An integrative approach to predicting the functional effects of non-coding and coding sequence variation

Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 31; no. 10; pp. 1536 - 1543
Main Authors Shihab, Hashem A., Rogers, Mark F., Gough, Julian, Mort, Matthew, Cooper, David N., Day, Ian N. M., Gaunt, Tom R., Campbell, Colin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact:  H.Shihab@bristol.ac.uk   or  Mark.Rogers@bristol.ac.uk  or  C.Campbell@bristol.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.ukContact: H.Shihabristol.ac.uk or Mark.Rogersristol.ac.uk or C.Campbellristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.MOTIVATIONTechnological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.RESULTSWe show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.
Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact:  H.Shihab@bristol.ac.uk   or  Mark.Rogers@bristol.ac.uk  or  C.Campbell@bristol.ac.uk Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.
Author Rogers, Mark F.
Campbell, Colin
Gaunt, Tom R.
Shihab, Hashem A.
Gough, Julian
Day, Ian N. M.
Mort, Matthew
Cooper, David N.
Author_xml – sequence: 1
  givenname: Hashem A.
  surname: Shihab
  fullname: Shihab, Hashem A.
– sequence: 2
  givenname: Mark F.
  surname: Rogers
  fullname: Rogers, Mark F.
– sequence: 3
  givenname: Julian
  surname: Gough
  fullname: Gough, Julian
– sequence: 4
  givenname: Matthew
  surname: Mort
  fullname: Mort, Matthew
– sequence: 5
  givenname: David N.
  surname: Cooper
  fullname: Cooper, David N.
– sequence: 6
  givenname: Ian N. M.
  surname: Day
  fullname: Day, Ian N. M.
– sequence: 7
  givenname: Tom R.
  surname: Gaunt
  fullname: Gaunt, Tom R.
– sequence: 8
  givenname: Colin
  surname: Campbell
  fullname: Campbell, Colin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25583119$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2PFCEQJWaN-6E_QcPRS-9C0zQQE5PNRl2TTbzomdBQzGB6oAVmEv-9jDNOXC_riSL13st7VXWJzmKKgNBrSq4pUexmCilEn_LG1GDLzVR3hKhn6IKyUXSDpPTsVBN2ji5L-U4I4YSPL9B5z7lklKoLtL6NOMQKq9x0doDNsuRk7BrXhJcMLtga4grXNWC_je2TopkxeA-2Fpw8brY6m9weZKLDx7LAjy1EC3hncjB71kv03Ju5wKvje4W-ffzw9e6-e_jy6fPd7UNn-cBqR8kw9Y55YEQS4ehoABxpdiVzrSEVV4RK5SgjveiFlxMd_OQ946NgAnp2hd4fdJfttAFnIdZsZr3ksDH5p04m6MedGNZ6lXZ6GPpRMtkE3h4FcmohStWbUCzMs4mQtkVTQZQQamTqf6B0EM0xexo6tri8p3Rv4M3fCU7W_yytAfgBYHMqJYM_QSjR--PQj49DH46j8d79w7Oh_l5OG0SYn2D_AkkAyWA
CitedBy_id crossref_primary_10_1016_j_bone_2020_115571
crossref_primary_10_1038_s41389_024_00516_3
crossref_primary_10_1002_ana_25751
crossref_primary_10_1038_s41598_021_98693_3
crossref_primary_10_1038_s41597_020_00794_7
crossref_primary_10_1371_journal_pcbi_1005500
crossref_primary_10_1109_JBHI_2023_3343075
crossref_primary_10_1097_SCS_0000000000009261
crossref_primary_10_3389_fonc_2022_836126
crossref_primary_10_1016_j_ajhg_2016_07_005
crossref_primary_10_1016_j_phrs_2021_105904
crossref_primary_10_1160_TH15_05_0411
crossref_primary_10_1002_humu_23878
crossref_primary_10_1038_s41467_024_55066_4
crossref_primary_10_1093_hmg_ddy115
crossref_primary_10_1093_bib_bbab123
crossref_primary_10_3390_cells13201691
crossref_primary_10_1093_jnen_nlaa059
crossref_primary_10_1093_bib_bbac451
crossref_primary_10_1101_gr_267997_120
crossref_primary_10_1002_humu_23629
crossref_primary_10_1080_19396368_2021_1965673
crossref_primary_10_1038_ng_3810
crossref_primary_10_1007_s00439_019_02081_x
crossref_primary_10_1093_bioinformatics_btw565
crossref_primary_10_1093_bioinformatics_btx534
crossref_primary_10_1186_s12859_016_1436_4
crossref_primary_10_1080_01677063_2020_1833006
crossref_primary_10_1093_bioinformatics_btx536
crossref_primary_10_1097_MPH_0000000000001668
crossref_primary_10_1155_2019_8427042
crossref_primary_10_3390_cimb46070383
crossref_primary_10_1038_s42003_024_06400_5
crossref_primary_10_1007_s10633_023_09953_8
crossref_primary_10_1007_s43032_023_01393_8
crossref_primary_10_1109_TCBB_2022_3167468
crossref_primary_10_1186_s13040_021_00274_7
crossref_primary_10_1007_s00439_020_02190_y
crossref_primary_10_12688_f1000research_136362_1
crossref_primary_10_1016_j_gene_2022_147062
crossref_primary_10_1024_1422_4917_a000758
crossref_primary_10_1186_s13073_018_0565_y
crossref_primary_10_1007_s00439_019_02091_9
crossref_primary_10_1016_j_ebiom_2015_07_005
crossref_primary_10_1007_s12064_018_0267_4
crossref_primary_10_1093_nargab_lqaa038
crossref_primary_10_3892_ol_2019_11212
crossref_primary_10_3389_fgene_2019_00258
crossref_primary_10_1038_s41467_022_29302_8
crossref_primary_10_1093_hmg_ddac198
crossref_primary_10_2217_pme_2018_0065
crossref_primary_10_1093_bib_bbac598
crossref_primary_10_1111_ahg_12408
crossref_primary_10_1093_bib_bbad321
crossref_primary_10_1093_jnen_nlab008
crossref_primary_10_1371_journal_pone_0294417
crossref_primary_10_1093_nargab_lqab122
crossref_primary_10_1093_nar_gkz327
crossref_primary_10_1002_jcb_25864
crossref_primary_10_3390_biomedicines11071838
crossref_primary_10_4103_abr_abr_45_22
crossref_primary_10_1038_s41598_019_39391_z
crossref_primary_10_1186_s12859_018_2416_7
crossref_primary_10_1093_hmg_ddad136
crossref_primary_10_1186_s12863_017_0479_5
crossref_primary_10_1021_acs_jcim_4c01999
crossref_primary_10_1186_s13059_019_1634_2
crossref_primary_10_1016_j_bbadis_2023_166721
crossref_primary_10_1038_s41588_024_01669_y
crossref_primary_10_1016_j_molcel_2018_10_037
crossref_primary_10_1093_bib_bbad508
crossref_primary_10_1038_s41591_021_01511_6
crossref_primary_10_3988_jcn_2022_18_2_214
crossref_primary_10_1093_bib_bbac535
crossref_primary_10_3390_ijms20133126
crossref_primary_10_1002_cpt_2289
crossref_primary_10_3390_ijms25094930
crossref_primary_10_1093_molbev_msad046
crossref_primary_10_1371_journal_pcbi_1004962
crossref_primary_10_1093_bioinformatics_bty872
crossref_primary_10_1016_j_humgen_2024_201293
crossref_primary_10_1093_nar_gky057
crossref_primary_10_1093_bib_bbab438
crossref_primary_10_1038_s41467_019_11526_w
crossref_primary_10_1002_humu_23666
crossref_primary_10_1002_humu_23301
crossref_primary_10_1111_febs_15076
crossref_primary_10_1038_s41598_022_14924_1
crossref_primary_10_1186_s12902_018_0257_z
crossref_primary_10_3390_genes11040460
crossref_primary_10_1093_hmg_ddw283
crossref_primary_10_1371_journal_pone_0174032
crossref_primary_10_1007_s00439_025_02732_2
crossref_primary_10_1007_s12311_022_01430_3
crossref_primary_10_1016_j_jgg_2023_12_005
crossref_primary_10_1158_1541_7786_MCR_15_0146
crossref_primary_10_1261_rna_064469_117
crossref_primary_10_1093_bib_bby071
crossref_primary_10_1038_s41467_024_45933_5
crossref_primary_10_1016_j_xkme_2020_12_007
crossref_primary_10_1093_bib_bbz047
crossref_primary_10_1097_MBC_0000000000001036
crossref_primary_10_7554_eLife_79713
crossref_primary_10_1007_s10528_024_10894_3
crossref_primary_10_1016_j_gene_2022_146281
crossref_primary_10_1016_j_neuron_2018_06_019
crossref_primary_10_1016_j_xhgg_2022_100166
crossref_primary_10_1093_bib_bbaa250
crossref_primary_10_3390_genes15070845
crossref_primary_10_1093_bib_bbad519
crossref_primary_10_1186_s13059_018_1546_6
crossref_primary_10_1016_j_ejso_2018_01_224
crossref_primary_10_1124_molpharm_122_000614
crossref_primary_10_1016_j_humpath_2017_10_014
crossref_primary_10_1007_s00439_017_1779_6
crossref_primary_10_1038_s41598_020_66517_5
crossref_primary_10_1038_s41439_021_00146_w
crossref_primary_10_1093_bib_bbab530
crossref_primary_10_1109_TCBB_2022_3155659
crossref_primary_10_1016_j_nmd_2020_10_006
crossref_primary_10_1093_nar_gkx1039
crossref_primary_10_1111_ahg_12150
crossref_primary_10_1016_j_nmd_2017_06_009
crossref_primary_10_1155_2019_4878547
crossref_primary_10_1186_s12864_019_5865_0
crossref_primary_10_1016_j_genrep_2023_101832
crossref_primary_10_1007_s12022_023_09782_0
crossref_primary_10_1021_acs_jcim_4c02139
crossref_primary_10_1038_s41551_022_00996_x
crossref_primary_10_1021_acs_jcim_3c02025
crossref_primary_10_1371_journal_pgen_1008081
crossref_primary_10_1093_bioinformatics_btaa242
crossref_primary_10_1038_s41598_018_30151_z
crossref_primary_10_1038_s42003_019_0719_5
crossref_primary_10_1371_journal_pone_0194790
crossref_primary_10_1038_s41598_024_65227_6
crossref_primary_10_1016_j_jmoldx_2020_08_007
crossref_primary_10_1002_cncr_34025
crossref_primary_10_1038_s41598_021_03230_x
crossref_primary_10_1002_humu_22932
crossref_primary_10_1016_j_oooo_2024_04_005
crossref_primary_10_1186_s12915_020_00783_7
crossref_primary_10_1093_bioinformatics_btw288
crossref_primary_10_1186_s13073_023_01240_0
crossref_primary_10_1093_bib_bby039
crossref_primary_10_1093_bioinformatics_btaa254
crossref_primary_10_1038_s41467_022_33267_z
crossref_primary_10_1016_j_yebeh_2020_107469
crossref_primary_10_1039_D1MO00038A
crossref_primary_10_3390_ijms222212354
crossref_primary_10_1093_nar_gkae1079
crossref_primary_10_1186_s40364_020_00208_1
crossref_primary_10_3389_fonc_2022_808886
crossref_primary_10_1186_s13059_016_1141_7
crossref_primary_10_1007_s10120_019_00935_x
crossref_primary_10_1093_bfgp_elaa009
crossref_primary_10_1016_j_kint_2020_02_028
crossref_primary_10_1038_s12276_018_0087_0
crossref_primary_10_1073_pnas_2008885117
crossref_primary_10_1038_s41525_022_00288_y
crossref_primary_10_1038_s41588_018_0167_z
crossref_primary_10_1093_jscr_rjac096
crossref_primary_10_1093_humrep_deaa362
crossref_primary_10_1038_s41439_021_00147_9
crossref_primary_10_1016_j_ajhg_2018_08_005
crossref_primary_10_1038_s41467_019_13212_3
crossref_primary_10_1186_s12920_018_0455_6
crossref_primary_10_1093_bioinformatics_bty008
crossref_primary_10_1038_s41598_024_70514_3
crossref_primary_10_18632_oncotarget_5085
crossref_primary_10_1093_database_baaa105
crossref_primary_10_1167_iovs_65_2_17
crossref_primary_10_1093_bioinformatics_btac214
crossref_primary_10_3389_fgene_2021_636542
crossref_primary_10_1016_j_ajhg_2025_02_009
crossref_primary_10_1093_ibd_izab318
crossref_primary_10_3389_fgene_2023_1291307
crossref_primary_10_1186_s13073_022_01120_z
crossref_primary_10_1080_13816810_2022_2109683
crossref_primary_10_1186_s40246_024_00667_9
crossref_primary_10_1093_bioinformatics_btx028
crossref_primary_10_1021_acs_chemrestox_3c00233
crossref_primary_10_1186_s13073_023_01274_4
crossref_primary_10_3390_ijms19082218
crossref_primary_10_1016_j_tig_2019_12_008
crossref_primary_10_1080_21678421_2018_1562553
crossref_primary_10_3389_fneur_2021_690847
crossref_primary_10_1212_NXG_0000000000000079
crossref_primary_10_2196_37701
crossref_primary_10_1016_j_jgg_2024_06_018
crossref_primary_10_1016_j_gene_2022_146908
crossref_primary_10_1371_journal_pcbi_1012744
crossref_primary_10_1016_j_gene_2023_147292
crossref_primary_10_1038_srep45652
crossref_primary_10_1093_nar_gkad455
crossref_primary_10_1172_jci_insight_166869
crossref_primary_10_1038_nrg_2015_33
crossref_primary_10_1038_s41598_019_41277_z
crossref_primary_10_1016_j_ajhg_2025_02_019
crossref_primary_10_1186_s13073_017_0424_2
crossref_primary_10_1093_nargab_lqaa084
crossref_primary_10_1002_path_5820
crossref_primary_10_1158_1541_7786_MCR_21_0604
crossref_primary_10_1093_gigascience_giad085
crossref_primary_10_1002_humu_23738
crossref_primary_10_1016_j_ymeth_2025_01_020
crossref_primary_10_3390_genes13050778
crossref_primary_10_1007_s00439_022_02457_6
crossref_primary_10_3389_fcvm_2022_975478
crossref_primary_10_1002_humu_23851
crossref_primary_10_1002_humu_23858
crossref_primary_10_1002_humu_23976
crossref_primary_10_1002_acn3_51731
crossref_primary_10_1038_s41467_023_36193_w
crossref_primary_10_1093_nar_gkw1121
crossref_primary_10_1073_pnas_1820813116
crossref_primary_10_1016_j_euf_2019_11_013
crossref_primary_10_1093_bfgp_elv054
crossref_primary_10_1371_journal_pcbi_1008399
crossref_primary_10_1016_j_xgen_2024_100488
crossref_primary_10_3389_fphar_2018_01437
crossref_primary_10_1126_science_abg5601
crossref_primary_10_1038_s41598_021_83696_x
crossref_primary_10_1093_neuonc_nox232
crossref_primary_10_1093_nar_gkaa288
crossref_primary_10_1016_j_gene_2024_148422
crossref_primary_10_1016_j_imbio_2023_152390
crossref_primary_10_1186_s12943_021_01405_8
crossref_primary_10_1016_j_bbadis_2024_167330
crossref_primary_10_1002_art_39545
crossref_primary_10_1186_s40246_023_00557_6
crossref_primary_10_1016_j_mrrev_2023_108457
crossref_primary_10_1186_s13073_021_00835_9
crossref_primary_10_1186_s40478_022_01339_2
crossref_primary_10_5808_gi_22030
crossref_primary_10_1371_journal_pgen_1009337
crossref_primary_10_1038_s41467_022_34932_z
crossref_primary_10_7717_peerj_5362
crossref_primary_10_1007_s00439_017_1861_0
crossref_primary_10_1210_jc_2018_02178
crossref_primary_10_1038_s41525_018_0044_9
crossref_primary_10_1016_j_gpb_2018_07_006
crossref_primary_10_1084_jem_20182365
crossref_primary_10_1021_acsomega_3c07662
crossref_primary_10_1016_j_ajhg_2022_01_006
crossref_primary_10_1038_s41439_021_00140_2
crossref_primary_10_1021_acschemneuro_4c00570
crossref_primary_10_2337_db17_0867
crossref_primary_10_1002_ijc_32481
crossref_primary_10_1155_2023_9993801
crossref_primary_10_1186_s40478_019_0746_y
crossref_primary_10_1016_j_ccell_2019_12_013
crossref_primary_10_1016_j_csbj_2021_03_011
crossref_primary_10_1038_s41598_019_38760_y
crossref_primary_10_1093_gigascience_giaa052
crossref_primary_10_1186_s11689_022_09448_8
crossref_primary_10_3390_genes12010065
crossref_primary_10_1093_bioinformatics_btae578
crossref_primary_10_1007_s00294_018_0912_y
crossref_primary_10_1002_jcb_30523
crossref_primary_10_1126_science_abn8197
crossref_primary_10_1055_a_2375_3737
crossref_primary_10_1002_dmrr_3486
crossref_primary_10_1111_vco_12911
crossref_primary_10_1002_ijc_33584
crossref_primary_10_1186_s40246_024_00663_z
crossref_primary_10_1093_nar_gkac130
crossref_primary_10_1109_ACCESS_2023_3266983
crossref_primary_10_1186_s43046_023_00185_0
crossref_primary_10_1038_s41397_018_0044_2
crossref_primary_10_1016_j_phrs_2025_107667
crossref_primary_10_1097_CEJ_0000000000000769
crossref_primary_10_3389_fonc_2024_1427228
crossref_primary_10_1111_jvim_16893
crossref_primary_10_1016_j_molcel_2019_08_030
crossref_primary_10_1007_s13311_022_01264_1
crossref_primary_10_1093_bioinformatics_bty177
crossref_primary_10_1038_s41598_022_23229_2
crossref_primary_10_15252_msb_20209840
crossref_primary_10_1016_j_ajhg_2024_05_002
crossref_primary_10_2139_ssrn_3362256
crossref_primary_10_3390_genes12081175
crossref_primary_10_3390_ijms25116111
crossref_primary_10_1016_j_tig_2016_10_008
crossref_primary_10_1002_jcb_26080
crossref_primary_10_1186_s11689_022_09429_x
crossref_primary_10_1186_s12859_024_05709_6
crossref_primary_10_1161_CIRCGENETICS_117_001828
crossref_primary_10_3390_genes14081659
crossref_primary_10_1186_s12920_019_0541_4
crossref_primary_10_1093_gigascience_giad024
crossref_primary_10_1016_j_cell_2020_07_017
crossref_primary_10_1016_j_jid_2024_02_017
crossref_primary_10_1016_j_csbj_2020_10_014
crossref_primary_10_1200_PO_21_00404
crossref_primary_10_1186_s13073_020_00803_9
crossref_primary_10_1093_bfgp_elae029
crossref_primary_10_1002_mgg3_605
crossref_primary_10_1016_j_ymgme_2024_108516
crossref_primary_10_1172_jci_insight_136477
crossref_primary_10_2144_000114492
crossref_primary_10_1093_nar_gkad1061
crossref_primary_10_3390_genes15111405
crossref_primary_10_1101_gr_204255_116
crossref_primary_10_1093_nar_gkab1159
crossref_primary_10_1007_s13402_021_00656_3
crossref_primary_10_3390_ht8010001
crossref_primary_10_1038_s41598_022_13120_5
crossref_primary_10_1016_j_xinn_2023_100487
crossref_primary_10_1186_s12920_018_0452_9
crossref_primary_10_1002_acn3_50910
crossref_primary_10_1186_s13000_020_01052_5
crossref_primary_10_1002_ajmg_a_62522
crossref_primary_10_1093_database_baz117
crossref_primary_10_1021_acs_analchem_2c02056
crossref_primary_10_3389_fgene_2021_724824
crossref_primary_10_1002_mus_26779
crossref_primary_10_1007_s40484_016_0067_0
crossref_primary_10_1002_mgg3_1691
crossref_primary_10_1038_s41397_024_00338_x
crossref_primary_10_1093_nar_gkz923
crossref_primary_10_1007_s12311_021_01358_0
crossref_primary_10_1111_vco_12944
crossref_primary_10_1093_humrep_dead039
crossref_primary_10_1111_bcp_14192
crossref_primary_10_3390_ijms24076042
crossref_primary_10_1016_j_heares_2018_10_008
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_002
crossref_primary_10_1093_bib_bbac062
crossref_primary_10_3341_kjo_2022_0144
crossref_primary_10_1093_nar_gkaa1033
crossref_primary_10_1093_bioinformatics_btv610
crossref_primary_10_1002_humu_23110
crossref_primary_10_1093_bib_bbae248
crossref_primary_10_1186_s13059_019_1847_4
crossref_primary_10_3390_genes13060952
crossref_primary_10_1186_s12859_018_2337_5
crossref_primary_10_3390_genes11010024
crossref_primary_10_1093_nar_gkx311
crossref_primary_10_1016_j_heliyon_2024_e28830
crossref_primary_10_1016_j_yebeh_2020_106955
crossref_primary_10_1186_s12859_018_2469_7
crossref_primary_10_1007_s13760_021_01717_y
crossref_primary_10_1002_humu_24203
crossref_primary_10_1016_j_jmoldx_2018_03_009
crossref_primary_10_1038_s41598_018_38189_9
crossref_primary_10_1038_s41598_019_48765_2
crossref_primary_10_1186_s12859_021_04458_0
crossref_primary_10_1056_NEJMoa1816614
crossref_primary_10_1093_hmg_ddz046
crossref_primary_10_1016_j_csbj_2025_01_011
crossref_primary_10_1007_s13224_023_01827_y
crossref_primary_10_3389_fgene_2020_575928
crossref_primary_10_1016_j_canlet_2025_217591
crossref_primary_10_2139_ssrn_3188378
crossref_primary_10_3389_fped_2022_898773
crossref_primary_10_7554_eLife_96519_3
crossref_primary_10_1016_j_ygeno_2025_111036
crossref_primary_10_1136_jitc_2019_000230
crossref_primary_10_1186_s12859_017_1862_y
crossref_primary_10_1109_TCBB_2024_3374413
crossref_primary_10_1016_j_canlet_2015_09_015
crossref_primary_10_1136_jitc_2020_001792
crossref_primary_10_1183_23120541_00083_2017
crossref_primary_10_3389_fgene_2021_667866
crossref_primary_10_1186_s13059_020_01954_z
crossref_primary_10_1109_TCSVT_2021_3063145
crossref_primary_10_12677_ACM_2023_133714
crossref_primary_10_1007_s10072_023_06960_0
crossref_primary_10_1101_gr_190603_115
crossref_primary_10_1038_s41467_019_09583_2
crossref_primary_10_3390_genes10090631
crossref_primary_10_1038_s41598_017_03011_5
crossref_primary_10_1002_mco2_604
crossref_primary_10_4103_aja202496
crossref_primary_10_1016_j_imlet_2019_01_007
crossref_primary_10_7717_peerj_5742
crossref_primary_10_1093_bioinformatics_btaa943
crossref_primary_10_1038_s41588_021_00997_7
crossref_primary_10_1007_s10549_020_05643_0
crossref_primary_10_1186_s12859_019_2877_3
crossref_primary_10_3390_ijms23063109
crossref_primary_10_1146_annurev_genet_030723_120717
crossref_primary_10_1186_s13046_020_01811_8
crossref_primary_10_7554_eLife_96519
crossref_primary_10_1093_carcin_bgz153
crossref_primary_10_1016_j_xgen_2024_100609
crossref_primary_10_1016_j_tig_2020_04_006
crossref_primary_10_1200_PO_22_00211
crossref_primary_10_1093_bioinformatics_btae197
crossref_primary_10_1186_s12881_018_0613_x
crossref_primary_10_3390_cancers13215291
crossref_primary_10_3389_fneur_2019_00289
crossref_primary_10_1002_humu_24219
crossref_primary_10_1016_j_xhgg_2022_100115
crossref_primary_10_1002_humu_24362
crossref_primary_10_1038_nature25983
crossref_primary_10_1038_s41598_018_31439_w
crossref_primary_10_1007_s12072_021_10278_4
crossref_primary_10_18632_oncotarget_23100
crossref_primary_10_1038_s10038_023_01194_6
crossref_primary_10_1093_nar_gkz774
crossref_primary_10_1186_s12885_022_09824_6
crossref_primary_10_1126_scitranslmed_aau1167
crossref_primary_10_3390_genes8060167
crossref_primary_10_1038_s41435_017_0002_z
crossref_primary_10_1158_2159_8290_CD_23_1161
crossref_primary_10_1007_s10911_020_09445_4
crossref_primary_10_1007_s00726_016_2265_5
crossref_primary_10_3390_cancers13061296
crossref_primary_10_1016_j_ajhg_2017_01_002
crossref_primary_10_1016_j_gpb_2022_02_002
crossref_primary_10_3389_fgene_2019_00914
crossref_primary_10_1093_nar_gkx369
crossref_primary_10_12688_wellcomeopenres_23156_1
crossref_primary_10_3390_ijms26052004
crossref_primary_10_1093_nar_gkz420
crossref_primary_10_1186_s43042_022_00353_2
crossref_primary_10_1186_s12859_023_05141_2
crossref_primary_10_1002_humu_23148
crossref_primary_10_1016_j_jgg_2024_01_001
crossref_primary_10_12688_wellcomeopenres_23156_2
crossref_primary_10_1186_s13104_017_2851_y
crossref_primary_10_1002_humu_24239
crossref_primary_10_1681_ASN_2019030298
crossref_primary_10_1002_humu_24020
crossref_primary_10_1155_2015_923491
crossref_primary_10_3390_cancers14225496
crossref_primary_10_1016_j_leukres_2018_07_018
crossref_primary_10_1186_s13098_021_00670_3
crossref_primary_10_1021_acs_jcim_3c00950
crossref_primary_10_1080_13816810_2023_2189949
crossref_primary_10_1016_j_ajhg_2022_01_017
crossref_primary_10_1124_pharmrev_124_001049
crossref_primary_10_3389_fendo_2020_630875
crossref_primary_10_3389_fgene_2024_1477940
crossref_primary_10_1007_s00439_023_02581_x
crossref_primary_10_1038_s41598_017_11746_4
crossref_primary_10_1093_bioinformatics_bty826
crossref_primary_10_1002_humu_23283
crossref_primary_10_1016_j_ccell_2021_05_008
crossref_primary_10_1038_s41598_019_44489_5
crossref_primary_10_1038_s41588_018_0300_z
crossref_primary_10_3389_fmolb_2023_1169109
crossref_primary_10_1093_bib_bbab189
crossref_primary_10_1007_s12031_021_01955_y
crossref_primary_10_1093_jnen_nly026
crossref_primary_10_1016_j_ajo_2020_07_021
crossref_primary_10_1186_s13059_016_1106_x
crossref_primary_10_1093_nar_gky678
crossref_primary_10_3389_fmed_2023_1237246
crossref_primary_10_1097_MD_0000000000021843
crossref_primary_10_1371_journal_pone_0204101
crossref_primary_10_3389_fphar_2024_1498295
crossref_primary_10_1111_nan_12775
crossref_primary_10_1186_s12859_016_1325_x
crossref_primary_10_3390_genes10020135
crossref_primary_10_1093_bib_bbad479
Cites_doi 10.1093/bioinformatics/btt182
10.1186/1471-2105-10-267
10.1093/bioinformatics/btq671
10.1038/nmeth.2832
10.1186/1479-7364-8-11
10.1038/nature11632
10.1007/s00439-013-1358-4
10.1007/978-3-031-01552-6
10.1038/nature11247
10.1002/humu.21445
10.1038/ng.2892
10.1038/nature09534
10.1017/CBO9780511809682
10.1016/j.gpb.2013.05.001
10.1073/pnas.0903103106
10.1002/humu.22225
ContentType Journal Article
Copyright The Author 2015. Published by Oxford University Press.
The Author 2015. Published by Oxford University Press. 2015
Copyright_xml – notice: The Author 2015. Published by Oxford University Press.
– notice: The Author 2015. Published by Oxford University Press. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TM
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
5PM
DOI 10.1093/bioinformatics/btv009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database
Computer and Information Systems Abstracts
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 1543
ExternalDocumentID PMC4426838
25583119
10_1093_bioinformatics_btv009
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G022771/1
– fundername: Medical Research Council
  grantid: G1000427/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G022771
– fundername: Medical Research Council
  grantid: MC_UU_12013/8
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
7TM
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c543t-104b2d3fe30807d16aeed055883db2d89590189d1302727f8b14fbff356737e23
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:31:06 EDT 2025
Thu Jul 10 19:36:24 EDT 2025
Fri Jul 11 10:14:47 EDT 2025
Fri Jul 11 16:23:30 EDT 2025
Mon Jul 21 05:49:15 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 03:27:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://creativecommons.org/licenses/by/4.0
The Author 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c543t-104b2d3fe30807d16aeed055883db2d89590189d1302727f8b14fbff356737e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first two and last two authors should be regarded as joint Authors.
Associate Editor: Alfonso Valencia
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4426838
PMID 25583119
PQID 1680752118
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4426838
proquest_miscellaneous_1709779639
proquest_miscellaneous_1701475903
proquest_miscellaneous_1680752118
pubmed_primary_25583119
crossref_primary_10_1093_bioinformatics_btv009
crossref_citationtrail_10_1093_bioinformatics_btv009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-15
PublicationDateYYYYMMDD 2015-05-15
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Stenson (2023020115420222200_btv009-B14) 2014; 133
Shawe-Taylor (2023020115420222200_btv009-B10) 2004
Shihab (2023020115420222200_btv009-B13) 2014; 8
Ritchie (2023020115420222200_btv009-B9) 2014; 11
Campbell (2023020115420222200_btv009-B1) 2011
Hindorff (2023020115420222200_btv009-B3) 2009; 106
Thusberg (2023020115420222200_btv009-B18) 2011; 32
Gönen (2023020115420222200_btv009-B2) 2011; 12
Ying (2023020115420222200_btv009-B19) 2009; 10
Kircher (2023020115420222200_btv009-B4) 2014; 46
Shihab (2023020115420222200_btv009-B12) 2013; 34
Platt (2023020115420222200_btv009-B7) 1999
Landrum (2023020115420222200_btv009-B5) 2013
Li (2023020115420222200_btv009-B6) 2011; 27
The ENCODE Project Consortium (2023020115420222200_btv009-B17) 2012; 489
Shihab (2023020115420222200_btv009-B11) 2013
The 1000 Genomes Project Consortium (2023020115420222200_btv009-B16) 2012; 491
The 1000 Genomes Project (2023020115420222200_btv009-B15) 2010; 467
Qu (2023020115420222200_btv009-B8) 2013; 11
References_xml – year: 2013
  ident: 2023020115420222200_btv009-B11
  article-title: Predicting the functional consequences of cancer-associated amino acid substitutions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt182
– volume: 10
  start-page: 267
  year: 2009
  ident: 2023020115420222200_btv009-B19
  article-title: Enhanced protein fold recognition through a novel data integration approach
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-267
– year: 2013
  ident: 2023020115420222200_btv009-B5
  article-title: Clinvar: public archive of relationships among sequence variation and human phenotype
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 718
  year: 2011
  ident: 2023020115420222200_btv009-B6
  article-title: Tabix: fast retrieval of sequence features from generic tab-delimited files
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq671
– volume: 11
  start-page: 294
  year: 2014
  ident: 2023020115420222200_btv009-B9
  article-title: Functional annotation of noncoding sequence variants
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2832
– volume: 8
  start-page: 11
  year: 2014
  ident: 2023020115420222200_btv009-B13
  article-title: Ranking non-synonymous single nucleotide polymorphisms based on disease concepts
  publication-title: Hum. Genomics
  doi: 10.1186/1479-7364-8-11
– volume: 491
  start-page: 56
  year: 2012
  ident: 2023020115420222200_btv009-B16
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 133
  start-page: 1
  year: 2014
  ident: 2023020115420222200_btv009-B14
  article-title: The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-013-1358-4
– volume-title: Learning with Support Vector Machines
  year: 2011
  ident: 2023020115420222200_btv009-B1
  doi: 10.1007/978-3-031-01552-6
– volume: 489
  start-page: 57
  year: 2012
  ident: 2023020115420222200_btv009-B17
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 32
  start-page: 358
  year: 2011
  ident: 2023020115420222200_btv009-B18
  article-title: Performance of mutation pathogenicity prediction methods on missense variants
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21445
– start-page: 61
  volume-title: Advances in Large Margin Classifiers
  year: 1999
  ident: 2023020115420222200_btv009-B7
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
– volume: 12
  start-page: 2211
  year: 2011
  ident: 2023020115420222200_btv009-B2
  article-title: Multiple kernel learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 310
  year: 2014
  ident: 2023020115420222200_btv009-B4
  article-title: A general framework for estimating the relative pathogenicity of human genetic variants
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2892
– volume: 467
  start-page: 1061
  year: 2010
  ident: 2023020115420222200_btv009-B15
  article-title: A map of human genome variation from population-scale sequencing
  publication-title: Nature
  doi: 10.1038/nature09534
– volume-title: Kernel Methods for Pattern Analysis
  year: 2004
  ident: 2023020115420222200_btv009-B10
  doi: 10.1017/CBO9780511809682
– volume: 11
  start-page: 135
  year: 2013
  ident: 2023020115420222200_btv009-B8
  article-title: A brief review on the human encyclopedia of DNA elements (encode) project
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2013.05.001
– volume: 106
  start-page: 9362
  year: 2009
  ident: 2023020115420222200_btv009-B3
  article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits
  publication-title: Proc. Natl Acad. Sci., USA
  doi: 10.1073/pnas.0903103106
– volume: 34
  start-page: 57
  year: 2013
  ident: 2023020115420222200_btv009-B12
  article-title: Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden markov models
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22225
SSID ssj0005056
ssj0051444
Score 2.6293123
Snippet Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome,...
Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which...
Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1536
SubjectTerms Algorithms
Annotations
Bioinformatics
Coding
Confidence
Genetic Variation - genetics
Genome, Human
Genome-Wide Association Study
Genomics - methods
Human
Humans
Molecular Sequence Annotation
Nucleotides
Open Reading Frames - genetics
Original Papers
Phenotype
State of the art
Untranslated Regions - genetics
Title An integrative approach to predicting the functional effects of non-coding and coding sequence variation
URI https://www.ncbi.nlm.nih.gov/pubmed/25583119
https://www.proquest.com/docview/1680752118
https://www.proquest.com/docview/1701475903
https://www.proquest.com/docview/1709779639
https://pubmed.ncbi.nlm.nih.gov/PMC4426838
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWIiReEDflkpF4Q2md2EmcxxVqWaEeEuxK-xbFOchKJanabCX49czEdpxAVQovUdY5nHi-Hc_EM98Q8r4AHJRRWHgsyaWHBF1ekoPjKiKhcqGkCjPMHT4-iRYr8Xkdrmez7Ti7pFN7-c9r80r-R6rQBnLFLNl_kOxwU2iAfZAvbEHCsL2VjOfNQPeAAUCWHxztyfMLXIHpbDIUTl_mq984gqNtvLwtbJ6i2bXR1R-uwI92grMrv5vWkK12o0D5r_WmzvqlnUV2WZff3SfSL-03U4YN04JcIPEnLA9kM7QdRI9bm0PU1yEff5TwQ1xP12mZRo9ypFOXTOuuUreJiIH4DAG4Ub5mCjAgYyNVCqo4Gk3LYOrxa1W-psNSk5fHhu6KscTNcnZl_-Q0PVwdHaXLg_XyDrkbgHeBhS-Wp2sXGcSQX0j_AHtS6MLI5oVsFljC96d97usep_bNH07L77G3I2Nm-ZA8MF4InWtIPSKzsnlM7um6pD-ekHre0BGwqAUW7VrqgEVBQNQBixpg0baiDlgUgEXNrgUWHYD1lKwOD5YfF54pyeHlMP4dTNpCBQWvSg6eRlz4UQY2FgtDKXkBB2SCqcwyKfrl8CCupPJFpaqKh1gPqQz4M7IDj1C-IFRmgQLzOikzEG1P8xgVUQH3EDGvhJC7RNiBTHPDV49lU85SHTfB0-n4p3r8d8necNm5Jmz52wXvrJRSUK24XpY1Zbu9TP0ImboDcMFvOCdmPlJmMn7jOeBlwUwHfT3X0h8eDTx6yX0fjsQTXAwnIP379EizqXsaeAHGteTy5S36fUXuu3_pa7LTXWzLN2BMd-ptD_1fA4PUDQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrative+approach+to+predicting+the+functional+effects+of+non-coding+and+coding+sequence+variation&rft.jtitle=Bioinformatics&rft.au=Shihab%2C+Hashem+A&rft.au=Rogers%2C+Mark+F&rft.au=Gough%2C+Julian&rft.au=Mort%2C+Matthew&rft.date=2015-05-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=31&rft.issue=10&rft.spage=1536&rft.epage=1543&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtv009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon