Fungal Carboxymethyl Chitosan-Impregnated Bacterial Cellulose Hydrogel as Wound-Dressing Agent
Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fib...
Saved in:
Published in | Gels Vol. 9; no. 3; p. 184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS–BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC’s improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS–BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS–BC hydrogels is shown using the CFU method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the CMCS–BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS–BC hydrogels can be considered suitable for antibacterial wound dressing applications. |
---|---|
AbstractList | Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS–BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC’s improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS–BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS–BC hydrogels is shown using the CFU method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the CMCS–BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS–BC hydrogels can be considered suitable for antibacterial wound dressing applications. Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS–BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC’s improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS–BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS–BC hydrogels is shown using the CFU method against Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ). As a result, the CMCS–BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS–BC hydrogels can be considered suitable for antibacterial wound dressing applications. Bacterial cellulose (BC) produced by is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS-BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC's improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS-BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS-BC hydrogels is shown using the CFU method against ( ) and ( ). As a result, the CMCS-BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS-BC hydrogels can be considered suitable for antibacterial wound dressing applications. Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS-BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC's improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS-BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS-BC hydrogels is shown using the CFU method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the CMCS-BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS-BC hydrogels can be considered suitable for antibacterial wound dressing applications.Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS-BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties. The results show that the impregnation of CMCS into BC fiber networks greatly influences BC's improving hydrophilic nature, which is crucial for wound healing applications. Furthermore, the CMCS-BC hydrogels were studied for biocompatibility analysis with skin fibroblast cells. The results revealed that by increasing the CMCS content in the BC, biocompatibility, cell attachment, and spreading capacity also increase. The antibacterial activity of CMCS-BC hydrogels is shown using the CFU method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the CMCS-BC hydrogels exhibit more suitable antibacterial properties than those without BC due to the CMCS having amino groups that enhance antibacterial properties. Therefore, CMCS-BC hydrogels can be considered suitable for antibacterial wound dressing applications. |
Audience | Academic |
Author | Won, So-Yeon Han, Sung Soo Zo, Sun Mi Suneetha, Maduru |
AuthorAffiliation | 1 School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea 2 Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea |
AuthorAffiliation_xml | – name: 1 School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea – name: 2 Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea |
Author_xml | – sequence: 1 givenname: Maduru surname: Suneetha fullname: Suneetha, Maduru – sequence: 2 givenname: So-Yeon surname: Won fullname: Won, So-Yeon – sequence: 3 givenname: Sun Mi surname: Zo fullname: Zo, Sun Mi – sequence: 4 givenname: Sung Soo orcidid: 0000-0003-0773-2661 surname: Han fullname: Han, Sung Soo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36975633$$D View this record in MEDLINE/PubMed |
BookMark | eNptUk1v1DAUjFAR_aAn7igSF6Qqxd-JT2hZKF2pEpdK3LAc5yXrVWIvdoLYf4_DtrBbVT7Yfp43nrHnPDtx3kGWvcHomlKJPnTQR4kowhV7kZ0RilFBKoFPDtan2WWMG4QQLjnlGL_KTqmQJReUnmU_bibX6T5f6lD737sBxvUu7dZ29FG7YjVsA3ROj9Dkn7QZIdgZDH0_9T5Cfrtrgk8ach3z735yTfE5QIzWdfmiAze-zl62uo9w-TBfZPc3X-6Xt8Xdt6-r5eKuMJzRsSBtSwgSppaS1ZhoypCpKeIMI03qUrasIqzizNQlkwQhhqgBJFoiK5Ms0otstadtvN6obbCDDjvltVV_Cz50SofRmh4UEhQbWaJKgGAt0RU0uK4rjHlDBcI4cX3cc22neoDGJBdB90ekxyfOrlXnfymcdFWY8cTw_oEh-J8TxFENNpr0ZtqBn6IipSRMSsJn4e-eQDd-Ci491YxiQggq2H9U-ilQ1rU-XWxmUrUoGS0FR3wWfv0MKo0GBmtSbFqb6kcNbw-d_rP4mI4EwHuACT7GAK0ydtSj9bNx2yfHag6hOghh6rl60vNI-xz6D_V72fE |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2023_112446 crossref_primary_10_1016_j_ijbiomac_2024_130910 crossref_primary_10_1021_acsanm_4c06941 crossref_primary_10_1016_j_ijbiomac_2024_131167 crossref_primary_10_1080_00914037_2024_2417695 crossref_primary_10_3390_molecules29184360 crossref_primary_10_1016_j_ijbiomac_2024_132048 crossref_primary_10_1016_j_ijbiomac_2024_137067 crossref_primary_10_3390_gels9050376 crossref_primary_10_1039_D3TB01701J crossref_primary_10_1016_j_cej_2024_153014 crossref_primary_10_1016_j_colsurfa_2025_136354 crossref_primary_10_3390_polym15132831 crossref_primary_10_1016_j_carbpol_2023_121737 crossref_primary_10_1016_j_ccr_2024_216093 crossref_primary_10_3390_polym16172393 crossref_primary_10_1007_s10570_025_06435_9 crossref_primary_10_1016_j_ijbiomac_2023_128364 |
Cites_doi | 10.1016/j.mtchem.2022.101252 10.1016/j.compositesb.2020.108259 10.2174/1381612826666201008165241 10.1016/j.carbpol.2013.01.076 10.1016/j.reactfunctpolym.2008.03.002 10.1021/acssuschemeng.0c00125 10.1002/jbm.b.33103 10.1016/j.carbpol.2012.01.006 10.1016/j.ijbiomac.2018.10.105 10.1590/acb360303 10.1039/C8RA05536J 10.1016/j.carbpol.2020.116573 10.3390/molecules26010049 10.3390/biom12050636 10.1007/s10924-020-01947-w 10.1016/j.ijbiomac.2020.03.170 10.3390/polym14061080 10.1016/j.ijbiomac.2018.09.131 10.1016/j.ijbiomac.2021.09.034 10.1007/s13273-017-0028-3 10.1021/acs.biomac.0c00127 10.1016/j.matlet.2021.131062 10.3390/pharmaceutics14051028 10.1002/mabi.202000070 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/gels9030184 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2310-2861 |
ExternalDocumentID | oai_doaj_org_article_0631c97086e64f2a8ed1bb8115d36011 PMC10048145 A743765051 36975633 10_3390_gels9030184 |
Genre | Journal Article |
GeographicLocations | South Korea British Columbia |
GeographicLocations_xml | – name: British Columbia – name: South Korea |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: RS-2022-00166999 – fundername: National Research Foundation of Korea grantid: 2020R1A6A1A03044512 – fundername: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries grantid: (MAFRA)(321027-5) – fundername: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) grantid: 321027-5 – fundername: National Research Foundation of Korea (NRF) grantid: RS-2022-00166999 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c543t-2ff2206cb994b12a340cb305410a2b79f4824854cb749200403ce06f298c2863 |
IEDL.DBID | DOA |
ISSN | 2310-2861 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Thu Aug 21 18:38:10 EDT 2025 Fri Jul 11 07:53:45 EDT 2025 Fri Jul 25 11:53:58 EDT 2025 Thu Jul 10 07:45:11 EDT 2025 Tue Jul 08 03:52:49 EDT 2025 Thu Jan 02 22:52:17 EST 2025 Tue Jul 01 01:47:05 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | antibacterial fungal carboxymethyl chitosan wound dressing hydrogel bacterial cellulose |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-2ff2206cb994b12a340cb305410a2b79f4824854cb749200403ce06f298c2863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0773-2661 |
OpenAccessLink | https://doaj.org/article/0631c97086e64f2a8ed1bb8115d36011 |
PMID | 36975633 |
PQID | 2794666364 |
PQPubID | 2055409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0631c97086e64f2a8ed1bb8115d36011 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10048145 proquest_miscellaneous_2792499256 proquest_journals_2794666364 gale_infotracmisc_A743765051 gale_infotracacademiconefile_A743765051 pubmed_primary_36975633 crossref_citationtrail_10_3390_gels9030184 crossref_primary_10_3390_gels9030184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230227 |
PublicationDateYYYYMMDD | 2023-02-27 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230227 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Gels |
PublicationTitleAlternate | Gels |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yasir (ref_8) 2020; 26 Parveen (ref_13) 2019; 5 Jahan (ref_24) 2021; 29 Liu (ref_5) 2020; 8 Khan (ref_2) 2012; 88 ref_12 Harkins (ref_14) 2014; 102 Valls (ref_10) 2020; 21 Yang (ref_22) 2020; 20 Rao (ref_17) 2020; 155 Mourya (ref_15) 2008; 68 Wan (ref_3) 2020; 199 Song (ref_11) 2022; 26 Wahid (ref_21) 2019; 122 Rao (ref_19) 2022; 307 Jiji (ref_9) 2020; 245 Shariatinia (ref_16) 2018; 120 Rao (ref_18) 2021; 190 ref_23 Lee (ref_4) 2017; 13 Li (ref_25) 2018; 8 ref_20 Lin (ref_1) 2013; 94 ref_7 ref_6 |
References_xml | – volume: 26 start-page: 101252 year: 2022 ident: ref_11 article-title: Smart l-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101252 – volume: 199 start-page: 108259 year: 2020 ident: ref_3 article-title: Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108259 – volume: 26 start-page: 5793 year: 2020 ident: ref_8 article-title: Potential applications of bacterial cellulose in environmental and pharmaceutical sectors publication-title: Curr. Pharm. Des. doi: 10.2174/1381612826666201008165241 – volume: 94 start-page: 603 year: 2013 ident: ref_1 article-title: Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.01.076 – volume: 68 start-page: 1013 year: 2008 ident: ref_15 article-title: Chitosan-modifications and applications: Opportunities galore publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2008.03.002 – volume: 8 start-page: 7536 year: 2020 ident: ref_5 article-title: Bacterial cellulose-based composite scaffolds for biomedical applications: A review publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00125 – volume: 102 start-page: 1199 year: 2014 ident: ref_14 article-title: Chitosan–cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33103 – volume: 88 start-page: 596 year: 2012 ident: ref_2 article-title: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.01.006 – volume: 122 start-page: 380 year: 2019 ident: ref_21 article-title: Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.10.105 – ident: ref_23 doi: 10.1590/acb360303 – volume: 8 start-page: 31322 year: 2018 ident: ref_25 article-title: Fabrication of a blood compatible composite membrane from chitosan nanoparticles, ethyl cellulose and bacterial cellulose sulfate publication-title: RSC Adv. doi: 10.1039/C8RA05536J – volume: 245 start-page: 116573 year: 2020 ident: ref_9 article-title: Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116573 – ident: ref_7 doi: 10.3390/molecules26010049 – ident: ref_12 doi: 10.3390/biom12050636 – volume: 29 start-page: 1257 year: 2021 ident: ref_24 article-title: Bacterial cellulose-polyaniline porous mat for removal of methyl orange and bacterial pathogens from potable water publication-title: J. Polym. Environ. doi: 10.1007/s10924-020-01947-w – volume: 155 start-page: 71 year: 2020 ident: ref_17 article-title: Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.03.170 – ident: ref_6 doi: 10.3390/polym14061080 – volume: 120 start-page: 1406 year: 2018 ident: ref_16 article-title: Carboxymethyl chitosan: Properties and biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.131 – volume: 190 start-page: 792 year: 2021 ident: ref_18 article-title: Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.09.034 – volume: 13 start-page: 257 year: 2017 ident: ref_4 article-title: The role of bacterial cellulose in artificial blood vessels publication-title: Mol. Cell. Toxicol. doi: 10.1007/s13273-017-0028-3 – volume: 21 start-page: 1568 year: 2020 ident: ref_10 article-title: Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00127 – volume: 307 start-page: 131062 year: 2022 ident: ref_19 article-title: Injectable nanocomposite hydrogel as wound dressing agent with tunable multifunctional property publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.131062 – volume: 5 start-page: 67 year: 2019 ident: ref_13 article-title: Biodegradable Natural Polymers for Biomedical Applications publication-title: Sci. Rev. – ident: ref_20 doi: 10.3390/pharmaceutics14051028 – volume: 20 start-page: 2000070 year: 2020 ident: ref_22 article-title: Nature--inspired bacterial cellulose/methylglyoxal (BC/MGO) nanocomposite for broad--spectrum antimicrobial wound dressing publication-title: Macromol. Biosci. doi: 10.1002/mabi.202000070 |
RelatedPersons | Han, S.S |
RelatedPersons_xml | – fullname: Han, S.S |
SSID | ssj0001753511 |
Score | 2.329928 |
Snippet | Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of... Bacterial cellulose (BC) produced by is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from... Bacterial cellulose (BC) produced by Gluconoacetobacter hansenii is a suitable polymeric fiber network for wound-dressing purposes, but its lack of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 184 |
SubjectTerms | antibacterial Bacteria bacterial cellulose Biocompatibility Care and treatment Cellulose Chitosan Contact angle Decomposition E coli Escherichia coli fungal carboxymethyl chitosan Fungi Han, S.S hydrogel Hydrogels Penicillin G Physiochemistry Polymers Vibration wound dressing Wound healing Wounds and injuries |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZb-rI9jHU_vXXDg8JgYGrrl6WnkbQNYQ9ljI71aUaS5bQQ7C5OYPnvd2cracxKHxNdQNLpk75TTt8Rclw5lluZlgmtUpNwXopE0wqInBaeOm4w8RuzLS7k7Cf_diWuwoVbG9Iqt3tit1GXjcM78hPaKaFLJvnX2z8JVo3Cf1dDCY3H5AC2YKVG5GByfvH9x90tC7BxoBT9wzwG8f3JHI4cjXGA4oOjqFPs_39f3juYhkmTe6fQ9Dl5FuhjPO79fUge-foFebonKviS_J4CfsHm1Cxt83eDJaI38OkaoNuaOsFbBD-vgWKW8aSXakZjv1isF03r49mmXDbQ_di08S-suZScdamy9Twe4zOsV-Ryen55OktCFYXECc5W4ISK0lQ6qzW3GTWMp84CynmWGmpzXXGFsmbc2ZxrxEzKnE9lRbVyVEn2mozqpvZvScwYVY6ZzDkBQQgXtvTgaWE4sApTCRuRL9v5LFxQGMdCF4sCIg2c_GJv8iNyvDO-7YU17jeboGN2JqiG3X3RLOdFAFcBNCtzOofozEteUaN8mVmrgOyWDALOLCKf0a0FYhY65Ex4egDDQvWrYgw0KgeqKsDyaGAJWHPD5u3CKALW2-JuZUbk064Zf4n5a7Vv1p0NxLka-GVE3vTraDckJnUuJGMRUYMVNhjzsKW-ue6UwLNO7oeLdw_36z15QoGbdS_x8yMyWi3X_gNwqZX9GADzDzV2H0M priority: 102 providerName: ProQuest |
Title | Fungal Carboxymethyl Chitosan-Impregnated Bacterial Cellulose Hydrogel as Wound-Dressing Agent |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36975633 https://www.proquest.com/docview/2794666364 https://www.proquest.com/docview/2792499256 https://pubmed.ncbi.nlm.nih.gov/PMC10048145 https://doaj.org/article/0631c97086e64f2a8ed1bb8115d36011 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96vuiD-G3Pc6lwIAjl2nw1edw9b118OEROvCdDkqZ7wtLKfsDtf-9M2ltaFHzxsc0UkslM5zdh8htCTmvPSifzKqN1bjPOK5FpWgOQ0yJQzy0WfmO1xaVcfOOfr8X1oNUX1oR19MCd4s4ghBZel4C8g-Q1tSpUhXMKgEzFIJmIiQ_EvEEyFU9XAIUDlOgu5DHI68-WEGo04n_FRyEoMvX_-T8eBKRxseQg-syfkMc9bEyn3XSfknuheUYeDcgEn5Mfc_BbkDm3a9fe7rE19B6ebsBlN7bJ8PQgLBuAllU66yiaUTisVrtVuwnpYl-tW5h-ajfpd-y1lH2MJbLNMp3i9asX5Gp-cXW-yPruCZkXnG1B-TWlufROa-4KahnPvQPv5kVuqSt1zRXSmXHvSq7RV3LmQy5rqpWnSrKX5Khpm_CapIxR5ZktvBeQfHDhqgA7LCwHNGFr4RLy4U6fxvfM4tjgYmUgw0Dlm4HyE3J6EP7VEWr8XWyGG3MQQRbs-AJsw_S2Yf5lGwl5j9tq0FdhQt72Vw5gWch6ZaYAn0qAqAIkT0aS4GN-PHxnGKb38Y2hkZtfMgmTfXcYxi-xbq0J7S7KQH6rAVcm5FVnR4clMalLIRlLiBpZ2GjN45Hm501kAC8izQ8Xx_9DS2_IQwrILd7TL0_I0Xa9C28BaW3dhNxX808T8mB2cfnl6yS62G9DjSep |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiGcxFDBSERKSVXsftveAUNoSUlp6CqInVrvrdYoU2SVOBPlR_Edm1k4aC8StR2cn1j5mZ75Zz35DyF5pWWbSuIhoGeuI80JEkpYA5KRw1HKNid-YbXGWjr7wT-fifIv8Xt2FwbTKlU30hrqoLZ6R71PPhJ6ylL-__BFh1Sj8uroqodGqxYlb_oSQrXl3fATr-5rS4Yfx4SjqqgpEVnA2h06VlMapNVJyk1DNeGwNaD1PYk1NJkueI80XtybjEnUoZtbFaUllbmmeMnjtDXKTM3DkeDF9-PHqSAegP-CX9hYgtMf7E_BvEoOOnPf8ni8P8LcT2PCC_QzNDZc3vEfudlg1HLTKdZ9sueoBubPBYPiQfBuCsQCZQz0z9a8l1qNewtMF2IlGVxEeWbhJBXi2CA9aXmgUdtPpYlo3Lhwti1kN3Q91E37FAk_Rkc_LrSbhAO98PSLj65jcx2S7qiv3hISM0dwynVgrIOLhwhQO1EpoDhBGl8IE5O1qPpXt6MyxqsZUQViDk682Jj8ge2vhy5bF499iB7gwaxGk3vY_1LOJ6nayAkyXWJlBKOhSXlKduyIxJgdkXTCIbpOAvMFlVWggoENWd_ccYFhItaUGgNkywMUCJHd7krCxbb95pRiqMyyNutoGAXm1bsZ_YrJc5eqFl4GgWgKYDchOq0frIbFUZiJlLCB5T8N6Y-63VN8vPO144rmFuHj6_369JLdG48-n6vT47OQZuU0BFHoKgGyXbM9nC_ccQNzcvPBbJyTqmrfqH0k0V1U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwqHgWlwJGKkJCsmLvw_YeEEqaRilFUYWK6InV7nqdIkV2yUOQn8a_Y8Z20lggbj06O7H2MTP7zXr2G0KOcssSE4dZQPNQB5xnIpA0ByAnhaOWa0z8xmyLcTz6wj9eissd8nt9FwbTKtc-sXLUWWnxjLxLKyb0mMW8mzdpEeeD4YfrHwFWkMIvretyGrWKnLnVTwjf5u9PB7DWbygdnlwcj4KmwkBgBWcL6GBOaRhbIyU3EdWMh9aABfAo1NQkMucpUn5xaxIuUZ9CZl0Y51SmlqYxg9feIbsJBkUdsts_GZ9_vjnggUAA0Ex9J5AxGXYnsNtJDEFS3toFq2IBf28JW3tiO19zawMcPiB7DXL1e7WqPSQ7rnhE7m_xGT4m34bgOkDmWM9M-WuF1alX8HQFXmOuiwAPMNykAHSb-f2aJRqF3XS6nJZz549W2ayE7vt67n_Fck_BoMrSLSZ-D2-APSEXtzG9T0mnKAv3jPiM0dQyHVkrIP7hwmQOlExoDoBG58J45N16PpVtyM2xxsZUQZCDk6-2Jt8jRxvh65rT499ifVyYjQgScVc_lLOJauxaAcKLrEwgMHQxz6lOXRYZkwLOzhjEupFH3uKyKnQX0CGrm1sPMCwk3lI9QHAJoGQBkoctSTBz225eK4Zq3Mxc3RiFR15vmvGfmDpXuHJZyUCILQHaemS_1qPNkFgsExEz5pG0pWGtMbdbiu9XFQl5VDENcXHw_369InfBTNWn0_HZc3KPAkKsU94PSWcxW7oXgOgW5mVjOz5Rt2ytfwAgWFzf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fungal+Carboxymethyl+Chitosan-Impregnated+Bacterial+Cellulose+Hydrogel+as+Wound-Dressing+Agent&rft.jtitle=Gels&rft.au=Suneetha%2C+Maduru&rft.au=Won%2C+So-Yeon&rft.au=Zo%2C+Sun+Mi&rft.au=Han%2C+Sung+Soo&rft.date=2023-02-27&rft.pub=MDPI+AG&rft.issn=2310-2861&rft.eissn=2310-2861&rft.volume=9&rft.issue=3&rft_id=info:doi/10.3390%2Fgels9030184&rft.externalDocID=A743765051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon |