Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.
A nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal–organic frameworks with accurately controlled Co contents. Atomic CoN4 sites are observed by advanced electron microscopy combined with X‐ray absorption spectroscopy. Due to the high density of atomically dispersed Co sites, the catalyst achieves respectable activity and stability in acidic proton exchange membrane fuel cells. |
---|---|
AbstractList | Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates. Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates. A nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal–organic frameworks with accurately controlled Co contents. Atomic CoN4 sites are observed by advanced electron microscopy combined with X‐ray absorption spectroscopy. Due to the high density of atomically dispersed Co sites, the catalyst achieves respectable activity and stability in acidic proton exchange membrane fuel cells. Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm −2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN 4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates. |
Author | He, Yanghua Feng, Zhenxing Pan, Yung‐Tin Wang, Maoyu Shao, Yuyan Zhang, Hanguang Hwang, Sooyeon Su, Dong Wang, Jingyun Engelhard, Mark H. Spendelow, Jacob S. Wang, Xiao Xia Cullen, David A. Wu, Gang More, Karren L. |
Author_xml | – sequence: 1 givenname: Xiao Xia surname: Wang fullname: Wang, Xiao Xia organization: East China University of Science and Technology – sequence: 2 givenname: David A. surname: Cullen fullname: Cullen, David A. organization: Oak Ridge National Laboratory – sequence: 3 givenname: Yung‐Tin surname: Pan fullname: Pan, Yung‐Tin organization: Los Alamos National Laboratory – sequence: 4 givenname: Sooyeon surname: Hwang fullname: Hwang, Sooyeon organization: Brookhaven National Laboratory – sequence: 5 givenname: Maoyu surname: Wang fullname: Wang, Maoyu organization: Oregon State University – sequence: 6 givenname: Zhenxing surname: Feng fullname: Feng, Zhenxing organization: Oregon State University – sequence: 7 givenname: Jingyun surname: Wang fullname: Wang, Jingyun organization: The State University of New York – sequence: 8 givenname: Mark H. surname: Engelhard fullname: Engelhard, Mark H. organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Hanguang surname: Zhang fullname: Zhang, Hanguang organization: The State University of New York – sequence: 10 givenname: Yanghua surname: He fullname: He, Yanghua organization: The State University of New York – sequence: 11 givenname: Yuyan surname: Shao fullname: Shao, Yuyan organization: Pacific Northwest National Laboratory – sequence: 12 givenname: Dong surname: Su fullname: Su, Dong organization: Brookhaven National Laboratory – sequence: 13 givenname: Karren L. surname: More fullname: More, Karren L. organization: Oak Ridge National Laboratory – sequence: 14 givenname: Jacob S. surname: Spendelow fullname: Spendelow, Jacob S. email: spendelow@lanl.gov organization: Los Alamos National Laboratory – sequence: 15 givenname: Gang orcidid: 0000-0003-4956-5208 surname: Wu fullname: Wu, Gang email: gangwu@buffalo.edu organization: The State University of New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29363838$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1422592$$D View this record in Osti.gov |
BookMark | eNqFkU1rFDEYx4NU7LZ69ShBL152zctkZnJcxlaF1oov55BJntmmzCRtksHuzY_gZ_STmGVbhYIIgeTw-z08-f-P0IEPHhB6TsmKEsLeaDvpFSO0IXUj2kdoQQWjy4pIcYAWRHKxlHXVHqKjlK4IIbIm9RN0yCSvecvbBQofXY5hA_7Xj59dCNE6rzNY_MX5zQi4C70eM17nMOFOZz1uU054CBFf3G6LhT-DnU12wWPn8acYcnmd3JpL7TeAz2Hqo_aAT2cYcQfjmJ6ix4MeEzy7u4_Rt9OTr9375dnFuw_d-mxpRMXbZQ3Q9I0eBJeGMDIAaKq56BlYoyspdDnQEqp7W_W0HqwYqsZazuqea2MHfoxe7ueGlJ1KxmUwlyZ4DyYrWjEmJCvQ6z10HcPNDCmrySVT1iw7hzkpKiVpRcNoW9BXD9CrMEdfvqBK-pyIqmRdqBd31NxPYNV1dJOOW3WfdwGqPWBiSCnCoMpmepdfjtqNihK1q1XtalV_ai3a6oF2P_mfgtwL390I2__Qav32fP3X_Q3y0rZ8 |
CitedBy_id | crossref_primary_10_1002_cctc_202001713 crossref_primary_10_1039_D1EN01111A crossref_primary_10_1016_j_colsurfa_2023_132567 crossref_primary_10_1142_S1793604723400313 crossref_primary_10_1021_acs_iecr_3c01527 crossref_primary_10_1002_adma_202200595 crossref_primary_10_1016_j_scib_2020_06_020 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1021_acsmaterialsau_2c00061 crossref_primary_10_1021_acsestengg_0c00136 crossref_primary_10_1002_ejic_202200489 crossref_primary_10_1002_advs_201801471 crossref_primary_10_1016_j_jelechem_2018_09_050 crossref_primary_10_1016_j_memsci_2020_117966 crossref_primary_10_1002_slct_202100055 crossref_primary_10_1016_j_cej_2023_142668 crossref_primary_10_1016_j_jcis_2022_12_102 crossref_primary_10_1021_acs_energyfuels_1c02486 crossref_primary_10_1007_s40843_024_3012_4 crossref_primary_10_1021_acscatal_2c01075 crossref_primary_10_1039_D0GC01835J crossref_primary_10_1002_aenm_202003052 crossref_primary_10_1016_j_jpowsour_2019_227443 crossref_primary_10_1039_D2EE02949A crossref_primary_10_1016_j_nanoen_2024_109740 crossref_primary_10_1002_sstr_202100103 crossref_primary_10_1016_j_matt_2021_06_038 crossref_primary_10_1021_acsaem_8b00490 crossref_primary_10_1016_j_apcatb_2023_122489 crossref_primary_10_1016_j_electacta_2022_139835 crossref_primary_10_1002_smll_202105409 crossref_primary_10_1088_1361_6528_ac3d64 crossref_primary_10_1002_chem_201904233 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1016_j_ijhydene_2021_07_196 crossref_primary_10_1016_j_jcat_2023_115148 crossref_primary_10_1016_j_ijhydene_2020_11_210 crossref_primary_10_1039_D0NJ01373K crossref_primary_10_1002_smll_202105892 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1007_s12274_021_3823_z crossref_primary_10_1002_ente_201900312 crossref_primary_10_1002_adfm_202000768 crossref_primary_10_1016_j_apcatb_2021_120311 crossref_primary_10_1002_aenm_202003018 crossref_primary_10_1007_s12274_022_4112_1 crossref_primary_10_1002_cctc_202000826 crossref_primary_10_1002_adma_202003134 crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1002_adma_202501302 crossref_primary_10_1002_celc_201900343 crossref_primary_10_1039_C9GC03477C crossref_primary_10_1021_acs_analchem_3c01070 crossref_primary_10_1002_ange_201804958 crossref_primary_10_1016_j_mattod_2018_10_038 crossref_primary_10_1002_smtd_202100833 crossref_primary_10_1039_D2TA08682D crossref_primary_10_1016_S1872_5805_22_60575_4 crossref_primary_10_1016_j_jpowsour_2021_230143 crossref_primary_10_1039_D1TA05605K crossref_primary_10_1002_cctc_202201192 crossref_primary_10_1360_nso_20220059 crossref_primary_10_1021_acsami_9b19268 crossref_primary_10_1002_anie_202108882 crossref_primary_10_1002_smll_202002518 crossref_primary_10_1007_s12274_020_3141_x crossref_primary_10_1021_acs_energyfuels_2c02061 crossref_primary_10_1007_s40820_021_00676_6 crossref_primary_10_1016_j_cej_2021_129719 crossref_primary_10_1002_anie_202317884 crossref_primary_10_1016_j_jcis_2020_09_048 crossref_primary_10_1016_j_cej_2020_128101 crossref_primary_10_1021_acs_jpcc_1c02833 crossref_primary_10_1039_C8RA00602D crossref_primary_10_1002_adma_202006613 crossref_primary_10_1016_j_xcrp_2020_100083 crossref_primary_10_1016_j_ijhydene_2022_03_199 crossref_primary_10_1002_ange_202016977 crossref_primary_10_1039_C8EE02694G crossref_primary_10_3390_chemengineering3010016 crossref_primary_10_1016_j_apsusc_2021_151367 crossref_primary_10_1007_s40843_022_2054_5 crossref_primary_10_1016_j_apcatb_2023_122694 crossref_primary_10_1016_j_cej_2020_125064 crossref_primary_10_1016_j_nanoen_2019_04_076 crossref_primary_10_1002_adma_201808193 crossref_primary_10_1016_j_jechem_2024_01_035 crossref_primary_10_1021_acsami_9b18511 crossref_primary_10_1039_D3GC03200K crossref_primary_10_1039_C9SE00686A crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1021_acsmaterialslett_4c01173 crossref_primary_10_1021_acssuschemeng_8b05005 crossref_primary_10_1039_D4CY00259H crossref_primary_10_1016_j_nanoen_2018_08_005 crossref_primary_10_1002_cssc_202300871 crossref_primary_10_1007_s12274_021_3816_y crossref_primary_10_1002_ange_201806936 crossref_primary_10_1016_j_surfin_2024_105022 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1016_j_jelechem_2023_117316 crossref_primary_10_1002_anie_202009991 crossref_primary_10_1021_acsenergylett_9b00804 crossref_primary_10_1002_cphc_202000595 crossref_primary_10_1007_s12274_020_2755_3 crossref_primary_10_1016_j_compositesb_2020_108012 crossref_primary_10_1021_acsami_3c03203 crossref_primary_10_1007_s41918_022_00156_4 crossref_primary_10_1039_D1TA06144E crossref_primary_10_1021_acsenergylett_1c01316 crossref_primary_10_1021_acs_jpcc_1c07682 crossref_primary_10_1016_j_bios_2019_111869 crossref_primary_10_1039_D2TA07751E crossref_primary_10_1021_acsnano_9b05913 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1016_j_cej_2023_143593 crossref_primary_10_1002_adfm_202111446 crossref_primary_10_1002_smtd_201900821 crossref_primary_10_1002_batt_202400484 crossref_primary_10_1002_adfm_202300895 crossref_primary_10_1016_j_ccr_2022_214554 crossref_primary_10_1002_anie_201811573 crossref_primary_10_1002_aenm_202002592 crossref_primary_10_1002_ange_202012329 crossref_primary_10_1039_C9TA08938A crossref_primary_10_1007_s11705_020_2017_7 crossref_primary_10_1039_D0NR05907B crossref_primary_10_1002_ange_201908023 crossref_primary_10_1149_2_1101810jes crossref_primary_10_1016_j_cjche_2023_09_011 crossref_primary_10_1016_j_trechm_2021_08_008 crossref_primary_10_1002_tcr_202100329 crossref_primary_10_1038_s41578_024_00703_z crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1007_s41061_018_0229_9 crossref_primary_10_1002_chem_202002427 crossref_primary_10_1007_s11771_021_4696_8 crossref_primary_10_1016_j_apcatb_2021_120390 crossref_primary_10_1039_D1CC00083G crossref_primary_10_3390_electrochem2040037 crossref_primary_10_1021_acsanm_4c01704 crossref_primary_10_1007_s11426_018_9441_4 crossref_primary_10_1002_anie_202009700 crossref_primary_10_1007_s41918_021_00124_4 crossref_primary_10_3390_inorganics11030101 crossref_primary_10_1002_cctc_202401421 crossref_primary_10_1039_D1NJ00102G crossref_primary_10_1016_j_cej_2021_129096 crossref_primary_10_1016_j_nanoen_2020_105085 crossref_primary_10_1016_j_jelechem_2023_117510 crossref_primary_10_1002_adma_201801995 crossref_primary_10_1021_acssuschemeng_8b02170 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1002_slct_201900671 crossref_primary_10_1016_j_carbon_2020_06_002 crossref_primary_10_1021_acsami_0c12069 crossref_primary_10_1002_anie_202005577 crossref_primary_10_1016_j_jechem_2021_10_027 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1016_j_jcis_2021_07_125 crossref_primary_10_1016_j_jece_2022_107457 crossref_primary_10_1149_1945_7111_acfc2a crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1016_j_jechem_2021_10_014 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1021_jacs_1c11331 crossref_primary_10_1002_cctc_201901584 crossref_primary_10_1002_smll_201905363 crossref_primary_10_1002_adfm_202010916 crossref_primary_10_1021_acsaem_2c02606 crossref_primary_10_1016_j_jcis_2022_01_042 crossref_primary_10_1007_s12274_019_2345_4 crossref_primary_10_1039_C9CS00869A crossref_primary_10_1039_D1EN00944C crossref_primary_10_1016_j_nanoen_2025_110665 crossref_primary_10_1021_acsenergylett_2c02579 crossref_primary_10_1021_acsami_9b18101 crossref_primary_10_1007_s42114_021_00308_y crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1016_j_cej_2023_143776 crossref_primary_10_1039_D3RA07925B crossref_primary_10_1039_C9NR07632H crossref_primary_10_1002_aenm_201902844 crossref_primary_10_1002_ange_201909312 crossref_primary_10_1016_j_cej_2021_134460 crossref_primary_10_1021_acsami_0c08829 crossref_primary_10_1021_acs_jpclett_0c02812 crossref_primary_10_1021_acsanm_3c00827 crossref_primary_10_1002_ange_202000324 crossref_primary_10_1002_asia_202200939 crossref_primary_10_1021_acs_jpcc_1c01910 crossref_primary_10_1016_j_carbon_2018_10_057 crossref_primary_10_1016_j_jechem_2021_05_046 crossref_primary_10_1039_C9TA12838G crossref_primary_10_1002_agt2_335 crossref_primary_10_1002_eem2_12064 crossref_primary_10_1039_C9TA11852G crossref_primary_10_1002_adfm_202112805 crossref_primary_10_1039_C9EE01722D crossref_primary_10_1021_acscatal_8b02556 crossref_primary_10_1021_acsami_8b11871 crossref_primary_10_1088_2515_7639_abebe8 crossref_primary_10_1002_smll_202106279 crossref_primary_10_1016_j_ijhydene_2022_04_110 crossref_primary_10_3762_bjnano_10_125 crossref_primary_10_1002_smtd_202000751 crossref_primary_10_1002_chem_201903822 crossref_primary_10_1016_j_mtener_2020_100574 crossref_primary_10_1002_aic_18798 crossref_primary_10_1016_j_mtener_2020_100579 crossref_primary_10_1002_agt2_106 crossref_primary_10_1002_cssc_202401713 crossref_primary_10_1021_acsami_9b13474 crossref_primary_10_1039_D0CP00657B crossref_primary_10_3390_nano12193331 crossref_primary_10_1016_j_jcis_2022_02_080 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1002_ange_202017288 crossref_primary_10_1016_j_ccr_2021_213804 crossref_primary_10_1002_cey2_484 crossref_primary_10_1021_acscatal_0c01459 crossref_primary_10_1039_D0CC06492K crossref_primary_10_3390_catal9020144 crossref_primary_10_1021_jacs_8b09092 crossref_primary_10_1016_j_ijhydene_2022_12_225 crossref_primary_10_1088_1361_6528_ab46d8 crossref_primary_10_26599_NRE_2024_9120122 crossref_primary_10_1007_s10853_024_10345_9 crossref_primary_10_1002_eem2_12085 crossref_primary_10_1002_smll_201903380 crossref_primary_10_1002_smtd_202100460 crossref_primary_10_1039_C9TA12171D crossref_primary_10_1002_ange_202416070 crossref_primary_10_1016_j_jechem_2021_08_041 crossref_primary_10_1021_acscatal_8b00398 crossref_primary_10_1002_smll_202107141 crossref_primary_10_1039_D3TA06945A crossref_primary_10_1039_D1NR04850C crossref_primary_10_1039_D3TA02217J crossref_primary_10_1016_j_cej_2022_140799 crossref_primary_10_1016_j_jcis_2022_08_108 crossref_primary_10_1021_acsaem_9b01430 crossref_primary_10_1002_sstr_202300007 crossref_primary_10_1021_acsnano_9b02930 crossref_primary_10_1002_anie_202009331 crossref_primary_10_1002_smtd_202201078 crossref_primary_10_1039_D4TA02646B crossref_primary_10_1016_j_jtice_2019_08_015 crossref_primary_10_1039_D0NR05337F crossref_primary_10_1038_s41467_022_28346_0 crossref_primary_10_1021_acs_nanolett_0c04898 crossref_primary_10_1002_adfm_201902041 crossref_primary_10_1002_smll_202302338 crossref_primary_10_1021_acsenergylett_9b00893 crossref_primary_10_1063_5_0045801 crossref_primary_10_1016_j_cej_2021_132642 crossref_primary_10_1039_D1TA08412G crossref_primary_10_1021_acs_chemmater_0c03614 crossref_primary_10_26599_NRE_2024_9120144 crossref_primary_10_1007_s42154_021_00146_0 crossref_primary_10_1016_j_ijhydene_2019_12_205 crossref_primary_10_1002_adma_202008151 crossref_primary_10_1021_acsami_0c16081 crossref_primary_10_1007_s11243_024_00629_z crossref_primary_10_1016_j_gce_2021_12_007 crossref_primary_10_1007_s40195_021_01229_x crossref_primary_10_1007_s11708_024_0928_6 crossref_primary_10_1007_s12598_021_01865_3 crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_1021_acs_jpcc_0c00352 crossref_primary_10_1021_acscatal_3c03270 crossref_primary_10_1021_acsmaterialsau_1c00041 crossref_primary_10_1016_j_cej_2024_152284 crossref_primary_10_1002_adma_202311105 crossref_primary_10_1021_acscatal_4c00781 crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1021_acsami_0c05370 crossref_primary_10_1002_ange_202317884 crossref_primary_10_1039_D3TA02149A crossref_primary_10_1021_acsami_8b19148 crossref_primary_10_1088_2515_7639_ac01ac crossref_primary_10_1016_j_apsusc_2020_148325 crossref_primary_10_1016_j_cej_2024_153126 crossref_primary_10_1007_s12274_021_3678_3 crossref_primary_10_1016_j_jechem_2023_11_018 crossref_primary_10_1016_j_apcatb_2022_121763 crossref_primary_10_1002_aenm_201900375 crossref_primary_10_1039_C9EE00877B crossref_primary_10_1039_D1RA08817C crossref_primary_10_1016_j_ica_2020_120027 crossref_primary_10_3390_nano12122106 crossref_primary_10_1007_s11426_024_2397_6 crossref_primary_10_1016_j_cej_2024_155778 crossref_primary_10_1002_smtd_201900596 crossref_primary_10_1016_j_cej_2022_134913 crossref_primary_10_1039_D2NJ05748D crossref_primary_10_1016_j_nanoen_2019_104288 crossref_primary_10_1016_j_joule_2018_09_010 crossref_primary_10_1039_D0EE01968B crossref_primary_10_1016_j_joule_2019_12_014 crossref_primary_10_1002_ange_202200465 crossref_primary_10_1002_bkcs_12287 crossref_primary_10_1039_D2QM00763K crossref_primary_10_1007_s40242_023_3001_9 crossref_primary_10_1021_acs_langmuir_2c01130 crossref_primary_10_1016_j_mtchem_2023_101728 crossref_primary_10_1007_s00604_019_3737_6 crossref_primary_10_1002_smll_202004398 crossref_primary_10_1002_adma_202003577 crossref_primary_10_1039_C9EE04040D crossref_primary_10_1002_aesr_202100019 crossref_primary_10_1039_C9TA08862H crossref_primary_10_1016_j_envres_2020_110195 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_cej_2021_129619 crossref_primary_10_1002_smll_202407146 crossref_primary_10_1021_acscatal_1c05633 crossref_primary_10_1002_adma_201908232 crossref_primary_10_1016_j_jcis_2022_12_073 crossref_primary_10_1039_D1NR07595K crossref_primary_10_1002_anie_202416070 crossref_primary_10_1007_s40242_020_0111_5 crossref_primary_10_1016_j_jelechem_2024_118369 crossref_primary_10_1016_j_mattod_2019_10_006 crossref_primary_10_1021_acscatal_1c04550 crossref_primary_10_1002_cctc_201801174 crossref_primary_10_1039_D3TA05023H crossref_primary_10_3390_nano13071188 crossref_primary_10_1038_s41467_020_17782_5 crossref_primary_10_1016_j_nanoen_2020_104469 crossref_primary_10_1039_D3ME00191A crossref_primary_10_1021_jacs_9b09234 crossref_primary_10_1039_D2TA08808H crossref_primary_10_1002_aenm_201803737 crossref_primary_10_1149_2_0201907jes crossref_primary_10_1002_smll_202202014 crossref_primary_10_1002_ange_201808226 crossref_primary_10_1007_s11426_020_9835_8 crossref_primary_10_1007_s41918_019_00030_w crossref_primary_10_1007_s40820_019_0277_x crossref_primary_10_1038_s41467_019_09596_x crossref_primary_10_1002_adma_202209552 crossref_primary_10_1021_acsanm_3c04202 crossref_primary_10_1021_acscatal_8b04117 crossref_primary_10_1021_acscatal_0c05446 crossref_primary_10_1016_j_ijhydene_2020_07_178 crossref_primary_10_1002_advs_202206949 crossref_primary_10_1002_aenm_202102665 crossref_primary_10_1021_acscatal_0c04358 crossref_primary_10_1021_acs_jpcc_3c00571 crossref_primary_10_1039_D2QI02616C crossref_primary_10_1016_j_cej_2024_150967 crossref_primary_10_1038_s41467_021_21919_5 crossref_primary_10_1002_anie_202012329 crossref_primary_10_1002_adma_202003300 crossref_primary_10_1002_anie_202104494 crossref_primary_10_1021_acsnano_0c08652 crossref_primary_10_1016_j_coelec_2021_100803 crossref_primary_10_1021_acsenergylett_0c00812 crossref_primary_10_3390_met12071059 crossref_primary_10_1021_jacs_9b08362 crossref_primary_10_1016_j_ces_2021_116442 crossref_primary_10_1088_1361_6528_ab1d01 crossref_primary_10_1002_cey2_426 crossref_primary_10_1039_D2RE00357K crossref_primary_10_1021_acscatal_1c01473 crossref_primary_10_1039_D1EE01715B crossref_primary_10_1002_anie_202000324 crossref_primary_10_1002_smtd_201800439 crossref_primary_10_1039_C9NR07914A crossref_primary_10_1002_smtd_201800438 crossref_primary_10_1016_j_jcis_2021_04_048 crossref_primary_10_1021_acsestengg_0c00174 crossref_primary_10_1002_adma_201807615 crossref_primary_10_1007_s41918_023_00180_y crossref_primary_10_1002_cey2_74 crossref_primary_10_1039_D0TA08732G crossref_primary_10_1002_aenm_201802856 crossref_primary_10_1002_smll_202101607 crossref_primary_10_1007_s12274_020_3072_6 crossref_primary_10_1002_chem_201903482 crossref_primary_10_1039_D0SE00271B crossref_primary_10_1016_j_apsusc_2020_148714 crossref_primary_10_1016_j_ensm_2020_03_023 crossref_primary_10_1039_C9NH00095J crossref_primary_10_1002_cctc_201900604 crossref_primary_10_1021_acsnano_4c06404 crossref_primary_10_1088_1361_648X_ab38da crossref_primary_10_1002_adfm_202415046 crossref_primary_10_1002_chem_202100642 crossref_primary_10_1021_acs_jpclett_4c03682 crossref_primary_10_1002_cctc_202001855 crossref_primary_10_1002_smtd_202401333 crossref_primary_10_1149_1945_7111_ac766e crossref_primary_10_1002_cey2_47 crossref_primary_10_1021_acsami_8b14323 crossref_primary_10_1002_smll_202402982 crossref_primary_10_1002_smll_201905920 crossref_primary_10_1016_j_carbon_2021_04_072 crossref_primary_10_1016_j_carbon_2019_09_029 crossref_primary_10_1021_acssuschemeng_0c07490 crossref_primary_10_1039_D4SC04905E crossref_primary_10_1016_j_ensm_2020_03_008 crossref_primary_10_1016_j_cej_2021_129689 crossref_primary_10_1021_acs_iecr_4c01443 crossref_primary_10_1016_j_cclet_2021_07_038 crossref_primary_10_1016_j_renene_2020_05_082 crossref_primary_10_1039_C8NR07945E crossref_primary_10_1002_celc_201800657 crossref_primary_10_1007_s12274_022_4950_x crossref_primary_10_1016_j_fuproc_2023_107879 crossref_primary_10_1002_smll_202307135 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1039_D5TA01226K crossref_primary_10_1002_eom2_12431 crossref_primary_10_1016_j_fuel_2022_126135 crossref_primary_10_1002_smll_201902860 crossref_primary_10_1016_j_ces_2023_119304 crossref_primary_10_1038_s41929_018_0164_8 crossref_primary_10_1021_jacs_4c02031 crossref_primary_10_1016_j_carbon_2022_05_003 crossref_primary_10_1002_aenm_201903181 crossref_primary_10_1021_acsami_9b11830 crossref_primary_10_1002_ppsc_201900100 crossref_primary_10_1021_acsnano_0c05088 crossref_primary_10_1002_smll_202004809 crossref_primary_10_1016_j_ccr_2022_214602 crossref_primary_10_1002_smtd_201800471 crossref_primary_10_1007_s41918_019_00033_7 crossref_primary_10_1002_anie_201806936 crossref_primary_10_1021_acsanm_3c04040 crossref_primary_10_1021_acssuschemeng_0c02158 crossref_primary_10_1039_C8TA04064H crossref_primary_10_1002_smll_202200911 crossref_primary_10_1002_batt_202100217 crossref_primary_10_1039_D1EE01675J crossref_primary_10_1039_D1NJ05186E crossref_primary_10_1016_j_mattod_2022_04_002 crossref_primary_10_1021_acscatal_9b04963 crossref_primary_10_1007_s00894_023_05620_6 crossref_primary_10_1021_acsnano_4c03261 crossref_primary_10_1002_adma_202310912 crossref_primary_10_1021_acs_nanolett_3c00133 crossref_primary_10_1039_C9TA05981D crossref_primary_10_1039_C8NR05861J crossref_primary_10_1021_acssuschemeng_0c04324 crossref_primary_10_1039_D3EW00302G crossref_primary_10_1002_ange_202104494 crossref_primary_10_1016_j_mcat_2019_03_023 crossref_primary_10_1002_smtd_201800443 crossref_primary_10_1016_j_jcis_2021_02_125 crossref_primary_10_1149_2_0141907jes crossref_primary_10_1016_j_apcatb_2018_11_037 crossref_primary_10_1002_ange_201811573 crossref_primary_10_1002_aenm_201902084 crossref_primary_10_1002_smll_202104205 crossref_primary_10_1002_adma_201804799 crossref_primary_10_1002_adma_202002170 crossref_primary_10_1002_cssc_201801583 crossref_primary_10_1021_acs_iecr_2c03379 crossref_primary_10_1002_smll_202102425 crossref_primary_10_1002_ange_202216041 crossref_primary_10_1039_D2RA00757F crossref_primary_10_1021_acsami_1c16121 crossref_primary_10_1002_anie_202200465 crossref_primary_10_1021_acs_nanolett_8b00978 crossref_primary_10_1002_ange_202108882 crossref_primary_10_1039_D4TA07178F crossref_primary_10_1016_j_jallcom_2020_158246 crossref_primary_10_1039_C9TA01953G crossref_primary_10_1039_D3EY00265A crossref_primary_10_1002_anie_201905241 crossref_primary_10_1016_j_fuel_2024_132588 crossref_primary_10_1039_C9CC10036A crossref_primary_10_1039_D1TC02729H crossref_primary_10_1007_s40820_024_01484_4 crossref_primary_10_1002_cphc_202100692 crossref_primary_10_1002_celc_202300110 crossref_primary_10_1021_acs_chemmater_8b02275 crossref_primary_10_1016_j_nanoen_2018_03_059 crossref_primary_10_1002_smll_202203147 crossref_primary_10_1007_s40820_024_01580_5 crossref_primary_10_1016_j_cej_2020_127135 crossref_primary_10_1002_anie_201804958 crossref_primary_10_1021_acssuschemeng_0c06558 crossref_primary_10_1002_anie_202016977 crossref_primary_10_1016_j_fuel_2024_132119 crossref_primary_10_1038_s41467_021_25911_x crossref_primary_10_1039_D2CY01213H crossref_primary_10_1016_j_nanoen_2018_12_009 crossref_primary_10_1002_er_5074 crossref_primary_10_1007_s11467_020_0980_6 crossref_primary_10_1038_s41598_019_55207_6 crossref_primary_10_1007_s40820_023_01195_2 crossref_primary_10_1002_smll_202105329 crossref_primary_10_3390_catal12050525 crossref_primary_10_1021_acsnano_0c10637 crossref_primary_10_1002_smll_202310318 crossref_primary_10_1002_smll_202405624 crossref_primary_10_1021_acs_est_2c00706 crossref_primary_10_1002_anie_202317776 crossref_primary_10_1002_cctc_201900547 crossref_primary_10_1021_acssuschemeng_8b05993 crossref_primary_10_1149_1945_7111_ac5795 crossref_primary_10_1007_s12274_023_5813_9 crossref_primary_10_1002_smll_202105335 crossref_primary_10_1002_smll_202300758 crossref_primary_10_1016_j_carbon_2019_08_060 crossref_primary_10_1016_j_jcis_2024_02_144 crossref_primary_10_1039_D4YA00184B crossref_primary_10_1016_j_xcrp_2022_100773 crossref_primary_10_1016_j_aca_2023_341772 crossref_primary_10_1016_j_ijhydene_2019_08_190 crossref_primary_10_3390_catal11101163 crossref_primary_10_1002_anie_202107053 crossref_primary_10_1016_j_checat_2022_09_009 crossref_primary_10_1016_j_ijhydene_2022_02_225 crossref_primary_10_1149_1945_7111_ab7093 crossref_primary_10_1021_acssuschemeng_3c02484 crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1016_j_micromeso_2021_111002 crossref_primary_10_1016_j_cej_2022_141101 crossref_primary_10_1016_j_cej_2021_132119 crossref_primary_10_1002_smll_202301675 crossref_primary_10_1039_D2TA05585F crossref_primary_10_1021_acssuschemeng_3c02007 crossref_primary_10_1039_D0EE00832J crossref_primary_10_1002_ange_202010013 crossref_primary_10_1002_adma_201904548 crossref_primary_10_1039_D1GC01040A crossref_primary_10_1016_j_electacta_2019_135397 crossref_primary_10_1002_cssc_202100502 crossref_primary_10_1021_acsami_4c16972 crossref_primary_10_1063_5_0247485 crossref_primary_10_1016_j_mattod_2020_02_019 crossref_primary_10_1002_adma_201905622 crossref_primary_10_1016_j_cej_2020_125796 crossref_primary_10_1021_acscatal_9b01617 crossref_primary_10_1039_D0TA07163C crossref_primary_10_1039_D0EE03351K crossref_primary_10_1039_D1EE00142F crossref_primary_10_1039_D3NJ01840G crossref_primary_10_1002_adma_202401163 crossref_primary_10_1039_D3EE02644B crossref_primary_10_1002_cctc_202200134 crossref_primary_10_1007_s40820_019_0324_7 crossref_primary_10_1002_adfm_202005000 crossref_primary_10_3390_app12136659 crossref_primary_10_3389_fchem_2019_00738 crossref_primary_10_1039_D1TA08029F crossref_primary_10_1002_smll_202003096 crossref_primary_10_1002_smtd_202000016 crossref_primary_10_1021_acs_jpcc_9b03730 crossref_primary_10_1039_D0TA02549F crossref_primary_10_1002_elan_202200009 crossref_primary_10_1021_acsenergylett_2c00473 crossref_primary_10_1002_adfm_201900015 crossref_primary_10_1002_celc_201801144 crossref_primary_10_1039_D4CC03875D crossref_primary_10_1016_j_microc_2020_105271 crossref_primary_10_1002_ange_202003917 crossref_primary_10_1016_j_susmat_2022_e00560 crossref_primary_10_1007_s11581_024_05767_z crossref_primary_10_1021_jacs_9b07712 crossref_primary_10_1002_cctc_202300849 crossref_primary_10_1016_j_jechem_2022_07_018 crossref_primary_10_1016_j_jechem_2022_05_007 crossref_primary_10_1039_D1TA09645A crossref_primary_10_1016_j_cej_2021_132150 crossref_primary_10_1021_acs_chemrev_0c00594 crossref_primary_10_1016_j_jpowsour_2021_230891 crossref_primary_10_1016_j_gee_2021_05_008 crossref_primary_10_1002_smtd_202000672 crossref_primary_10_1021_acs_jpcc_9b04803 crossref_primary_10_1002_anie_201808226 crossref_primary_10_1002_cctc_202002045 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1039_D4TA06720G crossref_primary_10_1021_acssuschemeng_3c01353 crossref_primary_10_1038_s41467_022_33275_z crossref_primary_10_3390_nano13081330 crossref_primary_10_1002_smll_201803520 crossref_primary_10_1002_bte2_20230019 crossref_primary_10_1021_acsaem_0c00215 crossref_primary_10_1021_acs_chemmater_3c01171 crossref_primary_10_1021_acsaem_0c00211 crossref_primary_10_3390_nano10101947 crossref_primary_10_1021_acs_analchem_2c01370 crossref_primary_10_1149_1945_7111_ac4842 crossref_primary_10_1039_D0CY01408G crossref_primary_10_1021_acs_nanolett_1c00702 crossref_primary_10_1007_s40242_019_8330_3 crossref_primary_10_1002_adfm_202422378 crossref_primary_10_1002_cssc_202002098 crossref_primary_10_1039_D4TA03760J crossref_primary_10_1007_s12274_022_5097_5 crossref_primary_10_1016_j_carbon_2019_12_058 crossref_primary_10_1021_acs_langmuir_4c01976 crossref_primary_10_1021_acsami_1c03477 crossref_primary_10_1021_acs_chemrev_2c00424 crossref_primary_10_1021_acsami_9b10723 crossref_primary_10_1016_j_apsusc_2018_09_248 crossref_primary_10_1039_D4CC02106A crossref_primary_10_1039_C9TA08134H crossref_primary_10_1021_acsaem_3c02810 crossref_primary_10_1002_aenm_201903815 crossref_primary_10_1016_j_ijhydene_2021_10_199 crossref_primary_10_1007_s12274_022_4497_x crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1002_er_6796 crossref_primary_10_1039_D3TA04792J crossref_primary_10_1002_aenm_202002644 crossref_primary_10_1002_adfm_202110748 crossref_primary_10_1002_anie_201908023 crossref_primary_10_1038_s41929_020_00546_1 crossref_primary_10_1007_s11244_024_01988_8 crossref_primary_10_1002_adfm_202007602 crossref_primary_10_1021_acs_jpclett_2c00209 crossref_primary_10_1021_acscatal_0c05701 crossref_primary_10_1016_j_mtener_2020_100452 crossref_primary_10_1002_adfm_202314554 crossref_primary_10_1002_cctc_201801679 crossref_primary_10_1002_aenm_202001561 crossref_primary_10_1016_j_jpowsour_2019_02_027 crossref_primary_10_1002_ange_202303185 crossref_primary_10_1039_D1QM00809A crossref_primary_10_1016_j_ijhydene_2021_11_015 crossref_primary_10_1016_j_apsusc_2021_148934 crossref_primary_10_1007_s10098_023_02686_x crossref_primary_10_1016_j_jallcom_2023_169441 crossref_primary_10_1021_acsnano_9b01953 crossref_primary_10_1002_anie_202003917 crossref_primary_10_1039_D1TA02833B crossref_primary_10_1039_D0CY01311K crossref_primary_10_1002_smll_202304655 crossref_primary_10_1039_D1CC07228E crossref_primary_10_1039_C9EE03273H crossref_primary_10_1002_ange_202009991 crossref_primary_10_1002_adma_201800528 crossref_primary_10_1021_acscatal_1c04286 crossref_primary_10_1002_aenm_202000689 crossref_primary_10_1021_acsanm_9b00144 crossref_primary_10_1039_D1TA03176G crossref_primary_10_1002_cssc_202000702 crossref_primary_10_1002_cey2_136 crossref_primary_10_1007_s12598_022_02215_7 crossref_primary_10_1002_cssc_202101330 crossref_primary_10_1002_advs_202203391 crossref_primary_10_1038_s41929_019_0304_9 crossref_primary_10_1002_smtd_202100571 crossref_primary_10_1016_j_jcat_2021_11_021 crossref_primary_10_1016_j_inoche_2019_01_008 crossref_primary_10_1002_cjoc_202200661 crossref_primary_10_1016_j_jcat_2024_115296 crossref_primary_10_1002_cey2_382 crossref_primary_10_1007_s40820_021_00768_3 crossref_primary_10_1021_acs_energyfuels_1c00758 crossref_primary_10_1016_j_snb_2021_130108 crossref_primary_10_1016_j_coelec_2020_08_009 crossref_primary_10_1039_C9NJ01983A crossref_primary_10_1002_adma_202107954 crossref_primary_10_1002_cssc_202101341 crossref_primary_10_1002_ange_202009331 crossref_primary_10_1016_j_nanoms_2021_03_006 crossref_primary_10_1002_adma_202301894 crossref_primary_10_1002_anie_202303185 crossref_primary_10_1039_C8TA11785C crossref_primary_10_1039_C9EE00867E crossref_primary_10_1002_admi_202201817 crossref_primary_10_1007_s12274_022_4196_7 crossref_primary_10_1016_j_jcis_2024_05_005 crossref_primary_10_1038_s41929_019_0237_3 crossref_primary_10_1002_anie_202017288 crossref_primary_10_1002_ange_202317776 crossref_primary_10_1002_er_5650 crossref_primary_10_1002_adfm_202418602 crossref_primary_10_1002_adma_202312797 crossref_primary_10_1016_j_ccr_2020_213678 crossref_primary_10_1039_D2EE01037B crossref_primary_10_1007_s12274_021_3479_8 crossref_primary_10_1021_acscatal_4c01752 crossref_primary_10_1002_smll_202206071 crossref_primary_10_3390_pr11020361 crossref_primary_10_1002_adma_201805157 crossref_primary_10_1039_D4RA06077F crossref_primary_10_1039_D3NJ00108C crossref_primary_10_3390_electronics11172776 crossref_primary_10_1002_ente_201800483 crossref_primary_10_1002_cssc_202000537 crossref_primary_10_1021_acssuschemeng_0c01882 crossref_primary_10_1002_eem2_12128 crossref_primary_10_1021_acs_chemrev_9b00311 crossref_primary_10_1002_smll_202005148 crossref_primary_10_1016_j_cej_2023_142054 crossref_primary_10_1016_j_jechem_2022_09_047 crossref_primary_10_1002_aenm_202000400 crossref_primary_10_1007_s11356_023_29990_9 crossref_primary_10_1002_ange_201905241 crossref_primary_10_1016_j_jcat_2021_10_011 crossref_primary_10_1016_j_nanoen_2018_06_023 crossref_primary_10_1021_acs_nanolett_0c02167 crossref_primary_10_1002_smll_201906735 crossref_primary_10_1039_D3QM01172K crossref_primary_10_1002_adfm_202011289 crossref_primary_10_1021_acscatal_2c04807 crossref_primary_10_1002_aenm_202303740 crossref_primary_10_1021_acsami_1c10059 crossref_primary_10_1016_j_apsusc_2023_157154 crossref_primary_10_1016_j_nanoen_2019_104164 crossref_primary_10_1039_C9CS00903E crossref_primary_10_1016_j_ccr_2020_213214 crossref_primary_10_1016_j_ijhydene_2021_09_133 crossref_primary_10_1021_accountsmr_1c00226 crossref_primary_10_1002_cey2_342 crossref_primary_10_1016_j_ccr_2020_213447 crossref_primary_10_1039_D5TA00827A crossref_primary_10_1038_s41467_020_19309_4 crossref_primary_10_1039_D0NJ00213E crossref_primary_10_1039_D2CC03630D crossref_primary_10_1016_j_inoche_2024_113383 crossref_primary_10_1002_ece2_39 crossref_primary_10_1002_cssc_202201795 crossref_primary_10_1002_smsc_202100046 crossref_primary_10_1016_j_apsusc_2024_160497 crossref_primary_10_1021_acs_jpcc_3c02841 crossref_primary_10_1039_C9TA12207A crossref_primary_10_1021_acs_jpcc_3c02840 crossref_primary_10_1039_D2DT00213B crossref_primary_10_1021_acs_analchem_9b02901 crossref_primary_10_1021_acsami_3c09412 crossref_primary_10_1007_s40843_020_1609_9 crossref_primary_10_1016_j_pnsc_2020_10_004 crossref_primary_10_1021_acscatal_0c05544 crossref_primary_10_1007_s11814_021_0741_4 crossref_primary_10_1016_j_nanoen_2020_105209 crossref_primary_10_1016_j_jechem_2023_03_042 crossref_primary_10_1002_asia_202300862 crossref_primary_10_1021_acssuschemeng_0c04021 crossref_primary_10_1021_acscatal_2c01358 crossref_primary_10_1007_s40242_021_1374_1 crossref_primary_10_1016_j_cej_2021_134084 crossref_primary_10_1016_j_cej_2022_136560 crossref_primary_10_1021_acscatal_1c02259 crossref_primary_10_1007_s42864_022_00197_8 crossref_primary_10_1021_acsami_9b14839 crossref_primary_10_1016_j_xinn_2023_100518 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_adma_202301477 crossref_primary_10_1039_D1QM00031D crossref_primary_10_1039_C9CS00906J crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1038_s41467_020_19599_8 crossref_primary_10_1002_aenm_202101222 crossref_primary_10_1016_j_pnsc_2020_10_018 crossref_primary_10_1039_D1TC01905H crossref_primary_10_1039_D2CY00427E crossref_primary_10_1002_smll_202105487 crossref_primary_10_1007_s11581_020_03471_2 crossref_primary_10_1021_acsami_2c08572 crossref_primary_10_1016_j_cclet_2019_04_069 crossref_primary_10_1002_anie_202216041 crossref_primary_10_1002_advs_201901129 crossref_primary_10_1039_D3NJ02149A crossref_primary_10_1002_adma_202400523 crossref_primary_10_1002_celc_201801827 crossref_primary_10_1002_advs_202410784 crossref_primary_10_1021_acssuschemeng_9b05810 crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1039_D1TA07404K crossref_primary_10_1021_acscatal_4c02871 crossref_primary_10_1002_adma_201805126 crossref_primary_10_1021_acscatal_3c01136 crossref_primary_10_1002_anie_202010013 crossref_primary_10_1016_j_apcatb_2018_09_054 crossref_primary_10_1021_acs_inorgchem_3c02417 crossref_primary_10_1021_acssuschemeng_8b04919 crossref_primary_10_1002_asia_201900264 crossref_primary_10_1016_j_mtchem_2018_11_004 crossref_primary_10_1002_anie_201909312 crossref_primary_10_1016_j_apcatb_2024_124889 crossref_primary_10_1002_aenm_202100303 crossref_primary_10_1021_acscatal_0c05503 crossref_primary_10_1021_acsanm_4c02768 crossref_primary_10_1002_adma_202000381 crossref_primary_10_1002_adma_201806403 crossref_primary_10_1016_j_ijhydene_2020_12_159 crossref_primary_10_1002_adfm_201906174 crossref_primary_10_1021_acsami_1c11765 crossref_primary_10_1039_D0AN02473B crossref_primary_10_1021_acs_iecr_3c01793 crossref_primary_10_1002_adfm_202008077 crossref_primary_10_1007_s12274_021_3966_y crossref_primary_10_1021_acsenergylett_9b00790 crossref_primary_10_1016_j_cclet_2019_03_026 crossref_primary_10_1039_C9RA07926B crossref_primary_10_1021_acsami_0c22453 crossref_primary_10_1002_adma_202103133 crossref_primary_10_1002_smll_202004692 crossref_primary_10_1016_j_apcatb_2023_123044 crossref_primary_10_1016_j_mtener_2021_100761 crossref_primary_10_1021_acsami_2c09230 crossref_primary_10_1016_j_ijhydene_2021_08_163 crossref_primary_10_1021_acsenergylett_9b01407 crossref_primary_10_1088_2399_1984_ac3ec1 crossref_primary_10_1039_C9RA08068F crossref_primary_10_1007_s41918_019_00031_9 crossref_primary_10_1021_acs_jpcc_1c03775 crossref_primary_10_1016_j_ijhydene_2024_10_040 crossref_primary_10_1016_j_cej_2020_124822 crossref_primary_10_1039_C9NR05726A crossref_primary_10_1021_acsami_0c10234 crossref_primary_10_1039_C8NR05888A crossref_primary_10_1021_acsaem_2c02168 crossref_primary_10_1002_ange_202009700 crossref_primary_10_1016_j_jallcom_2024_177106 crossref_primary_10_1002_celc_201801859 crossref_primary_10_1021_acsami_1c08363 crossref_primary_10_1021_acscatal_0c02490 crossref_primary_10_1039_D1EE00878A crossref_primary_10_1021_acsami_1c11300 crossref_primary_10_1002_smll_202303186 crossref_primary_10_1021_jacs_2c01194 crossref_primary_10_1002_ange_202107053 crossref_primary_10_1021_acs_jpclett_4c03536 crossref_primary_10_1021_acssuschemeng_0c01826 crossref_primary_10_1039_D1DT00005E crossref_primary_10_1021_acsaem_0c03035 crossref_primary_10_1016_j_jece_2023_111549 crossref_primary_10_1016_j_cej_2020_128171 crossref_primary_10_1016_j_cej_2022_140403 crossref_primary_10_1016_j_mtphys_2019_100132 crossref_primary_10_1002_ange_202005577 crossref_primary_10_1016_j_mtener_2020_100444 crossref_primary_10_1021_acssuschemeng_0c04094 crossref_primary_10_1088_1361_6463_ac96fe crossref_primary_10_1016_j_jechem_2020_07_010 |
Cites_doi | 10.1021/acscatal.5b02325 10.1126/science.1230444 10.1038/ncomms9618 10.1021/cs500744x 10.1039/C6TA09462G 10.1002/anie.201604802 10.1039/c1jm12829a 10.1002/anie.201308896 10.1021/jp8001564 10.1002/advs.201500265 10.1126/science.1172083 10.1149/1.3210685 10.1021/ja7106146 10.1021/jacs.7b10194 10.1039/C6CC02513G 10.1021/jacs.6b09470 10.1039/c0jm03613g 10.1016/j.carbon.2016.07.051 10.1039/c3cc39121c 10.1016/j.electacta.2013.11.026 10.1126/science.1200832 10.1038/ncomms9668 10.1021/acsenergylett.6b00686 10.1016/j.electacta.2013.03.183 10.1016/j.catcom.2017.02.026 10.1002/slct.201700417 10.1021/jacs.6b11248 10.1002/chem.201003080 10.1016/j.nanoen.2016.11.033 10.1039/C6RA04771H 10.1021/acscatal.7b02326 10.1002/cctc.201700324 10.1021/jp901077c 10.1002/anie.201504707 10.1002/adma.201600979 10.1021/cm900166h 10.1039/C6SC02105K 10.1038/s41467-017-01100-7 10.1021/ar50088a003 10.1021/jp8078056 10.1016/j.progsurf.2003.09.001 10.1021/acs.jpcc.5b01485 10.1016/S0273-1223(97)00707-5 10.1039/C4RA05961A 10.1021/jacs.7b06514 10.1002/adma.201703614 10.1016/j.carbon.2014.10.034 10.1002/adma.201304147 10.1016/j.chempr.2016.12.002 10.1039/C6TA06434E 10.1021/ja5003907 10.1126/science.1170051 10.1021/acs.langmuir.5b01256 10.1002/adma.201502315 10.1039/C5RA18404E 10.1021/nn303275d 10.1021/ar400011z 10.1021/jp5124037 10.1021/acscentsci.7b00160 10.1039/C4TA01506A |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) Univ. at Buffalo, NY (United States) Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) East China Univ. of Science and Technology, Shanghai (China) |
CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) – name: Univ. at Buffalo, NY (United States) – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) – name: East China Univ. of Science and Technology, Shanghai (China) |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OIOZB OTOTI |
DOI | 10.1002/adma.201706758 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1422592 29363838 10_1002_adma_201706758 ADMA201706758 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CBET‐1604392 – fundername: Department of Energy funderid: DE‐AC02‐06CH11357 – fundername: Shanghai Natural Science Foundation of China funderid: 16ZR1408600 – fundername: Oregon State University – fundername: University at Buffalo – fundername: Center for Functional Nanomaterials at Brookhaven National Laboratory funderid: DE‐SC0012704 – fundername: U.S. DOE‐EERE Fuel Cell Technologies Office – fundername: SUNY |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c5438-6ee7b7af539c020feea1a35b2edca495a95ae801abd4b16fd5f47dd326b3acdf3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Jul 03 03:56:18 EDT 2023 Fri Jul 11 13:29:52 EDT 2025 Fri Jul 25 07:18:46 EDT 2025 Wed Feb 19 02:42:11 EST 2025 Tue Jul 01 00:44:39 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:18:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | single atomic Co carbon nanocomposites proton exchange membrane fuel cells electrocatalysis oxygen reduction |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5438-6ee7b7af539c020feea1a35b2edca495a95ae801abd4b16fd5f47dd326b3acdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) AC05-00OR22725; AC02-06CH11357; SC0012704; CBET-1604392; 16ZR1408600; 89233218CNA000001 LA-UR-19-27321 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office National Science Foundation (NSF) USDOE National Nuclear Security Administration (NNSA) Shanghai Natural Science Foundation of China |
ORCID | 0000-0003-4956-5208 0000000349565208 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1422592 |
PMID | 29363838 |
PQID | 2013054935 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1422592 proquest_miscellaneous_1990857218 proquest_journals_2013054935 pubmed_primary_29363838 crossref_citationtrail_10_1002_adma_201706758 crossref_primary_10_1002_adma_201706758 wiley_primary_10_1002_adma_201706758_ADMA201706758 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Mar |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-Mar |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 5 2017; 7 2017; 8 2017; 2 2017; 3 2016; 108 2015; 31 2014; 26 2009; 113 2011; 17 2017; 9 2014; 136 2017; 31 2014; 128 2014; 4 2014; 2 2015; 82 2011; 21 2013; 110 1975; 8 2008; 112 2009; 324 2014; 53 2009; 25 2015; 6 2015; 5 2009; 21 2013; 49 2013; 46 2015; 54 2016; 52 2017; 29 2013; 341 2003; 73 2011; 332 2017; 139 2016; 55 2016; 4 2017; 95 2016; 6 2016; 7 2015; 27 2016; 3 1997; 36 2015; 119 2016; 138 2012; 6 2016; 28 2008; 130 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_60_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 324 start-page: 48 year: 2009 publication-title: Science – volume: 139 start-page: 14143 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3797 year: 2014 publication-title: ACS Catal. – volume: 113 start-page: 8606 year: 2009 publication-title: J. Phys. Chem. C – volume: 108 start-page: 541 year: 2016 publication-title: Carbon – volume: 119 start-page: 4173 year: 2015 publication-title: J. Phys. Chem. C – volume: 25 start-page: 1299 year: 2009 publication-title: ECS Trans. – volume: 3 start-page: 847 year: 2017 publication-title: ACS Cent. Sci. – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 31 start-page: 7644 year: 2015 publication-title: Langmuir – volume: 332 start-page: 443 year: 2011 publication-title: Science – volume: 28 start-page: 6391 year: 2016 publication-title: Adv. Mater. – volume: 53 start-page: 2433 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8618 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 8668 year: 2015 publication-title: Nat. Commun. – volume: 341 year: 2013 publication-title: Science – volume: 139 start-page: 17269 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 16162 year: 2011 publication-title: J. Mater. Chem. – volume: 21 start-page: 1410 year: 2009 publication-title: Chem. Mater. – volume: 113 start-page: 2830 year: 2009 publication-title: J. Phys. Chem. C – volume: 46 start-page: 1878 year: 2013 publication-title: Acc. Chem. Res. – volume: 139 start-page: 453 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 37779 year: 2014 publication-title: RSC Adv. – volume: 324 start-page: 71 year: 2009 publication-title: Science – volume: 2 start-page: 52 year: 2017 publication-title: Chem – volume: 31 start-page: 331 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 1969 year: 2017 publication-title: ChemCatChem – volume: 7 start-page: 5758 year: 2016 publication-title: Chem. Sci. – volume: 136 start-page: 6790 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 957 year: 2017 publication-title: Nat. Commun. – volume: 130 start-page: 5390 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3291 year: 2013 publication-title: Chem. Commun. – volume: 7 start-page: 6864 year: 2017 publication-title: ACS Catal. – volume: 6 start-page: 37965 year: 2016 publication-title: RSC Adv. – volume: 4 start-page: 15836 year: 2016 publication-title: J. Mater. Chem. A – volume: 73 start-page: 117 year: 2003 publication-title: Prog. Surf. Sci. – volume: 36 start-page: 215 year: 1997 publication-title: Water Sci. Technol. – volume: 5 start-page: 103834 year: 2015 publication-title: RSC Adv. – volume: 82 start-page: 77 year: 2015 publication-title: Carbon – volume: 29 start-page: 1703614 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: 11392 year: 2011 publication-title: J. Mater. Chem. – volume: 110 start-page: 282 year: 2013 publication-title: Electrochim. Acta – volume: 6 start-page: 9764 year: 2012 publication-title: ACS Nano – volume: 5 start-page: 3336 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 504 year: 2017 publication-title: ACS Energy Lett. – volume: 26 start-page: 1450 year: 2014 publication-title: Adv. Mater. – volume: 55 start-page: 10800 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 112 start-page: 8839 year: 2008 publication-title: J. Phys. Chem. C – volume: 95 start-page: 31 year: 2017 publication-title: Catal. Commun. – volume: 138 start-page: 15046 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 12622 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 119 start-page: 8755 year: 2015 publication-title: J. Phys. Chem. C – volume: 128 start-page: 271 year: 2014 publication-title: Electrochim. Acta – volume: 5 start-page: 7068 year: 2015 publication-title: ACS Catal. – volume: 2 start-page: 14064 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 start-page: 125 year: 1975 publication-title: Acc. Chem. Res. – volume: 52 start-page: 5946 year: 2016 publication-title: Chem. Commun. – volume: 2 start-page: 3191 year: 2017 publication-title: ChemistrySelect – volume: 3 start-page: 1500265 year: 2016 publication-title: Adv. Sci. – volume: 17 start-page: 2063 year: 2011 publication-title: Chem. – Eur. J. – ident: e_1_2_4_21_1 doi: 10.1021/acscatal.5b02325 – ident: e_1_2_4_27_1 doi: 10.1126/science.1230444 – ident: e_1_2_4_4_1 doi: 10.1038/ncomms9618 – ident: e_1_2_4_6_1 doi: 10.1021/cs500744x – ident: e_1_2_4_5_1 doi: 10.1039/C6TA09462G – ident: e_1_2_4_33_1 doi: 10.1002/anie.201604802 – ident: e_1_2_4_52_1 doi: 10.1039/c1jm12829a – ident: e_1_2_4_40_1 doi: 10.1002/anie.201308896 – ident: e_1_2_4_47_1 doi: 10.1021/jp8001564 – ident: e_1_2_4_26_1 doi: 10.1002/advs.201500265 – ident: e_1_2_4_1_1 doi: 10.1126/science.1172083 – ident: e_1_2_4_58_1 doi: 10.1149/1.3210685 – ident: e_1_2_4_24_1 doi: 10.1021/ja7106146 – ident: e_1_2_4_48_1 doi: 10.1021/jacs.7b10194 – ident: e_1_2_4_13_1 doi: 10.1039/C6CC02513G – ident: e_1_2_4_7_1 doi: 10.1021/jacs.6b09470 – ident: e_1_2_4_46_1 doi: 10.1039/c0jm03613g – ident: e_1_2_4_38_1 doi: 10.1016/j.carbon.2016.07.051 – ident: e_1_2_4_15_1 doi: 10.1039/c3cc39121c – ident: e_1_2_4_10_1 doi: 10.1016/j.electacta.2013.11.026 – ident: e_1_2_4_11_1 doi: 10.1126/science.1200832 – ident: e_1_2_4_37_1 doi: 10.1038/ncomms9668 – ident: e_1_2_4_57_1 doi: 10.1021/acsenergylett.6b00686 – ident: e_1_2_4_59_1 doi: 10.1016/j.electacta.2013.03.183 – ident: e_1_2_4_34_1 doi: 10.1016/j.catcom.2017.02.026 – ident: e_1_2_4_17_1 doi: 10.1002/slct.201700417 – ident: e_1_2_4_30_1 doi: 10.1021/jacs.6b11248 – ident: e_1_2_4_31_1 doi: 10.1002/chem.201003080 – ident: e_1_2_4_3_1 doi: 10.1016/j.nanoen.2016.11.033 – ident: e_1_2_4_18_1 doi: 10.1039/C6RA04771H – ident: e_1_2_4_35_1 doi: 10.1021/acscatal.7b02326 – ident: e_1_2_4_14_1 doi: 10.1002/cctc.201700324 – ident: e_1_2_4_43_1 doi: 10.1021/jp901077c – ident: e_1_2_4_49_1 doi: 10.1002/anie.201504707 – ident: e_1_2_4_56_1 doi: 10.1002/adma.201600979 – ident: e_1_2_4_29_1 doi: 10.1021/cm900166h – ident: e_1_2_4_36_1 doi: 10.1039/C6SC02105K – ident: e_1_2_4_39_1 doi: 10.1038/s41467-017-01100-7 – ident: e_1_2_4_8_1 doi: 10.1021/ar50088a003 – ident: e_1_2_4_42_1 doi: 10.1021/jp8078056 – ident: e_1_2_4_41_1 doi: 10.1016/j.progsurf.2003.09.001 – ident: e_1_2_4_51_1 doi: 10.1021/acs.jpcc.5b01485 – ident: e_1_2_4_9_1 doi: 10.1016/S0273-1223(97)00707-5 – ident: e_1_2_4_16_1 doi: 10.1039/C4RA05961A – ident: e_1_2_4_54_1 doi: 10.1021/jacs.7b06514 – ident: e_1_2_4_32_1 doi: 10.1002/adma.201703614 – ident: e_1_2_4_19_1 doi: 10.1016/j.carbon.2014.10.034 – ident: e_1_2_4_12_1 doi: 10.1002/adma.201304147 – ident: e_1_2_4_25_1 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_4_28_1 doi: 10.1039/C6TA06434E – ident: e_1_2_4_23_1 doi: 10.1021/ja5003907 – ident: e_1_2_4_60_1 doi: 10.1126/science.1170051 – ident: e_1_2_4_20_1 doi: 10.1021/acs.langmuir.5b01256 – ident: e_1_2_4_53_1 doi: 10.1002/adma.201502315 – ident: e_1_2_4_44_1 doi: 10.1039/C5RA18404E – ident: e_1_2_4_55_1 doi: 10.1021/nn303275d – ident: e_1_2_4_2_1 doi: 10.1021/ar400011z – ident: e_1_2_4_50_1 doi: 10.1021/jp5124037 – ident: e_1_2_4_45_1 doi: 10.1021/acscentsci.7b00160 – ident: e_1_2_4_22_1 doi: 10.1039/C4TA01506A |
SSID | ssj0009606 |
Score | 2.6967962 |
Snippet | Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Activation carbon nanocomposites Catalysis Catalysts Cathodes electrocatalysis Electrodes Electron microscopy Energy Sciences Free radicals Fuel cells INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Metal-organic frameworks oxygen reduction Platinum Proton exchange membrane fuel cells single atomic Co Wave dispersion |
Title | Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706758 https://www.ncbi.nlm.nih.gov/pubmed/29363838 https://www.proquest.com/docview/2013054935 https://www.proquest.com/docview/1990857218 https://www.osti.gov/servlets/purl/1422592 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVlT-mhbfq5TVpUKPTkJLYl2T4ubpZQ2LSkDeRm9DGCpY5d1l5IespPyG_ML8mMvetkS0uhBR9sJOGx_Gb0NJaeGXuf2Qgie5AGPjVpIHBWG2SpUkHsjIhV4mNlKA85O1ZHp-LTmTy7t4u_14cYEm7kGV28JgfXptm_Ew3VrtMNIvkX5LwYhGnBFrGikzv9KKLnndheLINMiXSt2ngQ7W823xiVRjV61-8Y5yaB7Uag6WOm17b3C0--7y1bs2d__iLr-D8P94Q9WtFTPunxtM0eQPWUPbwnWviM1cfzdlEj7m6urvMa567zCvmq41-xtASek8BIyydtfc5zyg1dNm3DkRrzzxeX2IqfkFgswYHPK_5lUSP55IcX_QZkPoNzNLsCPl1CyXMoy-Y5O50efsuPgtVvGwIrBYZPBZCYRHsZZxbJqAfQoY6licBZjfMxjQfgwKiNEyZU3kkvEueQR5pYW-fjF2xU1RW8Ylx6n1kIVZqAF6EGrZT1GViVgXNC6TEL1q-tsCtNc_q1Rln0asxRQR1ZDB05Zh-G-j96NY8_1twhFBTIQ0hM19KqI9sWlDGTWTRmu2twFCufb6gtBk-BWBuzd0Mxeit9gsGeq5dNEeLgn0qcdeMNXvagGgxB4oXBMMaSqIPGXywsJh9nk-Hq9b802mFbeJ72S-p22ahdLOENcqzWvO386BZGax-H |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgOQAHvqFLCxgJiVPabuI4yXGVdrVAd0GllbhF_hhLK9Kk2mSllhM_gd_IL2Em2aQsAiGBlEviWJk4b-w3E_uZsVeJ8cE3-7HnYh17AqNaL4ml9AKrRSAjF0hNecjZXE5PxdtPYTebkNbCtPoQfcKNPKPpr8nBKSG9d6UaqmwjHET6L0h6r7MbtK03yecfHF8pSBFBb-T2gtBLpIg73cZ9f2-z_sa4NCjRv37HOTcpbDMGTe4y3VnfTj35vLuq9a758ouw43-93j12Z81Q-biF1H12DYoH7PZPuoUPWTlf1MsSoff967e0xPB1USBltfwjlubAU9IYqfm4Ls94Sumhy6quOLJj_v7iEmvxY9KLJUTwRcE_LEvkn_zwol2DzGdwhnYXwCcryHkKeV49YqeTw5N06q13bvBMKLAHlQCRjpQLg8QgH3UAaqSCUPtgjcKQTOEBODYqbYUeSWdDJyJrkUrqQBnrgsdsUJQFbDEeOpcYGMk4AidGCpSUxiVgZALWCqmGzOu-W2bWsua0u0aetYLMfkYNmfUNOWSv-_vPW0GPP965TTDIkIqQnq6hiUemzihpFib-kO106MjWbl9RXew_BYJtyF72xeiw9BcGW65cVdkIx_84xMAbH_CkRVVvCHIv7A8DLPEbbPzFwmx8MBv3Z0__pdILdnN6MjvKjt7M322zW3g9bmfY7bBBvVzBM6RctX7eONUPLawjow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagkxA8bOO6sg2MhMRTtiZxnOSxSleNS8s0mLQ3y5djqSJLpiaVNp74CfxGfgnHSZutCIQEUl4S5ygnzrl8PrE_E_I61QEEepB4NlGJx3BU66UJ515oFAt5bEOuXB1yMuXHZ-zdeXR-axV_yw_RFdycZzTx2jn4pbGHN6Sh0jS8QY7-BTHvXbLB-CB1mzeMTm8IpBw-b9j2wshLOUtWtI2D4HBdfi0t9Up0r99BznUE26Sg8RaRK-XbmSdfDha1OtBff-F1_J-32yabS3xKh61BPSR3oHhEHtxiLXxMyumsnpdoeD--fc9KHLzOCgSshn7C1hxo5hhGajqsywuaueLQdVVXFLEx_Xh1jVL01LHFOnugs4KezEtEn_Toql2BTCdwgWoXQMcLyGkGeV49IWfjo8_Zsbfct8HTEcP4yQFiFUsbhalGNGoBpC_DSAVgtMQBmcQDMDNKZZjyuTWRZbExCCRVKLWx4VPSK8oCdgiNrE01-DyJwTJfguRc2xQ0T8EYxmWfeKvPJvSS1NztrZGLlo45EK4jRdeRffKmu_-ypfP44527zgoEAhHHpqvdtCNdC1cyi9KgT_ZWxiGWTl85WYyeDG2tT151zeiu7h8M9ly5qISP2T-JcNiND3jWGlWnCCIvjIYhtgSNafxFQzEcTYbd2fN_EXpJ7p2MxuLD2-n7XXIfLyft9Lo90qvnC9hHvFWrF41L_QSmqyJS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Coordinated+Single+Cobalt+Atom+Catalysts+for+Oxygen+Reduction+in+Proton+Exchange+Membrane+Fuel+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xiao+Xia&rft.au=Cullen%2C+David+A.&rft.au=Pan%2C+Yung%E2%80%90Tin&rft.au=Hwang%2C+Sooyeon&rft.date=2018-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201706758&rft.externalDBID=10.1002%252Fadma.201706758&rft.externalDocID=ADMA201706758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |