An integrative approach to predicting the functional effects of non-coding and coding sequence variation
Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict...
Saved in:
Published in | Bioinformatics Vol. 31; no. 10; pp. 1536 - 1543 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.
Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.
Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk
Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.ukContact: H.Shihabristol.ac.uk or Mark.Rogersristol.ac.uk or C.Campbellristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.MOTIVATIONTechnological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source.We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions.RESULTSWe show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. |
Author | Rogers, Mark F. Campbell, Colin Gaunt, Tom R. Shihab, Hashem A. Gough, Julian Day, Ian N. M. Mort, Matthew Cooper, David N. |
Author_xml | – sequence: 1 givenname: Hashem A. surname: Shihab fullname: Shihab, Hashem A. – sequence: 2 givenname: Mark F. surname: Rogers fullname: Rogers, Mark F. – sequence: 3 givenname: Julian surname: Gough fullname: Gough, Julian – sequence: 4 givenname: Matthew surname: Mort fullname: Mort, Matthew – sequence: 5 givenname: David N. surname: Cooper fullname: Cooper, David N. – sequence: 6 givenname: Ian N. M. surname: Day fullname: Day, Ian N. M. – sequence: 7 givenname: Tom R. surname: Gaunt fullname: Gaunt, Tom R. – sequence: 8 givenname: Colin surname: Campbell fullname: Campbell, Colin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25583119$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk2PFCEQJWaN-6E_QcPRS-9C0zQQE5PNRl2TTbzomdBQzGB6oAVmEv-9jDNOXC_riSL13st7VXWJzmKKgNBrSq4pUexmCilEn_LG1GDLzVR3hKhn6IKyUXSDpPTsVBN2ji5L-U4I4YSPL9B5z7lklKoLtL6NOMQKq9x0doDNsuRk7BrXhJcMLtga4grXNWC_je2TopkxeA-2Fpw8brY6m9weZKLDx7LAjy1EC3hncjB71kv03Ju5wKvje4W-ffzw9e6-e_jy6fPd7UNn-cBqR8kw9Y55YEQS4ehoABxpdiVzrSEVV4RK5SgjveiFlxMd_OQ946NgAnp2hd4fdJfttAFnIdZsZr3ksDH5p04m6MedGNZ6lXZ6GPpRMtkE3h4FcmohStWbUCzMs4mQtkVTQZQQamTqf6B0EM0xexo6tri8p3Rv4M3fCU7W_yytAfgBYHMqJYM_QSjR--PQj49DH46j8d79w7Oh_l5OG0SYn2D_AkkAyWA |
CitedBy_id | crossref_primary_10_1016_j_bone_2020_115571 crossref_primary_10_1038_s41389_024_00516_3 crossref_primary_10_1002_ana_25751 crossref_primary_10_1038_s41598_021_98693_3 crossref_primary_10_1038_s41597_020_00794_7 crossref_primary_10_1371_journal_pcbi_1005500 crossref_primary_10_1109_JBHI_2023_3343075 crossref_primary_10_1097_SCS_0000000000009261 crossref_primary_10_3389_fonc_2022_836126 crossref_primary_10_1016_j_ajhg_2016_07_005 crossref_primary_10_1016_j_phrs_2021_105904 crossref_primary_10_1160_TH15_05_0411 crossref_primary_10_1002_humu_23878 crossref_primary_10_1038_s41467_024_55066_4 crossref_primary_10_1093_hmg_ddy115 crossref_primary_10_1093_bib_bbab123 crossref_primary_10_3390_cells13201691 crossref_primary_10_1093_jnen_nlaa059 crossref_primary_10_1093_bib_bbac451 crossref_primary_10_1101_gr_267997_120 crossref_primary_10_1002_humu_23629 crossref_primary_10_1080_19396368_2021_1965673 crossref_primary_10_1038_ng_3810 crossref_primary_10_1007_s00439_019_02081_x crossref_primary_10_1093_bioinformatics_btw565 crossref_primary_10_1093_bioinformatics_btx534 crossref_primary_10_1186_s12859_016_1436_4 crossref_primary_10_1080_01677063_2020_1833006 crossref_primary_10_1093_bioinformatics_btx536 crossref_primary_10_1097_MPH_0000000000001668 crossref_primary_10_1155_2019_8427042 crossref_primary_10_3390_cimb46070383 crossref_primary_10_1038_s42003_024_06400_5 crossref_primary_10_1007_s10633_023_09953_8 crossref_primary_10_1007_s43032_023_01393_8 crossref_primary_10_1109_TCBB_2022_3167468 crossref_primary_10_1186_s13040_021_00274_7 crossref_primary_10_1007_s00439_020_02190_y crossref_primary_10_12688_f1000research_136362_1 crossref_primary_10_1016_j_gene_2022_147062 crossref_primary_10_1024_1422_4917_a000758 crossref_primary_10_1186_s13073_018_0565_y crossref_primary_10_1007_s00439_019_02091_9 crossref_primary_10_1016_j_ebiom_2015_07_005 crossref_primary_10_1007_s12064_018_0267_4 crossref_primary_10_1093_nargab_lqaa038 crossref_primary_10_3892_ol_2019_11212 crossref_primary_10_3389_fgene_2019_00258 crossref_primary_10_1038_s41467_022_29302_8 crossref_primary_10_1093_hmg_ddac198 crossref_primary_10_2217_pme_2018_0065 crossref_primary_10_1093_bib_bbac598 crossref_primary_10_1111_ahg_12408 crossref_primary_10_1093_bib_bbad321 crossref_primary_10_1093_jnen_nlab008 crossref_primary_10_1371_journal_pone_0294417 crossref_primary_10_1093_nargab_lqab122 crossref_primary_10_1093_nar_gkz327 crossref_primary_10_1002_jcb_25864 crossref_primary_10_3390_biomedicines11071838 crossref_primary_10_4103_abr_abr_45_22 crossref_primary_10_1038_s41598_019_39391_z crossref_primary_10_1186_s12859_018_2416_7 crossref_primary_10_1093_hmg_ddad136 crossref_primary_10_1186_s12863_017_0479_5 crossref_primary_10_1021_acs_jcim_4c01999 crossref_primary_10_1186_s13059_019_1634_2 crossref_primary_10_1016_j_bbadis_2023_166721 crossref_primary_10_1038_s41588_024_01669_y crossref_primary_10_1016_j_molcel_2018_10_037 crossref_primary_10_1093_bib_bbad508 crossref_primary_10_1038_s41591_021_01511_6 crossref_primary_10_3988_jcn_2022_18_2_214 crossref_primary_10_1093_bib_bbac535 crossref_primary_10_3390_ijms20133126 crossref_primary_10_1002_cpt_2289 crossref_primary_10_3390_ijms25094930 crossref_primary_10_1093_molbev_msad046 crossref_primary_10_1371_journal_pcbi_1004962 crossref_primary_10_1093_bioinformatics_bty872 crossref_primary_10_1016_j_humgen_2024_201293 crossref_primary_10_1093_nar_gky057 crossref_primary_10_1093_bib_bbab438 crossref_primary_10_1038_s41467_019_11526_w crossref_primary_10_1002_humu_23666 crossref_primary_10_1002_humu_23301 crossref_primary_10_1111_febs_15076 crossref_primary_10_1038_s41598_022_14924_1 crossref_primary_10_1186_s12902_018_0257_z crossref_primary_10_3390_genes11040460 crossref_primary_10_1093_hmg_ddw283 crossref_primary_10_1371_journal_pone_0174032 crossref_primary_10_1007_s00439_025_02732_2 crossref_primary_10_1007_s12311_022_01430_3 crossref_primary_10_1016_j_jgg_2023_12_005 crossref_primary_10_1158_1541_7786_MCR_15_0146 crossref_primary_10_1261_rna_064469_117 crossref_primary_10_1093_bib_bby071 crossref_primary_10_1038_s41467_024_45933_5 crossref_primary_10_1016_j_xkme_2020_12_007 crossref_primary_10_1093_bib_bbz047 crossref_primary_10_1097_MBC_0000000000001036 crossref_primary_10_7554_eLife_79713 crossref_primary_10_1007_s10528_024_10894_3 crossref_primary_10_1016_j_gene_2022_146281 crossref_primary_10_1016_j_neuron_2018_06_019 crossref_primary_10_1016_j_xhgg_2022_100166 crossref_primary_10_1093_bib_bbaa250 crossref_primary_10_3390_genes15070845 crossref_primary_10_1093_bib_bbad519 crossref_primary_10_1186_s13059_018_1546_6 crossref_primary_10_1016_j_ejso_2018_01_224 crossref_primary_10_1124_molpharm_122_000614 crossref_primary_10_1016_j_humpath_2017_10_014 crossref_primary_10_1007_s00439_017_1779_6 crossref_primary_10_1038_s41598_020_66517_5 crossref_primary_10_1038_s41439_021_00146_w crossref_primary_10_1093_bib_bbab530 crossref_primary_10_1109_TCBB_2022_3155659 crossref_primary_10_1016_j_nmd_2020_10_006 crossref_primary_10_1093_nar_gkx1039 crossref_primary_10_1111_ahg_12150 crossref_primary_10_1016_j_nmd_2017_06_009 crossref_primary_10_1155_2019_4878547 crossref_primary_10_1186_s12864_019_5865_0 crossref_primary_10_1016_j_genrep_2023_101832 crossref_primary_10_1007_s12022_023_09782_0 crossref_primary_10_1021_acs_jcim_4c02139 crossref_primary_10_1038_s41551_022_00996_x crossref_primary_10_1021_acs_jcim_3c02025 crossref_primary_10_1371_journal_pgen_1008081 crossref_primary_10_1093_bioinformatics_btaa242 crossref_primary_10_1038_s41598_018_30151_z crossref_primary_10_1038_s42003_019_0719_5 crossref_primary_10_1371_journal_pone_0194790 crossref_primary_10_1038_s41598_024_65227_6 crossref_primary_10_1016_j_jmoldx_2020_08_007 crossref_primary_10_1002_cncr_34025 crossref_primary_10_1038_s41598_021_03230_x crossref_primary_10_1002_humu_22932 crossref_primary_10_1016_j_oooo_2024_04_005 crossref_primary_10_1186_s12915_020_00783_7 crossref_primary_10_1093_bioinformatics_btw288 crossref_primary_10_1186_s13073_023_01240_0 crossref_primary_10_1093_bib_bby039 crossref_primary_10_1093_bioinformatics_btaa254 crossref_primary_10_1038_s41467_022_33267_z crossref_primary_10_1016_j_yebeh_2020_107469 crossref_primary_10_1039_D1MO00038A crossref_primary_10_3390_ijms222212354 crossref_primary_10_1093_nar_gkae1079 crossref_primary_10_1186_s40364_020_00208_1 crossref_primary_10_3389_fonc_2022_808886 crossref_primary_10_1186_s13059_016_1141_7 crossref_primary_10_1007_s10120_019_00935_x crossref_primary_10_1093_bfgp_elaa009 crossref_primary_10_1016_j_kint_2020_02_028 crossref_primary_10_1038_s12276_018_0087_0 crossref_primary_10_1073_pnas_2008885117 crossref_primary_10_1038_s41525_022_00288_y crossref_primary_10_1038_s41588_018_0167_z crossref_primary_10_1093_jscr_rjac096 crossref_primary_10_1093_humrep_deaa362 crossref_primary_10_1038_s41439_021_00147_9 crossref_primary_10_1016_j_ajhg_2018_08_005 crossref_primary_10_1038_s41467_019_13212_3 crossref_primary_10_1186_s12920_018_0455_6 crossref_primary_10_1093_bioinformatics_bty008 crossref_primary_10_1038_s41598_024_70514_3 crossref_primary_10_18632_oncotarget_5085 crossref_primary_10_1093_database_baaa105 crossref_primary_10_1167_iovs_65_2_17 crossref_primary_10_1093_bioinformatics_btac214 crossref_primary_10_3389_fgene_2021_636542 crossref_primary_10_1016_j_ajhg_2025_02_009 crossref_primary_10_1093_ibd_izab318 crossref_primary_10_3389_fgene_2023_1291307 crossref_primary_10_1186_s13073_022_01120_z crossref_primary_10_1080_13816810_2022_2109683 crossref_primary_10_1186_s40246_024_00667_9 crossref_primary_10_1093_bioinformatics_btx028 crossref_primary_10_1021_acs_chemrestox_3c00233 crossref_primary_10_1186_s13073_023_01274_4 crossref_primary_10_3390_ijms19082218 crossref_primary_10_1016_j_tig_2019_12_008 crossref_primary_10_1080_21678421_2018_1562553 crossref_primary_10_3389_fneur_2021_690847 crossref_primary_10_1212_NXG_0000000000000079 crossref_primary_10_2196_37701 crossref_primary_10_1016_j_jgg_2024_06_018 crossref_primary_10_1016_j_gene_2022_146908 crossref_primary_10_1371_journal_pcbi_1012744 crossref_primary_10_1016_j_gene_2023_147292 crossref_primary_10_1038_srep45652 crossref_primary_10_1093_nar_gkad455 crossref_primary_10_1172_jci_insight_166869 crossref_primary_10_1038_nrg_2015_33 crossref_primary_10_1038_s41598_019_41277_z crossref_primary_10_1016_j_ajhg_2025_02_019 crossref_primary_10_1186_s13073_017_0424_2 crossref_primary_10_1093_nargab_lqaa084 crossref_primary_10_1002_path_5820 crossref_primary_10_1158_1541_7786_MCR_21_0604 crossref_primary_10_1093_gigascience_giad085 crossref_primary_10_1002_humu_23738 crossref_primary_10_1016_j_ymeth_2025_01_020 crossref_primary_10_3390_genes13050778 crossref_primary_10_1007_s00439_022_02457_6 crossref_primary_10_3389_fcvm_2022_975478 crossref_primary_10_1002_humu_23851 crossref_primary_10_1002_humu_23858 crossref_primary_10_1002_humu_23976 crossref_primary_10_1002_acn3_51731 crossref_primary_10_1038_s41467_023_36193_w crossref_primary_10_1093_nar_gkw1121 crossref_primary_10_1073_pnas_1820813116 crossref_primary_10_1016_j_euf_2019_11_013 crossref_primary_10_1093_bfgp_elv054 crossref_primary_10_1371_journal_pcbi_1008399 crossref_primary_10_1016_j_xgen_2024_100488 crossref_primary_10_3389_fphar_2018_01437 crossref_primary_10_1126_science_abg5601 crossref_primary_10_1038_s41598_021_83696_x crossref_primary_10_1093_neuonc_nox232 crossref_primary_10_1093_nar_gkaa288 crossref_primary_10_1016_j_gene_2024_148422 crossref_primary_10_1016_j_imbio_2023_152390 crossref_primary_10_1186_s12943_021_01405_8 crossref_primary_10_1016_j_bbadis_2024_167330 crossref_primary_10_1002_art_39545 crossref_primary_10_1186_s40246_023_00557_6 crossref_primary_10_1016_j_mrrev_2023_108457 crossref_primary_10_1186_s13073_021_00835_9 crossref_primary_10_1186_s40478_022_01339_2 crossref_primary_10_5808_gi_22030 crossref_primary_10_1371_journal_pgen_1009337 crossref_primary_10_1038_s41467_022_34932_z crossref_primary_10_7717_peerj_5362 crossref_primary_10_1007_s00439_017_1861_0 crossref_primary_10_1210_jc_2018_02178 crossref_primary_10_1038_s41525_018_0044_9 crossref_primary_10_1016_j_gpb_2018_07_006 crossref_primary_10_1084_jem_20182365 crossref_primary_10_1021_acsomega_3c07662 crossref_primary_10_1016_j_ajhg_2022_01_006 crossref_primary_10_1038_s41439_021_00140_2 crossref_primary_10_1021_acschemneuro_4c00570 crossref_primary_10_2337_db17_0867 crossref_primary_10_1002_ijc_32481 crossref_primary_10_1155_2023_9993801 crossref_primary_10_1186_s40478_019_0746_y crossref_primary_10_1016_j_ccell_2019_12_013 crossref_primary_10_1016_j_csbj_2021_03_011 crossref_primary_10_1038_s41598_019_38760_y crossref_primary_10_1093_gigascience_giaa052 crossref_primary_10_1186_s11689_022_09448_8 crossref_primary_10_3390_genes12010065 crossref_primary_10_1093_bioinformatics_btae578 crossref_primary_10_1007_s00294_018_0912_y crossref_primary_10_1002_jcb_30523 crossref_primary_10_1126_science_abn8197 crossref_primary_10_1055_a_2375_3737 crossref_primary_10_1002_dmrr_3486 crossref_primary_10_1111_vco_12911 crossref_primary_10_1002_ijc_33584 crossref_primary_10_1186_s40246_024_00663_z crossref_primary_10_1093_nar_gkac130 crossref_primary_10_1109_ACCESS_2023_3266983 crossref_primary_10_1186_s43046_023_00185_0 crossref_primary_10_1038_s41397_018_0044_2 crossref_primary_10_1016_j_phrs_2025_107667 crossref_primary_10_1097_CEJ_0000000000000769 crossref_primary_10_3389_fonc_2024_1427228 crossref_primary_10_1111_jvim_16893 crossref_primary_10_1016_j_molcel_2019_08_030 crossref_primary_10_1007_s13311_022_01264_1 crossref_primary_10_1093_bioinformatics_bty177 crossref_primary_10_1038_s41598_022_23229_2 crossref_primary_10_15252_msb_20209840 crossref_primary_10_1016_j_ajhg_2024_05_002 crossref_primary_10_2139_ssrn_3362256 crossref_primary_10_3390_genes12081175 crossref_primary_10_3390_ijms25116111 crossref_primary_10_1016_j_tig_2016_10_008 crossref_primary_10_1002_jcb_26080 crossref_primary_10_1186_s11689_022_09429_x crossref_primary_10_1186_s12859_024_05709_6 crossref_primary_10_1161_CIRCGENETICS_117_001828 crossref_primary_10_3390_genes14081659 crossref_primary_10_1186_s12920_019_0541_4 crossref_primary_10_1093_gigascience_giad024 crossref_primary_10_1016_j_cell_2020_07_017 crossref_primary_10_1016_j_jid_2024_02_017 crossref_primary_10_1016_j_csbj_2020_10_014 crossref_primary_10_1200_PO_21_00404 crossref_primary_10_1186_s13073_020_00803_9 crossref_primary_10_1093_bfgp_elae029 crossref_primary_10_1002_mgg3_605 crossref_primary_10_1016_j_ymgme_2024_108516 crossref_primary_10_1172_jci_insight_136477 crossref_primary_10_2144_000114492 crossref_primary_10_1093_nar_gkad1061 crossref_primary_10_3390_genes15111405 crossref_primary_10_1101_gr_204255_116 crossref_primary_10_1093_nar_gkab1159 crossref_primary_10_1007_s13402_021_00656_3 crossref_primary_10_3390_ht8010001 crossref_primary_10_1038_s41598_022_13120_5 crossref_primary_10_1016_j_xinn_2023_100487 crossref_primary_10_1186_s12920_018_0452_9 crossref_primary_10_1002_acn3_50910 crossref_primary_10_1186_s13000_020_01052_5 crossref_primary_10_1002_ajmg_a_62522 crossref_primary_10_1093_database_baz117 crossref_primary_10_1021_acs_analchem_2c02056 crossref_primary_10_3389_fgene_2021_724824 crossref_primary_10_1002_mus_26779 crossref_primary_10_1007_s40484_016_0067_0 crossref_primary_10_1002_mgg3_1691 crossref_primary_10_1038_s41397_024_00338_x crossref_primary_10_1093_nar_gkz923 crossref_primary_10_1007_s12311_021_01358_0 crossref_primary_10_1111_vco_12944 crossref_primary_10_1093_humrep_dead039 crossref_primary_10_1111_bcp_14192 crossref_primary_10_3390_ijms24076042 crossref_primary_10_1016_j_heares_2018_10_008 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_002 crossref_primary_10_1093_bib_bbac062 crossref_primary_10_3341_kjo_2022_0144 crossref_primary_10_1093_nar_gkaa1033 crossref_primary_10_1093_bioinformatics_btv610 crossref_primary_10_1002_humu_23110 crossref_primary_10_1093_bib_bbae248 crossref_primary_10_1186_s13059_019_1847_4 crossref_primary_10_3390_genes13060952 crossref_primary_10_1186_s12859_018_2337_5 crossref_primary_10_3390_genes11010024 crossref_primary_10_1093_nar_gkx311 crossref_primary_10_1016_j_heliyon_2024_e28830 crossref_primary_10_1016_j_yebeh_2020_106955 crossref_primary_10_1186_s12859_018_2469_7 crossref_primary_10_1007_s13760_021_01717_y crossref_primary_10_1002_humu_24203 crossref_primary_10_1016_j_jmoldx_2018_03_009 crossref_primary_10_1038_s41598_018_38189_9 crossref_primary_10_1038_s41598_019_48765_2 crossref_primary_10_1186_s12859_021_04458_0 crossref_primary_10_1056_NEJMoa1816614 crossref_primary_10_1093_hmg_ddz046 crossref_primary_10_1016_j_csbj_2025_01_011 crossref_primary_10_1007_s13224_023_01827_y crossref_primary_10_3389_fgene_2020_575928 crossref_primary_10_1016_j_canlet_2025_217591 crossref_primary_10_2139_ssrn_3188378 crossref_primary_10_3389_fped_2022_898773 crossref_primary_10_7554_eLife_96519_3 crossref_primary_10_1016_j_ygeno_2025_111036 crossref_primary_10_1136_jitc_2019_000230 crossref_primary_10_1186_s12859_017_1862_y crossref_primary_10_1109_TCBB_2024_3374413 crossref_primary_10_1016_j_canlet_2015_09_015 crossref_primary_10_1136_jitc_2020_001792 crossref_primary_10_1183_23120541_00083_2017 crossref_primary_10_3389_fgene_2021_667866 crossref_primary_10_1186_s13059_020_01954_z crossref_primary_10_1109_TCSVT_2021_3063145 crossref_primary_10_12677_ACM_2023_133714 crossref_primary_10_1007_s10072_023_06960_0 crossref_primary_10_1101_gr_190603_115 crossref_primary_10_1038_s41467_019_09583_2 crossref_primary_10_3390_genes10090631 crossref_primary_10_1038_s41598_017_03011_5 crossref_primary_10_1002_mco2_604 crossref_primary_10_4103_aja202496 crossref_primary_10_1016_j_imlet_2019_01_007 crossref_primary_10_7717_peerj_5742 crossref_primary_10_1093_bioinformatics_btaa943 crossref_primary_10_1038_s41588_021_00997_7 crossref_primary_10_1007_s10549_020_05643_0 crossref_primary_10_1186_s12859_019_2877_3 crossref_primary_10_3390_ijms23063109 crossref_primary_10_1146_annurev_genet_030723_120717 crossref_primary_10_1186_s13046_020_01811_8 crossref_primary_10_7554_eLife_96519 crossref_primary_10_1093_carcin_bgz153 crossref_primary_10_1016_j_xgen_2024_100609 crossref_primary_10_1016_j_tig_2020_04_006 crossref_primary_10_1200_PO_22_00211 crossref_primary_10_1093_bioinformatics_btae197 crossref_primary_10_1186_s12881_018_0613_x crossref_primary_10_3390_cancers13215291 crossref_primary_10_3389_fneur_2019_00289 crossref_primary_10_1002_humu_24219 crossref_primary_10_1016_j_xhgg_2022_100115 crossref_primary_10_1002_humu_24362 crossref_primary_10_1038_nature25983 crossref_primary_10_1038_s41598_018_31439_w crossref_primary_10_1007_s12072_021_10278_4 crossref_primary_10_18632_oncotarget_23100 crossref_primary_10_1038_s10038_023_01194_6 crossref_primary_10_1093_nar_gkz774 crossref_primary_10_1186_s12885_022_09824_6 crossref_primary_10_1126_scitranslmed_aau1167 crossref_primary_10_3390_genes8060167 crossref_primary_10_1038_s41435_017_0002_z crossref_primary_10_1158_2159_8290_CD_23_1161 crossref_primary_10_1007_s10911_020_09445_4 crossref_primary_10_1007_s00726_016_2265_5 crossref_primary_10_3390_cancers13061296 crossref_primary_10_1016_j_ajhg_2017_01_002 crossref_primary_10_1016_j_gpb_2022_02_002 crossref_primary_10_3389_fgene_2019_00914 crossref_primary_10_1093_nar_gkx369 crossref_primary_10_12688_wellcomeopenres_23156_1 crossref_primary_10_3390_ijms26052004 crossref_primary_10_1093_nar_gkz420 crossref_primary_10_1186_s43042_022_00353_2 crossref_primary_10_1186_s12859_023_05141_2 crossref_primary_10_1002_humu_23148 crossref_primary_10_1016_j_jgg_2024_01_001 crossref_primary_10_12688_wellcomeopenres_23156_2 crossref_primary_10_1186_s13104_017_2851_y crossref_primary_10_1002_humu_24239 crossref_primary_10_1681_ASN_2019030298 crossref_primary_10_1002_humu_24020 crossref_primary_10_1155_2015_923491 crossref_primary_10_3390_cancers14225496 crossref_primary_10_1016_j_leukres_2018_07_018 crossref_primary_10_1186_s13098_021_00670_3 crossref_primary_10_1021_acs_jcim_3c00950 crossref_primary_10_1080_13816810_2023_2189949 crossref_primary_10_1016_j_ajhg_2022_01_017 crossref_primary_10_1124_pharmrev_124_001049 crossref_primary_10_3389_fendo_2020_630875 crossref_primary_10_3389_fgene_2024_1477940 crossref_primary_10_1007_s00439_023_02581_x crossref_primary_10_1038_s41598_017_11746_4 crossref_primary_10_1093_bioinformatics_bty826 crossref_primary_10_1002_humu_23283 crossref_primary_10_1016_j_ccell_2021_05_008 crossref_primary_10_1038_s41598_019_44489_5 crossref_primary_10_1038_s41588_018_0300_z crossref_primary_10_3389_fmolb_2023_1169109 crossref_primary_10_1093_bib_bbab189 crossref_primary_10_1007_s12031_021_01955_y crossref_primary_10_1093_jnen_nly026 crossref_primary_10_1016_j_ajo_2020_07_021 crossref_primary_10_1186_s13059_016_1106_x crossref_primary_10_1093_nar_gky678 crossref_primary_10_3389_fmed_2023_1237246 crossref_primary_10_1097_MD_0000000000021843 crossref_primary_10_1371_journal_pone_0204101 crossref_primary_10_3389_fphar_2024_1498295 crossref_primary_10_1111_nan_12775 crossref_primary_10_1186_s12859_016_1325_x crossref_primary_10_3390_genes10020135 crossref_primary_10_1093_bib_bbad479 |
Cites_doi | 10.1093/bioinformatics/btt182 10.1186/1471-2105-10-267 10.1093/bioinformatics/btq671 10.1038/nmeth.2832 10.1186/1479-7364-8-11 10.1038/nature11632 10.1007/s00439-013-1358-4 10.1007/978-3-031-01552-6 10.1038/nature11247 10.1002/humu.21445 10.1038/ng.2892 10.1038/nature09534 10.1017/CBO9780511809682 10.1016/j.gpb.2013.05.001 10.1073/pnas.0903103106 10.1002/humu.22225 |
ContentType | Journal Article |
Copyright | The Author 2015. Published by Oxford University Press. The Author 2015. Published by Oxford University Press. 2015 |
Copyright_xml | – notice: The Author 2015. Published by Oxford University Press. – notice: The Author 2015. Published by Oxford University Press. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TM 8FD FR3 P64 7SC JQ2 L7M L~C L~D 5PM |
DOI | 10.1093/bioinformatics/btv009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Engineering Research Database Computer and Information Systems Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 1460-2059 |
EndPage | 1543 |
ExternalDocumentID | PMC4426838 25583119 10_1093_bioinformatics_btv009 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G022771/1 – fundername: Medical Research Council grantid: G1000427/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G022771 – fundername: Medical Research Council grantid: MC_UU_12013/8 |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 482 7QO 7TM 8FD ABJNI FR3 P64 ROZ TN5 WH7 7SC JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c543t-104b2d3fe30807d16aeed055883db2d89590189d1302727f8b14fbff356737e23 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 18:31:06 EDT 2025 Thu Jul 10 19:36:24 EDT 2025 Fri Jul 11 10:14:47 EDT 2025 Fri Jul 11 16:23:30 EDT 2025 Mon Jul 21 05:49:15 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 03:27:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c543t-104b2d3fe30807d16aeed055883db2d89590189d1302727f8b14fbff356737e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, the first two and last two authors should be regarded as joint Authors. Associate Editor: Alfonso Valencia |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4426838 |
PMID | 25583119 |
PQID | 1680752118 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4426838 proquest_miscellaneous_1709779639 proquest_miscellaneous_1701475903 proquest_miscellaneous_1680752118 pubmed_primary_25583119 crossref_primary_10_1093_bioinformatics_btv009 crossref_citationtrail_10_1093_bioinformatics_btv009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-15 |
PublicationDateYYYYMMDD | 2015-05-15 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Stenson (2023020115420222200_btv009-B14) 2014; 133 Shawe-Taylor (2023020115420222200_btv009-B10) 2004 Shihab (2023020115420222200_btv009-B13) 2014; 8 Ritchie (2023020115420222200_btv009-B9) 2014; 11 Campbell (2023020115420222200_btv009-B1) 2011 Hindorff (2023020115420222200_btv009-B3) 2009; 106 Thusberg (2023020115420222200_btv009-B18) 2011; 32 Gönen (2023020115420222200_btv009-B2) 2011; 12 Ying (2023020115420222200_btv009-B19) 2009; 10 Kircher (2023020115420222200_btv009-B4) 2014; 46 Shihab (2023020115420222200_btv009-B12) 2013; 34 Platt (2023020115420222200_btv009-B7) 1999 Landrum (2023020115420222200_btv009-B5) 2013 Li (2023020115420222200_btv009-B6) 2011; 27 The ENCODE Project Consortium (2023020115420222200_btv009-B17) 2012; 489 Shihab (2023020115420222200_btv009-B11) 2013 The 1000 Genomes Project Consortium (2023020115420222200_btv009-B16) 2012; 491 The 1000 Genomes Project (2023020115420222200_btv009-B15) 2010; 467 Qu (2023020115420222200_btv009-B8) 2013; 11 |
References_xml | – year: 2013 ident: 2023020115420222200_btv009-B11 article-title: Predicting the functional consequences of cancer-associated amino acid substitutions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt182 – volume: 10 start-page: 267 year: 2009 ident: 2023020115420222200_btv009-B19 article-title: Enhanced protein fold recognition through a novel data integration approach publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-267 – year: 2013 ident: 2023020115420222200_btv009-B5 article-title: Clinvar: public archive of relationships among sequence variation and human phenotype publication-title: Nucleic Acids Res – volume: 27 start-page: 718 year: 2011 ident: 2023020115420222200_btv009-B6 article-title: Tabix: fast retrieval of sequence features from generic tab-delimited files publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq671 – volume: 11 start-page: 294 year: 2014 ident: 2023020115420222200_btv009-B9 article-title: Functional annotation of noncoding sequence variants publication-title: Nat. Methods doi: 10.1038/nmeth.2832 – volume: 8 start-page: 11 year: 2014 ident: 2023020115420222200_btv009-B13 article-title: Ranking non-synonymous single nucleotide polymorphisms based on disease concepts publication-title: Hum. Genomics doi: 10.1186/1479-7364-8-11 – volume: 491 start-page: 56 year: 2012 ident: 2023020115420222200_btv009-B16 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 133 start-page: 1 year: 2014 ident: 2023020115420222200_btv009-B14 article-title: The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine publication-title: Hum. Genet. doi: 10.1007/s00439-013-1358-4 – volume-title: Learning with Support Vector Machines year: 2011 ident: 2023020115420222200_btv009-B1 doi: 10.1007/978-3-031-01552-6 – volume: 489 start-page: 57 year: 2012 ident: 2023020115420222200_btv009-B17 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 32 start-page: 358 year: 2011 ident: 2023020115420222200_btv009-B18 article-title: Performance of mutation pathogenicity prediction methods on missense variants publication-title: Hum. Mutat. doi: 10.1002/humu.21445 – start-page: 61 volume-title: Advances in Large Margin Classifiers year: 1999 ident: 2023020115420222200_btv009-B7 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods – volume: 12 start-page: 2211 year: 2011 ident: 2023020115420222200_btv009-B2 article-title: Multiple kernel learning algorithms publication-title: J. Mach. Learn. Res. – volume: 46 start-page: 310 year: 2014 ident: 2023020115420222200_btv009-B4 article-title: A general framework for estimating the relative pathogenicity of human genetic variants publication-title: Nat. Genet. doi: 10.1038/ng.2892 – volume: 467 start-page: 1061 year: 2010 ident: 2023020115420222200_btv009-B15 article-title: A map of human genome variation from population-scale sequencing publication-title: Nature doi: 10.1038/nature09534 – volume-title: Kernel Methods for Pattern Analysis year: 2004 ident: 2023020115420222200_btv009-B10 doi: 10.1017/CBO9780511809682 – volume: 11 start-page: 135 year: 2013 ident: 2023020115420222200_btv009-B8 article-title: A brief review on the human encyclopedia of DNA elements (encode) project publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2013.05.001 – volume: 106 start-page: 9362 year: 2009 ident: 2023020115420222200_btv009-B3 article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits publication-title: Proc. Natl Acad. Sci., USA doi: 10.1073/pnas.0903103106 – volume: 34 start-page: 57 year: 2013 ident: 2023020115420222200_btv009-B12 article-title: Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden markov models publication-title: Hum. Mutat. doi: 10.1002/humu.22225 |
SSID | ssj0005056 ssj0051444 |
Score | 2.6293123 |
Snippet | Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome,... Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which... Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1536 |
SubjectTerms | Algorithms Annotations Bioinformatics Coding Confidence Genetic Variation - genetics Genome, Human Genome-Wide Association Study Genomics - methods Human Humans Molecular Sequence Annotation Nucleotides Open Reading Frames - genetics Original Papers Phenotype State of the art Untranslated Regions - genetics |
Title | An integrative approach to predicting the functional effects of non-coding and coding sequence variation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25583119 https://www.proquest.com/docview/1680752118 https://www.proquest.com/docview/1701475903 https://www.proquest.com/docview/1709779639 https://pubmed.ncbi.nlm.nih.gov/PMC4426838 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWIiReEDflkpF4Q2md2EmcxxVqWaEeEuxK-xbFOchKJanabCX49czEdpxAVQovUdY5nHi-Hc_EM98Q8r4AHJRRWHgsyaWHBF1ekoPjKiKhcqGkCjPMHT4-iRYr8Xkdrmez7Ti7pFN7-c9r80r-R6rQBnLFLNl_kOxwU2iAfZAvbEHCsL2VjOfNQPeAAUCWHxztyfMLXIHpbDIUTl_mq984gqNtvLwtbJ6i2bXR1R-uwI92grMrv5vWkK12o0D5r_WmzvqlnUV2WZff3SfSL-03U4YN04JcIPEnLA9kM7QdRI9bm0PU1yEff5TwQ1xP12mZRo9ypFOXTOuuUreJiIH4DAG4Ub5mCjAgYyNVCqo4Gk3LYOrxa1W-psNSk5fHhu6KscTNcnZl_-Q0PVwdHaXLg_XyDrkbgHeBhS-Wp2sXGcSQX0j_AHtS6MLI5oVsFljC96d97usep_bNH07L77G3I2Nm-ZA8MF4InWtIPSKzsnlM7um6pD-ekHre0BGwqAUW7VrqgEVBQNQBixpg0baiDlgUgEXNrgUWHYD1lKwOD5YfF54pyeHlMP4dTNpCBQWvSg6eRlz4UQY2FgtDKXkBB2SCqcwyKfrl8CCupPJFpaqKh1gPqQz4M7IDj1C-IFRmgQLzOikzEG1P8xgVUQH3EDGvhJC7RNiBTHPDV49lU85SHTfB0-n4p3r8d8necNm5Jmz52wXvrJRSUK24XpY1Zbu9TP0ImboDcMFvOCdmPlJmMn7jOeBlwUwHfT3X0h8eDTx6yX0fjsQTXAwnIP379EizqXsaeAHGteTy5S36fUXuu3_pa7LTXWzLN2BMd-ptD_1fA4PUDQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrative+approach+to+predicting+the+functional+effects+of+non-coding+and+coding+sequence+variation&rft.jtitle=Bioinformatics&rft.au=Shihab%2C+Hashem+A&rft.au=Rogers%2C+Mark+F&rft.au=Gough%2C+Julian&rft.au=Mort%2C+Matthew&rft.date=2015-05-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=31&rft.issue=10&rft.spage=1536&rft.epage=1543&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtv009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |