Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 11
Main Authors Wang, Xiao Xia, Cullen, David A., Pan, Yung‐Tin, Hwang, Sooyeon, Wang, Maoyu, Feng, Zhenxing, Wang, Jingyun, Engelhard, Mark H., Zhang, Hanguang, He, Yanghua, Shao, Yuyan, Su, Dong, More, Karren L., Spendelow, Jacob S., Wu, Gang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates. A nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal–organic frameworks with accurately controlled Co contents. Atomic CoN4 sites are observed by advanced electron microscopy combined with X‐ray absorption spectroscopy. Due to the high density of atomically dispersed Co sites, the catalyst achieves respectable activity and stability in acidic proton exchange membrane fuel cells.
AbstractList Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates. A nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal–organic frameworks with accurately controlled Co contents. Atomic CoN4 sites are observed by advanced electron microscopy combined with X‐ray absorption spectroscopy. Due to the high density of atomically dispersed Co sites, the catalyst achieves respectable activity and stability in acidic proton exchange membrane fuel cells.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm −2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN 4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.
Author He, Yanghua
Feng, Zhenxing
Pan, Yung‐Tin
Wang, Maoyu
Shao, Yuyan
Zhang, Hanguang
Hwang, Sooyeon
Su, Dong
Wang, Jingyun
Engelhard, Mark H.
Spendelow, Jacob S.
Wang, Xiao Xia
Cullen, David A.
Wu, Gang
More, Karren L.
Author_xml – sequence: 1
  givenname: Xiao Xia
  surname: Wang
  fullname: Wang, Xiao Xia
  organization: East China University of Science and Technology
– sequence: 2
  givenname: David A.
  surname: Cullen
  fullname: Cullen, David A.
  organization: Oak Ridge National Laboratory
– sequence: 3
  givenname: Yung‐Tin
  surname: Pan
  fullname: Pan, Yung‐Tin
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Sooyeon
  surname: Hwang
  fullname: Hwang, Sooyeon
  organization: Brookhaven National Laboratory
– sequence: 5
  givenname: Maoyu
  surname: Wang
  fullname: Wang, Maoyu
  organization: Oregon State University
– sequence: 6
  givenname: Zhenxing
  surname: Feng
  fullname: Feng, Zhenxing
  organization: Oregon State University
– sequence: 7
  givenname: Jingyun
  surname: Wang
  fullname: Wang, Jingyun
  organization: The State University of New York
– sequence: 8
  givenname: Mark H.
  surname: Engelhard
  fullname: Engelhard, Mark H.
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Hanguang
  surname: Zhang
  fullname: Zhang, Hanguang
  organization: The State University of New York
– sequence: 10
  givenname: Yanghua
  surname: He
  fullname: He, Yanghua
  organization: The State University of New York
– sequence: 11
  givenname: Yuyan
  surname: Shao
  fullname: Shao, Yuyan
  organization: Pacific Northwest National Laboratory
– sequence: 12
  givenname: Dong
  surname: Su
  fullname: Su, Dong
  organization: Brookhaven National Laboratory
– sequence: 13
  givenname: Karren L.
  surname: More
  fullname: More, Karren L.
  organization: Oak Ridge National Laboratory
– sequence: 14
  givenname: Jacob S.
  surname: Spendelow
  fullname: Spendelow, Jacob S.
  email: spendelow@lanl.gov
  organization: Los Alamos National Laboratory
– sequence: 15
  givenname: Gang
  orcidid: 0000-0003-4956-5208
  surname: Wu
  fullname: Wu, Gang
  email: gangwu@buffalo.edu
  organization: The State University of New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29363838$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1422592$$D View this record in Osti.gov
BookMark eNqFkU1rFDEYx4NU7LZ69ShBL152zctkZnJcxlaF1oov55BJntmmzCRtksHuzY_gZ_STmGVbhYIIgeTw-z08-f-P0IEPHhB6TsmKEsLeaDvpFSO0IXUj2kdoQQWjy4pIcYAWRHKxlHXVHqKjlK4IIbIm9RN0yCSvecvbBQofXY5hA_7Xj59dCNE6rzNY_MX5zQi4C70eM17nMOFOZz1uU054CBFf3G6LhT-DnU12wWPn8acYcnmd3JpL7TeAz2Hqo_aAT2cYcQfjmJ6ix4MeEzy7u4_Rt9OTr9375dnFuw_d-mxpRMXbZQ3Q9I0eBJeGMDIAaKq56BlYoyspdDnQEqp7W_W0HqwYqsZazuqea2MHfoxe7ueGlJ1KxmUwlyZ4DyYrWjEmJCvQ6z10HcPNDCmrySVT1iw7hzkpKiVpRcNoW9BXD9CrMEdfvqBK-pyIqmRdqBd31NxPYNV1dJOOW3WfdwGqPWBiSCnCoMpmepdfjtqNihK1q1XtalV_ai3a6oF2P_mfgtwL390I2__Qav32fP3X_Q3y0rZ8
CitedBy_id crossref_primary_10_1002_cctc_202001713
crossref_primary_10_1039_D1EN01111A
crossref_primary_10_1016_j_colsurfa_2023_132567
crossref_primary_10_1142_S1793604723400313
crossref_primary_10_1021_acs_iecr_3c01527
crossref_primary_10_1002_adma_202200595
crossref_primary_10_1016_j_scib_2020_06_020
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_1021_acsmaterialsau_2c00061
crossref_primary_10_1021_acsestengg_0c00136
crossref_primary_10_1002_ejic_202200489
crossref_primary_10_1002_advs_201801471
crossref_primary_10_1016_j_jelechem_2018_09_050
crossref_primary_10_1016_j_memsci_2020_117966
crossref_primary_10_1002_slct_202100055
crossref_primary_10_1016_j_cej_2023_142668
crossref_primary_10_1016_j_jcis_2022_12_102
crossref_primary_10_1021_acs_energyfuels_1c02486
crossref_primary_10_1007_s40843_024_3012_4
crossref_primary_10_1021_acscatal_2c01075
crossref_primary_10_1039_D0GC01835J
crossref_primary_10_1002_aenm_202003052
crossref_primary_10_1016_j_jpowsour_2019_227443
crossref_primary_10_1039_D2EE02949A
crossref_primary_10_1016_j_nanoen_2024_109740
crossref_primary_10_1002_sstr_202100103
crossref_primary_10_1016_j_matt_2021_06_038
crossref_primary_10_1021_acsaem_8b00490
crossref_primary_10_1016_j_apcatb_2023_122489
crossref_primary_10_1016_j_electacta_2022_139835
crossref_primary_10_1002_smll_202105409
crossref_primary_10_1088_1361_6528_ac3d64
crossref_primary_10_1002_chem_201904233
crossref_primary_10_1002_smll_202403767
crossref_primary_10_1016_j_ijhydene_2021_07_196
crossref_primary_10_1016_j_jcat_2023_115148
crossref_primary_10_1016_j_ijhydene_2020_11_210
crossref_primary_10_1039_D0NJ01373K
crossref_primary_10_1002_smll_202105892
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1007_s12274_021_3823_z
crossref_primary_10_1002_ente_201900312
crossref_primary_10_1002_adfm_202000768
crossref_primary_10_1016_j_apcatb_2021_120311
crossref_primary_10_1002_aenm_202003018
crossref_primary_10_1007_s12274_022_4112_1
crossref_primary_10_1002_cctc_202000826
crossref_primary_10_1002_adma_202003134
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1002_adma_202501302
crossref_primary_10_1002_celc_201900343
crossref_primary_10_1039_C9GC03477C
crossref_primary_10_1021_acs_analchem_3c01070
crossref_primary_10_1002_ange_201804958
crossref_primary_10_1016_j_mattod_2018_10_038
crossref_primary_10_1002_smtd_202100833
crossref_primary_10_1039_D2TA08682D
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1016_j_jpowsour_2021_230143
crossref_primary_10_1039_D1TA05605K
crossref_primary_10_1002_cctc_202201192
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1021_acsami_9b19268
crossref_primary_10_1002_anie_202108882
crossref_primary_10_1002_smll_202002518
crossref_primary_10_1007_s12274_020_3141_x
crossref_primary_10_1021_acs_energyfuels_2c02061
crossref_primary_10_1007_s40820_021_00676_6
crossref_primary_10_1016_j_cej_2021_129719
crossref_primary_10_1002_anie_202317884
crossref_primary_10_1016_j_jcis_2020_09_048
crossref_primary_10_1016_j_cej_2020_128101
crossref_primary_10_1021_acs_jpcc_1c02833
crossref_primary_10_1039_C8RA00602D
crossref_primary_10_1002_adma_202006613
crossref_primary_10_1016_j_xcrp_2020_100083
crossref_primary_10_1016_j_ijhydene_2022_03_199
crossref_primary_10_1002_ange_202016977
crossref_primary_10_1039_C8EE02694G
crossref_primary_10_3390_chemengineering3010016
crossref_primary_10_1016_j_apsusc_2021_151367
crossref_primary_10_1007_s40843_022_2054_5
crossref_primary_10_1016_j_apcatb_2023_122694
crossref_primary_10_1016_j_cej_2020_125064
crossref_primary_10_1016_j_nanoen_2019_04_076
crossref_primary_10_1002_adma_201808193
crossref_primary_10_1016_j_jechem_2024_01_035
crossref_primary_10_1021_acsami_9b18511
crossref_primary_10_1039_D3GC03200K
crossref_primary_10_1039_C9SE00686A
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1021_acsmaterialslett_4c01173
crossref_primary_10_1021_acssuschemeng_8b05005
crossref_primary_10_1039_D4CY00259H
crossref_primary_10_1016_j_nanoen_2018_08_005
crossref_primary_10_1002_cssc_202300871
crossref_primary_10_1007_s12274_021_3816_y
crossref_primary_10_1002_ange_201806936
crossref_primary_10_1016_j_surfin_2024_105022
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1016_j_jelechem_2023_117316
crossref_primary_10_1002_anie_202009991
crossref_primary_10_1021_acsenergylett_9b00804
crossref_primary_10_1002_cphc_202000595
crossref_primary_10_1007_s12274_020_2755_3
crossref_primary_10_1016_j_compositesb_2020_108012
crossref_primary_10_1021_acsami_3c03203
crossref_primary_10_1007_s41918_022_00156_4
crossref_primary_10_1039_D1TA06144E
crossref_primary_10_1021_acsenergylett_1c01316
crossref_primary_10_1021_acs_jpcc_1c07682
crossref_primary_10_1016_j_bios_2019_111869
crossref_primary_10_1039_D2TA07751E
crossref_primary_10_1021_acsnano_9b05913
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1016_j_cej_2023_143593
crossref_primary_10_1002_adfm_202111446
crossref_primary_10_1002_smtd_201900821
crossref_primary_10_1002_batt_202400484
crossref_primary_10_1002_adfm_202300895
crossref_primary_10_1016_j_ccr_2022_214554
crossref_primary_10_1002_anie_201811573
crossref_primary_10_1002_aenm_202002592
crossref_primary_10_1002_ange_202012329
crossref_primary_10_1039_C9TA08938A
crossref_primary_10_1007_s11705_020_2017_7
crossref_primary_10_1039_D0NR05907B
crossref_primary_10_1002_ange_201908023
crossref_primary_10_1149_2_1101810jes
crossref_primary_10_1016_j_cjche_2023_09_011
crossref_primary_10_1016_j_trechm_2021_08_008
crossref_primary_10_1002_tcr_202100329
crossref_primary_10_1038_s41578_024_00703_z
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1007_s41061_018_0229_9
crossref_primary_10_1002_chem_202002427
crossref_primary_10_1007_s11771_021_4696_8
crossref_primary_10_1016_j_apcatb_2021_120390
crossref_primary_10_1039_D1CC00083G
crossref_primary_10_3390_electrochem2040037
crossref_primary_10_1021_acsanm_4c01704
crossref_primary_10_1007_s11426_018_9441_4
crossref_primary_10_1002_anie_202009700
crossref_primary_10_1007_s41918_021_00124_4
crossref_primary_10_3390_inorganics11030101
crossref_primary_10_1002_cctc_202401421
crossref_primary_10_1039_D1NJ00102G
crossref_primary_10_1016_j_cej_2021_129096
crossref_primary_10_1016_j_nanoen_2020_105085
crossref_primary_10_1016_j_jelechem_2023_117510
crossref_primary_10_1002_adma_201801995
crossref_primary_10_1021_acssuschemeng_8b02170
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1002_slct_201900671
crossref_primary_10_1016_j_carbon_2020_06_002
crossref_primary_10_1021_acsami_0c12069
crossref_primary_10_1002_anie_202005577
crossref_primary_10_1016_j_jechem_2021_10_027
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1016_j_jcis_2021_07_125
crossref_primary_10_1016_j_jece_2022_107457
crossref_primary_10_1149_1945_7111_acfc2a
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1016_j_jechem_2021_10_014
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1021_jacs_1c11331
crossref_primary_10_1002_cctc_201901584
crossref_primary_10_1002_smll_201905363
crossref_primary_10_1002_adfm_202010916
crossref_primary_10_1021_acsaem_2c02606
crossref_primary_10_1016_j_jcis_2022_01_042
crossref_primary_10_1007_s12274_019_2345_4
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_1039_D1EN00944C
crossref_primary_10_1016_j_nanoen_2025_110665
crossref_primary_10_1021_acsenergylett_2c02579
crossref_primary_10_1021_acsami_9b18101
crossref_primary_10_1007_s42114_021_00308_y
crossref_primary_10_1021_acs_chemrev_1c00331
crossref_primary_10_1016_j_cej_2023_143776
crossref_primary_10_1039_D3RA07925B
crossref_primary_10_1039_C9NR07632H
crossref_primary_10_1002_aenm_201902844
crossref_primary_10_1002_ange_201909312
crossref_primary_10_1016_j_cej_2021_134460
crossref_primary_10_1021_acsami_0c08829
crossref_primary_10_1021_acs_jpclett_0c02812
crossref_primary_10_1021_acsanm_3c00827
crossref_primary_10_1002_ange_202000324
crossref_primary_10_1002_asia_202200939
crossref_primary_10_1021_acs_jpcc_1c01910
crossref_primary_10_1016_j_carbon_2018_10_057
crossref_primary_10_1016_j_jechem_2021_05_046
crossref_primary_10_1039_C9TA12838G
crossref_primary_10_1002_agt2_335
crossref_primary_10_1002_eem2_12064
crossref_primary_10_1039_C9TA11852G
crossref_primary_10_1002_adfm_202112805
crossref_primary_10_1039_C9EE01722D
crossref_primary_10_1021_acscatal_8b02556
crossref_primary_10_1021_acsami_8b11871
crossref_primary_10_1088_2515_7639_abebe8
crossref_primary_10_1002_smll_202106279
crossref_primary_10_1016_j_ijhydene_2022_04_110
crossref_primary_10_3762_bjnano_10_125
crossref_primary_10_1002_smtd_202000751
crossref_primary_10_1002_chem_201903822
crossref_primary_10_1016_j_mtener_2020_100574
crossref_primary_10_1002_aic_18798
crossref_primary_10_1016_j_mtener_2020_100579
crossref_primary_10_1002_agt2_106
crossref_primary_10_1002_cssc_202401713
crossref_primary_10_1021_acsami_9b13474
crossref_primary_10_1039_D0CP00657B
crossref_primary_10_3390_nano12193331
crossref_primary_10_1016_j_jcis_2022_02_080
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1002_ange_202017288
crossref_primary_10_1016_j_ccr_2021_213804
crossref_primary_10_1002_cey2_484
crossref_primary_10_1021_acscatal_0c01459
crossref_primary_10_1039_D0CC06492K
crossref_primary_10_3390_catal9020144
crossref_primary_10_1021_jacs_8b09092
crossref_primary_10_1016_j_ijhydene_2022_12_225
crossref_primary_10_1088_1361_6528_ab46d8
crossref_primary_10_26599_NRE_2024_9120122
crossref_primary_10_1007_s10853_024_10345_9
crossref_primary_10_1002_eem2_12085
crossref_primary_10_1002_smll_201903380
crossref_primary_10_1002_smtd_202100460
crossref_primary_10_1039_C9TA12171D
crossref_primary_10_1002_ange_202416070
crossref_primary_10_1016_j_jechem_2021_08_041
crossref_primary_10_1021_acscatal_8b00398
crossref_primary_10_1002_smll_202107141
crossref_primary_10_1039_D3TA06945A
crossref_primary_10_1039_D1NR04850C
crossref_primary_10_1039_D3TA02217J
crossref_primary_10_1016_j_cej_2022_140799
crossref_primary_10_1016_j_jcis_2022_08_108
crossref_primary_10_1021_acsaem_9b01430
crossref_primary_10_1002_sstr_202300007
crossref_primary_10_1021_acsnano_9b02930
crossref_primary_10_1002_anie_202009331
crossref_primary_10_1002_smtd_202201078
crossref_primary_10_1039_D4TA02646B
crossref_primary_10_1016_j_jtice_2019_08_015
crossref_primary_10_1039_D0NR05337F
crossref_primary_10_1038_s41467_022_28346_0
crossref_primary_10_1021_acs_nanolett_0c04898
crossref_primary_10_1002_adfm_201902041
crossref_primary_10_1002_smll_202302338
crossref_primary_10_1021_acsenergylett_9b00893
crossref_primary_10_1063_5_0045801
crossref_primary_10_1016_j_cej_2021_132642
crossref_primary_10_1039_D1TA08412G
crossref_primary_10_1021_acs_chemmater_0c03614
crossref_primary_10_26599_NRE_2024_9120144
crossref_primary_10_1007_s42154_021_00146_0
crossref_primary_10_1016_j_ijhydene_2019_12_205
crossref_primary_10_1002_adma_202008151
crossref_primary_10_1021_acsami_0c16081
crossref_primary_10_1007_s11243_024_00629_z
crossref_primary_10_1016_j_gce_2021_12_007
crossref_primary_10_1007_s40195_021_01229_x
crossref_primary_10_1007_s11708_024_0928_6
crossref_primary_10_1007_s12598_021_01865_3
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_1021_acs_jpcc_0c00352
crossref_primary_10_1021_acscatal_3c03270
crossref_primary_10_1021_acsmaterialsau_1c00041
crossref_primary_10_1016_j_cej_2024_152284
crossref_primary_10_1002_adma_202311105
crossref_primary_10_1021_acscatal_4c00781
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1021_acsami_0c05370
crossref_primary_10_1002_ange_202317884
crossref_primary_10_1039_D3TA02149A
crossref_primary_10_1021_acsami_8b19148
crossref_primary_10_1088_2515_7639_ac01ac
crossref_primary_10_1016_j_apsusc_2020_148325
crossref_primary_10_1016_j_cej_2024_153126
crossref_primary_10_1007_s12274_021_3678_3
crossref_primary_10_1016_j_jechem_2023_11_018
crossref_primary_10_1016_j_apcatb_2022_121763
crossref_primary_10_1002_aenm_201900375
crossref_primary_10_1039_C9EE00877B
crossref_primary_10_1039_D1RA08817C
crossref_primary_10_1016_j_ica_2020_120027
crossref_primary_10_3390_nano12122106
crossref_primary_10_1007_s11426_024_2397_6
crossref_primary_10_1016_j_cej_2024_155778
crossref_primary_10_1002_smtd_201900596
crossref_primary_10_1016_j_cej_2022_134913
crossref_primary_10_1039_D2NJ05748D
crossref_primary_10_1016_j_nanoen_2019_104288
crossref_primary_10_1016_j_joule_2018_09_010
crossref_primary_10_1039_D0EE01968B
crossref_primary_10_1016_j_joule_2019_12_014
crossref_primary_10_1002_ange_202200465
crossref_primary_10_1002_bkcs_12287
crossref_primary_10_1039_D2QM00763K
crossref_primary_10_1007_s40242_023_3001_9
crossref_primary_10_1021_acs_langmuir_2c01130
crossref_primary_10_1016_j_mtchem_2023_101728
crossref_primary_10_1007_s00604_019_3737_6
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1002_adma_202003577
crossref_primary_10_1039_C9EE04040D
crossref_primary_10_1002_aesr_202100019
crossref_primary_10_1039_C9TA08862H
crossref_primary_10_1016_j_envres_2020_110195
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_cej_2021_129619
crossref_primary_10_1002_smll_202407146
crossref_primary_10_1021_acscatal_1c05633
crossref_primary_10_1002_adma_201908232
crossref_primary_10_1016_j_jcis_2022_12_073
crossref_primary_10_1039_D1NR07595K
crossref_primary_10_1002_anie_202416070
crossref_primary_10_1007_s40242_020_0111_5
crossref_primary_10_1016_j_jelechem_2024_118369
crossref_primary_10_1016_j_mattod_2019_10_006
crossref_primary_10_1021_acscatal_1c04550
crossref_primary_10_1002_cctc_201801174
crossref_primary_10_1039_D3TA05023H
crossref_primary_10_3390_nano13071188
crossref_primary_10_1038_s41467_020_17782_5
crossref_primary_10_1016_j_nanoen_2020_104469
crossref_primary_10_1039_D3ME00191A
crossref_primary_10_1021_jacs_9b09234
crossref_primary_10_1039_D2TA08808H
crossref_primary_10_1002_aenm_201803737
crossref_primary_10_1149_2_0201907jes
crossref_primary_10_1002_smll_202202014
crossref_primary_10_1002_ange_201808226
crossref_primary_10_1007_s11426_020_9835_8
crossref_primary_10_1007_s41918_019_00030_w
crossref_primary_10_1007_s40820_019_0277_x
crossref_primary_10_1038_s41467_019_09596_x
crossref_primary_10_1002_adma_202209552
crossref_primary_10_1021_acsanm_3c04202
crossref_primary_10_1021_acscatal_8b04117
crossref_primary_10_1021_acscatal_0c05446
crossref_primary_10_1016_j_ijhydene_2020_07_178
crossref_primary_10_1002_advs_202206949
crossref_primary_10_1002_aenm_202102665
crossref_primary_10_1021_acscatal_0c04358
crossref_primary_10_1021_acs_jpcc_3c00571
crossref_primary_10_1039_D2QI02616C
crossref_primary_10_1016_j_cej_2024_150967
crossref_primary_10_1038_s41467_021_21919_5
crossref_primary_10_1002_anie_202012329
crossref_primary_10_1002_adma_202003300
crossref_primary_10_1002_anie_202104494
crossref_primary_10_1021_acsnano_0c08652
crossref_primary_10_1016_j_coelec_2021_100803
crossref_primary_10_1021_acsenergylett_0c00812
crossref_primary_10_3390_met12071059
crossref_primary_10_1021_jacs_9b08362
crossref_primary_10_1016_j_ces_2021_116442
crossref_primary_10_1088_1361_6528_ab1d01
crossref_primary_10_1002_cey2_426
crossref_primary_10_1039_D2RE00357K
crossref_primary_10_1021_acscatal_1c01473
crossref_primary_10_1039_D1EE01715B
crossref_primary_10_1002_anie_202000324
crossref_primary_10_1002_smtd_201800439
crossref_primary_10_1039_C9NR07914A
crossref_primary_10_1002_smtd_201800438
crossref_primary_10_1016_j_jcis_2021_04_048
crossref_primary_10_1021_acsestengg_0c00174
crossref_primary_10_1002_adma_201807615
crossref_primary_10_1007_s41918_023_00180_y
crossref_primary_10_1002_cey2_74
crossref_primary_10_1039_D0TA08732G
crossref_primary_10_1002_aenm_201802856
crossref_primary_10_1002_smll_202101607
crossref_primary_10_1007_s12274_020_3072_6
crossref_primary_10_1002_chem_201903482
crossref_primary_10_1039_D0SE00271B
crossref_primary_10_1016_j_apsusc_2020_148714
crossref_primary_10_1016_j_ensm_2020_03_023
crossref_primary_10_1039_C9NH00095J
crossref_primary_10_1002_cctc_201900604
crossref_primary_10_1021_acsnano_4c06404
crossref_primary_10_1088_1361_648X_ab38da
crossref_primary_10_1002_adfm_202415046
crossref_primary_10_1002_chem_202100642
crossref_primary_10_1021_acs_jpclett_4c03682
crossref_primary_10_1002_cctc_202001855
crossref_primary_10_1002_smtd_202401333
crossref_primary_10_1149_1945_7111_ac766e
crossref_primary_10_1002_cey2_47
crossref_primary_10_1021_acsami_8b14323
crossref_primary_10_1002_smll_202402982
crossref_primary_10_1002_smll_201905920
crossref_primary_10_1016_j_carbon_2021_04_072
crossref_primary_10_1016_j_carbon_2019_09_029
crossref_primary_10_1021_acssuschemeng_0c07490
crossref_primary_10_1039_D4SC04905E
crossref_primary_10_1016_j_ensm_2020_03_008
crossref_primary_10_1016_j_cej_2021_129689
crossref_primary_10_1021_acs_iecr_4c01443
crossref_primary_10_1016_j_cclet_2021_07_038
crossref_primary_10_1016_j_renene_2020_05_082
crossref_primary_10_1039_C8NR07945E
crossref_primary_10_1002_celc_201800657
crossref_primary_10_1007_s12274_022_4950_x
crossref_primary_10_1016_j_fuproc_2023_107879
crossref_primary_10_1002_smll_202307135
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1039_D5TA01226K
crossref_primary_10_1002_eom2_12431
crossref_primary_10_1016_j_fuel_2022_126135
crossref_primary_10_1002_smll_201902860
crossref_primary_10_1016_j_ces_2023_119304
crossref_primary_10_1038_s41929_018_0164_8
crossref_primary_10_1021_jacs_4c02031
crossref_primary_10_1016_j_carbon_2022_05_003
crossref_primary_10_1002_aenm_201903181
crossref_primary_10_1021_acsami_9b11830
crossref_primary_10_1002_ppsc_201900100
crossref_primary_10_1021_acsnano_0c05088
crossref_primary_10_1002_smll_202004809
crossref_primary_10_1016_j_ccr_2022_214602
crossref_primary_10_1002_smtd_201800471
crossref_primary_10_1007_s41918_019_00033_7
crossref_primary_10_1002_anie_201806936
crossref_primary_10_1021_acsanm_3c04040
crossref_primary_10_1021_acssuschemeng_0c02158
crossref_primary_10_1039_C8TA04064H
crossref_primary_10_1002_smll_202200911
crossref_primary_10_1002_batt_202100217
crossref_primary_10_1039_D1EE01675J
crossref_primary_10_1039_D1NJ05186E
crossref_primary_10_1016_j_mattod_2022_04_002
crossref_primary_10_1021_acscatal_9b04963
crossref_primary_10_1007_s00894_023_05620_6
crossref_primary_10_1021_acsnano_4c03261
crossref_primary_10_1002_adma_202310912
crossref_primary_10_1021_acs_nanolett_3c00133
crossref_primary_10_1039_C9TA05981D
crossref_primary_10_1039_C8NR05861J
crossref_primary_10_1021_acssuschemeng_0c04324
crossref_primary_10_1039_D3EW00302G
crossref_primary_10_1002_ange_202104494
crossref_primary_10_1016_j_mcat_2019_03_023
crossref_primary_10_1002_smtd_201800443
crossref_primary_10_1016_j_jcis_2021_02_125
crossref_primary_10_1149_2_0141907jes
crossref_primary_10_1016_j_apcatb_2018_11_037
crossref_primary_10_1002_ange_201811573
crossref_primary_10_1002_aenm_201902084
crossref_primary_10_1002_smll_202104205
crossref_primary_10_1002_adma_201804799
crossref_primary_10_1002_adma_202002170
crossref_primary_10_1002_cssc_201801583
crossref_primary_10_1021_acs_iecr_2c03379
crossref_primary_10_1002_smll_202102425
crossref_primary_10_1002_ange_202216041
crossref_primary_10_1039_D2RA00757F
crossref_primary_10_1021_acsami_1c16121
crossref_primary_10_1002_anie_202200465
crossref_primary_10_1021_acs_nanolett_8b00978
crossref_primary_10_1002_ange_202108882
crossref_primary_10_1039_D4TA07178F
crossref_primary_10_1016_j_jallcom_2020_158246
crossref_primary_10_1039_C9TA01953G
crossref_primary_10_1039_D3EY00265A
crossref_primary_10_1002_anie_201905241
crossref_primary_10_1016_j_fuel_2024_132588
crossref_primary_10_1039_C9CC10036A
crossref_primary_10_1039_D1TC02729H
crossref_primary_10_1007_s40820_024_01484_4
crossref_primary_10_1002_cphc_202100692
crossref_primary_10_1002_celc_202300110
crossref_primary_10_1021_acs_chemmater_8b02275
crossref_primary_10_1016_j_nanoen_2018_03_059
crossref_primary_10_1002_smll_202203147
crossref_primary_10_1007_s40820_024_01580_5
crossref_primary_10_1016_j_cej_2020_127135
crossref_primary_10_1002_anie_201804958
crossref_primary_10_1021_acssuschemeng_0c06558
crossref_primary_10_1002_anie_202016977
crossref_primary_10_1016_j_fuel_2024_132119
crossref_primary_10_1038_s41467_021_25911_x
crossref_primary_10_1039_D2CY01213H
crossref_primary_10_1016_j_nanoen_2018_12_009
crossref_primary_10_1002_er_5074
crossref_primary_10_1007_s11467_020_0980_6
crossref_primary_10_1038_s41598_019_55207_6
crossref_primary_10_1007_s40820_023_01195_2
crossref_primary_10_1002_smll_202105329
crossref_primary_10_3390_catal12050525
crossref_primary_10_1021_acsnano_0c10637
crossref_primary_10_1002_smll_202310318
crossref_primary_10_1002_smll_202405624
crossref_primary_10_1021_acs_est_2c00706
crossref_primary_10_1002_anie_202317776
crossref_primary_10_1002_cctc_201900547
crossref_primary_10_1021_acssuschemeng_8b05993
crossref_primary_10_1149_1945_7111_ac5795
crossref_primary_10_1007_s12274_023_5813_9
crossref_primary_10_1002_smll_202105335
crossref_primary_10_1002_smll_202300758
crossref_primary_10_1016_j_carbon_2019_08_060
crossref_primary_10_1016_j_jcis_2024_02_144
crossref_primary_10_1039_D4YA00184B
crossref_primary_10_1016_j_xcrp_2022_100773
crossref_primary_10_1016_j_aca_2023_341772
crossref_primary_10_1016_j_ijhydene_2019_08_190
crossref_primary_10_3390_catal11101163
crossref_primary_10_1002_anie_202107053
crossref_primary_10_1016_j_checat_2022_09_009
crossref_primary_10_1016_j_ijhydene_2022_02_225
crossref_primary_10_1149_1945_7111_ab7093
crossref_primary_10_1021_acssuschemeng_3c02484
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1016_j_micromeso_2021_111002
crossref_primary_10_1016_j_cej_2022_141101
crossref_primary_10_1016_j_cej_2021_132119
crossref_primary_10_1002_smll_202301675
crossref_primary_10_1039_D2TA05585F
crossref_primary_10_1021_acssuschemeng_3c02007
crossref_primary_10_1039_D0EE00832J
crossref_primary_10_1002_ange_202010013
crossref_primary_10_1002_adma_201904548
crossref_primary_10_1039_D1GC01040A
crossref_primary_10_1016_j_electacta_2019_135397
crossref_primary_10_1002_cssc_202100502
crossref_primary_10_1021_acsami_4c16972
crossref_primary_10_1063_5_0247485
crossref_primary_10_1016_j_mattod_2020_02_019
crossref_primary_10_1002_adma_201905622
crossref_primary_10_1016_j_cej_2020_125796
crossref_primary_10_1021_acscatal_9b01617
crossref_primary_10_1039_D0TA07163C
crossref_primary_10_1039_D0EE03351K
crossref_primary_10_1039_D1EE00142F
crossref_primary_10_1039_D3NJ01840G
crossref_primary_10_1002_adma_202401163
crossref_primary_10_1039_D3EE02644B
crossref_primary_10_1002_cctc_202200134
crossref_primary_10_1007_s40820_019_0324_7
crossref_primary_10_1002_adfm_202005000
crossref_primary_10_3390_app12136659
crossref_primary_10_3389_fchem_2019_00738
crossref_primary_10_1039_D1TA08029F
crossref_primary_10_1002_smll_202003096
crossref_primary_10_1002_smtd_202000016
crossref_primary_10_1021_acs_jpcc_9b03730
crossref_primary_10_1039_D0TA02549F
crossref_primary_10_1002_elan_202200009
crossref_primary_10_1021_acsenergylett_2c00473
crossref_primary_10_1002_adfm_201900015
crossref_primary_10_1002_celc_201801144
crossref_primary_10_1039_D4CC03875D
crossref_primary_10_1016_j_microc_2020_105271
crossref_primary_10_1002_ange_202003917
crossref_primary_10_1016_j_susmat_2022_e00560
crossref_primary_10_1007_s11581_024_05767_z
crossref_primary_10_1021_jacs_9b07712
crossref_primary_10_1002_cctc_202300849
crossref_primary_10_1016_j_jechem_2022_07_018
crossref_primary_10_1016_j_jechem_2022_05_007
crossref_primary_10_1039_D1TA09645A
crossref_primary_10_1016_j_cej_2021_132150
crossref_primary_10_1021_acs_chemrev_0c00594
crossref_primary_10_1016_j_jpowsour_2021_230891
crossref_primary_10_1016_j_gee_2021_05_008
crossref_primary_10_1002_smtd_202000672
crossref_primary_10_1021_acs_jpcc_9b04803
crossref_primary_10_1002_anie_201808226
crossref_primary_10_1002_cctc_202002045
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1039_D4TA06720G
crossref_primary_10_1021_acssuschemeng_3c01353
crossref_primary_10_1038_s41467_022_33275_z
crossref_primary_10_3390_nano13081330
crossref_primary_10_1002_smll_201803520
crossref_primary_10_1002_bte2_20230019
crossref_primary_10_1021_acsaem_0c00215
crossref_primary_10_1021_acs_chemmater_3c01171
crossref_primary_10_1021_acsaem_0c00211
crossref_primary_10_3390_nano10101947
crossref_primary_10_1021_acs_analchem_2c01370
crossref_primary_10_1149_1945_7111_ac4842
crossref_primary_10_1039_D0CY01408G
crossref_primary_10_1021_acs_nanolett_1c00702
crossref_primary_10_1007_s40242_019_8330_3
crossref_primary_10_1002_adfm_202422378
crossref_primary_10_1002_cssc_202002098
crossref_primary_10_1039_D4TA03760J
crossref_primary_10_1007_s12274_022_5097_5
crossref_primary_10_1016_j_carbon_2019_12_058
crossref_primary_10_1021_acs_langmuir_4c01976
crossref_primary_10_1021_acsami_1c03477
crossref_primary_10_1021_acs_chemrev_2c00424
crossref_primary_10_1021_acsami_9b10723
crossref_primary_10_1016_j_apsusc_2018_09_248
crossref_primary_10_1039_D4CC02106A
crossref_primary_10_1039_C9TA08134H
crossref_primary_10_1021_acsaem_3c02810
crossref_primary_10_1002_aenm_201903815
crossref_primary_10_1016_j_ijhydene_2021_10_199
crossref_primary_10_1007_s12274_022_4497_x
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1002_er_6796
crossref_primary_10_1039_D3TA04792J
crossref_primary_10_1002_aenm_202002644
crossref_primary_10_1002_adfm_202110748
crossref_primary_10_1002_anie_201908023
crossref_primary_10_1038_s41929_020_00546_1
crossref_primary_10_1007_s11244_024_01988_8
crossref_primary_10_1002_adfm_202007602
crossref_primary_10_1021_acs_jpclett_2c00209
crossref_primary_10_1021_acscatal_0c05701
crossref_primary_10_1016_j_mtener_2020_100452
crossref_primary_10_1002_adfm_202314554
crossref_primary_10_1002_cctc_201801679
crossref_primary_10_1002_aenm_202001561
crossref_primary_10_1016_j_jpowsour_2019_02_027
crossref_primary_10_1002_ange_202303185
crossref_primary_10_1039_D1QM00809A
crossref_primary_10_1016_j_ijhydene_2021_11_015
crossref_primary_10_1016_j_apsusc_2021_148934
crossref_primary_10_1007_s10098_023_02686_x
crossref_primary_10_1016_j_jallcom_2023_169441
crossref_primary_10_1021_acsnano_9b01953
crossref_primary_10_1002_anie_202003917
crossref_primary_10_1039_D1TA02833B
crossref_primary_10_1039_D0CY01311K
crossref_primary_10_1002_smll_202304655
crossref_primary_10_1039_D1CC07228E
crossref_primary_10_1039_C9EE03273H
crossref_primary_10_1002_ange_202009991
crossref_primary_10_1002_adma_201800528
crossref_primary_10_1021_acscatal_1c04286
crossref_primary_10_1002_aenm_202000689
crossref_primary_10_1021_acsanm_9b00144
crossref_primary_10_1039_D1TA03176G
crossref_primary_10_1002_cssc_202000702
crossref_primary_10_1002_cey2_136
crossref_primary_10_1007_s12598_022_02215_7
crossref_primary_10_1002_cssc_202101330
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1038_s41929_019_0304_9
crossref_primary_10_1002_smtd_202100571
crossref_primary_10_1016_j_jcat_2021_11_021
crossref_primary_10_1016_j_inoche_2019_01_008
crossref_primary_10_1002_cjoc_202200661
crossref_primary_10_1016_j_jcat_2024_115296
crossref_primary_10_1002_cey2_382
crossref_primary_10_1007_s40820_021_00768_3
crossref_primary_10_1021_acs_energyfuels_1c00758
crossref_primary_10_1016_j_snb_2021_130108
crossref_primary_10_1016_j_coelec_2020_08_009
crossref_primary_10_1039_C9NJ01983A
crossref_primary_10_1002_adma_202107954
crossref_primary_10_1002_cssc_202101341
crossref_primary_10_1002_ange_202009331
crossref_primary_10_1016_j_nanoms_2021_03_006
crossref_primary_10_1002_adma_202301894
crossref_primary_10_1002_anie_202303185
crossref_primary_10_1039_C8TA11785C
crossref_primary_10_1039_C9EE00867E
crossref_primary_10_1002_admi_202201817
crossref_primary_10_1007_s12274_022_4196_7
crossref_primary_10_1016_j_jcis_2024_05_005
crossref_primary_10_1038_s41929_019_0237_3
crossref_primary_10_1002_anie_202017288
crossref_primary_10_1002_ange_202317776
crossref_primary_10_1002_er_5650
crossref_primary_10_1002_adfm_202418602
crossref_primary_10_1002_adma_202312797
crossref_primary_10_1016_j_ccr_2020_213678
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1007_s12274_021_3479_8
crossref_primary_10_1021_acscatal_4c01752
crossref_primary_10_1002_smll_202206071
crossref_primary_10_3390_pr11020361
crossref_primary_10_1002_adma_201805157
crossref_primary_10_1039_D4RA06077F
crossref_primary_10_1039_D3NJ00108C
crossref_primary_10_3390_electronics11172776
crossref_primary_10_1002_ente_201800483
crossref_primary_10_1002_cssc_202000537
crossref_primary_10_1021_acssuschemeng_0c01882
crossref_primary_10_1002_eem2_12128
crossref_primary_10_1021_acs_chemrev_9b00311
crossref_primary_10_1002_smll_202005148
crossref_primary_10_1016_j_cej_2023_142054
crossref_primary_10_1016_j_jechem_2022_09_047
crossref_primary_10_1002_aenm_202000400
crossref_primary_10_1007_s11356_023_29990_9
crossref_primary_10_1002_ange_201905241
crossref_primary_10_1016_j_jcat_2021_10_011
crossref_primary_10_1016_j_nanoen_2018_06_023
crossref_primary_10_1021_acs_nanolett_0c02167
crossref_primary_10_1002_smll_201906735
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1002_adfm_202011289
crossref_primary_10_1021_acscatal_2c04807
crossref_primary_10_1002_aenm_202303740
crossref_primary_10_1021_acsami_1c10059
crossref_primary_10_1016_j_apsusc_2023_157154
crossref_primary_10_1016_j_nanoen_2019_104164
crossref_primary_10_1039_C9CS00903E
crossref_primary_10_1016_j_ccr_2020_213214
crossref_primary_10_1016_j_ijhydene_2021_09_133
crossref_primary_10_1021_accountsmr_1c00226
crossref_primary_10_1002_cey2_342
crossref_primary_10_1016_j_ccr_2020_213447
crossref_primary_10_1039_D5TA00827A
crossref_primary_10_1038_s41467_020_19309_4
crossref_primary_10_1039_D0NJ00213E
crossref_primary_10_1039_D2CC03630D
crossref_primary_10_1016_j_inoche_2024_113383
crossref_primary_10_1002_ece2_39
crossref_primary_10_1002_cssc_202201795
crossref_primary_10_1002_smsc_202100046
crossref_primary_10_1016_j_apsusc_2024_160497
crossref_primary_10_1021_acs_jpcc_3c02841
crossref_primary_10_1039_C9TA12207A
crossref_primary_10_1021_acs_jpcc_3c02840
crossref_primary_10_1039_D2DT00213B
crossref_primary_10_1021_acs_analchem_9b02901
crossref_primary_10_1021_acsami_3c09412
crossref_primary_10_1007_s40843_020_1609_9
crossref_primary_10_1016_j_pnsc_2020_10_004
crossref_primary_10_1021_acscatal_0c05544
crossref_primary_10_1007_s11814_021_0741_4
crossref_primary_10_1016_j_nanoen_2020_105209
crossref_primary_10_1016_j_jechem_2023_03_042
crossref_primary_10_1002_asia_202300862
crossref_primary_10_1021_acssuschemeng_0c04021
crossref_primary_10_1021_acscatal_2c01358
crossref_primary_10_1007_s40242_021_1374_1
crossref_primary_10_1016_j_cej_2021_134084
crossref_primary_10_1016_j_cej_2022_136560
crossref_primary_10_1021_acscatal_1c02259
crossref_primary_10_1007_s42864_022_00197_8
crossref_primary_10_1021_acsami_9b14839
crossref_primary_10_1016_j_xinn_2023_100518
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1039_D1QM00031D
crossref_primary_10_1039_C9CS00906J
crossref_primary_10_1021_acs_chemrev_0c00094
crossref_primary_10_1038_s41467_020_19599_8
crossref_primary_10_1002_aenm_202101222
crossref_primary_10_1016_j_pnsc_2020_10_018
crossref_primary_10_1039_D1TC01905H
crossref_primary_10_1039_D2CY00427E
crossref_primary_10_1002_smll_202105487
crossref_primary_10_1007_s11581_020_03471_2
crossref_primary_10_1021_acsami_2c08572
crossref_primary_10_1016_j_cclet_2019_04_069
crossref_primary_10_1002_anie_202216041
crossref_primary_10_1002_advs_201901129
crossref_primary_10_1039_D3NJ02149A
crossref_primary_10_1002_adma_202400523
crossref_primary_10_1002_celc_201801827
crossref_primary_10_1002_advs_202410784
crossref_primary_10_1021_acssuschemeng_9b05810
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1039_D1TA07404K
crossref_primary_10_1021_acscatal_4c02871
crossref_primary_10_1002_adma_201805126
crossref_primary_10_1021_acscatal_3c01136
crossref_primary_10_1002_anie_202010013
crossref_primary_10_1016_j_apcatb_2018_09_054
crossref_primary_10_1021_acs_inorgchem_3c02417
crossref_primary_10_1021_acssuschemeng_8b04919
crossref_primary_10_1002_asia_201900264
crossref_primary_10_1016_j_mtchem_2018_11_004
crossref_primary_10_1002_anie_201909312
crossref_primary_10_1016_j_apcatb_2024_124889
crossref_primary_10_1002_aenm_202100303
crossref_primary_10_1021_acscatal_0c05503
crossref_primary_10_1021_acsanm_4c02768
crossref_primary_10_1002_adma_202000381
crossref_primary_10_1002_adma_201806403
crossref_primary_10_1016_j_ijhydene_2020_12_159
crossref_primary_10_1002_adfm_201906174
crossref_primary_10_1021_acsami_1c11765
crossref_primary_10_1039_D0AN02473B
crossref_primary_10_1021_acs_iecr_3c01793
crossref_primary_10_1002_adfm_202008077
crossref_primary_10_1007_s12274_021_3966_y
crossref_primary_10_1021_acsenergylett_9b00790
crossref_primary_10_1016_j_cclet_2019_03_026
crossref_primary_10_1039_C9RA07926B
crossref_primary_10_1021_acsami_0c22453
crossref_primary_10_1002_adma_202103133
crossref_primary_10_1002_smll_202004692
crossref_primary_10_1016_j_apcatb_2023_123044
crossref_primary_10_1016_j_mtener_2021_100761
crossref_primary_10_1021_acsami_2c09230
crossref_primary_10_1016_j_ijhydene_2021_08_163
crossref_primary_10_1021_acsenergylett_9b01407
crossref_primary_10_1088_2399_1984_ac3ec1
crossref_primary_10_1039_C9RA08068F
crossref_primary_10_1007_s41918_019_00031_9
crossref_primary_10_1021_acs_jpcc_1c03775
crossref_primary_10_1016_j_ijhydene_2024_10_040
crossref_primary_10_1016_j_cej_2020_124822
crossref_primary_10_1039_C9NR05726A
crossref_primary_10_1021_acsami_0c10234
crossref_primary_10_1039_C8NR05888A
crossref_primary_10_1021_acsaem_2c02168
crossref_primary_10_1002_ange_202009700
crossref_primary_10_1016_j_jallcom_2024_177106
crossref_primary_10_1002_celc_201801859
crossref_primary_10_1021_acsami_1c08363
crossref_primary_10_1021_acscatal_0c02490
crossref_primary_10_1039_D1EE00878A
crossref_primary_10_1021_acsami_1c11300
crossref_primary_10_1002_smll_202303186
crossref_primary_10_1021_jacs_2c01194
crossref_primary_10_1002_ange_202107053
crossref_primary_10_1021_acs_jpclett_4c03536
crossref_primary_10_1021_acssuschemeng_0c01826
crossref_primary_10_1039_D1DT00005E
crossref_primary_10_1021_acsaem_0c03035
crossref_primary_10_1016_j_jece_2023_111549
crossref_primary_10_1016_j_cej_2020_128171
crossref_primary_10_1016_j_cej_2022_140403
crossref_primary_10_1016_j_mtphys_2019_100132
crossref_primary_10_1002_ange_202005577
crossref_primary_10_1016_j_mtener_2020_100444
crossref_primary_10_1021_acssuschemeng_0c04094
crossref_primary_10_1088_1361_6463_ac96fe
crossref_primary_10_1016_j_jechem_2020_07_010
Cites_doi 10.1021/acscatal.5b02325
10.1126/science.1230444
10.1038/ncomms9618
10.1021/cs500744x
10.1039/C6TA09462G
10.1002/anie.201604802
10.1039/c1jm12829a
10.1002/anie.201308896
10.1021/jp8001564
10.1002/advs.201500265
10.1126/science.1172083
10.1149/1.3210685
10.1021/ja7106146
10.1021/jacs.7b10194
10.1039/C6CC02513G
10.1021/jacs.6b09470
10.1039/c0jm03613g
10.1016/j.carbon.2016.07.051
10.1039/c3cc39121c
10.1016/j.electacta.2013.11.026
10.1126/science.1200832
10.1038/ncomms9668
10.1021/acsenergylett.6b00686
10.1016/j.electacta.2013.03.183
10.1016/j.catcom.2017.02.026
10.1002/slct.201700417
10.1021/jacs.6b11248
10.1002/chem.201003080
10.1016/j.nanoen.2016.11.033
10.1039/C6RA04771H
10.1021/acscatal.7b02326
10.1002/cctc.201700324
10.1021/jp901077c
10.1002/anie.201504707
10.1002/adma.201600979
10.1021/cm900166h
10.1039/C6SC02105K
10.1038/s41467-017-01100-7
10.1021/ar50088a003
10.1021/jp8078056
10.1016/j.progsurf.2003.09.001
10.1021/acs.jpcc.5b01485
10.1016/S0273-1223(97)00707-5
10.1039/C4RA05961A
10.1021/jacs.7b06514
10.1002/adma.201703614
10.1016/j.carbon.2014.10.034
10.1002/adma.201304147
10.1016/j.chempr.2016.12.002
10.1039/C6TA06434E
10.1021/ja5003907
10.1126/science.1170051
10.1021/acs.langmuir.5b01256
10.1002/adma.201502315
10.1039/C5RA18404E
10.1021/nn303275d
10.1021/ar400011z
10.1021/jp5124037
10.1021/acscentsci.7b00160
10.1039/C4TA01506A
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
Univ. at Buffalo, NY (United States)
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
East China Univ. of Science and Technology, Shanghai (China)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
– name: Univ. at Buffalo, NY (United States)
– name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
– name: East China Univ. of Science and Technology, Shanghai (China)
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.201706758
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1422592
29363838
10_1002_adma_201706758
ADMA201706758
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CBET‐1604392
– fundername: Department of Energy
  funderid: DE‐AC02‐06CH11357
– fundername: Shanghai Natural Science Foundation of China
  funderid: 16ZR1408600
– fundername: Oregon State University
– fundername: University at Buffalo
– fundername: Center for Functional Nanomaterials at Brookhaven National Laboratory
  funderid: DE‐SC0012704
– fundername: U.S. DOE‐EERE Fuel Cell Technologies Office
– fundername: SUNY
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c5438-6ee7b7af539c020feea1a35b2edca495a95ae801abd4b16fd5f47dd326b3acdf3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Jul 03 03:56:18 EDT 2023
Fri Jul 11 13:29:52 EDT 2025
Fri Jul 25 07:18:46 EDT 2025
Wed Feb 19 02:42:11 EST 2025
Tue Jul 01 00:44:39 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:18:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords single atomic Co
carbon nanocomposites
proton exchange membrane fuel cells
electrocatalysis
oxygen reduction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5438-6ee7b7af539c020feea1a35b2edca495a95ae801abd4b16fd5f47dd326b3acdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC)
AC05-00OR22725; AC02-06CH11357; SC0012704; CBET-1604392; 16ZR1408600; 89233218CNA000001
LA-UR-19-27321
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office
National Science Foundation (NSF)
USDOE National Nuclear Security Administration (NNSA)
Shanghai Natural Science Foundation of China
ORCID 0000-0003-4956-5208
0000000349565208
OpenAccessLink https://www.osti.gov/servlets/purl/1422592
PMID 29363838
PQID 2013054935
PQPubID 2045203
PageCount 11
ParticipantIDs osti_scitechconnect_1422592
proquest_miscellaneous_1990857218
proquest_journals_2013054935
pubmed_primary_29363838
crossref_citationtrail_10_1002_adma_201706758
crossref_primary_10_1002_adma_201706758
wiley_primary_10_1002_adma_201706758_ADMA201706758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Mar
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 5
2017; 7
2017; 8
2017; 2
2017; 3
2016; 108
2015; 31
2014; 26
2009; 113
2011; 17
2017; 9
2014; 136
2017; 31
2014; 128
2014; 4
2014; 2
2015; 82
2011; 21
2013; 110
1975; 8
2008; 112
2009; 324
2014; 53
2009; 25
2015; 6
2015; 5
2009; 21
2013; 49
2013; 46
2015; 54
2016; 52
2017; 29
2013; 341
2003; 73
2011; 332
2017; 139
2016; 55
2016; 4
2017; 95
2016; 6
2016; 7
2015; 27
2016; 3
1997; 36
2015; 119
2016; 138
2012; 6
2016; 28
2008; 130
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_58_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_60_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 324
  start-page: 48
  year: 2009
  publication-title: Science
– volume: 139
  start-page: 14143
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3797
  year: 2014
  publication-title: ACS Catal.
– volume: 113
  start-page: 8606
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 108
  start-page: 541
  year: 2016
  publication-title: Carbon
– volume: 119
  start-page: 4173
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 1299
  year: 2009
  publication-title: ECS Trans.
– volume: 3
  start-page: 847
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 31
  start-page: 7644
  year: 2015
  publication-title: Langmuir
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 28
  start-page: 6391
  year: 2016
  publication-title: Adv. Mater.
– volume: 53
  start-page: 2433
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8618
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 139
  start-page: 17269
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 16162
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 1410
  year: 2009
  publication-title: Chem. Mater.
– volume: 113
  start-page: 2830
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 1878
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 139
  start-page: 453
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 37779
  year: 2014
  publication-title: RSC Adv.
– volume: 324
  start-page: 71
  year: 2009
  publication-title: Science
– volume: 2
  start-page: 52
  year: 2017
  publication-title: Chem
– volume: 31
  start-page: 331
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 1969
  year: 2017
  publication-title: ChemCatChem
– volume: 7
  start-page: 5758
  year: 2016
  publication-title: Chem. Sci.
– volume: 136
  start-page: 6790
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 957
  year: 2017
  publication-title: Nat. Commun.
– volume: 130
  start-page: 5390
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3291
  year: 2013
  publication-title: Chem. Commun.
– volume: 7
  start-page: 6864
  year: 2017
  publication-title: ACS Catal.
– volume: 6
  start-page: 37965
  year: 2016
  publication-title: RSC Adv.
– volume: 4
  start-page: 15836
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 73
  start-page: 117
  year: 2003
  publication-title: Prog. Surf. Sci.
– volume: 36
  start-page: 215
  year: 1997
  publication-title: Water Sci. Technol.
– volume: 5
  start-page: 103834
  year: 2015
  publication-title: RSC Adv.
– volume: 82
  start-page: 77
  year: 2015
  publication-title: Carbon
– volume: 29
  start-page: 1703614
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: 11392
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 110
  start-page: 282
  year: 2013
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 9764
  year: 2012
  publication-title: ACS Nano
– volume: 5
  start-page: 3336
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 504
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 1450
  year: 2014
  publication-title: Adv. Mater.
– volume: 55
  start-page: 10800
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 112
  start-page: 8839
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 95
  start-page: 31
  year: 2017
  publication-title: Catal. Commun.
– volume: 138
  start-page: 15046
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 12622
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  start-page: 8755
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 128
  start-page: 271
  year: 2014
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 7068
  year: 2015
  publication-title: ACS Catal.
– volume: 2
  start-page: 14064
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 125
  year: 1975
  publication-title: Acc. Chem. Res.
– volume: 52
  start-page: 5946
  year: 2016
  publication-title: Chem. Commun.
– volume: 2
  start-page: 3191
  year: 2017
  publication-title: ChemistrySelect
– volume: 3
  start-page: 1500265
  year: 2016
  publication-title: Adv. Sci.
– volume: 17
  start-page: 2063
  year: 2011
  publication-title: Chem. – Eur. J.
– ident: e_1_2_4_21_1
  doi: 10.1021/acscatal.5b02325
– ident: e_1_2_4_27_1
  doi: 10.1126/science.1230444
– ident: e_1_2_4_4_1
  doi: 10.1038/ncomms9618
– ident: e_1_2_4_6_1
  doi: 10.1021/cs500744x
– ident: e_1_2_4_5_1
  doi: 10.1039/C6TA09462G
– ident: e_1_2_4_33_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_4_52_1
  doi: 10.1039/c1jm12829a
– ident: e_1_2_4_40_1
  doi: 10.1002/anie.201308896
– ident: e_1_2_4_47_1
  doi: 10.1021/jp8001564
– ident: e_1_2_4_26_1
  doi: 10.1002/advs.201500265
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1172083
– ident: e_1_2_4_58_1
  doi: 10.1149/1.3210685
– ident: e_1_2_4_24_1
  doi: 10.1021/ja7106146
– ident: e_1_2_4_48_1
  doi: 10.1021/jacs.7b10194
– ident: e_1_2_4_13_1
  doi: 10.1039/C6CC02513G
– ident: e_1_2_4_7_1
  doi: 10.1021/jacs.6b09470
– ident: e_1_2_4_46_1
  doi: 10.1039/c0jm03613g
– ident: e_1_2_4_38_1
  doi: 10.1016/j.carbon.2016.07.051
– ident: e_1_2_4_15_1
  doi: 10.1039/c3cc39121c
– ident: e_1_2_4_10_1
  doi: 10.1016/j.electacta.2013.11.026
– ident: e_1_2_4_11_1
  doi: 10.1126/science.1200832
– ident: e_1_2_4_37_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_4_57_1
  doi: 10.1021/acsenergylett.6b00686
– ident: e_1_2_4_59_1
  doi: 10.1016/j.electacta.2013.03.183
– ident: e_1_2_4_34_1
  doi: 10.1016/j.catcom.2017.02.026
– ident: e_1_2_4_17_1
  doi: 10.1002/slct.201700417
– ident: e_1_2_4_30_1
  doi: 10.1021/jacs.6b11248
– ident: e_1_2_4_31_1
  doi: 10.1002/chem.201003080
– ident: e_1_2_4_3_1
  doi: 10.1016/j.nanoen.2016.11.033
– ident: e_1_2_4_18_1
  doi: 10.1039/C6RA04771H
– ident: e_1_2_4_35_1
  doi: 10.1021/acscatal.7b02326
– ident: e_1_2_4_14_1
  doi: 10.1002/cctc.201700324
– ident: e_1_2_4_43_1
  doi: 10.1021/jp901077c
– ident: e_1_2_4_49_1
  doi: 10.1002/anie.201504707
– ident: e_1_2_4_56_1
  doi: 10.1002/adma.201600979
– ident: e_1_2_4_29_1
  doi: 10.1021/cm900166h
– ident: e_1_2_4_36_1
  doi: 10.1039/C6SC02105K
– ident: e_1_2_4_39_1
  doi: 10.1038/s41467-017-01100-7
– ident: e_1_2_4_8_1
  doi: 10.1021/ar50088a003
– ident: e_1_2_4_42_1
  doi: 10.1021/jp8078056
– ident: e_1_2_4_41_1
  doi: 10.1016/j.progsurf.2003.09.001
– ident: e_1_2_4_51_1
  doi: 10.1021/acs.jpcc.5b01485
– ident: e_1_2_4_9_1
  doi: 10.1016/S0273-1223(97)00707-5
– ident: e_1_2_4_16_1
  doi: 10.1039/C4RA05961A
– ident: e_1_2_4_54_1
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_4_32_1
  doi: 10.1002/adma.201703614
– ident: e_1_2_4_19_1
  doi: 10.1016/j.carbon.2014.10.034
– ident: e_1_2_4_12_1
  doi: 10.1002/adma.201304147
– ident: e_1_2_4_25_1
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_4_28_1
  doi: 10.1039/C6TA06434E
– ident: e_1_2_4_23_1
  doi: 10.1021/ja5003907
– ident: e_1_2_4_60_1
  doi: 10.1126/science.1170051
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.langmuir.5b01256
– ident: e_1_2_4_53_1
  doi: 10.1002/adma.201502315
– ident: e_1_2_4_44_1
  doi: 10.1039/C5RA18404E
– ident: e_1_2_4_55_1
  doi: 10.1021/nn303275d
– ident: e_1_2_4_2_1
  doi: 10.1021/ar400011z
– ident: e_1_2_4_50_1
  doi: 10.1021/jp5124037
– ident: e_1_2_4_45_1
  doi: 10.1021/acscentsci.7b00160
– ident: e_1_2_4_22_1
  doi: 10.1039/C4TA01506A
SSID ssj0009606
Score 2.6967962
Snippet Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Activation
carbon nanocomposites
Catalysis
Catalysts
Cathodes
electrocatalysis
Electrodes
Electron microscopy
Energy Sciences
Free radicals
Fuel cells
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Metal-organic frameworks
oxygen reduction
Platinum
Proton exchange membrane fuel cells
single atomic Co
Wave dispersion
Title Nitrogen‐Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706758
https://www.ncbi.nlm.nih.gov/pubmed/29363838
https://www.proquest.com/docview/2013054935
https://www.proquest.com/docview/1990857218
https://www.osti.gov/servlets/purl/1422592
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVlT-mhbfq5TVpUKPTkJLYl2T4ubpZQ2LSkDeRm9DGCpY5d1l5IespPyG_ML8mMvetkS0uhBR9sJOGx_Gb0NJaeGXuf2Qgie5AGPjVpIHBWG2SpUkHsjIhV4mNlKA85O1ZHp-LTmTy7t4u_14cYEm7kGV28JgfXptm_Ew3VrtMNIvkX5LwYhGnBFrGikzv9KKLnndheLINMiXSt2ngQ7W823xiVRjV61-8Y5yaB7Uag6WOm17b3C0--7y1bs2d__iLr-D8P94Q9WtFTPunxtM0eQPWUPbwnWviM1cfzdlEj7m6urvMa567zCvmq41-xtASek8BIyydtfc5zyg1dNm3DkRrzzxeX2IqfkFgswYHPK_5lUSP55IcX_QZkPoNzNLsCPl1CyXMoy-Y5O50efsuPgtVvGwIrBYZPBZCYRHsZZxbJqAfQoY6licBZjfMxjQfgwKiNEyZU3kkvEueQR5pYW-fjF2xU1RW8Ylx6n1kIVZqAF6EGrZT1GViVgXNC6TEL1q-tsCtNc_q1Rln0asxRQR1ZDB05Zh-G-j96NY8_1twhFBTIQ0hM19KqI9sWlDGTWTRmu2twFCufb6gtBk-BWBuzd0Mxeit9gsGeq5dNEeLgn0qcdeMNXvagGgxB4oXBMMaSqIPGXywsJh9nk-Hq9b802mFbeJ72S-p22ahdLOENcqzWvO386BZGax-H
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgOQAHvqFLCxgJiVPabuI4yXGVdrVAd0GllbhF_hhLK9Kk2mSllhM_gd_IL2Em2aQsAiGBlEviWJk4b-w3E_uZsVeJ8cE3-7HnYh17AqNaL4ml9AKrRSAjF0hNecjZXE5PxdtPYTebkNbCtPoQfcKNPKPpr8nBKSG9d6UaqmwjHET6L0h6r7MbtK03yecfHF8pSBFBb-T2gtBLpIg73cZ9f2-z_sa4NCjRv37HOTcpbDMGTe4y3VnfTj35vLuq9a758ouw43-93j12Z81Q-biF1H12DYoH7PZPuoUPWTlf1MsSoff967e0xPB1USBltfwjlubAU9IYqfm4Ls94Sumhy6quOLJj_v7iEmvxY9KLJUTwRcE_LEvkn_zwol2DzGdwhnYXwCcryHkKeV49YqeTw5N06q13bvBMKLAHlQCRjpQLg8QgH3UAaqSCUPtgjcKQTOEBODYqbYUeSWdDJyJrkUrqQBnrgsdsUJQFbDEeOpcYGMk4AidGCpSUxiVgZALWCqmGzOu-W2bWsua0u0aetYLMfkYNmfUNOWSv-_vPW0GPP965TTDIkIqQnq6hiUemzihpFib-kO106MjWbl9RXew_BYJtyF72xeiw9BcGW65cVdkIx_84xMAbH_CkRVVvCHIv7A8DLPEbbPzFwmx8MBv3Z0__pdILdnN6MjvKjt7M322zW3g9bmfY7bBBvVzBM6RctX7eONUPLawjow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagkxA8bOO6sg2MhMRTtiZxnOSxSleNS8s0mLQ3y5djqSJLpiaVNp74CfxGfgnHSZutCIQEUl4S5ygnzrl8PrE_E_I61QEEepB4NlGJx3BU66UJ515oFAt5bEOuXB1yMuXHZ-zdeXR-axV_yw_RFdycZzTx2jn4pbGHN6Sh0jS8QY7-BTHvXbLB-CB1mzeMTm8IpBw-b9j2wshLOUtWtI2D4HBdfi0t9Up0r99BznUE26Sg8RaRK-XbmSdfDha1OtBff-F1_J-32yabS3xKh61BPSR3oHhEHtxiLXxMyumsnpdoeD--fc9KHLzOCgSshn7C1hxo5hhGajqsywuaueLQdVVXFLEx_Xh1jVL01LHFOnugs4KezEtEn_Toql2BTCdwgWoXQMcLyGkGeV49IWfjo8_Zsbfct8HTEcP4yQFiFUsbhalGNGoBpC_DSAVgtMQBmcQDMDNKZZjyuTWRZbExCCRVKLWx4VPSK8oCdgiNrE01-DyJwTJfguRc2xQ0T8EYxmWfeKvPJvSS1NztrZGLlo45EK4jRdeRffKmu_-ypfP44527zgoEAhHHpqvdtCNdC1cyi9KgT_ZWxiGWTl85WYyeDG2tT151zeiu7h8M9ly5qISP2T-JcNiND3jWGlWnCCIvjIYhtgSNafxFQzEcTYbd2fN_EXpJ7p2MxuLD2-n7XXIfLyft9Lo90qvnC9hHvFWrF41L_QSmqyJS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Coordinated+Single+Cobalt+Atom+Catalysts+for+Oxygen+Reduction+in+Proton+Exchange+Membrane+Fuel+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xiao+Xia&rft.au=Cullen%2C+David+A.&rft.au=Pan%2C+Yung%E2%80%90Tin&rft.au=Hwang%2C+Sooyeon&rft.date=2018-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201706758&rft.externalDBID=10.1002%252Fadma.201706758&rft.externalDocID=ADMA201706758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon