86sCSNaGO1Au-DQqRUD3Bj7HX2KfIOi2Nx61SqpRJ8utYe-Vx1oCekZaLDCRyime9AeCd2g1ejVoH7d7SM9tmoNGq3WYHsxjkp3kR2GoKf9HoMHOWGvkuet6B0c3H_3k6-nJ18Wn9Pz1dlyMT9PZU6JTwnlpWQNa_OGt0VOeN1iLqgUkpUZhpbzti4kKesSoM0lw4wVJa0JabKS0IyS_WS50W2MuK5GqwZhbysjVHUXMLarRKxV9lAVLGdNISVpGk7zHApGMlJzCVneEIlZ1DraaI2hHqCRsfxo55bo9oxWV1Vn1lU8_5JjjKPCu3sFa34EcL4alJPRXqHBBFeRLKOMktgKEX37D3ptgtXRq4kiJSkowY9UJ2IFSrcmLiwn0Wpe0JzHHmKTCYf_oeJoYFAy9myrYnwr4f1WgpwO-6fvRHCuWl5ebLNvnrryYMffHn5cXVrjnIX2AcGzaron1fY9IX8Ac18JYg
Cites_doi 10.1016/j.ins.2024.120338
10.1177/20539517221115189
10.1038/s41598-024-66989-9
10.1016/j.ijar.2025.109417
10.3390/agriculture12081226
10.3390/plants14030484
10.3389/fpls.2023.1237783
10.3390/electronics14081638
10.1007/s10462-024-11100-x
10.1007/s11119-023-10093-x
10.1162/003355399556151
10.1038/s41598-024-83551-9
10.1007/s11042-024-18733-8
10.1016/j.engappai.2023.106962
10.1109/TFUZZ.2024.3374521
10.3390/electronics13244930
10.1016/j.eswa.2025.126940
10.1038/s42003-025-07789-3
10.1016/j.eswa.2023.122095
10.1103/PhysRevE.69.066133
10.1016/B978-0-323-91068-2.00014-X
10.1007/s44187-025-00399-2
10.1016/j.inffus.2024.102799
10.3390/plants13223184
10.1007/s42486-024-00172-x
10.1016/j.eja.2024.127492
10.1016/S0007-1536(68)80010-5
10.1016/j.compag.2024.109158
10.1088/1748-9326/ab4034
10.3390/agriengineering7020037
10.1186/s13007-024-01257-5
10.3389/fpls.2023.1329556
10.1016/j.jenvman.2019.03.020
10.1109/TFUZZ.2023.3241062
10.1016/j.inffus.2023.101969
10.3390/plants14030468
10.3389/fpls.2024.1412988
10.1016/j.compag.2024.109737
10.1016/j.compag.2024.109005
10.1007/s41348-022-00575-x
10.1016/j.ins.2024.121290
10.1016/j.eswa.2023.122555
10.1016/j.knosys.2025.113400
10.1145/2184319.2184343
10.1016/j.cbrev.2025.100191
10.1038/s41598-025-92646-w
10.3724/SP.J.1042.2022.01078
10.3389/fpls.2020.558126
10.3390/electronics9081295
10.3390/horticulturae11050551
10.1079/planthealthcases.2025.0011
10.3390/plants11192525
10.1016/j.omega.2023.102842
10.1016/j.egycc.2020.100013
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants14121794
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Agricultural Science Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_8656d8cc3dd7455e86323b7ce25d3c16
PMC12197111
A845778264
40573782
10_3390_plants14121794
Genre Journal Article
GeographicLocations Turkey
China
Ethiopia
India
GeographicLocations_xml – name: China
– name: Ethiopia
– name: India
– name: Turkey
GrantInformation_xml – fundername: the Wenying Young Scholars of Shanxi University
  grantid: N/A
– fundername: the 22nd Undergraduate Innovation and Entrepreneurship Training Program of Shanxi University
  grantid: 202410108008
– fundername: the Central Government Guides Local Science and Technology Innovation
  grantid: YDZJSX2024D015
– fundername: the Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi
  grantid: 2019SK036
– fundername: the Special Fund for the Training Program for Young Scientific Researchers of Higher Education Institutions in Shanxi
  grantid: N/A
– fundername: the Science and Technology Innovation Teams of Shanxi
  grantid: 202204051001015
– fundername: Special Fund for the Training Program for Young Scientific Researchers of Higher Education Institutions in Shanxi
– fundername: Central Government Guides Local Science and Technology Innovation
  grantid: YDZJSX2024D015
– fundername: Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi
  grantid: 2019SK036
– fundername: 22nd Undergraduate Innovation and Entrepreneurship Training Program of Shanxi University
  grantid: 202410108008
– fundername: Wenying Young Scholars of Shanxi University
– fundername: Science and Technology Innovation Teams of Shanxi
  grantid: 202204051001015
– fundername: Researcher Supporting Project number, King Saud University, Riyadh, Saudi Arabia
  grantid: RSPD2025R582
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
NPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
M48
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c543t-3479c6d6f5d7f8537bf17a4cac6921ef77fb8c39b9eef5c6166894b33d2934243
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:29:46 EDT 2025
Thu Aug 21 18:34:12 EDT 2025
Fri Jul 11 16:58:41 EDT 2025
Fri Jul 25 09:12:56 EDT 2025
Thu Jul 03 03:04:58 EDT 2025
Tue Jul 01 05:42:32 EDT 2025
Tue Jul 01 05:43:04 EDT 2025
Tue Jul 01 05:31:18 EDT 2025
Thu Jul 03 08:26:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords precision agriculture
artificial intelligent generated content
wheat cultivation
plant disease detection
wheat strip rust disease
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-3479c6d6f5d7f8537bf17a4cac6921ef77fb8c39b9eef5c6166894b33d2934243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5286-1863
0000-0002-3697-7134
0000-0001-6248-9962
0000-0001-7376-1458
OpenAccessLink https://www.proquest.com/docview/3223938431?pq-origsite=%requestingapplication%
PMID 40573782
PQID 3223938431
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_8656d8cc3dd7455e86323b7ce25d3c16
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12197111
proquest_miscellaneous_3224643000
proquest_journals_3223938431
gale_infotracmisc_A845778264
gale_infotracacademiconefile_A845778264
gale_incontextgauss_ISR_A845778264
pubmed_primary_40573782
crossref_primary_10_3390_plants14121794
PublicationCentury 2000
PublicationDate 2025-06-11
PublicationDateYYYYMMDD 2025-06-11
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Song (ref_41) 2024; 240
Ding (ref_39) 2024; 32
Demirhan (ref_46) 2025; 25
ref_58
ref_13
Ding (ref_32) 2025; 275
ref_56
ref_11
ref_55
ref_54
ref_53
Joshi (ref_52) 2024; 224
ref_19
Ilyas (ref_6) 2025; 229
ref_16
Ji (ref_29) 2023; 31
Meng (ref_60) 2023; 126
Meng (ref_59) 2023; 117
Sirsat (ref_51) 2025; 317
Doling (ref_18) 1968; 51
Kumar (ref_14) 2024; 221
Bhola (ref_50) 2025; 84
ref_24
Mao (ref_15) 2024; 25
Nayak (ref_44) 2025; 164
Ernst (ref_35) 2019; 238
Palla (ref_28) 2004; 69
Teng (ref_30) 2024; 685
Candes (ref_21) 2012; 55
Wang (ref_23) 2021; 35
ref_27
Chen (ref_57) 2024; 20
Thurston (ref_20) 2019; 14
Newman (ref_25) 2004; 69
Fehr (ref_33) 1999; 114
Chen (ref_17) 2017; 12
Pavleska (ref_22) 2024; 7
Feng (ref_12) 2023; 107
Shafi (ref_48) 2022; 129
Jiang (ref_37) 2022; 30
Li (ref_38) 2025; 305
Li (ref_31) 2025; 181
Ding (ref_40) 2024; 238
Upadhyay (ref_1) 2025; 58
Ding (ref_10) 2024; 665
Liu (ref_34) 2020; 1
Starke (ref_36) 2022; 9
Degefu (ref_45) 2025; 5
ref_43
Yuan (ref_47) 2022; 9
ref_3
ref_2
Zhou (ref_42) 2024; 101
ref_49
ref_9
ref_8
Shen (ref_26) 2025; 116
ref_5
ref_4
ref_7
References_xml – volume: 665
  start-page: 120338
  year: 2024
  ident: ref_10
  article-title: Next generation of computer vision for plant disease monitoring in precision agriculture: A contemporary survey, taxonomy, experiments, and future direction
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.120338
– volume: 9
  start-page: 20539517221115189
  year: 2022
  ident: ref_36
  article-title: Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature
  publication-title: Big Data Soc.
  doi: 10.1177/20539517221115189
– ident: ref_56
  doi: 10.1038/s41598-024-66989-9
– volume: 305
  start-page: 120970
  year: 2025
  ident: ref_38
  article-title: Neural mechanisms of fairness decision-making: An EEG comparative study on opportunity equity and outcome equity
  publication-title: Adv. Psychol. Sci.
– volume: 181
  start-page: 109417
  year: 2025
  ident: ref_31
  article-title: Improved evidential three-way decisions in incomplete multi-scale inform. systems
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2025.109417
– ident: ref_19
  doi: 10.3390/agriculture12081226
– ident: ref_2
  doi: 10.3390/plants14030484
– ident: ref_8
  doi: 10.3389/fpls.2023.1237783
– ident: ref_58
  doi: 10.3390/electronics14081638
– volume: 58
  start-page: 92
  year: 2025
  ident: ref_1
  article-title: Deep learning and computer vision in plant disease detection: A comprehensive review of techniques, models, and trends in precision agriculture
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-11100-x
– volume: 25
  start-page: 785
  year: 2024
  ident: ref_15
  article-title: AE-Mask: A novel deep-learning-based automatic detection model for in-field wheat diseases
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10093-x
– volume: 114
  start-page: 817
  year: 1999
  ident: ref_33
  article-title: A theory of fairness, competition, and cooperation
  publication-title: Q. J. Econ.
  doi: 10.1162/003355399556151
– ident: ref_4
  doi: 10.1038/s41598-024-83551-9
– volume: 84
  start-page: 4751
  year: 2025
  ident: ref_50
  article-title: Deep feature-support vector machine based hybrid model for multi-crop leaf disease identification in Corn, Rice, and Wheat
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-024-18733-8
– volume: 126
  start-page: 106962
  year: 2023
  ident: ref_60
  article-title: A fair consensus adjustment mechanism for large-scale group decision making in term of Gini coefficient
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2023.106962
– volume: 32
  start-page: 3420
  year: 2024
  ident: ref_39
  article-title: A confidence and conflict-based consensus reaching process for large-scale group decision making problems with intuitionistic fuzzy representations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2024.3374521
– ident: ref_27
  doi: 10.3390/electronics13244930
– volume: 107
  start-page: 3585
  year: 2023
  ident: ref_12
  article-title: Molecular mapping of Yr85 and comparison with other genes for resistance to stripe rust on wheat chromosome 1B
  publication-title: Plant Dis.
– volume: 275
  start-page: 126940
  year: 2025
  ident: ref_32
  article-title: A three-way large-scale group decision-making method integrating sentiment analysis and quantum interference-based prospect theory for the selection of new energy vehicles
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126940
– ident: ref_43
  doi: 10.1038/s42003-025-07789-3
– volume: 238
  start-page: 122095
  year: 2024
  ident: ref_40
  article-title: Conflict management-based consensus reaching process considering conflict relationship clustering in large-scale group decision-making problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122095
– volume: 69
  start-page: 066133
  year: 2004
  ident: ref_25
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.69.066133
– ident: ref_9
  doi: 10.1016/B978-0-323-91068-2.00014-X
– volume: 5
  start-page: 1
  year: 2025
  ident: ref_45
  article-title: Impact of cluster farming on technical efficiency and food security among smallholder wheat producers in Southeastern Ethiopia
  publication-title: Discov. Food
  doi: 10.1007/s44187-025-00399-2
– volume: 116
  start-page: 102799
  year: 2025
  ident: ref_26
  article-title: A hybrid opinion dynamics model with leaders and followers fusing dynamic social networks in large-scale group decision-making
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2024.102799
– ident: ref_7
  doi: 10.3390/plants13223184
– volume: 7
  start-page: 48
  year: 2024
  ident: ref_22
  article-title: Social interaction models for trust systems design
  publication-title: CCF Trans. Pervasive Comput. Interact.
  doi: 10.1007/s42486-024-00172-x
– volume: 164
  start-page: 127492
  year: 2025
  ident: ref_44
  article-title: Ensuring sustainable crop production when yield gaps are small: A data-driven integrated assessment for wheat farms in Northwest India
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2024.127492
– volume: 51
  start-page: 427
  year: 1968
  ident: ref_18
  article-title: The effect of yellow rust on the yield of spring and winter wheat
  publication-title: Trans. Br. Mycol. Soc.
  doi: 10.1016/S0007-1536(68)80010-5
– volume: 12
  start-page: 1
  year: 2017
  ident: ref_17
  article-title: Introduction: History of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust
  publication-title: Stripe Rust
– volume: 224
  start-page: 109158
  year: 2024
  ident: ref_52
  article-title: Detection and monitoring wheat diseases using unmanned aerial vehicles (UAVs)
  publication-title: Comput. Eleceron. Agric.
  doi: 10.1016/j.compag.2024.109158
– volume: 14
  start-page: 115004
  year: 2019
  ident: ref_20
  article-title: An early warning system to predict and mitigate wheat rust diseases in Ethiopia
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab4034
– ident: ref_53
  doi: 10.3390/agriengineering7020037
– volume: 20
  start-page: 130
  year: 2024
  ident: ref_57
  article-title: Soybean seed pest damage detection method based on spatial frequency domain imaging combined with RL-SVM
  publication-title: Plant Methods
  doi: 10.1186/s13007-024-01257-5
– ident: ref_3
  doi: 10.3389/fpls.2023.1329556
– volume: 238
  start-page: 368
  year: 2019
  ident: ref_35
  article-title: How participation influences the perception of fairness, efficiency and effectiveness in environmental governance: An empirical analysis
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.03.020
– volume: 35
  start-page: 4436
  year: 2021
  ident: ref_23
  article-title: Learning to recommend from sparse data via generative user feedback
  publication-title: Proc. AAAI Conf. AI
– volume: 69
  start-page: 066133
  year: 2004
  ident: ref_28
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
– volume: 31
  start-page: 3025
  year: 2023
  ident: ref_29
  article-title: The overlapping community-driven feedback mechanism to support consensus in social network group decision making
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2023.3241062
– volume: 101
  start-page: 101969
  year: 2024
  ident: ref_42
  article-title: Consensus reaching process for group decision-making based on trust network and ordinal consensus measure
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2023.101969
– ident: ref_5
  doi: 10.3390/plants14030468
– ident: ref_54
  doi: 10.3389/fpls.2024.1412988
– volume: 229
  start-page: 109737
  year: 2025
  ident: ref_6
  article-title: CWD30: A new benchmark dataset for crop weed recognition in precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109737
– volume: 221
  start-page: 109005
  year: 2024
  ident: ref_14
  article-title: Image segmentation, classification, and recognition methods for wheat diseases: Two Decades’ systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109005
– volume: 129
  start-page: 489
  year: 2022
  ident: ref_48
  article-title: Wheat rust disease detection techniques: A technical perspective
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-022-00575-x
– volume: 685
  start-page: 121290
  year: 2024
  ident: ref_30
  article-title: Overlapping community-driven dynamic consensus reaching model of large-scale group decision making in social network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.121290
– volume: 240
  start-page: 122555
  year: 2024
  ident: ref_41
  article-title: Managing non-cooperative behaviors in consensus reaching process: A novel multi-stage linguistic LSGDM framework
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122555
– volume: 317
  start-page: 113400
  year: 2025
  ident: ref_51
  article-title: Machine and deep learning for the prediction of nutrient deficiency in wheat leaf images
  publication-title: Konwl.-Based Syst.
  doi: 10.1016/j.knosys.2025.113400
– volume: 55
  start-page: 111
  year: 2012
  ident: ref_21
  article-title: Exact matrix completion via convex optimization
  publication-title: Commun. ACM
  doi: 10.1145/2184319.2184343
– volume: 25
  start-page: 100191
  year: 2025
  ident: ref_46
  article-title: The impact of temperature and precipitation on wheat production in Turkiye
  publication-title: Cent. Bank Rev.
  doi: 10.1016/j.cbrev.2025.100191
– ident: ref_55
  doi: 10.1038/s41598-025-92646-w
– volume: 9
  start-page: 48
  year: 2022
  ident: ref_47
  article-title: Advanced agricultural disease image recognition technologies: A review
  publication-title: Inform. Process. Agr.
– volume: 30
  start-page: 1078
  year: 2022
  ident: ref_37
  article-title: Fairness perceptions of artificial intelligence decision-making
  publication-title: Adv. Psychol. Sci.
  doi: 10.3724/SP.J.1042.2022.01078
– ident: ref_13
  doi: 10.3389/fpls.2020.558126
– ident: ref_24
  doi: 10.3390/electronics9081295
– ident: ref_49
  doi: 10.3390/horticulturae11050551
– ident: ref_16
  doi: 10.1079/planthealthcases.2025.0011
– ident: ref_11
  doi: 10.3390/plants11192525
– volume: 117
  start-page: 102842
  year: 2023
  ident: ref_59
  article-title: Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making
  publication-title: Omega
  doi: 10.1016/j.omega.2023.102842
– volume: 1
  start-page: 100013
  year: 2020
  ident: ref_34
  article-title: Public participation in decision making, perceived procedural fairness and public acceptability of renewable energy projects
  publication-title: Energy Clim. Change
  doi: 10.1016/j.egycc.2020.100013
SSID ssj0000800816
Score 2.2945125
Snippet Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1794
SubjectTerms Accuracy
Agricultural industry
Agricultural management
Agricultural production
Agricultural societies
Agriculture
Artificial intelligence
artificial intelligent generated content
China
Clustering
Crop diseases
Crop growth
Cultivation
Datasets
Decision making
Disease control
Diseases
Efficiency
Ethiopia
Evaluation
Food security
Food supply
Grain cultivation
Graph neural networks
India
Intelligence
Knowledge
Mathematical models
Multiple criterion
Neural networks
Optimization
plant disease detection
Plant structures
Precision agriculture
Propagation
Role playing
Sensitivity analysis
Social networks
Social organization
Stripe rust
Subgroups
Turkey
Wheat
wheat cultivation
wheat strip rust disease
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ1QMXxJuFggaE1NOq2bXX9nJLmkYtElRqqNTbyq8NINhUyQapv5S_w4x3E2XFgQvXeOL4MZ75xhl_w9h79OIuF16mWpocAxQjUzMa-dTUpVHWKCNruhr49FmeX4uPN8XNXqkvygnr6IG7hTvRCDi8do57r0RRBC15zq1yIS88d1kk20aftxdMfe9xkM5kx9LIMa4_uf1BeSWZyHJSwYEXimT9f5vkPZ80zJfcc0Czh-xBjxxh3I34EbsXmsfscLJEdHf3hP2OVhWIIbOvVwbzDcb9Mff1Ds52pN5AN68wb9FYBLjarFuYdv_RfIBxA-PFakfGAfFeCqikJ9XDWMNsm8gFE5T3gJ3RaDoOivRij9wz7disEc1CpL9qWjCNh0u0Tz_7h5_pdEWGFi5_0Y0isUQsoH-tguOdhjbmiDVP2fXs7MvpedoXbUhdIXib0stUJ72sC69qxALK1pkywhknyzwLtVK11Y6XtgyhLpzMpNSlsJx7BB4iF_wZO2iWTXjBQPOgrM64q52kesJlZkWwubduVGCPPGHH202sbjtujgpjGtruarjdCZvQHu-kiFM7foCaVvWaVv1L0xL2jjSkItaMhtJyFmazXlcX86tqrEWhEGtJ_KXjXqheoq7gtLtXDjgjItoaSB4NJPFYu2HzVhGr3qysK7S-vOQaQV_C3u6a6ZuUKteE5SbKCISZeAYS9rzT2928CZ1z7D5heqDRg4UZtjTfvkbScVzIUqFjfPk_lvIVu59THWWqAZUdsYN2tQmvEdy19k08x38A3_FTJg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdg44E9IBhfgYEMQtpTtCZ2bIcX1NJWGxIbapm0tyj-SJnEktKkSPtL-Xe4S9yuERKv9dWx4_Pdz5fz7wj5AF7cxNyKUIk8hgNKLsJ8MLBhXqS51LnMRYGhga_n4vSSf7lKrnzArfZplRub2BpqWxmMkZ-A4rGUKfB3n5a_QqwahV9XfQmN-2QfTLCCw9f-aHL-bbaNsiAeUpHo2BoZnO9Plj8xvyTiUYyq2PNGLWn_v6Z5xzf18yZ3HNH0MXnkESQddkv-hNxz5SE5GC5WnkXDHZIHowow3-1T8qe1tRR5M30VMzpfXzcdN_ctnWypvinGY-m8ARPi6GxdN3Tcfbn5SIclvescHtxGqygW-sQqGTWdbtK76AjkLYXOcGwdM0V4tkP5GXYc14BxaUuKVTY0Ly29AKt146-DhuMVml968RvjjMgdsaD-DguMd-yaNnOsfEYup5Pvn09DX8ohNAlnTYj3VY2wokisLAAhSF1EMucmNyKNI1dIWWhlWKpT54rEiEgIlXLNmAU4wmPOnpO9sirdS0IVc1KriJnCCKwynEaaOx1bbQYJ9MgCcrxZ0mzZMXZkcNLBxc_6ix-QEa74VgqZttsfqtUi8xs3UwB4rTKGWSt5kjglWMy0NC5OLDORCMh71JcMuTRKTNZZ5Ou6zs7ms2yoeCIBgQl40rEXKirQHJh2d_cBZoT0Wz3Jo54kbHbTb96oZeaNTZ3dbY2AvNs24z8xga501bqV4QA-YUcE5EWnxdt5I2Zn0H1AVE-_ey-m31Je_2ipyOFFphLc5av_j-s1eRhj3WSs-RQdkb1mtXZvAMw1-q3fsX8BjkhQ1g
  priority: 102
  providerName: ProQuest
Title Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/40573782
https://www.proquest.com/docview/3223938431
https://www.proquest.com/docview/3224643000
https://pubmed.ncbi.nlm.nih.gov/PMC12197111
https://doaj.org/article/8656d8cc3dd7455e86323b7ce25d3c16
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZg4wEeEIxbYFQGIe0p0MSO7SAh1NJWG9I21FJpb1F8SRka6WhTxH4pf4dznLRrxB54rU-d2D6Xz87xdwh5A1HcxNyKUIk8hg1KLsK827VhXqS51LnMRYFHA8cn4nDKP58lZ9f5T80ELm_c2mE9qeni4u3vn1cfweA_4I4TtuzvLi8wZSTiUYzadZvsQlSSaKTHDdT_3iAj5SuhYkQEUMllzeF4QxetGOWp_P912FsRq51NuRWeRg_I_QZX0l6tCA_JLVfukXu92aLh1nB75E5_Dkjw6hH54z0wRTbNprYZnazOq5qx-4oONwTgFE9p6aQCx-LoeLWs6KD-nvOe9kp63Tk82J9hUSz_ibUzlnS0TvqifZC3FDrDd6v5KsKjLSLQsGa-BuRLPVVWWdG8tPQUfNmP5pJoOFigU6anv_D0ERklZrS52QLvO3CVzycrH5PpaPj102HYFHgITcJZFeItViOsKBIrC8ANUheRzLnJjUjjyBVSFloZlurUuSIxIhJCpVwzZgGk8JizJ2SnnJfuGaGKOalVxExhBNYeTiPNnY6tNt0EemQBOVgvaXZZ83hksP_Bxc_aix-QPq74Rgr5t_0P88Usa8w5UwCDrTKGWSt5kjglWMy0NC5OLDORCMhr1JcMGTZKTOGZ5avlMjuajLOe4okEXCbgSQeNUDEHzYFh1zciYERIytWS3G9Jggsw7ea1WmZrC8rAU7OUKQCIAXm1acZ_Ylpd6eYrL8MBkoJ1BORprcWbcSOSZ9B9QFRLv1sT024pz795gnKYyFRCEH3-3wN8Qe7GWFgZi0JF-2SnWqzcS0B7le6Q3f7w5Mu4409LOt6o_wJquFuf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhwQ8IBhfhQEGgfYUrYkdx0FCqKWtWrZ1qN2kvYXEdsokSEqTgvpP8e_w73CXj64REm97ra-OnTvfV86_I-QNWHHlcC0sKUIHApRQWGGno60w9kMvCr1QxJgaOJmI0Tn_dOFe7JDf9V0YLKusdWKhqHWqMEd-CILHfCbB3n1Y_LCwaxR-Xa1baJRicWTWvyBky96P-8Dft44zHJx9HFlVVwFLuZzlFl6dVEKL2NVeDMbKi2LbC7kKlfAd28SeF0dSMT_yjYldJWwhpM8jxjRYRu5wBvPeILucQSjTIru9weTzdJPVQf9L2qJEh2TM7xwuvmE9i81tB0W_Yf2KJgH_moItW9is09wyfMN75G7lsdJuKWL3yY5J9sid7nxZoXaYPXKzl4KPuX5A_hS6nSJOZ9U1jc5Wl3mJBb6mgw20OMX8L53loLIMna6ynPbLL0XvaDehV5PDg4vsGMXGotiVI6PDupyM9oBeU5gM11YiYVjjLYhRq8TUBp-aFiBcSU7DRNNT0JLfq-unVn-J6p6e_sS8JmJVzGl1ZwbW2zd5UamWPCTn18LkR6SVpIl5QqhkxoukzVSsBHY19u2Im8jRkeq4MCNrk4OapcGiRAgJILJC5gdN5rdJDzm-oUJk7-KHdDkPKkURSHCwtVSKae1x1zVSMIdFnjKOq5myRZu8RnkJELsjweKgebjKsmA8mwZdyV0PPD4BTzqoiOIUJAe2Xd61gB0h3FeDcr9BCcpFNYdrsQwq5ZYFV0exTV5thvGfWLCXmHRV0HBwduFEtMnjUoo3-8YYgcH0bSIb8t14Mc2R5PJrAX0OL9L3wDw__f-6XpJbo7OT4-B4PDl6Rm472LMZ-03Z-6SVL1fmOTiSefSiOr2UfLluhfEXlcSNcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhxA8IBhfgQEGgfYUtYkdO0FCqKWtVgbd1DFpbyGxnTIJktKkoP5r_CP8O9zlo2uExNte66tj5873lfPvCHkFVly5XAvbF5ELAUok7KjX03aUBJGMIxmJBFMDn6bi8Ix_OPfOd8jv5i4MllU2OrFU1DpTmCPvguCxgPlg77pJXRZxMhy_W_ywsYMUfmlt2mlUInJk1r8gfMvfTobA69euOx59fn9o1x0GbOVxVth4jVIJLRJPywQMl4wTR0ZcRUoErmMSKZPYVyyIA2MSTwlHCD_gMWMarCR3OYN5r5FdCVFRr0N2B6PpyWyT4UFfzHdEhRTJWNDrLr5hbYvDHRePQcsSlg0D_jULW3axXbO5ZQTHd8jt2nul_Urc7pIdk-6RW_35skbwMHvk-iADf3N9j_wp9TxFzM66gxo9XV0UFS74mo42MOMUc8H0tAD1ZehslRd0WH01ekP7Kb2cHB5cZsooNhnFDh05HTelZXQA9JrCZLi2ChXDnmzBjdoVvjb417QE5EoLGqWaHoPG_F5fRbWHS1T99Pgn5jgRt2JO6_szsN6hKcqqtfQ-ObsSJj8gnTRLzSNCfWZk7DtMJUpgh-PAibmJXR2rngczMoscNCwNFxVaSAhRFjI_bDPfIgPk-IYKUb7LH7LlPKyVRuiDs619pZjWknue8QVzWSyVcT3NlCMs8hLlJUQcjxRPxDxa5Xk4OZ2FfZ97Erw_AU86qImSDCQHtl3du4AdIfRXi3K_RQmKRrWHG7EMa0WXh5fH0iIvNsP4TyzeS022Kmk4OL5wIizysJLizb4xXmAwvUX8lny3Xkx7JL34WsKgw4sMJJjqx_9f13NyAxRF-HEyPXpCbrrYvhlbTzn7pFMsV-Yp-JRF_Kw-vJR8uWp98Rfc65Go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wheat+Cultivation+Suitability+Evaluation+with+Stripe+Rust+Disease%3A+An+Agricultural+Group+Consensus+Framework+Based+on+Artificial-Intelligence-Generated+Content+and+Optimization-Driven+Overlapping+Community+Detection&rft.jtitle=Plants+%28Basel%29&rft.au=Xu%2C+Tingyu&rft.au=Cui%2C+Haowei&rft.au=Song%2C+Yunsheng&rft.au=Zhang%2C+Chao&rft.date=2025-06-11&rft.pub=MDPI+AG&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fplants14121794&rft.externalDocID=A845778264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon