A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment

This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time se...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 8; p. 4000
Main Authors Jung, Sylvain, de l’Escalopier, Nicolas, Oudre, Laurent, Truong, Charles, Dorveaux, Eric, Gorintin, Louis, Ricard, Damien
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.
AbstractList This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.
This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.
Audience Academic
Author Oudre, Laurent
Truong, Charles
Gorintin, Louis
Dorveaux, Eric
Ricard, Damien
Jung, Sylvain
de l’Escalopier, Nicolas
AuthorAffiliation 1 Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France
8 Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005 Paris, France
4 ENGIE Lab CRIGEN, F-93249 Stains, France
3 AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France
7 Novakamp, 10-12 Avenue du Bosquet, F-95560 Baillet en France, France
5 Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France
6 Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France
2 Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France
AuthorAffiliation_xml – name: 3 AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France
– name: 5 Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France
– name: 7 Novakamp, 10-12 Avenue du Bosquet, F-95560 Baillet en France, France
– name: 1 Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France
– name: 2 Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France
– name: 8 Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005 Paris, France
– name: 6 Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France
– name: 4 ENGIE Lab CRIGEN, F-93249 Stains, France
Author_xml – sequence: 1
  givenname: Sylvain
  orcidid: 0009-0000-6580-5027
  surname: Jung
  fullname: Jung, Sylvain
– sequence: 2
  givenname: Nicolas
  orcidid: 0000-0001-6333-7311
  surname: de l’Escalopier
  fullname: de l’Escalopier, Nicolas
– sequence: 3
  givenname: Laurent
  orcidid: 0000-0002-4750-2265
  surname: Oudre
  fullname: Oudre, Laurent
– sequence: 4
  givenname: Charles
  surname: Truong
  fullname: Truong, Charles
– sequence: 5
  givenname: Eric
  orcidid: 0000-0003-1606-6461
  surname: Dorveaux
  fullname: Dorveaux, Eric
– sequence: 6
  givenname: Louis
  surname: Gorintin
  fullname: Gorintin, Louis
– sequence: 7
  givenname: Damien
  surname: Ricard
  fullname: Ricard, Damien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37112339$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04362007$$DView record in HAL
BookMark eNplkk1v3CAQhq0qVfPRHvoHKku9tAcng8GAT5UV5UtylUptzwhj2GXlhS14V8q_L14n2yQVB9DwzMu8zJxmR847nWUfEZxjXMNFLDFwAgBvshNESlLwsoSjZ-fj7DTGFUCJMebvsmPMEErn-iS7b_LvUi2t03mrZXDWLfIfdqOHKWJ8yG-kHfPGyeEh2phbl8v8p17b_DpoXbR2NyVcuZ0N3q21G99nb40cov7wuJ9lv6-vfl3eFu39zd1l0xaqIngsSsZrxknfEYQrBD2VgBSpScfq2iCDqTZ1RwzWBHemq7hWrEKSlJR3HAPt8Vl2N-v2Xq7EJti1DA_CSyv2AR8WQobRqkELjrGhXc8p4phApTsEHAEFzQhl1V7r26y12XZr3atkI8jhhejLG2eXYuF3AgEiFWNVUvg6Kyxf5d02rZhiQDAtAdgOJfbL42vB_9nqOIq1jUoPg3Tab6MoObAapWZCQj-_Qld-G1Iv9hStOMNsos5naiGTW-uMT0WqtPrUJ5UmxdgUbxhJhdYVnRI-Pfd7KPhpKhJwMQMq-BiDNkLZUY7WT_btkHyLae7EYe7-fcAh40n0f_YvYX_R1g
CitedBy_id crossref_primary_10_3390_s24175486
Cites_doi 10.1016/j.gaitpost.2020.04.010
10.3390/s21082727
10.1109/TBME.2022.3163429
10.1109/JSEN.2017.2722105
10.3390/s18103409
10.3390/s20185377
10.1109/TNSRE.2017.2745418
10.3390/s22093555
10.1249/MSS.0000000000000840
10.1109/TSP.2019.2953670
10.3390/s18114033
10.1186/s12984-018-0456-x
10.3390/s17092113
10.3390/s20082200
10.3233/AIS-180493
10.1249/MSS.0000000000002099
10.1109/IECON43393.2020.9254427
10.1109/TNSRE.2022.3199068
10.1016/j.medengphy.2018.04.008
10.3390/s22072544
10.1080/09638288.2022.2083701
10.1109/ICCE46568.2020.9042999
10.1371/journal.pone.0185741
10.1007/s11517-015-1357-9
10.1186/s12938-019-0644-3
10.1371/journal.pone.0196463
10.1098/rsif.2012.0999
10.3390/s20071939
10.1016/S0021-9290(03)00233-1
10.1016/j.compbiomed.2021.104633
10.3390/s20195625
10.1249/MSS.0000000000000841
10.1080/01621459.2012.737745
10.1016/j.cmpb.2019.105003
10.1152/jn.00344.2019
10.1007/s10462-021-09979-x
10.3389/fpsyg.2017.00817
10.1109/EMBC46164.2021.9629775
10.1007/s00415-017-8424-0
10.1109/TITB.2005.856864
10.1109/TBME.2012.2190930
10.3390/s23052593
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.3390/s23084000
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_833f6bd86183405eb1081060e746756d
PMC10145775
oai_HAL_hal_04362007v1
A747539560
37112339
10_3390_s23084000
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c543t-2789784db413510d6a01c494b799f1f36ef9b4f3e43bfb58ec751a4268b8306d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:04 EDT 2025
Thu Aug 21 18:38:02 EDT 2025
Thu Jul 10 08:58:13 EDT 2025
Fri Jul 11 07:50:33 EDT 2025
Fri Jul 25 20:11:52 EDT 2025
Tue Jul 01 05:45:19 EDT 2025
Wed Feb 19 02:24:49 EST 2025
Tue Jul 01 01:20:01 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords IMU
change point detection
wearable sensor
Human Activity Recognition
free-living
graphical feedback
C
Ricard
E
Jung
L
L. Truong
S. de l'Escalopier
E. Gorintin
D. A Machine free-living wearable sensor IMU graphical feedback change point detection Human Activity Recognition
N
S
L. Ricard
C. Dorveaux
de l'Escalopier
Oudre
Gorintin
Truong
D. A Machine free-living
N. Oudre
Dorveaux
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-2789784db413510d6a01c494b799f1f36ef9b4f3e43bfb58ec751a4268b8306d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-6580-5027
0000-0003-1606-6461
0000-0002-4750-2265
0000-0001-6333-7311
0000-0002-8527-8161
0009-0002-1406-9116
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23084000
PMID 37112339
PQID 2806587370
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_833f6bd86183405eb1081060e746756d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10145775
hal_primary_oai_HAL_hal_04362007v1
proquest_miscellaneous_2807910000
proquest_journals_2806587370
gale_infotracacademiconefile_A747539560
pubmed_primary_37112339
crossref_citationtrail_10_3390_s23084000
crossref_primary_10_3390_s23084000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230414
PublicationDateYYYYMMDD 2023-04-14
PublicationDate_xml – month: 4
  year: 2023
  text: 20230414
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ellis (ref_15) 2016; 48
Cescon (ref_50) 2021; 135
ref_13
ref_11
ref_10
Fullerton (ref_36) 2017; 17
ref_52
ref_51
Sekine (ref_38) 2013; 10
Ahmadi (ref_14) 2018; 15
ref_19
Rast (ref_32) 2020; 17
Kobayashi (ref_43) 2014; 11
Labaune (ref_42) 2020; 123
Brodie (ref_9) 2016; 54
Nouredanesh (ref_7) 2021; 85
Halliday (ref_8) 2018; 9
ref_24
ref_23
ref_22
ref_20
Killick (ref_28) 2012; 107
ref_29
Semwal (ref_5) 2022; 55
Fiorini (ref_33) 2018; 10
Truong (ref_26) 2019; 67
Bruijn (ref_40) 2013; 10
Helbostad (ref_44) 2004; 37
Oudre (ref_21) 2012; 59
Karantonis (ref_27) 2006; 10
ref_31
Ni (ref_16) 2022; 69
ref_30
Kerr (ref_34) 2016; 48
Hsu (ref_37) 2019; 18
Nguyen (ref_25) 2017; 26
Choi (ref_18) 2022; 30
Tura (ref_45) 2010; 7
ref_47
Evers (ref_1) 2017; 264
ref_46
Nazarahari (ref_12) 2018; 57
ref_41
Marcotte (ref_35) 2020; 52
ref_2
ref_49
Nouredanesh (ref_17) 2019; 182
ref_48
Vienne (ref_3) 2017; 8
ref_4
Bahari (ref_39) 2021; 11
ref_6
References_xml – volume: 85
  start-page: 178
  year: 2021
  ident: ref_7
  article-title: Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.04.010
– volume: 17
  start-page: 1
  year: 2020
  ident: ref_32
  article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments
  publication-title: J. Neuroeng.
– ident: ref_31
  doi: 10.3390/s21082727
– volume: 7
  start-page: 1
  year: 2010
  ident: ref_45
  article-title: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations
  publication-title: J. Neuroeng.
– ident: ref_51
– volume: 69
  start-page: 3224
  year: 2022
  ident: ref_16
  article-title: Deep multi-branch two-stage regression network for accurate energy expenditure estimation with ECG and IMU data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3163429
– volume: 11
  start-page: 1
  year: 2014
  ident: ref_43
  article-title: Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration
  publication-title: J. Neuroeng.
– volume: 17
  start-page: 5290
  year: 2017
  ident: ref_36
  article-title: Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2722105
– ident: ref_13
  doi: 10.3390/s18103409
– ident: ref_24
  doi: 10.3390/s20185377
– volume: 26
  start-page: 197
  year: 2017
  ident: ref_25
  article-title: Using inertial sensors to automatically detect and segment activities of daily living in people with Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst.
  doi: 10.1109/TNSRE.2017.2745418
– ident: ref_47
  doi: 10.3390/s22093555
– volume: 48
  start-page: 933
  year: 2016
  ident: ref_15
  article-title: Hip and wrist accelerometer algorithms for free-living behavior classification
  publication-title: Med. Sci. Sport. Exerc.
  doi: 10.1249/MSS.0000000000000840
– volume: 67
  start-page: 6204
  year: 2019
  ident: ref_26
  article-title: Greedy kernel change-point detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2953670
– ident: ref_4
  doi: 10.3390/s18114033
– volume: 15
  start-page: 105
  year: 2018
  ident: ref_14
  article-title: Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-018-0456-x
– ident: ref_52
  doi: 10.3390/s17092113
– volume: 10
  start-page: 1
  year: 2013
  ident: ref_38
  article-title: A gait abnormality measure based on root mean square of trunk acceleration
  publication-title: J. Neuroeng.
– ident: ref_48
  doi: 10.3390/s20082200
– volume: 11
  start-page: 1026
  year: 2021
  ident: ref_39
  article-title: Use of the extended feasible stability region for assessing stability of perturbed walking
  publication-title: Science
– volume: 10
  start-page: 345
  year: 2018
  ident: ref_33
  article-title: Combining wearable physiological and inertial sensors with indoor user localization network to enhance activity recognition
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-180493
– volume: 52
  start-page: 225
  year: 2020
  ident: ref_35
  article-title: Estimating Sedentary Time from a Hip-and Wrist-Worn Accelerometer
  publication-title: Med. Sci. Sport Exerc.
  doi: 10.1249/MSS.0000000000002099
– ident: ref_20
  doi: 10.1109/IECON43393.2020.9254427
– volume: 30
  start-page: 2385
  year: 2022
  ident: ref_18
  article-title: Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3199068
– volume: 57
  start-page: 75
  year: 2018
  ident: ref_12
  article-title: Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2018.04.008
– ident: ref_6
  doi: 10.3390/s22072544
– ident: ref_19
  doi: 10.1080/09638288.2022.2083701
– ident: ref_23
  doi: 10.1109/ICCE46568.2020.9042999
– ident: ref_41
  doi: 10.1371/journal.pone.0185741
– volume: 54
  start-page: 663
  year: 2016
  ident: ref_9
  article-title: Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1357-9
– volume: 18
  start-page: 1
  year: 2019
  ident: ref_37
  article-title: Differences in gait and trunk movement between patients after ankle fracture and healthy subjects
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0644-3
– ident: ref_11
  doi: 10.1371/journal.pone.0196463
– volume: 9
  start-page: 2045894018814182
  year: 2018
  ident: ref_8
  article-title: Reduced free-living activity levels in pulmonary arterial hypertension patients
  publication-title: Pulm. Circ.
– volume: 10
  start-page: 20120999
  year: 2013
  ident: ref_40
  article-title: Assessing the stability of human locomotion: A review of current measures
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0999
– ident: ref_2
  doi: 10.3390/s20071939
– volume: 37
  start-page: 121
  year: 2004
  ident: ref_44
  article-title: Estimation of gait cycle characteristics by trunk accelerometry
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00233-1
– volume: 135
  start-page: 104633
  year: 2021
  ident: ref_50
  article-title: Activity detection and classification from wristband accelerometer data collected on people with type 1 diabetes in free-living conditions
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104633
– ident: ref_10
  doi: 10.3390/s20195625
– volume: 48
  start-page: 951
  year: 2016
  ident: ref_34
  article-title: Objective assessment of physical activity: Classifiers for public health
  publication-title: Med. Sci. Sport. Exerc.
  doi: 10.1249/MSS.0000000000000841
– ident: ref_29
– volume: 107
  start-page: 1590
  year: 2012
  ident: ref_28
  article-title: Optimal detection of changepoints with a linear computational cost
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.737745
– ident: ref_46
– volume: 182
  start-page: 105003
  year: 2019
  ident: ref_17
  article-title: IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105003
– volume: 123
  start-page: 234
  year: 2020
  ident: ref_42
  article-title: Vigor of reaching, walking, and gazing movements: On the consistency of interindividual differences
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00344.2019
– volume: 55
  start-page: 1149
  year: 2022
  ident: ref_5
  article-title: Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09979-x
– volume: 8
  start-page: 817
  year: 2017
  ident: ref_3
  article-title: Inertial sensors to assess gait quality in patients with neurological disorders: A systematic review of technical and analytical challenges
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.00817
– ident: ref_30
  doi: 10.1109/EMBC46164.2021.9629775
– volume: 264
  start-page: 1642
  year: 2017
  ident: ref_1
  article-title: Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review
  publication-title: J. Neurol.
  doi: 10.1007/s00415-017-8424-0
– volume: 10
  start-page: 156
  year: 2006
  ident: ref_27
  article-title: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
  publication-title: IEEE Trans. Inf. Technol.
  doi: 10.1109/TITB.2005.856864
– ident: ref_22
– volume: 59
  start-page: 1610
  year: 2012
  ident: ref_21
  article-title: Classification of periodic activities using the Wasserstein distance
  publication-title: IEEE. Trans. Biomed.
  doi: 10.1109/TBME.2012.2190930
– ident: ref_49
  doi: 10.3390/s23052593
SSID ssj0023338
Score 2.402855
Snippet This paper presents a novel approach to creating a graphical summary of a subject’s activity during a protocol in a Semi Free-Living Environment. Thanks to...
This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4000
SubjectTerms Algorithms
change point detection
Data mining
Falls
Feedback
free-living
Gait
Gait Analysis
graphical feedback
Health care
Human Activity Recognition
Human acts
Human behavior
Humans
IMU
Life Sciences
Locomotion
Longitudinal studies
Machine Learning
Pathology
Pipe lines
Signal processing
Visualization (Computers)
Wearable Electronic Devices
wearable sensor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT3BAUF6BggxCgkvUpH7muKBuV6g8JKjUm2UndhsJ0qrd8vuZcbxhlyL1wjWxEmc845kv4_kG4E2nW4VqgrBEcYcARbuyMbUr9xzl_YyXme3zs1ociY_H8nit1RedCRvpgUfB7RrOo_KdUah7GFzg1oJOrFJVoD4ZUnW0-6LPW4GpDLU4Iq-RR4gjqN-9xEAbkQyVsa15n0TSP23Ft0_pJOT1MPPv05Jr7md-H-7luJHNxvk-gFth2Ia7a2yCD-HLjH1KRyMDy6ypJ-xrf04F54FhbMoOXL9kKxYS1g_MsW_hZ8_mFyGUhz39WmD7fwrfHsHRfP_7h0WZ-yWUrRR8WVJRqzai84La7lWdclXdikZ43TSxjlyF2HgReRDcRy9NaLWsHbpo4w0ih44_hq3hbAhPgXFEJbGmrhyyFZ5r3xKQrkXUTQyVCgW8W8nRtplMnHpa_LAIKkjkdhJ5Aa-noecjg8a_Br2nxZgGEOl1uoCqYLMq2JtUoYC3tJSWTBMn07pcYYCfRCRXdobQSXIChDgnXO2Nty1mh5auESU__b_9VRews1IGmw370qZEtNFc4zNeTbfRJCnP4oZwdpXG6CblTQp4MurO9CquMcDFby_AbGjVxlw27wz9aaL9Tl2VtZbP_oesnsOdPTQTyovVYge2lhdX4QWGV0v_MlnSb0OKG6M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xywUOiDeBBRmEBJdok7VjOydU0JYKLQ8JVurNsh1nNxKkpe3y-5lx3bQFxDWxlIk9Y8_nmfkG4GWjvEQ1QVgiuUWAomxe69LmJ5biftpVie3zk5yciw_Tapou3JYprXKzJ8aNupl5uiM_jhFArbgq3sx_5tQ1iqKrqYXGAVwn6jJK6VLTLeDiiL_WbEIcof3xEt1txDNUzLZzBkWq_mFDPrikfMi_nc0_cyZ3DqHxbbiVvEc2Wi_3HbgW-rtwc4dT8B58HrGPMUEysMSdesG-dHMqOw8MPVT23nYrtuEiYV3PLPsafnRsvAghP-vogoGdbsvf7sP5-PTbu0meuibkvhJ8lVNpq9KicYKa7xWNtEXpRS2cquu2bLkMbe1Ey4PgrnWVDl5VpcWDWjuN-KHhD-Cwn_XhETCO2KQtqTdH5YXjynmC06VoVd2GQoYMXm_m0fhEKU6dLb4bhBY05WaY8gxeDEPnax6Nfw16S4sxDCDq6_hgtrgwyZKM5ryVrtESNyP0NvGsQfkKWQRqnFLJJoNXtJSGDBSF8TbVGeAvEdWVGSGAqjjBQpQJV3vva5PRmaFnRMxPt7i_ygyONspgknkvzVYZM3g-vEbDpGiL7cPsKo5RdYyeZPBwrTvDp7hCNxf_PQO9p1V7suy_6bvLSP4deysrVT3-v1xP4MYJGgDFvUpxBIerxVV4iu7Tyj2LNvIbqnoU7g
  priority: 102
  providerName: ProQuest
Title A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/37112339
https://www.proquest.com/docview/2806587370
https://www.proquest.com/docview/2807910000
https://hal.science/hal-04362007
https://pubmed.ncbi.nlm.nih.gov/PMC10145775
https://doaj.org/article/833f6bd86183405eb1081060e746756d
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t2UsjIICS6BZO3YzgGhLdrtCrWlAlbamxUnThupZNvtFsG_Z8abhAZ64JJD4iQTeyYzn8f-BuBVoXKJaoKwRPIMAYrKwlTHWTjMKO-nbdKwfR7L6Ux8mifzDWhrbDYdeHUrtKN6UrPl-dufl78-oMG_J8SJkP3dFYbRiFMiRO7b6JAU2eeR6JIJQ859QWva0xWiP4zWBEP9W3tuybP3d__ozTNaIvlv_Pn3MsobfmlyH-41ASUbrTXgAWy4-iHcvUEz-Ag-j9iRXzPpWEOnespOqgvaie4YBq3sIKtWrKUnYVXNMvbVfa_YZOlceFjRnAMb_9kR9xhmk_G3j9OwKaQQ5ongq5B2uyotCiuoHl9UyCyKc5EKq9K0jEsuXZlaUXInuC1tol2ukjhD362tRkhR8CewVS9qtwOMI1wpYyrXkeTCcmVzQtixKFVauki6AN60_WjyhmWcil2cG0Qb1OWm6_IAXnZNL9bUGrc12qfB6BoQG7Y_sViemsa4jOa8lLbQEv9PGICi-0H5Ihk5qqWSyCKA1zSUhrQIhcmzZusBfhKxX5kRYqqEE1JEmXC0e2-bjg4NnSOufprY_REHsNcqg2kV1vgMtVZc4TNedJfRVikBk9Vuce3bqNQnVAJ4utad7lVcYeSL3x6A7mlVT5b-lbo683zgvtyyUsnu_wj_DO4M0SQoIRaLPdhaLa_dc4yrVnYAm2qu8KgnBwPY3h8fn3wZ-DmKgben302bHlA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t4wF4QHwTGGAQCF6iJbUTOw8IFVjpWDeQ2KS-eXbibJEgLW0H4p_ib-QuX20B8bbX2Eou9n39fL47gGeZTGNkE4QlMTcIUKTxExUav2co7qds1FT7PIyHx-LDOBpvwK82F4auVbY6sVLU2SSlM_KdKgKoJJfB6-k3n7pGUXS1baFRs8W--_kDIdv81d473N_nvd5g9-jt0G-6CvhpJPjCp9RPqURmBTWnC7LYBGEqEmFlkuRhzmOXJ1bk3Alucxspl8ooNGjIlFXoX2cc37sJl9DwBiRRcrwEeBzxXl29iPMk2Jmje4_4iZLnVmxe1RqgMwCbZ3T_8m_n9s87mitGb3AdrjXeKuvX7HUDNlx5E66u1DC8BR_77KC6kOlYU6v1lH0qppTm7hh6xOy9KRasrX3CipIZ9tl9Ldhg5pw_KuhAg-0u0-1uw_GFrOcd2ConpbsHjCMWykPqBRKlwnJpU4Lvochlkrsgdh68bNdRp00Jc-qk8UUjlKEl192Se_C0mzqt63b8a9Ib2oxuApXarh5MZqe6kVytOM9jm6kYlR96t2jbkL4gDhw1aonizIMXtJWaFAISk5omrwF_iUpr6T4CtogTDEWacLfXvjbsjzQ9o0YAdGr8PfRgu2UG3aiTuV4yvwdPumFUBBTdMaWbnFdzZFJFazy4W_NO9yku0a3Gf_dArXHVGi3rI2VxVhUbr3o5Sxnd_z9dj-Hy8OhgpEd7h_sP4EoPhYFibqHYhq3F7Nw9RNdtYR9V8sLg5KIF9DcxFlCV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD7ahoTgAXEnY4BBIHiJmtSOnTwgVNhKx8qYBJP65sWJvUViaWk7EH-NX8c5aZK2gHjba-Ikjn1un88N4HmuMolkgrBE8hQBikr9JA5Tv5uS3y82UV3t81AOjsWHUTTagF9NLgyFVTYysRLU-TijM_JO5QGMFVdBx9VhEUe7_TeTbz51kCJPa9NOY0EiB_bnD4Rvs9f7u7jXL7rd_t6XdwO_7jDgZ5Hgc5_SQFUsciOoUV2QyzQIM5EIo5LEhY5L6xIjHLeCG2ei2GYqClNUarGJ0dbOOb53E64ofJh4TI2WYI8j9ltUMuI8CTozNPURS1Ei3Yr-q9oEtMpg84xiMf82dP-M11xRgP2bcKO2XFlvQWq3YMOWt-H6Sj3DO_Cpxz5WwZmW1XVbT9lRMaGUd8vQOmbv02LOmjoorChZyj7b84L1p9b6w4ION9jeMvXuLhxfynreg61yXNoHwDjiIhdSX5AoE4YrkxGUD4VTibOBtB68atZRZ3U5c-qq8VUjrKEl1-2Se_CsHTpZ1PD416C3tBntACq7XV0YT091zcU65txJk8cSBSFauqjncH6BDCw1bYlk7sFL2kpNwgEnk6V1jgP-EpXZ0j0EbxEnSIpzwt1e-9qgN9R0jZoC0Any99CDnYYYdC1aZnrJCB48bW-jUCBPT1ra8UU1RiWV58aD-wvaaT_FFZrY-O8exGtUtTaX9TtlcVYVHq_6OisVbf9_Xk_gKrKmHu4fHjyEa13kBXK_hWIHtubTC_sIrbi5eVyxC4OTy-bP3xmUVMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Pipeline+for+Gait+Analysis+in+a+Semi+Free-Living+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jung%2C+Sylvain&rft.au=de+l%27Escalopier%2C+Nicolas&rft.au=Oudre%2C+Laurent&rft.au=Truong%2C+Charles&rft.date=2023-04-14&rft.pub=MDPI&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390%2Fs23084000&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04362007v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon