Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource...
Saved in:
Published in | Plants (Basel) Vol. 14; no. 12; p. 1794 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.06.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses. |
---|---|
AbstractList | Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses. Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists' judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists' scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists' social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists' judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists' scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists' social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses. |
Audience | Academic |
Author | Cui, Haowei Xu, Tingyu Song, Yunsheng Zhang, Chao Aborokbah, Majed Alghamdi, Turki |
AuthorAffiliation | 1 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; xutingyu@sxu.edu.cn (T.X.); cuihaowei@sxu.edu.cn (H.C.) 3 Faculty of Computer, Islamic University of Madinah, Madinah 42351, Saudi Arabia; dr.turki2@iu.edu.sa 2 College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China; songys@sdau.edu.cn 4 Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia; m.aborokbah@ut.edu.sa |
AuthorAffiliation_xml | – name: 2 College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China; songys@sdau.edu.cn – name: 3 Faculty of Computer, Islamic University of Madinah, Madinah 42351, Saudi Arabia; dr.turki2@iu.edu.sa – name: 1 School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; xutingyu@sxu.edu.cn (T.X.); cuihaowei@sxu.edu.cn (H.C.) – name: 4 Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia; m.aborokbah@ut.edu.sa |
Author_xml | – sequence: 1 givenname: Tingyu surname: Xu fullname: Xu, Tingyu – sequence: 2 givenname: Haowei surname: Cui fullname: Cui, Haowei – sequence: 3 givenname: Yunsheng orcidid: 0000-0002-3697-7134 surname: Song fullname: Song, Yunsheng – sequence: 4 givenname: Chao orcidid: 0000-0001-6248-9962 surname: Zhang fullname: Zhang, Chao – sequence: 5 givenname: Turki orcidid: 0000-0001-5286-1863 surname: Alghamdi fullname: Alghamdi, Turki – sequence: 6 givenname: Majed orcidid: 0000-0001-7376-1458 surname: Aborokbah fullname: Aborokbah, Majed |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40573782$$D View this record in MEDLINE/PubMed |
BookMark | eNptk01v1DAQhiNUREvplSOyxAUOKevYsRMu1bL9YKVKK7UgjpHjTFKXxA7-2FL-KH8Hp1vaLiKOlGj8zGvP6_HLZEcbDUnyGs8OCSlnH8ZeaO8wxRnmJX2W7GVZRlLOKd958r-bHDh3PYtPEV_MXiS7dJZzwotsL_n97QqER4vQe7UWXhmNLoPyola98rfoZC36sAnfKH-FLr1VI6CL4Dw6Vg6Eg49ortG8s0pGjWBFj86sCSNaGO1Au-DQqRUD3Bj7HX2KfIOi2Nx61SqpRJ8utYe-Vx1oCekZaLDCRyime9AeCd2g1ejVoH7d7SM9tmoNGq3WYHsxjkp3kR2GoKf9HoMHOWGvkuet6B0c3H_3k6-nJ18Wn9Pz1dlyMT9PZU6JTwnlpWQNa_OGt0VOeN1iLqgUkpUZhpbzti4kKesSoM0lw4wVJa0JabKS0IyS_WS50W2MuK5GqwZhbysjVHUXMLarRKxV9lAVLGdNISVpGk7zHApGMlJzCVneEIlZ1DraaI2hHqCRsfxo55bo9oxWV1Vn1lU8_5JjjKPCu3sFa34EcL4alJPRXqHBBFeRLKOMktgKEX37D3ptgtXRq4kiJSkowY9UJ2IFSrcmLiwn0Wpe0JzHHmKTCYf_oeJoYFAy9myrYnwr4f1WgpwO-6fvRHCuWl5ebLNvnrryYMffHn5cXVrjnIX2AcGzaron1fY9IX8Ac18JYg |
Cites_doi | 10.1016/j.ins.2024.120338 10.1177/20539517221115189 10.1038/s41598-024-66989-9 10.1016/j.ijar.2025.109417 10.3390/agriculture12081226 10.3390/plants14030484 10.3389/fpls.2023.1237783 10.3390/electronics14081638 10.1007/s10462-024-11100-x 10.1007/s11119-023-10093-x 10.1162/003355399556151 10.1038/s41598-024-83551-9 10.1007/s11042-024-18733-8 10.1016/j.engappai.2023.106962 10.1109/TFUZZ.2024.3374521 10.3390/electronics13244930 10.1016/j.eswa.2025.126940 10.1038/s42003-025-07789-3 10.1016/j.eswa.2023.122095 10.1103/PhysRevE.69.066133 10.1016/B978-0-323-91068-2.00014-X 10.1007/s44187-025-00399-2 10.1016/j.inffus.2024.102799 10.3390/plants13223184 10.1007/s42486-024-00172-x 10.1016/j.eja.2024.127492 10.1016/S0007-1536(68)80010-5 10.1016/j.compag.2024.109158 10.1088/1748-9326/ab4034 10.3390/agriengineering7020037 10.1186/s13007-024-01257-5 10.3389/fpls.2023.1329556 10.1016/j.jenvman.2019.03.020 10.1109/TFUZZ.2023.3241062 10.1016/j.inffus.2023.101969 10.3390/plants14030468 10.3389/fpls.2024.1412988 10.1016/j.compag.2024.109737 10.1016/j.compag.2024.109005 10.1007/s41348-022-00575-x 10.1016/j.ins.2024.121290 10.1016/j.eswa.2023.122555 10.1016/j.knosys.2025.113400 10.1145/2184319.2184343 10.1016/j.cbrev.2025.100191 10.1038/s41598-025-92646-w 10.3724/SP.J.1042.2022.01078 10.3389/fpls.2020.558126 10.3390/electronics9081295 10.3390/horticulturae11050551 10.1079/planthealthcases.2025.0011 10.3390/plants11192525 10.1016/j.omega.2023.102842 10.1016/j.egycc.2020.100013 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.3390/plants14121794 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_8656d8cc3dd7455e86323b7ce25d3c16 PMC12197111 A845778264 40573782 10_3390_plants14121794 |
Genre | Journal Article |
GeographicLocations | Turkey China Ethiopia India |
GeographicLocations_xml | – name: China – name: Ethiopia – name: India – name: Turkey |
GrantInformation_xml | – fundername: the Wenying Young Scholars of Shanxi University grantid: N/A – fundername: the 22nd Undergraduate Innovation and Entrepreneurship Training Program of Shanxi University grantid: 202410108008 – fundername: the Central Government Guides Local Science and Technology Innovation grantid: YDZJSX2024D015 – fundername: the Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi grantid: 2019SK036 – fundername: the Special Fund for the Training Program for Young Scientific Researchers of Higher Education Institutions in Shanxi grantid: N/A – fundername: the Science and Technology Innovation Teams of Shanxi grantid: 202204051001015 – fundername: Special Fund for the Training Program for Young Scientific Researchers of Higher Education Institutions in Shanxi – fundername: Central Government Guides Local Science and Technology Innovation grantid: YDZJSX2024D015 – fundername: Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi grantid: 2019SK036 – fundername: 22nd Undergraduate Innovation and Entrepreneurship Training Program of Shanxi University grantid: 202410108008 – fundername: Wenying Young Scholars of Shanxi University – fundername: Science and Technology Innovation Teams of Shanxi grantid: 202204051001015 – fundername: Researcher Supporting Project number, King Saud University, Riyadh, Saudi Arabia grantid: RSPD2025R582 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ M48 P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c543t-3479c6d6f5d7f8537bf17a4cac6921ef77fb8c39b9eef5c6166894b33d2934243 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Thu Aug 21 18:34:12 EDT 2025 Fri Jul 11 16:58:41 EDT 2025 Fri Jul 25 09:12:56 EDT 2025 Thu Jul 03 03:04:58 EDT 2025 Tue Jul 01 05:42:32 EDT 2025 Tue Jul 01 05:43:04 EDT 2025 Tue Jul 01 05:31:18 EDT 2025 Thu Jul 03 08:26:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | precision agriculture artificial intelligent generated content wheat cultivation plant disease detection wheat strip rust disease |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-3479c6d6f5d7f8537bf17a4cac6921ef77fb8c39b9eef5c6166894b33d2934243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5286-1863 0000-0002-3697-7134 0000-0001-6248-9962 0000-0001-7376-1458 |
OpenAccessLink | https://www.proquest.com/docview/3223938431?pq-origsite=%requestingapplication% |
PMID | 40573782 |
PQID | 3223938431 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8656d8cc3dd7455e86323b7ce25d3c16 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12197111 proquest_miscellaneous_3224643000 proquest_journals_3223938431 gale_infotracmisc_A845778264 gale_infotracacademiconefile_A845778264 gale_incontextgauss_ISR_A845778264 pubmed_primary_40573782 crossref_primary_10_3390_plants14121794 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-11 |
PublicationDateYYYYMMDD | 2025-06-11 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Song (ref_41) 2024; 240 Ding (ref_39) 2024; 32 Demirhan (ref_46) 2025; 25 ref_58 ref_13 Ding (ref_32) 2025; 275 ref_56 ref_11 ref_55 ref_54 ref_53 Joshi (ref_52) 2024; 224 ref_19 Ilyas (ref_6) 2025; 229 ref_16 Ji (ref_29) 2023; 31 Meng (ref_60) 2023; 126 Meng (ref_59) 2023; 117 Sirsat (ref_51) 2025; 317 Doling (ref_18) 1968; 51 Kumar (ref_14) 2024; 221 Bhola (ref_50) 2025; 84 ref_24 Mao (ref_15) 2024; 25 Nayak (ref_44) 2025; 164 Ernst (ref_35) 2019; 238 Palla (ref_28) 2004; 69 Teng (ref_30) 2024; 685 Candes (ref_21) 2012; 55 Wang (ref_23) 2021; 35 ref_27 Chen (ref_57) 2024; 20 Thurston (ref_20) 2019; 14 Newman (ref_25) 2004; 69 Fehr (ref_33) 1999; 114 Chen (ref_17) 2017; 12 Pavleska (ref_22) 2024; 7 Feng (ref_12) 2023; 107 Shafi (ref_48) 2022; 129 Jiang (ref_37) 2022; 30 Li (ref_38) 2025; 305 Li (ref_31) 2025; 181 Ding (ref_40) 2024; 238 Upadhyay (ref_1) 2025; 58 Ding (ref_10) 2024; 665 Liu (ref_34) 2020; 1 Starke (ref_36) 2022; 9 Degefu (ref_45) 2025; 5 ref_43 Yuan (ref_47) 2022; 9 ref_3 ref_2 Zhou (ref_42) 2024; 101 ref_49 ref_9 ref_8 Shen (ref_26) 2025; 116 ref_5 ref_4 ref_7 |
References_xml | – volume: 665 start-page: 120338 year: 2024 ident: ref_10 article-title: Next generation of computer vision for plant disease monitoring in precision agriculture: A contemporary survey, taxonomy, experiments, and future direction publication-title: Inform. Sci. doi: 10.1016/j.ins.2024.120338 – volume: 9 start-page: 20539517221115189 year: 2022 ident: ref_36 article-title: Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature publication-title: Big Data Soc. doi: 10.1177/20539517221115189 – ident: ref_56 doi: 10.1038/s41598-024-66989-9 – volume: 305 start-page: 120970 year: 2025 ident: ref_38 article-title: Neural mechanisms of fairness decision-making: An EEG comparative study on opportunity equity and outcome equity publication-title: Adv. Psychol. Sci. – volume: 181 start-page: 109417 year: 2025 ident: ref_31 article-title: Improved evidential three-way decisions in incomplete multi-scale inform. systems publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2025.109417 – ident: ref_19 doi: 10.3390/agriculture12081226 – ident: ref_2 doi: 10.3390/plants14030484 – ident: ref_8 doi: 10.3389/fpls.2023.1237783 – ident: ref_58 doi: 10.3390/electronics14081638 – volume: 58 start-page: 92 year: 2025 ident: ref_1 article-title: Deep learning and computer vision in plant disease detection: A comprehensive review of techniques, models, and trends in precision agriculture publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-11100-x – volume: 25 start-page: 785 year: 2024 ident: ref_15 article-title: AE-Mask: A novel deep-learning-based automatic detection model for in-field wheat diseases publication-title: Precis. Agric. doi: 10.1007/s11119-023-10093-x – volume: 114 start-page: 817 year: 1999 ident: ref_33 article-title: A theory of fairness, competition, and cooperation publication-title: Q. J. Econ. doi: 10.1162/003355399556151 – ident: ref_4 doi: 10.1038/s41598-024-83551-9 – volume: 84 start-page: 4751 year: 2025 ident: ref_50 article-title: Deep feature-support vector machine based hybrid model for multi-crop leaf disease identification in Corn, Rice, and Wheat publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-18733-8 – volume: 126 start-page: 106962 year: 2023 ident: ref_60 article-title: A fair consensus adjustment mechanism for large-scale group decision making in term of Gini coefficient publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2023.106962 – volume: 32 start-page: 3420 year: 2024 ident: ref_39 article-title: A confidence and conflict-based consensus reaching process for large-scale group decision making problems with intuitionistic fuzzy representations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2024.3374521 – ident: ref_27 doi: 10.3390/electronics13244930 – volume: 107 start-page: 3585 year: 2023 ident: ref_12 article-title: Molecular mapping of Yr85 and comparison with other genes for resistance to stripe rust on wheat chromosome 1B publication-title: Plant Dis. – volume: 275 start-page: 126940 year: 2025 ident: ref_32 article-title: A three-way large-scale group decision-making method integrating sentiment analysis and quantum interference-based prospect theory for the selection of new energy vehicles publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126940 – ident: ref_43 doi: 10.1038/s42003-025-07789-3 – volume: 238 start-page: 122095 year: 2024 ident: ref_40 article-title: Conflict management-based consensus reaching process considering conflict relationship clustering in large-scale group decision-making problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122095 – volume: 69 start-page: 066133 year: 2004 ident: ref_25 article-title: Fast algorithm for detecting community structure in networks publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.69.066133 – ident: ref_9 doi: 10.1016/B978-0-323-91068-2.00014-X – volume: 5 start-page: 1 year: 2025 ident: ref_45 article-title: Impact of cluster farming on technical efficiency and food security among smallholder wheat producers in Southeastern Ethiopia publication-title: Discov. Food doi: 10.1007/s44187-025-00399-2 – volume: 116 start-page: 102799 year: 2025 ident: ref_26 article-title: A hybrid opinion dynamics model with leaders and followers fusing dynamic social networks in large-scale group decision-making publication-title: Inform. Fusion doi: 10.1016/j.inffus.2024.102799 – ident: ref_7 doi: 10.3390/plants13223184 – volume: 7 start-page: 48 year: 2024 ident: ref_22 article-title: Social interaction models for trust systems design publication-title: CCF Trans. Pervasive Comput. Interact. doi: 10.1007/s42486-024-00172-x – volume: 164 start-page: 127492 year: 2025 ident: ref_44 article-title: Ensuring sustainable crop production when yield gaps are small: A data-driven integrated assessment for wheat farms in Northwest India publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2024.127492 – volume: 51 start-page: 427 year: 1968 ident: ref_18 article-title: The effect of yellow rust on the yield of spring and winter wheat publication-title: Trans. Br. Mycol. Soc. doi: 10.1016/S0007-1536(68)80010-5 – volume: 12 start-page: 1 year: 2017 ident: ref_17 article-title: Introduction: History of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust publication-title: Stripe Rust – volume: 224 start-page: 109158 year: 2024 ident: ref_52 article-title: Detection and monitoring wheat diseases using unmanned aerial vehicles (UAVs) publication-title: Comput. Eleceron. Agric. doi: 10.1016/j.compag.2024.109158 – volume: 14 start-page: 115004 year: 2019 ident: ref_20 article-title: An early warning system to predict and mitigate wheat rust diseases in Ethiopia publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab4034 – ident: ref_53 doi: 10.3390/agriengineering7020037 – volume: 20 start-page: 130 year: 2024 ident: ref_57 article-title: Soybean seed pest damage detection method based on spatial frequency domain imaging combined with RL-SVM publication-title: Plant Methods doi: 10.1186/s13007-024-01257-5 – ident: ref_3 doi: 10.3389/fpls.2023.1329556 – volume: 238 start-page: 368 year: 2019 ident: ref_35 article-title: How participation influences the perception of fairness, efficiency and effectiveness in environmental governance: An empirical analysis publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.03.020 – volume: 35 start-page: 4436 year: 2021 ident: ref_23 article-title: Learning to recommend from sparse data via generative user feedback publication-title: Proc. AAAI Conf. AI – volume: 69 start-page: 066133 year: 2004 ident: ref_28 article-title: Uncovering the overlapping community structure of complex networks in nature and society publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. – volume: 31 start-page: 3025 year: 2023 ident: ref_29 article-title: The overlapping community-driven feedback mechanism to support consensus in social network group decision making publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2023.3241062 – volume: 101 start-page: 101969 year: 2024 ident: ref_42 article-title: Consensus reaching process for group decision-making based on trust network and ordinal consensus measure publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.101969 – ident: ref_5 doi: 10.3390/plants14030468 – ident: ref_54 doi: 10.3389/fpls.2024.1412988 – volume: 229 start-page: 109737 year: 2025 ident: ref_6 article-title: CWD30: A new benchmark dataset for crop weed recognition in precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109737 – volume: 221 start-page: 109005 year: 2024 ident: ref_14 article-title: Image segmentation, classification, and recognition methods for wheat diseases: Two Decades’ systematic literature review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109005 – volume: 129 start-page: 489 year: 2022 ident: ref_48 article-title: Wheat rust disease detection techniques: A technical perspective publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-022-00575-x – volume: 685 start-page: 121290 year: 2024 ident: ref_30 article-title: Overlapping community-driven dynamic consensus reaching model of large-scale group decision making in social network publication-title: Inform. Sci. doi: 10.1016/j.ins.2024.121290 – volume: 240 start-page: 122555 year: 2024 ident: ref_41 article-title: Managing non-cooperative behaviors in consensus reaching process: A novel multi-stage linguistic LSGDM framework publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122555 – volume: 317 start-page: 113400 year: 2025 ident: ref_51 article-title: Machine and deep learning for the prediction of nutrient deficiency in wheat leaf images publication-title: Konwl.-Based Syst. doi: 10.1016/j.knosys.2025.113400 – volume: 55 start-page: 111 year: 2012 ident: ref_21 article-title: Exact matrix completion via convex optimization publication-title: Commun. ACM doi: 10.1145/2184319.2184343 – volume: 25 start-page: 100191 year: 2025 ident: ref_46 article-title: The impact of temperature and precipitation on wheat production in Turkiye publication-title: Cent. Bank Rev. doi: 10.1016/j.cbrev.2025.100191 – ident: ref_55 doi: 10.1038/s41598-025-92646-w – volume: 9 start-page: 48 year: 2022 ident: ref_47 article-title: Advanced agricultural disease image recognition technologies: A review publication-title: Inform. Process. Agr. – volume: 30 start-page: 1078 year: 2022 ident: ref_37 article-title: Fairness perceptions of artificial intelligence decision-making publication-title: Adv. Psychol. Sci. doi: 10.3724/SP.J.1042.2022.01078 – ident: ref_13 doi: 10.3389/fpls.2020.558126 – ident: ref_24 doi: 10.3390/electronics9081295 – ident: ref_49 doi: 10.3390/horticulturae11050551 – ident: ref_16 doi: 10.1079/planthealthcases.2025.0011 – ident: ref_11 doi: 10.3390/plants11192525 – volume: 117 start-page: 102842 year: 2023 ident: ref_59 article-title: Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making publication-title: Omega doi: 10.1016/j.omega.2023.102842 – volume: 1 start-page: 100013 year: 2020 ident: ref_34 article-title: Public participation in decision making, perceived procedural fairness and public acceptability of renewable energy projects publication-title: Energy Clim. Change doi: 10.1016/j.egycc.2020.100013 |
SSID | ssj0000800816 |
Score | 2.2945125 |
Snippet | Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1794 |
SubjectTerms | Accuracy Agricultural industry Agricultural management Agricultural production Agricultural societies Agriculture Artificial intelligence artificial intelligent generated content China Clustering Crop diseases Crop growth Cultivation Datasets Decision making Disease control Diseases Efficiency Ethiopia Evaluation Food security Food supply Grain cultivation Graph neural networks India Intelligence Knowledge Mathematical models Multiple criterion Neural networks Optimization plant disease detection Plant structures Precision agriculture Propagation Role playing Sensitivity analysis Social networks Social organization Stripe rust Subgroups Turkey Wheat wheat cultivation wheat strip rust disease |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ1QMXxJuFggaE1NOq2bXX9nJLmkYtElRqqNTbyq8NINhUyQapv5S_w4x3E2XFgQvXeOL4MZ75xhl_w9h79OIuF16mWpocAxQjUzMa-dTUpVHWKCNruhr49FmeX4uPN8XNXqkvygnr6IG7hTvRCDi8do57r0RRBC15zq1yIS88d1kk20aftxdMfe9xkM5kx9LIMa4_uf1BeSWZyHJSwYEXimT9f5vkPZ80zJfcc0Czh-xBjxxh3I34EbsXmsfscLJEdHf3hP2OVhWIIbOvVwbzDcb9Mff1Ds52pN5AN68wb9FYBLjarFuYdv_RfIBxA-PFakfGAfFeCqikJ9XDWMNsm8gFE5T3gJ3RaDoOivRij9wz7disEc1CpL9qWjCNh0u0Tz_7h5_pdEWGFi5_0Y0isUQsoH-tguOdhjbmiDVP2fXs7MvpedoXbUhdIXib0stUJ72sC69qxALK1pkywhknyzwLtVK11Y6XtgyhLpzMpNSlsJx7BB4iF_wZO2iWTXjBQPOgrM64q52kesJlZkWwubduVGCPPGHH202sbjtujgpjGtruarjdCZvQHu-kiFM7foCaVvWaVv1L0xL2jjSkItaMhtJyFmazXlcX86tqrEWhEGtJ_KXjXqheoq7gtLtXDjgjItoaSB4NJPFYu2HzVhGr3qysK7S-vOQaQV_C3u6a6ZuUKteE5SbKCISZeAYS9rzT2928CZ1z7D5heqDRg4UZtjTfvkbScVzIUqFjfPk_lvIVu59THWWqAZUdsYN2tQmvEdy19k08x38A3_FTJg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdg44E9IBhfgYEMQtpTtCZ2bIcX1NJWGxIbapm0tyj-SJnEktKkSPtL-Xe4S9yuERKv9dWx4_Pdz5fz7wj5AF7cxNyKUIk8hgNKLsJ8MLBhXqS51LnMRYGhga_n4vSSf7lKrnzArfZplRub2BpqWxmMkZ-A4rGUKfB3n5a_QqwahV9XfQmN-2QfTLCCw9f-aHL-bbaNsiAeUpHo2BoZnO9Plj8xvyTiUYyq2PNGLWn_v6Z5xzf18yZ3HNH0MXnkESQddkv-hNxz5SE5GC5WnkXDHZIHowow3-1T8qe1tRR5M30VMzpfXzcdN_ctnWypvinGY-m8ARPi6GxdN3Tcfbn5SIclvescHtxGqygW-sQqGTWdbtK76AjkLYXOcGwdM0V4tkP5GXYc14BxaUuKVTY0Ly29AKt146-DhuMVml968RvjjMgdsaD-DguMd-yaNnOsfEYup5Pvn09DX8ohNAlnTYj3VY2wokisLAAhSF1EMucmNyKNI1dIWWhlWKpT54rEiEgIlXLNmAU4wmPOnpO9sirdS0IVc1KriJnCCKwynEaaOx1bbQYJ9MgCcrxZ0mzZMXZkcNLBxc_6ix-QEa74VgqZttsfqtUi8xs3UwB4rTKGWSt5kjglWMy0NC5OLDORCMh71JcMuTRKTNZZ5Ou6zs7ms2yoeCIBgQl40rEXKirQHJh2d_cBZoT0Wz3Jo54kbHbTb96oZeaNTZ3dbY2AvNs24z8xga501bqV4QA-YUcE5EWnxdt5I2Zn0H1AVE-_ey-m31Je_2ipyOFFphLc5av_j-s1eRhj3WSs-RQdkb1mtXZvAMw1-q3fsX8BjkhQ1g priority: 102 providerName: ProQuest |
Title | Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40573782 https://www.proquest.com/docview/3223938431 https://www.proquest.com/docview/3224643000 https://pubmed.ncbi.nlm.nih.gov/PMC12197111 https://doaj.org/article/8656d8cc3dd7455e86323b7ce25d3c16 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZg4wEeEIxbYFQGIe0p0MSO7SAh1NJWG9I21FJpb1F8SRka6WhTxH4pf4dznLRrxB54rU-d2D6Xz87xdwh5A1HcxNyKUIk8hg1KLsK827VhXqS51LnMRYFHA8cn4nDKP58lZ9f5T80ELm_c2mE9qeni4u3vn1cfweA_4I4TtuzvLi8wZSTiUYzadZvsQlSSaKTHDdT_3iAj5SuhYkQEUMllzeF4QxetGOWp_P912FsRq51NuRWeRg_I_QZX0l6tCA_JLVfukXu92aLh1nB75E5_Dkjw6hH54z0wRTbNprYZnazOq5qx-4oONwTgFE9p6aQCx-LoeLWs6KD-nvOe9kp63Tk82J9hUSz_ibUzlnS0TvqifZC3FDrDd6v5KsKjLSLQsGa-BuRLPVVWWdG8tPQUfNmP5pJoOFigU6anv_D0ERklZrS52QLvO3CVzycrH5PpaPj102HYFHgITcJZFeItViOsKBIrC8ANUheRzLnJjUjjyBVSFloZlurUuSIxIhJCpVwzZgGk8JizJ2SnnJfuGaGKOalVxExhBNYeTiPNnY6tNt0EemQBOVgvaXZZ83hksP_Bxc_aix-QPq74Rgr5t_0P88Usa8w5UwCDrTKGWSt5kjglWMy0NC5OLDORCMhr1JcMGTZKTOGZ5avlMjuajLOe4okEXCbgSQeNUDEHzYFh1zciYERIytWS3G9Jggsw7ea1WmZrC8rAU7OUKQCIAXm1acZ_Ylpd6eYrL8MBkoJ1BORprcWbcSOSZ9B9QFRLv1sT024pz795gnKYyFRCEH3-3wN8Qe7GWFgZi0JF-2SnWqzcS0B7le6Q3f7w5Mu4409LOt6o_wJquFuf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhwQ8IBhfhQEGgfYUrYkdx0FCqKWtWrZ1qN2kvYXEdsokSEqTgvpP8e_w73CXj64REm97ra-OnTvfV86_I-QNWHHlcC0sKUIHApRQWGGno60w9kMvCr1QxJgaOJmI0Tn_dOFe7JDf9V0YLKusdWKhqHWqMEd-CILHfCbB3n1Y_LCwaxR-Xa1baJRicWTWvyBky96P-8Dft44zHJx9HFlVVwFLuZzlFl6dVEKL2NVeDMbKi2LbC7kKlfAd28SeF0dSMT_yjYldJWwhpM8jxjRYRu5wBvPeILucQSjTIru9weTzdJPVQf9L2qJEh2TM7xwuvmE9i81tB0W_Yf2KJgH_moItW9is09wyfMN75G7lsdJuKWL3yY5J9sid7nxZoXaYPXKzl4KPuX5A_hS6nSJOZ9U1jc5Wl3mJBb6mgw20OMX8L53loLIMna6ynPbLL0XvaDehV5PDg4vsGMXGotiVI6PDupyM9oBeU5gM11YiYVjjLYhRq8TUBp-aFiBcSU7DRNNT0JLfq-unVn-J6p6e_sS8JmJVzGl1ZwbW2zd5UamWPCTn18LkR6SVpIl5QqhkxoukzVSsBHY19u2Im8jRkeq4MCNrk4OapcGiRAgJILJC5gdN5rdJDzm-oUJk7-KHdDkPKkURSHCwtVSKae1x1zVSMIdFnjKOq5myRZu8RnkJELsjweKgebjKsmA8mwZdyV0PPD4BTzqoiOIUJAe2Xd61gB0h3FeDcr9BCcpFNYdrsQwq5ZYFV0exTV5thvGfWLCXmHRV0HBwduFEtMnjUoo3-8YYgcH0bSIb8t14Mc2R5PJrAX0OL9L3wDw__f-6XpJbo7OT4-B4PDl6Rm472LMZ-03Z-6SVL1fmOTiSefSiOr2UfLluhfEXlcSNcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhxA8IBhfgQEGgfYUtYkdO0FCqKWtVgbd1DFpbyGxnTIJktKkoP5r_CP8O9zlo2uExNte66tj5873lfPvCHkFVly5XAvbF5ELAUok7KjX03aUBJGMIxmJBFMDn6bi8Ix_OPfOd8jv5i4MllU2OrFU1DpTmCPvguCxgPlg77pJXRZxMhy_W_ywsYMUfmlt2mlUInJk1r8gfMvfTobA69euOx59fn9o1x0GbOVxVth4jVIJLRJPywQMl4wTR0ZcRUoErmMSKZPYVyyIA2MSTwlHCD_gMWMarCR3OYN5r5FdCVFRr0N2B6PpyWyT4UFfzHdEhRTJWNDrLr5hbYvDHRePQcsSlg0D_jULW3axXbO5ZQTHd8jt2nul_Urc7pIdk-6RW_35skbwMHvk-iADf3N9j_wp9TxFzM66gxo9XV0UFS74mo42MOMUc8H0tAD1ZehslRd0WH01ekP7Kb2cHB5cZsooNhnFDh05HTelZXQA9JrCZLi2ChXDnmzBjdoVvjb417QE5EoLGqWaHoPG_F5fRbWHS1T99Pgn5jgRt2JO6_szsN6hKcqqtfQ-ObsSJj8gnTRLzSNCfWZk7DtMJUpgh-PAibmJXR2rngczMoscNCwNFxVaSAhRFjI_bDPfIgPk-IYKUb7LH7LlPKyVRuiDs619pZjWknue8QVzWSyVcT3NlCMs8hLlJUQcjxRPxDxa5Xk4OZ2FfZ97Erw_AU86qImSDCQHtl3du4AdIfRXi3K_RQmKRrWHG7EMa0WXh5fH0iIvNsP4TyzeS022Kmk4OL5wIizysJLizb4xXmAwvUX8lny3Xkx7JL34WsKgw4sMJJjqx_9f13NyAxRF-HEyPXpCbrrYvhlbTzn7pFMsV-Yp-JRF_Kw-vJR8uWp98Rfc65Go |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wheat+Cultivation+Suitability+Evaluation+with+Stripe+Rust+Disease%3A+An+Agricultural+Group+Consensus+Framework+Based+on+Artificial-Intelligence-Generated+Content+and+Optimization-Driven+Overlapping+Community+Detection&rft.jtitle=Plants+%28Basel%29&rft.au=Xu%2C+Tingyu&rft.au=Cui%2C+Haowei&rft.au=Song%2C+Yunsheng&rft.au=Zhang%2C+Chao&rft.date=2025-06-11&rft.pub=MDPI+AG&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fplants14121794&rft.externalDocID=A845778264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |