A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment
This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time se...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 8; p. 4000 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol. |
---|---|
AbstractList | This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol. This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol. |
Audience | Academic |
Author | Oudre, Laurent Truong, Charles Gorintin, Louis Dorveaux, Eric Ricard, Damien Jung, Sylvain de l’Escalopier, Nicolas |
AuthorAffiliation | 1 Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France 8 Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005 Paris, France 4 ENGIE Lab CRIGEN, F-93249 Stains, France 3 AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France 7 Novakamp, 10-12 Avenue du Bosquet, F-95560 Baillet en France, France 5 Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France 6 Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France 2 Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France |
AuthorAffiliation_xml | – name: 3 AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France – name: 5 Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France – name: 7 Novakamp, 10-12 Avenue du Bosquet, F-95560 Baillet en France, France – name: 1 Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France – name: 2 Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France – name: 8 Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005 Paris, France – name: 6 Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France – name: 4 ENGIE Lab CRIGEN, F-93249 Stains, France |
Author_xml | – sequence: 1 givenname: Sylvain orcidid: 0009-0000-6580-5027 surname: Jung fullname: Jung, Sylvain – sequence: 2 givenname: Nicolas orcidid: 0000-0001-6333-7311 surname: de l’Escalopier fullname: de l’Escalopier, Nicolas – sequence: 3 givenname: Laurent orcidid: 0000-0002-4750-2265 surname: Oudre fullname: Oudre, Laurent – sequence: 4 givenname: Charles surname: Truong fullname: Truong, Charles – sequence: 5 givenname: Eric orcidid: 0000-0003-1606-6461 surname: Dorveaux fullname: Dorveaux, Eric – sequence: 6 givenname: Louis surname: Gorintin fullname: Gorintin, Louis – sequence: 7 givenname: Damien surname: Ricard fullname: Ricard, Damien |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37112339$$D View this record in MEDLINE/PubMed https://hal.science/hal-04362007$$DView record in HAL |
BookMark | eNplkk1v3CAQhq0qVfPRHvoHKku9tAcng8GAT5UV5UtylUptzwhj2GXlhS14V8q_L14n2yQVB9DwzMu8zJxmR847nWUfEZxjXMNFLDFwAgBvshNESlLwsoSjZ-fj7DTGFUCJMebvsmPMEErn-iS7b_LvUi2t03mrZXDWLfIfdqOHKWJ8yG-kHfPGyeEh2phbl8v8p17b_DpoXbR2NyVcuZ0N3q21G99nb40cov7wuJ9lv6-vfl3eFu39zd1l0xaqIngsSsZrxknfEYQrBD2VgBSpScfq2iCDqTZ1RwzWBHemq7hWrEKSlJR3HAPt8Vl2N-v2Xq7EJti1DA_CSyv2AR8WQobRqkELjrGhXc8p4phApTsEHAEFzQhl1V7r26y12XZr3atkI8jhhejLG2eXYuF3AgEiFWNVUvg6Kyxf5d02rZhiQDAtAdgOJfbL42vB_9nqOIq1jUoPg3Tab6MoObAapWZCQj-_Qld-G1Iv9hStOMNsos5naiGTW-uMT0WqtPrUJ5UmxdgUbxhJhdYVnRI-Pfd7KPhpKhJwMQMq-BiDNkLZUY7WT_btkHyLae7EYe7-fcAh40n0f_YvYX_R1g |
CitedBy_id | crossref_primary_10_3390_s24175486 |
Cites_doi | 10.1016/j.gaitpost.2020.04.010 10.3390/s21082727 10.1109/TBME.2022.3163429 10.1109/JSEN.2017.2722105 10.3390/s18103409 10.3390/s20185377 10.1109/TNSRE.2017.2745418 10.3390/s22093555 10.1249/MSS.0000000000000840 10.1109/TSP.2019.2953670 10.3390/s18114033 10.1186/s12984-018-0456-x 10.3390/s17092113 10.3390/s20082200 10.3233/AIS-180493 10.1249/MSS.0000000000002099 10.1109/IECON43393.2020.9254427 10.1109/TNSRE.2022.3199068 10.1016/j.medengphy.2018.04.008 10.3390/s22072544 10.1080/09638288.2022.2083701 10.1109/ICCE46568.2020.9042999 10.1371/journal.pone.0185741 10.1007/s11517-015-1357-9 10.1186/s12938-019-0644-3 10.1371/journal.pone.0196463 10.1098/rsif.2012.0999 10.3390/s20071939 10.1016/S0021-9290(03)00233-1 10.1016/j.compbiomed.2021.104633 10.3390/s20195625 10.1249/MSS.0000000000000841 10.1080/01621459.2012.737745 10.1016/j.cmpb.2019.105003 10.1152/jn.00344.2019 10.1007/s10462-021-09979-x 10.3389/fpsyg.2017.00817 10.1109/EMBC46164.2021.9629775 10.1007/s00415-017-8424-0 10.1109/TITB.2005.856864 10.1109/TBME.2012.2190930 10.3390/s23052593 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.3390/s23084000 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_833f6bd86183405eb1081060e746756d PMC10145775 oai_HAL_hal_04362007v1 A747539560 37112339 10_3390_s23084000 |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c543t-2789784db413510d6a01c494b799f1f36ef9b4f3e43bfb58ec751a4268b8306d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:04 EDT 2025 Thu Aug 21 18:38:02 EDT 2025 Thu Jul 10 08:58:13 EDT 2025 Fri Jul 11 07:50:33 EDT 2025 Fri Jul 25 20:11:52 EDT 2025 Tue Jul 01 05:45:19 EDT 2025 Wed Feb 19 02:24:49 EST 2025 Tue Jul 01 01:20:01 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | IMU change point detection wearable sensor Human Activity Recognition free-living graphical feedback C Ricard E Jung L L. Truong S. de l'Escalopier E. Gorintin D. A Machine free-living wearable sensor IMU graphical feedback change point detection Human Activity Recognition N S L. Ricard C. Dorveaux de l'Escalopier Oudre Gorintin Truong D. A Machine free-living N. Oudre Dorveaux |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-2789784db413510d6a01c494b799f1f36ef9b4f3e43bfb58ec751a4268b8306d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-6580-5027 0000-0003-1606-6461 0000-0002-4750-2265 0000-0001-6333-7311 0000-0002-8527-8161 0009-0002-1406-9116 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23084000 |
PMID | 37112339 |
PQID | 2806587370 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_833f6bd86183405eb1081060e746756d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10145775 hal_primary_oai_HAL_hal_04362007v1 proquest_miscellaneous_2807910000 proquest_journals_2806587370 gale_infotracacademiconefile_A747539560 pubmed_primary_37112339 crossref_citationtrail_10_3390_s23084000 crossref_primary_10_3390_s23084000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230414 |
PublicationDateYYYYMMDD | 2023-04-14 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230414 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ellis (ref_15) 2016; 48 Cescon (ref_50) 2021; 135 ref_13 ref_11 ref_10 Fullerton (ref_36) 2017; 17 ref_52 ref_51 Sekine (ref_38) 2013; 10 Ahmadi (ref_14) 2018; 15 ref_19 Rast (ref_32) 2020; 17 Kobayashi (ref_43) 2014; 11 Labaune (ref_42) 2020; 123 Brodie (ref_9) 2016; 54 Nouredanesh (ref_7) 2021; 85 Halliday (ref_8) 2018; 9 ref_24 ref_23 ref_22 ref_20 Killick (ref_28) 2012; 107 ref_29 Semwal (ref_5) 2022; 55 Fiorini (ref_33) 2018; 10 Truong (ref_26) 2019; 67 Bruijn (ref_40) 2013; 10 Helbostad (ref_44) 2004; 37 Oudre (ref_21) 2012; 59 Karantonis (ref_27) 2006; 10 ref_31 Ni (ref_16) 2022; 69 ref_30 Kerr (ref_34) 2016; 48 Hsu (ref_37) 2019; 18 Nguyen (ref_25) 2017; 26 Choi (ref_18) 2022; 30 Tura (ref_45) 2010; 7 ref_47 Evers (ref_1) 2017; 264 ref_46 Nazarahari (ref_12) 2018; 57 ref_41 Marcotte (ref_35) 2020; 52 ref_2 ref_49 Nouredanesh (ref_17) 2019; 182 ref_48 Vienne (ref_3) 2017; 8 ref_4 Bahari (ref_39) 2021; 11 ref_6 |
References_xml | – volume: 85 start-page: 178 year: 2021 ident: ref_7 article-title: Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions publication-title: Gait Posture doi: 10.1016/j.gaitpost.2020.04.010 – volume: 17 start-page: 1 year: 2020 ident: ref_32 article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments publication-title: J. Neuroeng. – ident: ref_31 doi: 10.3390/s21082727 – volume: 7 start-page: 1 year: 2010 ident: ref_45 article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations publication-title: J. Neuroeng. – ident: ref_51 – volume: 69 start-page: 3224 year: 2022 ident: ref_16 article-title: Deep multi-branch two-stage regression network for accurate energy expenditure estimation with ECG and IMU data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3163429 – volume: 11 start-page: 1 year: 2014 ident: ref_43 article-title: Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration publication-title: J. Neuroeng. – volume: 17 start-page: 5290 year: 2017 ident: ref_36 article-title: Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2722105 – ident: ref_13 doi: 10.3390/s18103409 – ident: ref_24 doi: 10.3390/s20185377 – volume: 26 start-page: 197 year: 2017 ident: ref_25 article-title: Using inertial sensors to automatically detect and segment activities of daily living in people with Parkinson’s disease publication-title: IEEE Trans. Neural Syst. doi: 10.1109/TNSRE.2017.2745418 – ident: ref_47 doi: 10.3390/s22093555 – volume: 48 start-page: 933 year: 2016 ident: ref_15 article-title: Hip and wrist accelerometer algorithms for free-living behavior classification publication-title: Med. Sci. Sport. Exerc. doi: 10.1249/MSS.0000000000000840 – volume: 67 start-page: 6204 year: 2019 ident: ref_26 article-title: Greedy kernel change-point detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2953670 – ident: ref_4 doi: 10.3390/s18114033 – volume: 15 start-page: 105 year: 2018 ident: ref_14 article-title: Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-018-0456-x – ident: ref_52 doi: 10.3390/s17092113 – volume: 10 start-page: 1 year: 2013 ident: ref_38 article-title: A gait abnormality measure based on root mean square of trunk acceleration publication-title: J. Neuroeng. – ident: ref_48 doi: 10.3390/s20082200 – volume: 11 start-page: 1026 year: 2021 ident: ref_39 article-title: Use of the extended feasible stability region for assessing stability of perturbed walking publication-title: Science – volume: 10 start-page: 345 year: 2018 ident: ref_33 article-title: Combining wearable physiological and inertial sensors with indoor user localization network to enhance activity recognition publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-180493 – volume: 52 start-page: 225 year: 2020 ident: ref_35 article-title: Estimating Sedentary Time from a Hip-and Wrist-Worn Accelerometer publication-title: Med. Sci. Sport Exerc. doi: 10.1249/MSS.0000000000002099 – ident: ref_20 doi: 10.1109/IECON43393.2020.9254427 – volume: 30 start-page: 2385 year: 2022 ident: ref_18 article-title: Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3199068 – volume: 57 start-page: 75 year: 2018 ident: ref_12 article-title: Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2018.04.008 – ident: ref_6 doi: 10.3390/s22072544 – ident: ref_19 doi: 10.1080/09638288.2022.2083701 – ident: ref_23 doi: 10.1109/ICCE46568.2020.9042999 – ident: ref_41 doi: 10.1371/journal.pone.0185741 – volume: 54 start-page: 663 year: 2016 ident: ref_9 article-title: Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1357-9 – volume: 18 start-page: 1 year: 2019 ident: ref_37 article-title: Differences in gait and trunk movement between patients after ankle fracture and healthy subjects publication-title: Biomed. Eng. Online doi: 10.1186/s12938-019-0644-3 – ident: ref_11 doi: 10.1371/journal.pone.0196463 – volume: 9 start-page: 2045894018814182 year: 2018 ident: ref_8 article-title: Reduced free-living activity levels in pulmonary arterial hypertension patients publication-title: Pulm. Circ. – volume: 10 start-page: 20120999 year: 2013 ident: ref_40 article-title: Assessing the stability of human locomotion: A review of current measures publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0999 – ident: ref_2 doi: 10.3390/s20071939 – volume: 37 start-page: 121 year: 2004 ident: ref_44 article-title: Estimation of gait cycle characteristics by trunk accelerometry publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00233-1 – volume: 135 start-page: 104633 year: 2021 ident: ref_50 article-title: Activity detection and classification from wristband accelerometer data collected on people with type 1 diabetes in free-living conditions publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104633 – ident: ref_10 doi: 10.3390/s20195625 – volume: 48 start-page: 951 year: 2016 ident: ref_34 article-title: Objective assessment of physical activity: Classifiers for public health publication-title: Med. Sci. Sport. Exerc. doi: 10.1249/MSS.0000000000000841 – ident: ref_29 – volume: 107 start-page: 1590 year: 2012 ident: ref_28 article-title: Optimal detection of changepoints with a linear computational cost publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.737745 – ident: ref_46 – volume: 182 start-page: 105003 year: 2019 ident: ref_17 article-title: IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately? publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105003 – volume: 123 start-page: 234 year: 2020 ident: ref_42 article-title: Vigor of reaching, walking, and gazing movements: On the consistency of interindividual differences publication-title: J. Neurophysiol. doi: 10.1152/jn.00344.2019 – volume: 55 start-page: 1149 year: 2022 ident: ref_5 article-title: Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09979-x – volume: 8 start-page: 817 year: 2017 ident: ref_3 article-title: Inertial sensors to assess gait quality in patients with neurological disorders: A systematic review of technical and analytical challenges publication-title: Front. Psychol. doi: 10.3389/fpsyg.2017.00817 – ident: ref_30 doi: 10.1109/EMBC46164.2021.9629775 – volume: 264 start-page: 1642 year: 2017 ident: ref_1 article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review publication-title: J. Neurol. doi: 10.1007/s00415-017-8424-0 – volume: 10 start-page: 156 year: 2006 ident: ref_27 article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring publication-title: IEEE Trans. Inf. Technol. doi: 10.1109/TITB.2005.856864 – ident: ref_22 – volume: 59 start-page: 1610 year: 2012 ident: ref_21 article-title: Classification of periodic activities using the Wasserstein distance publication-title: IEEE. Trans. Biomed. doi: 10.1109/TBME.2012.2190930 – ident: ref_49 doi: 10.3390/s23052593 |
SSID | ssj0023338 |
Score | 2.402855 |
Snippet | This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to... This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to... |
SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4000 |
SubjectTerms | Algorithms change point detection Data mining Falls Feedback free-living Gait Gait Analysis graphical feedback Health care Human Activity Recognition Human acts Human behavior Humans IMU Life Sciences Locomotion Longitudinal studies Machine Learning Pathology Pipe lines Signal processing Visualization (Computers) Wearable Electronic Devices wearable sensor |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT3BAUF6BggxCgkvUpH7muKBuV6g8JKjUm2UndhsJ0qrd8vuZcbxhlyL1wjWxEmc845kv4_kG4E2nW4VqgrBEcYcARbuyMbUr9xzl_YyXme3zs1ociY_H8nit1RedCRvpgUfB7RrOo_KdUah7GFzg1oJOrFJVoD4ZUnW0-6LPW4GpDLU4Iq-RR4gjqN-9xEAbkQyVsa15n0TSP23Ft0_pJOT1MPPv05Jr7md-H-7luJHNxvk-gFth2Ia7a2yCD-HLjH1KRyMDy6ypJ-xrf04F54FhbMoOXL9kKxYS1g_MsW_hZ8_mFyGUhz39WmD7fwrfHsHRfP_7h0WZ-yWUrRR8WVJRqzai84La7lWdclXdikZ43TSxjlyF2HgReRDcRy9NaLWsHbpo4w0ih44_hq3hbAhPgXFEJbGmrhyyFZ5r3xKQrkXUTQyVCgW8W8nRtplMnHpa_LAIKkjkdhJ5Aa-noecjg8a_Br2nxZgGEOl1uoCqYLMq2JtUoYC3tJSWTBMn07pcYYCfRCRXdobQSXIChDgnXO2Nty1mh5auESU__b_9VRews1IGmw370qZEtNFc4zNeTbfRJCnP4oZwdpXG6CblTQp4MurO9CquMcDFby_AbGjVxlw27wz9aaL9Tl2VtZbP_oesnsOdPTQTyovVYge2lhdX4QWGV0v_MlnSb0OKG6M priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xywUOiDeBBRmEBJdok7VjOydU0JYKLQ8JVurNsh1nNxKkpe3y-5lx3bQFxDWxlIk9Y8_nmfkG4GWjvEQ1QVgiuUWAomxe69LmJ5biftpVie3zk5yciw_Tapou3JYprXKzJ8aNupl5uiM_jhFArbgq3sx_5tQ1iqKrqYXGAVwn6jJK6VLTLeDiiL_WbEIcof3xEt1txDNUzLZzBkWq_mFDPrikfMi_nc0_cyZ3DqHxbbiVvEc2Wi_3HbgW-rtwc4dT8B58HrGPMUEysMSdesG-dHMqOw8MPVT23nYrtuEiYV3PLPsafnRsvAghP-vogoGdbsvf7sP5-PTbu0meuibkvhJ8lVNpq9KicYKa7xWNtEXpRS2cquu2bLkMbe1Ey4PgrnWVDl5VpcWDWjuN-KHhD-Cwn_XhETCO2KQtqTdH5YXjynmC06VoVd2GQoYMXm_m0fhEKU6dLb4bhBY05WaY8gxeDEPnax6Nfw16S4sxDCDq6_hgtrgwyZKM5ryVrtESNyP0NvGsQfkKWQRqnFLJJoNXtJSGDBSF8TbVGeAvEdWVGSGAqjjBQpQJV3vva5PRmaFnRMxPt7i_ygyONspgknkvzVYZM3g-vEbDpGiL7cPsKo5RdYyeZPBwrTvDp7hCNxf_PQO9p1V7suy_6bvLSP4deysrVT3-v1xP4MYJGgDFvUpxBIerxVV4iu7Tyj2LNvIbqnoU7g priority: 102 providerName: ProQuest |
Title | A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37112339 https://www.proquest.com/docview/2806587370 https://www.proquest.com/docview/2807910000 https://hal.science/hal-04362007 https://pubmed.ncbi.nlm.nih.gov/PMC10145775 https://doaj.org/article/833f6bd86183405eb1081060e746756d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t2UsjIICS6BZO3YzgGhLdrtCrWlAlbamxUnThupZNvtFsG_Z8abhAZ64JJD4iQTeyYzn8f-BuBVoXKJaoKwRPIMAYrKwlTHWTjMKO-nbdKwfR7L6Ux8mifzDWhrbDYdeHUrtKN6UrPl-dufl78-oMG_J8SJkP3dFYbRiFMiRO7b6JAU2eeR6JIJQ859QWva0xWiP4zWBEP9W3tuybP3d__ozTNaIvlv_Pn3MsobfmlyH-41ASUbrTXgAWy4-iHcvUEz-Ag-j9iRXzPpWEOnespOqgvaie4YBq3sIKtWrKUnYVXNMvbVfa_YZOlceFjRnAMb_9kR9xhmk_G3j9OwKaQQ5ongq5B2uyotCiuoHl9UyCyKc5EKq9K0jEsuXZlaUXInuC1tol2ukjhD362tRkhR8CewVS9qtwOMI1wpYyrXkeTCcmVzQtixKFVauki6AN60_WjyhmWcil2cG0Qb1OWm6_IAXnZNL9bUGrc12qfB6BoQG7Y_sViemsa4jOa8lLbQEv9PGICi-0H5Ihk5qqWSyCKA1zSUhrQIhcmzZusBfhKxX5kRYqqEE1JEmXC0e2-bjg4NnSOufprY_REHsNcqg2kV1vgMtVZc4TNedJfRVikBk9Vuce3bqNQnVAJ4utad7lVcYeSL3x6A7mlVT5b-lbo683zgvtyyUsnu_wj_DO4M0SQoIRaLPdhaLa_dc4yrVnYAm2qu8KgnBwPY3h8fn3wZ-DmKgben302bHlA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t4wF4QHwTGGAQCF6iJbUTOw8IFVjpWDeQ2KS-eXbibJEgLW0H4p_ib-QuX20B8bbX2Eou9n39fL47gGeZTGNkE4QlMTcIUKTxExUav2co7qds1FT7PIyHx-LDOBpvwK82F4auVbY6sVLU2SSlM_KdKgKoJJfB6-k3n7pGUXS1baFRs8W--_kDIdv81d473N_nvd5g9-jt0G-6CvhpJPjCp9RPqURmBTWnC7LYBGEqEmFlkuRhzmOXJ1bk3Alucxspl8ooNGjIlFXoX2cc37sJl9DwBiRRcrwEeBzxXl29iPMk2Jmje4_4iZLnVmxe1RqgMwCbZ3T_8m_n9s87mitGb3AdrjXeKuvX7HUDNlx5E66u1DC8BR_77KC6kOlYU6v1lH0qppTm7hh6xOy9KRasrX3CipIZ9tl9Ldhg5pw_KuhAg-0u0-1uw_GFrOcd2ConpbsHjCMWykPqBRKlwnJpU4Lvochlkrsgdh68bNdRp00Jc-qk8UUjlKEl192Se_C0mzqt63b8a9Ib2oxuApXarh5MZqe6kVytOM9jm6kYlR96t2jbkL4gDhw1aonizIMXtJWaFAISk5omrwF_iUpr6T4CtogTDEWacLfXvjbsjzQ9o0YAdGr8PfRgu2UG3aiTuV4yvwdPumFUBBTdMaWbnFdzZFJFazy4W_NO9yku0a3Gf_dArXHVGi3rI2VxVhUbr3o5Sxnd_z9dj-Hy8OhgpEd7h_sP4EoPhYFibqHYhq3F7Nw9RNdtYR9V8sLg5KIF9DcxFlCV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahoTgAXEnY4BBIHiJmtSOnTwgVNhKx8qYBJP65sWJvUViaWk7EH-NX8c5aZK2gHjba-Ikjn1un88N4HmuMolkgrBE8hQBikr9JA5Tv5uS3y82UV3t81AOjsWHUTTagF9NLgyFVTYysRLU-TijM_JO5QGMFVdBx9VhEUe7_TeTbz51kCJPa9NOY0EiB_bnD4Rvs9f7u7jXL7rd_t6XdwO_7jDgZ5Hgc5_SQFUsciOoUV2QyzQIM5EIo5LEhY5L6xIjHLeCG2ei2GYqClNUarGJ0dbOOb53E64ofJh4TI2WYI8j9ltUMuI8CTozNPURS1Ei3Yr-q9oEtMpg84xiMf82dP-M11xRgP2bcKO2XFlvQWq3YMOWt-H6Sj3DO_Cpxz5WwZmW1XVbT9lRMaGUd8vQOmbv02LOmjoorChZyj7b84L1p9b6w4ION9jeMvXuLhxfynreg61yXNoHwDjiIhdSX5AoE4YrkxGUD4VTibOBtB68atZRZ3U5c-qq8VUjrKEl1-2Se_CsHTpZ1PD416C3tBntACq7XV0YT091zcU65txJk8cSBSFauqjncH6BDCw1bYlk7sFL2kpNwgEnk6V1jgP-EpXZ0j0EbxEnSIpzwt1e-9qgN9R0jZoC0Any99CDnYYYdC1aZnrJCB48bW-jUCBPT1ra8UU1RiWV58aD-wvaaT_FFZrY-O8exGtUtTaX9TtlcVYVHq_6OisVbf9_Xk_gKrKmHu4fHjyEa13kBXK_hWIHtubTC_sIrbi5eVyxC4OTy-bP3xmUVMs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Pipeline+for+Gait+Analysis+in+a+Semi+Free-Living+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jung%2C+Sylvain&rft.au=de+l%27Escalopier%2C+Nicolas&rft.au=Oudre%2C+Laurent&rft.au=Truong%2C+Charles&rft.date=2023-04-14&rft.pub=MDPI&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390%2Fs23084000&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04362007v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |