A Pyrazine‐Based Polymer for Fast‐Charge Batteries

The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batt...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 58; no. 49; pp. 17820 - 17826
Main Authors Mao, Minglei, Luo, Chao, Pollard, Travis P., Hou, Singyuk, Gao, Tao, Fan, Xiulin, Cui, Chunyu, Yue, Jinming, Tong, Yuxin, Yang, Gaojing, Deng, Tao, Zhang, Ming, Ma, Jianmin, Suo, Liumin, Borodin, Oleg, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.12.2019
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201910916

Cover

Loading…
Abstract The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
AbstractList The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g −1 at 50 mA g −1 , corresponding to the energy density of 440 Wh kg −1 , and still retains 100 mAh g −1 at 10 Ag −1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g −1 after 200 cycles in Mg batteries and 92 mAh g −1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Here, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1, corresponding to the energy density of 440 Wh kg-1, and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g at 50 mA g , corresponding to the energy density of 440 Wh kg , and still retains 100 mAh g at 10 Ag after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g after 200 cycles in Mg batteries and 92 mAh g after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Author Wang, Chunsheng
Yue, Jinming
Deng, Tao
Luo, Chao
Gao, Tao
Borodin, Oleg
Mao, Minglei
Pollard, Travis P.
Hou, Singyuk
Tong, Yuxin
Ma, Jianmin
Suo, Liumin
Cui, Chunyu
Fan, Xiulin
Yang, Gaojing
Zhang, Ming
Author_xml – sequence: 1
  givenname: Minglei
  surname: Mao
  fullname: Mao, Minglei
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Chao
  surname: Luo
  fullname: Luo, Chao
  email: cluo@gmu.edu
  organization: George Mason University
– sequence: 3
  givenname: Travis P.
  surname: Pollard
  fullname: Pollard, Travis P.
  organization: US Army Research Laboratory
– sequence: 4
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: University of Maryland
– sequence: 5
  givenname: Tao
  surname: Gao
  fullname: Gao, Tao
  organization: University of Maryland
– sequence: 6
  givenname: Xiulin
  surname: Fan
  fullname: Fan, Xiulin
  organization: University of Maryland
– sequence: 7
  givenname: Chunyu
  surname: Cui
  fullname: Cui, Chunyu
  organization: Hunan University
– sequence: 8
  givenname: Jinming
  surname: Yue
  fullname: Yue, Jinming
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Yuxin
  surname: Tong
  fullname: Tong, Yuxin
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Gaojing
  surname: Yang
  fullname: Yang, Gaojing
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 12
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: Hunan University
– sequence: 13
  givenname: Jianmin
  surname: Ma
  fullname: Ma, Jianmin
  organization: Hunan University
– sequence: 14
  givenname: Liumin
  surname: Suo
  fullname: Suo, Liumin
  organization: Chinese Academy of Sciences
– sequence: 15
  givenname: Oleg
  surname: Borodin
  fullname: Borodin, Oleg
  email: oleg.a.borodin.civ@mail.mil
  organization: US Army Research Laboratory
– sequence: 16
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31571354$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1767522$$D View this record in Osti.gov
BookMark eNqFkU1rVDEUhoNU7IduXcpFN27umJPPm-V0aG2haBe6DpnMuTblTlKTDGVc-RP8jf4SU6atUBBXCeR5TnjPe0j2YopIyGugM6CUfXAx4IxRMEANqGfkACSDnmvN99pdcN7rQcI-OSzluvHDQNULss9BauBSHBA17y632f0IEX___HXsCq66yzRt15i7MeXu1JXaHhZXLn_D7tjVijlgeUmej24q-Or-PCJfT0--LM76i88fzxfzi95LwVWPXAmhmKZLYQbQCrQelWHaSaDcUyoUhYEahU76cbUEvxoAvB65WUqntOFH5O1ubio12OJDRX_lU4zoq20DtWSsQe930E1O3zdYql2H4nGaXMS0KZYxY9pCWuaGvnuCXqdNji2CZRy0BGMENOrNPbVZrnFlb3JYu7y1D2trwGwH-JxKyTg-IkDtXS_2rhf72EsTxBOhRXE1pFizC9O_NbPTbsOE2_98Yuefzk_-un8ApWSfJQ
CitedBy_id crossref_primary_10_1021_acsenergylett_0c01750
crossref_primary_10_2139_ssrn_4048204
crossref_primary_10_1016_j_compositesb_2022_109750
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1002_ange_202302754
crossref_primary_10_1016_j_jpowsour_2022_231383
crossref_primary_10_1016_j_carbon_2021_12_051
crossref_primary_10_1002_anie_202218745
crossref_primary_10_1016_j_colsurfa_2022_130799
crossref_primary_10_1002_adma_202402681
crossref_primary_10_1002_cssc_202202358
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1016_j_est_2022_105471
crossref_primary_10_3390_polym14132608
crossref_primary_10_1002_ange_202311460
crossref_primary_10_1021_acs_energyfuels_1c00860
crossref_primary_10_1016_j_ensm_2022_05_013
crossref_primary_10_1021_acs_chemrev_0c01257
crossref_primary_10_1021_acsami_2c06208
crossref_primary_10_1002_adfm_202111043
crossref_primary_10_1016_j_cjsc_2024_100249
crossref_primary_10_1016_j_mattod_2022_04_010
crossref_primary_10_1002_cssc_202101324
crossref_primary_10_1021_acsami_4c06897
crossref_primary_10_1021_acssuschemeng_3c01448
crossref_primary_10_1098_rsos_210567
crossref_primary_10_1002_ange_202117661
crossref_primary_10_1039_D4CC02769H
crossref_primary_10_1039_D2TA00723A
crossref_primary_10_1016_j_jechem_2021_12_022
crossref_primary_10_1007_s40843_023_2796_5
crossref_primary_10_1021_acs_nanolett_0c01040
crossref_primary_10_1016_j_cej_2022_138238
crossref_primary_10_1016_j_jcis_2022_05_068
crossref_primary_10_1021_acs_nanolett_2c00965
crossref_primary_10_6023_cjoc202105031
crossref_primary_10_1002_adma_202307298
crossref_primary_10_1021_acs_inorgchem_0c00227
crossref_primary_10_1002_mame_202200303
crossref_primary_10_1002_anie_202410110
crossref_primary_10_2174_0113852728279887240109110636
crossref_primary_10_1016_j_cej_2024_148806
crossref_primary_10_1021_acsami_1c12150
crossref_primary_10_1021_acsami_1c18256
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_3866_PKU_WHXB202303060
crossref_primary_10_1002_jcc_27236
crossref_primary_10_1016_j_ensm_2023_102820
crossref_primary_10_1002_adma_202406106
crossref_primary_10_1002_anie_202216797
crossref_primary_10_1039_D1TA07323K
crossref_primary_10_1002_adfm_201909597
crossref_primary_10_1002_smtd_202400185
crossref_primary_10_1016_j_jpowsour_2020_229426
crossref_primary_10_1021_acsaem_3c01679
crossref_primary_10_1039_D4TA05193A
crossref_primary_10_1002_ange_202203646
crossref_primary_10_1149_1945_7111_ab8827
crossref_primary_10_1016_j_enchem_2020_100030
crossref_primary_10_1021_acsapm_4c02203
crossref_primary_10_3389_fenrg_2020_605129
crossref_primary_10_1002_adfm_202210717
crossref_primary_10_1002_smtd_202000039
crossref_primary_10_1016_j_ceja_2023_100499
crossref_primary_10_1007_s11581_023_04914_2
crossref_primary_10_1007_s12598_020_01576_1
crossref_primary_10_1016_j_cej_2023_147760
crossref_primary_10_1002_ange_202309125
crossref_primary_10_1039_D0TA04741D
crossref_primary_10_1016_j_cej_2023_144248
crossref_primary_10_1016_j_esci_2025_100379
crossref_primary_10_1016_j_jhazmat_2020_124546
crossref_primary_10_1039_D3SC05843C
crossref_primary_10_1002_ange_202306091
crossref_primary_10_1039_D0CC08273B
crossref_primary_10_1002_adma_202005781
crossref_primary_10_1002_ange_202410110
crossref_primary_10_1002_anie_202302754
crossref_primary_10_1002_cssc_202201219
crossref_primary_10_1002_cssc_202202305
crossref_primary_10_1021_acsaem_0c00729
crossref_primary_10_1039_D2TA04174J
crossref_primary_10_1016_j_ccr_2022_214597
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1016_j_ensm_2021_08_043
crossref_primary_10_1002_adfm_202413611
crossref_primary_10_1021_acsami_9b20384
crossref_primary_10_1039_D3FD00132F
crossref_primary_10_1016_j_molliq_2023_122876
crossref_primary_10_1002_marc_202200198
crossref_primary_10_1080_10406638_2022_2092873
crossref_primary_10_1016_j_ensm_2021_07_008
crossref_primary_10_1016_j_ensm_2022_09_016
crossref_primary_10_1016_j_cej_2022_139016
crossref_primary_10_1016_j_pnsc_2023_12_018
crossref_primary_10_1021_acsami_2c09618
crossref_primary_10_1016_j_nanoen_2022_107554
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1002_anie_202309125
crossref_primary_10_1002_cjoc_202400647
crossref_primary_10_1016_j_electacta_2021_139620
crossref_primary_10_1021_acsami_3c00904
crossref_primary_10_1002_adma_202109658
crossref_primary_10_1016_j_cej_2022_138051
crossref_primary_10_1016_j_ensm_2024_103334
crossref_primary_10_1016_j_cattod_2021_09_040
crossref_primary_10_1002_aenm_202101562
crossref_primary_10_1002_anie_202306091
crossref_primary_10_1016_j_electacta_2023_142552
crossref_primary_10_1016_j_inoche_2025_114072
crossref_primary_10_1021_acsnano_3c06189
crossref_primary_10_1016_j_mtcomm_2023_107768
crossref_primary_10_1021_acsami_2c14365
crossref_primary_10_1039_D1TA00528F
crossref_primary_10_1002_anie_202403424
crossref_primary_10_1002_anie_202117661
crossref_primary_10_1021_acsami_2c07383
crossref_primary_10_1055_a_1512_5753
crossref_primary_10_1002_smtd_202300663
crossref_primary_10_1002_aenm_202002917
crossref_primary_10_1016_j_electacta_2022_141730
crossref_primary_10_1021_acsaem_1c01970
crossref_primary_10_1016_j_apsusc_2022_152859
crossref_primary_10_1002_aenm_202101446
crossref_primary_10_1016_j_apcata_2022_118681
crossref_primary_10_1021_acsnano_4c18374
crossref_primary_10_1021_acs_nanolett_3c04566
crossref_primary_10_1016_j_chempr_2023_12_007
crossref_primary_10_1021_acsami_3c17710
crossref_primary_10_1021_acsami_9b19623
crossref_primary_10_1016_j_ensm_2024_103674
crossref_primary_10_1039_D2TA00896C
crossref_primary_10_1002_anie_202311460
crossref_primary_10_1002_ange_202016240
crossref_primary_10_1002_EXP_20220066
crossref_primary_10_1016_j_jcis_2024_06_151
crossref_primary_10_1039_D1SE01649K
crossref_primary_10_1039_C9CC09846A
crossref_primary_10_1002_admt_202200306
crossref_primary_10_1002_adfm_202209777
crossref_primary_10_1002_adfm_202211950
crossref_primary_10_1002_anie_202203646
crossref_primary_10_1016_j_ensm_2021_02_022
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1021_acsami_4c09181
crossref_primary_10_1002_aenm_202100381
crossref_primary_10_1016_j_ensm_2025_104011
crossref_primary_10_1002_aenm_202403011
crossref_primary_10_1002_ange_202218745
crossref_primary_10_6023_A22090385
crossref_primary_10_1002_batt_202200160
crossref_primary_10_1021_acs_macromol_4c00978
crossref_primary_10_1039_D1TA03842G
crossref_primary_10_1007_s11426_024_2456_x
crossref_primary_10_1021_acsami_3c11270
crossref_primary_10_1002_marc_202200782
crossref_primary_10_1002_cjoc_202200819
crossref_primary_10_1021_acsnano_4c16314
crossref_primary_10_1002_adfm_202415186
crossref_primary_10_1016_j_cej_2022_138652
crossref_primary_10_1016_j_ensm_2022_03_033
crossref_primary_10_1002_ange_202216797
crossref_primary_10_1002_anie_202016240
crossref_primary_10_1016_j_ensm_2022_06_018
crossref_primary_10_1021_acs_nanolett_0c02908
crossref_primary_10_1039_D3CC03233G
crossref_primary_10_1016_j_jcis_2024_03_127
crossref_primary_10_1039_D4ME00049H
crossref_primary_10_1002_adma_202110109
crossref_primary_10_1002_aesr_202300217
crossref_primary_10_1016_j_cej_2024_156359
crossref_primary_10_1002_ange_202403424
crossref_primary_10_1039_D2TA03264C
crossref_primary_10_1021_acsami_0c20915
crossref_primary_10_1002_smll_202201362
crossref_primary_10_1002_adfm_202107718
crossref_primary_10_1016_j_xcrp_2022_101240
crossref_primary_10_1002_smll_202308881
crossref_primary_10_1002_aenm_202100330
crossref_primary_10_1021_acsnano_1c06530
crossref_primary_10_1002_batt_202300472
crossref_primary_10_1021_acsami_4c16866
crossref_primary_10_1021_acsenergylett_5c00139
crossref_primary_10_1016_j_est_2024_111287
crossref_primary_10_1039_D2CC02021A
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1016_j_jpowsour_2024_234679
crossref_primary_10_1002_smll_202104993
crossref_primary_10_1016_j_ensm_2021_01_016
crossref_primary_10_1002_aenm_202203253
crossref_primary_10_1002_aenm_202302495
crossref_primary_10_1016_j_jhazmat_2024_134808
crossref_primary_10_1002_cssc_202401397
crossref_primary_10_1021_acsami_0c07292
crossref_primary_10_1002_admi_202300464
crossref_primary_10_1021_accountsmr_3c00284
crossref_primary_10_1016_j_ensm_2023_102993
crossref_primary_10_1002_adma_202200662
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1038_s41467_025_58126_5
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1039_D3TA07593A
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1021_acsami_4c06959
crossref_primary_10_1016_j_cej_2020_124370
Cites_doi 10.1016/j.surfcoat.2005.10.046
10.1039/c3ee40709h
10.1002/ange.201803703
10.1021/acs.chemrev.6b00070
10.1021/acs.nanolett.6b00954
10.1038/natrevmats.2016.13
10.1126/science.1212741
10.1021/jacs.5b13279
10.1002/aenm.201200947
10.1002/aenm.201301651
10.1016/S0039-6028(00)00128-X
10.1002/anie.201103493
10.1021/acs.chemmater.5b01918
10.1186/s13321-016-0129-3
10.1002/adma.201405416
10.1126/science.aak9991
10.1002/anie.201506673
10.1021/acs.nanolett.9b02963
10.1021/cr5003003
10.1039/C6CP04225B
10.1021/acsnano.6b06446
10.1002/aenm.201200026
10.1016/j.ccr.2014.11.005
10.1021/acssuschemeng.7b03165
10.1142/9789814317665_0024
10.1002/ange.201511553
10.1016/j.pmatsci.2014.04.001
10.1021/cr100290v
10.1021/acs.chemmater.8b05218
10.1002/ange.201506673
10.1002/aenm.201601792
10.1021/cr500192f
10.1002/adma.201203119
10.1002/anie.201607194
10.1002/anie.201510686
10.1149/2.015401jes
10.1002/anie.201301850
10.1039/C8CC09307E
10.1246/cl.2011.222
10.1016/j.chempr.2017.09.004
10.1002/ange.201002439
10.1021/cr500049y
10.1039/C7TA00282C
10.1016/S0169-4332(03)00579-8
10.1039/C8CS00319J
10.1021/acs.chemmater.8b01345
10.1038/nmat4919
10.1002/aenm.201600140
10.1039/C7TA00228A
10.1039/C9CE00531E
10.1002/aenm.201602093
10.1021/ja306663g
10.1039/C6EE00724D
10.1039/C6TA03956A
10.1002/anie.201511553
10.1002/anie.201803703
10.1073/pnas.1717892115
10.1002/adma.200803554
10.1016/j.nanoen.2018.02.060
10.1038/35037553
10.1002/ange.201812685
10.1039/C6CS00173D
10.1038/ncomms6335
10.1021/acsenergylett.6b00145
10.1021/acs.nanolett.7b01152
10.1149/1.2806175
10.1002/ange.201103493
10.1016/j.nanoen.2018.01.001
10.1039/C7CP06279F
10.1039/c3ee40871j
10.1002/ange.201607194
10.1002/ange.201510686
10.1038/s41560-018-0291-0
10.1002/adma.201706498
10.1002/ange.201301850
10.1002/adfm.201602114
10.1002/anie.201002439
10.1107/S0021889811038970
10.1002/anie.201812685
10.1002/aenm.201402034
10.1016/j.ensm.2018.06.027
10.1016/j.nanoen.2015.03.041
10.1039/C4CC01002G
10.1021/acsami.8b02425
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.201910916
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17826
ExternalDocumentID 1767522
31571354
10_1002_anie_201910916
ANIE201910916
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201606130050
– fundername: the National Natural Science Foundation of China
  funderid: 21905299
– fundername: China Postdoctoral Science Foundation
  funderid: 2019TQ0346
– fundername: the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences
  funderid: DESC0001160
– fundername: the US National Science Foundation
  funderid: 1438198
– fundername: the National Natural Science Foundation of China
  grantid: 21905299
– fundername: China Postdoctoral Science Foundation
  grantid: 2019TQ0346
– fundername: the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences
  grantid: DESC0001160
– fundername: China Scholarship Council
  grantid: 201606130050
– fundername: the US National Science Foundation
  grantid: 1438198
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
EJD
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c5436-e36446270b498176177f6927a5103c0046018096ea5cfdb1cd811c7f39b5a6793
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu May 18 22:48:02 EDT 2023
Thu Jul 10 19:55:48 EDT 2025
Sun Jul 13 04:37:34 EDT 2025
Wed Feb 19 02:30:40 EST 2025
Tue Jul 01 02:26:58 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Wed Jan 22 16:39:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords rechargeable Al batteries
fast charging
polymer cathodes
rechargeable Mg batteries
sodium ion batteries
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5436-e36446270b498176177f6927a5103c0046018096ea5cfdb1cd811c7f39b5a6793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
China Scholarship Council
SC0001160; 1438198; 201606130050; 21905299; 2019TQ0346
National Science Foundation (NSF)
National Natural Science Foundation of China (NSFC)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-8626-6381
0000000286266381
OpenAccessLink https://www.osti.gov/servlets/purl/1767522
PMID 31571354
PQID 2317519941
PQPubID 946352
PageCount 7
ParticipantIDs osti_scitechconnect_1767522
proquest_miscellaneous_2299773157
proquest_journals_2317519941
pubmed_primary_31571354
crossref_primary_10_1002_anie_201910916
crossref_citationtrail_10_1002_anie_201910916
wiley_primary_10_1002_anie_201910916_ANIE201910916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2, 2019
PublicationDateYYYYMMDD 2019-12-02
PublicationDate_xml – month: 12
  year: 2019
  text: December 2, 2019
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 5
2017; 7
2013; 3
2017; 3
2019; 55
2019; 16
2019; 19
2018; 45
2017; 356
2013; 6
2011; 111
2014; 66
2018; 47
2013 2013; 52 125
2000; 407
2018; 6
2014; 5
2014; 4
2012; 134
2019; 21
2018 2018; 57 130
2015 2015; 54 127
2018; 30
2014; 161
2016; 116
2008; 155
2012; 24
2014; 50
2016; 45
2006; 201
2015; 13
2011; 334
2003; 218
2019; 4
2015; 5
2009; 21
2019; 31
2010
2015; 287
2000; 454–456
2011; 40
2010 2010; 49 122
2016; 18
2016; 16
2018; 20
2014; 114
2019 2019; 58 131
2016; 4
2016; 6
2012; 2
2016; 1
2015; 27
2016 2016; 55 128
2017; 17
2017; 16
2017; 11
2018; 115
2011; 44
2011 2011; 50 123
2016; 138
2018; 10
2016; 26
2016; 8
2016; 9
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_30_1
e_1_2_6_91_2
e_1_2_6_19_2
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_1
e_1_2_6_99_1
e_1_2_6_57_2
e_1_2_6_64_2
e_1_2_6_41_3
e_1_2_6_41_2
e_1_2_6_83_1
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_87_2
e_1_2_6_45_2
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_96_2
e_1_2_6_73_1
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_1
e_1_2_6_58_1
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_61_3
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_65_3
e_1_2_6_88_1
e_1_2_6_69_1
e_1_2_6_46_2
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_2
e_1_2_6_70_1
e_1_2_6_93_1
(e_1_2_6_75_3) 2019; 131
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_17_2
e_1_2_6_36_2
e_1_2_6_62_1
e_1_2_6_62_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_47_1
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_75_2
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_90_3
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_98_2
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_2
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_48_1
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_67_3
References_xml – volume: 16
  start-page: 434
  year: 2019
  end-page: 454
  publication-title: Energy Storage Mater.
– volume: 47
  start-page: 8804
  year: 2018
  end-page: 8841
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 5335
  year: 2014
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1706498
  year: 2018
  publication-title: Adv. Mater.
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  publication-title: J. Appl. Crystallogr.
– volume: 356
  start-page: 415
  year: 2017
  end-page: 418
  publication-title: Science
– volume: 55 128
  start-page: 1805 1837
  year: 2016 2016
  end-page: 1809 1841
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 12528 12716
  year: 2016 2016
  end-page: 12532 12720
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 11491
  year: 2016
  end-page: 11497
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6347
  year: 2017
  end-page: 6367
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 346
  year: 2018
  end-page: 352
  publication-title: Nano Energy
– volume: 18
  start-page: 26651
  year: 2016
  end-page: 26660
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52 125
  start-page: 8322 8480
  year: 2013 2013
  end-page: 8328 8486
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 2374
  year: 2016
  end-page: 2382
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 297
  year: 2016
  end-page: 301
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 2907
  year: 2015
  end-page: 2912
  publication-title: Adv. Mater.
– volume: 161
  start-page: 6
  year: 2014
  end-page: 9
  publication-title: J. Electrochem. Soc.
– volume: 50
  start-page: 4788
  year: 2014
  end-page: 4790
  publication-title: Chem. Commun.
– volume: 114
  start-page: 11683
  year: 2014
  end-page: 11720
  publication-title: Chem. Rev.
– volume: 55
  start-page: 608
  year: 2019
  end-page: 611
  publication-title: Chem. Commun.
– volume: 40
  start-page: 222
  year: 2011
  end-page: 227
  publication-title: Chem. Lett.
– volume: 49 122
  start-page: 8444 8622
  year: 2010 2010
  end-page: 8448 8626
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 537
  year: 2015
  end-page: 545
  publication-title: Nano Energy
– volume: 2
  start-page: 710
  year: 2012
  end-page: 721
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 19694
  year: 2012
  end-page: 19700
  publication-title: J. Am. Chem. Soc.
– volume: 287
  start-page: 15
  year: 2015
  end-page: 27
  publication-title: Coord. Chem. Rev.
– volume: 54 127
  start-page: 13947 14153
  year: 2015 2015
  end-page: 13951 14157
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 7146 7264
  year: 2018 2018
  end-page: 7150 7268
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 3830
  year: 2017
  end-page: 3836
  publication-title: Nano Lett.
– volume: 454–456
  start-page: 995
  year: 2000
  end-page: 999
  publication-title: Surf. Sci.
– volume: 45
  start-page: 6345
  year: 2016
  end-page: 6404
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 232
  year: 2018
  end-page: 237
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 3577
  year: 2011
  end-page: 3613
  publication-title: Chem. Rev.
– volume: 21
  start-page: 3755
  year: 2019
  end-page: 3769
  publication-title: CrystEngComm
– volume: 16
  start-page: 3329
  year: 2016
  end-page: 3334
  publication-title: Nano Lett.
– volume: 58 131
  start-page: 849 859
  year: 2019 2019
  end-page: 853 863
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 155
  start-page: 103
  year: 2008
  end-page: 109
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 2280
  year: 2013
  end-page: 2301
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 51
  year: 2019
  end-page: 59
  publication-title: Nat. Energy
– volume: 26
  start-page: 6896
  year: 2016
  end-page: 6903
  publication-title: Adv. Funct. Mater.
– volume: 115
  start-page: 2004
  year: 2018
  end-page: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 50 123
  start-page: 8753 8912
  year: 2011 2011
  end-page: 8757 8916
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 218
  start-page: 58
  year: 2003
  end-page: 69
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 5646
  year: 2017
  end-page: 5660
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4926
  year: 2015
  end-page: 4929
  publication-title: Chem. Mater.
– volume: 6
  start-page: 2265
  year: 2013
  end-page: 2279
  publication-title: Energy Environ. Sci.
– volume: 66
  start-page: 1
  year: 2014
  end-page: 86
  publication-title: Prog. Mater. Sci.
– volume: 3
  start-page: 600
  year: 2013
  end-page: 605
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1402034
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 469
  year: 2017
  end-page: 477
  publication-title: ACS Nano
– volume: 19
  start-page: 6665
  year: 2019
  end-page: 6672
  publication-title: Nano Lett.
– volume: 9
  start-page: 2273
  year: 2016
  end-page: 2277
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1601792
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16013
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 114
  start-page: 11414
  year: 2014
  end-page: 11443
  publication-title: Chem. Rev.
– volume: 30
  start-page: 4683
  year: 2018
  end-page: 4693
  publication-title: Chem. Mater.
– volume: 24
  start-page: 6397
  year: 2012
  end-page: 6409
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2339
  year: 2009
  end-page: 2344
  publication-title: Adv. Mater.
– volume: 55 128
  start-page: 3106 3158
  year: 2016 2016
  end-page: 3111 3163
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  publication-title: Science
– volume: 31
  start-page: 3183
  year: 2019
  end-page: 3191
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1050
  year: 2017
  end-page: 1062
  publication-title: Chem
– volume: 7
  start-page: 1602093
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 14767
  year: 2018
  end-page: 14776
  publication-title: ACS Appl. Mater. Interfaces
– volume: 201
  start-page: 1
  year: 2006
  end-page: 9
  publication-title: Surf. Coat. Technol.
– volume: 407
  start-page: 724
  year: 2000
  publication-title: Nature
– volume: 8
  start-page: 17
  year: 2016
  publication-title: J. Cheminf.
– volume: 116
  start-page: 9438
  year: 2016
  end-page: 9484
  publication-title: Chem. Rev.
– volume: 47
  start-page: 210
  year: 2018
  end-page: 216
  publication-title: Nano Energy
– start-page: 171
  year: 2010
  end-page: 179
– volume: 4
  start-page: 1301651
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1772
  year: 2018
  end-page: 1779
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 841
  year: 2017
  publication-title: Nat. Mater.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1600140
  year: 2016
  publication-title: Adv. Energy Mater.
– ident: e_1_2_6_24_2
  doi: 10.1016/j.surfcoat.2005.10.046
– ident: e_1_2_6_45_2
  doi: 10.1039/c3ee40709h
– ident: e_1_2_6_41_3
  doi: 10.1002/ange.201803703
– ident: e_1_2_6_39_2
  doi: 10.1021/acs.chemrev.6b00070
– ident: e_1_2_6_85_2
  doi: 10.1021/acs.nanolett.6b00954
– ident: e_1_2_6_6_2
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_6_2_2
  doi: 10.1126/science.1212741
– ident: e_1_2_6_81_2
  doi: 10.1021/jacs.5b13279
– ident: e_1_2_6_46_2
  doi: 10.1002/aenm.201200947
– ident: e_1_2_6_63_1
– ident: e_1_2_6_87_2
  doi: 10.1002/aenm.201301651
– ident: e_1_2_6_89_2
  doi: 10.1016/S0039-6028(00)00128-X
– ident: e_1_2_6_69_1
  doi: 10.1002/anie.201103493
– ident: e_1_2_6_36_2
  doi: 10.1021/acs.chemmater.5b01918
– ident: e_1_2_6_82_1
  doi: 10.1186/s13321-016-0129-3
– ident: e_1_2_6_94_1
– ident: e_1_2_6_58_1
– ident: e_1_2_6_44_1
– ident: e_1_2_6_59_2
  doi: 10.1002/adma.201405416
– ident: e_1_2_6_5_2
  doi: 10.1126/science.aak9991
– ident: e_1_2_6_61_2
  doi: 10.1002/anie.201506673
– ident: e_1_2_6_25_2
  doi: 10.1021/acs.nanolett.9b02963
– ident: e_1_2_6_16_2
  doi: 10.1021/cr5003003
– ident: e_1_2_6_88_1
– ident: e_1_2_6_15_1
– ident: e_1_2_6_79_2
  doi: 10.1039/C6CP04225B
– ident: e_1_2_6_93_1
  doi: 10.1021/acsnano.6b06446
– ident: e_1_2_6_9_2
  doi: 10.1002/aenm.201200026
– ident: e_1_2_6_19_2
  doi: 10.1016/j.ccr.2014.11.005
– ident: e_1_2_6_34_1
– ident: e_1_2_6_18_1
– ident: e_1_2_6_76_2
  doi: 10.1021/acssuschemeng.7b03165
– ident: e_1_2_6_17_2
  doi: 10.1142/9789814317665_0024
– ident: e_1_2_6_47_2
  doi: 10.1002/ange.201511553
– ident: e_1_2_6_20_2
  doi: 10.1016/j.pmatsci.2014.04.001
– ident: e_1_2_6_74_1
– ident: e_1_2_6_78_1
– ident: e_1_2_6_3_2
  doi: 10.1021/cr100290v
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.chemmater.8b05218
– ident: e_1_2_6_52_1
– ident: e_1_2_6_61_3
  doi: 10.1002/ange.201506673
– ident: e_1_2_6_64_2
  doi: 10.1002/aenm.201601792
– ident: e_1_2_6_8_2
  doi: 10.1021/cr500192f
– ident: e_1_2_6_30_1
– ident: e_1_2_6_50_2
  doi: 10.1002/adma.201203119
– ident: e_1_2_6_65_2
  doi: 10.1002/anie.201607194
– ident: e_1_2_6_90_2
  doi: 10.1002/anie.201510686
– ident: e_1_2_6_72_2
  doi: 10.1149/2.015401jes
– ident: e_1_2_6_67_2
  doi: 10.1002/anie.201301850
– ident: e_1_2_6_68_1
  doi: 10.1039/C8CC09307E
– ident: e_1_2_6_71_2
  doi: 10.1246/cl.2011.222
– ident: e_1_2_6_66_2
  doi: 10.1016/j.chempr.2017.09.004
– ident: e_1_2_6_62_2
  doi: 10.1002/ange.201002439
– ident: e_1_2_6_28_2
  doi: 10.1021/cr500049y
– ident: e_1_2_6_32_2
  doi: 10.1039/C7TA00282C
– ident: e_1_2_6_91_2
  doi: 10.1016/S0169-4332(03)00579-8
– ident: e_1_2_6_43_2
  doi: 10.1039/C8CS00319J
– ident: e_1_2_6_96_2
  doi: 10.1021/acs.chemmater.8b01345
– ident: e_1_2_6_92_2
  doi: 10.1038/nmat4919
– ident: e_1_2_6_42_2
  doi: 10.1002/aenm.201600140
– ident: e_1_2_6_31_2
  doi: 10.1039/C7TA00228A
– ident: e_1_2_6_14_2
  doi: 10.1039/C9CE00531E
– ident: e_1_2_6_21_2
  doi: 10.1002/aenm.201602093
– ident: e_1_2_6_40_1
– ident: e_1_2_6_60_2
  doi: 10.1021/ja306663g
– ident: e_1_2_6_37_1
– ident: e_1_2_6_97_2
  doi: 10.1039/C6EE00724D
– ident: e_1_2_6_84_2
  doi: 10.1039/C6TA03956A
– ident: e_1_2_6_22_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_47_1
  doi: 10.1002/anie.201511553
– ident: e_1_2_6_83_1
– ident: e_1_2_6_55_1
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.201803703
– ident: e_1_2_6_57_2
  doi: 10.1073/pnas.1717892115
– ident: e_1_2_6_49_2
  doi: 10.1002/adma.200803554
– ident: e_1_2_6_98_2
  doi: 10.1016/j.nanoen.2018.02.060
– ident: e_1_2_6_35_2
  doi: 10.1038/35037553
– volume: 131
  start-page: 859
  year: 2019
  ident: e_1_2_6_75_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201812685
– ident: e_1_2_6_38_2
  doi: 10.1039/C6CS00173D
– ident: e_1_2_6_53_2
  doi: 10.1038/ncomms6335
– ident: e_1_2_6_95_2
  doi: 10.1021/acsenergylett.6b00145
– ident: e_1_2_6_11_2
  doi: 10.1021/acs.nanolett.7b01152
– ident: e_1_2_6_23_2
  doi: 10.1149/1.2806175
– ident: e_1_2_6_69_2
  doi: 10.1002/ange.201103493
– ident: e_1_2_6_26_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_12_2
  doi: 10.1016/j.nanoen.2018.01.001
– ident: e_1_2_6_80_2
  doi: 10.1039/C7CP06279F
– ident: e_1_2_6_27_2
  doi: 10.1039/c3ee40871j
– ident: e_1_2_6_48_1
– ident: e_1_2_6_65_3
  doi: 10.1002/ange.201607194
– ident: e_1_2_6_90_3
  doi: 10.1002/ange.201510686
– ident: e_1_2_6_99_1
  doi: 10.1038/s41560-018-0291-0
– ident: e_1_2_6_56_2
  doi: 10.1002/adma.201706498
– ident: e_1_2_6_67_3
  doi: 10.1002/ange.201301850
– ident: e_1_2_6_7_1
– ident: e_1_2_6_54_2
  doi: 10.1002/adfm.201602114
– ident: e_1_2_6_62_1
  doi: 10.1002/anie.201002439
– ident: e_1_2_6_77_1
  doi: 10.1107/S0021889811038970
– ident: e_1_2_6_10_1
– ident: e_1_2_6_75_2
  doi: 10.1002/anie.201812685
– ident: e_1_2_6_51_1
  doi: 10.1002/aenm.201402034
– ident: e_1_2_6_13_2
  doi: 10.1016/j.ensm.2018.06.027
– ident: e_1_2_6_86_2
  doi: 10.1016/j.nanoen.2015.03.041
– ident: e_1_2_6_70_1
– ident: e_1_2_6_73_1
  doi: 10.1039/C4CC01002G
– ident: e_1_2_6_29_2
  doi: 10.1021/acsami.8b02425
SSID ssj0028806
Score 2.6497889
SecondaryResourceType review_article
Snippet The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN),...
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN),...
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Here, poly(hexaazatrinaphthalene) (PHATN),...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17820
SubjectTerms Aluminum
bio-inspired
Cathodes
charge transport
defects
Electrode materials
ENERGY STORAGE
energy storage (including batteries and capacitors)
fast charging
Flux density
Magnesium
Metal ions
Photoelectron spectroscopy
Photoelectrons
polymer cathodes
Polymers
Pyrazine
rechargeable AI batteries
rechargeable Al batteries
Rechargeable batteries
rechargeable Mg batteries
Sodium
sodium ion batteries
synthesis (novel materials)
synthesis (scalable processing)
synthesis (self-assembly)
Title A Pyrazine‐Based Polymer for Fast‐Charge Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201910916
https://www.ncbi.nlm.nih.gov/pubmed/31571354
https://www.proquest.com/docview/2317519941
https://www.proquest.com/docview/2299773157
https://www.osti.gov/servlets/purl/1767522
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHVS70UqAvlke1lSpxMsSPtXePARHRSkWoAombZXsdDtCkSjYHOPER-Ix8EmZ2s0tTtaoEt2zWKzkez87f8czPAF9cmWkVishc4UqmVJAM47xnykhcHGja2qIC5-8n-vhcfbvILn6r4m_4EN0fbuQZ9fuaHNz52f4TNJQqsCk1qyC0JTG3KWGLVNGPjh8lcHI25UVSMjqFvqU29sX-8uNLUak3Qe_6m-JcFrB1BBqugmv73iSeXO3NK78Xbv_AOr7kx63Bm4U8TQfNfFqHV3H8FlYO21Ph3oEepKc305pJ_XB3f4AxsExPJ9c3P-M0Rf2bDt2swhu0i38Z04beiYvx93A-PDo7PGaLsxdYyJTULEoUSlqYvldFjkbjxox0IYwjAl-oS06J_KWjy8Ko9DyUOefBjGThM6fR6T9AbzwZxw1I0dxeFFnAhaZUMi9dKY00pXM8933v8gRYO_Y2LMDkdD7GtW2QysLSaNhuNBLY7dr_apAc_2y5Raa0KCaIiBsodShUlhPARogEtlsL24XjzqwgPUW8ZJ7A5-42jjHto7hxnMyxDYZwYyTPTAIfm5nRdYS-5TJTCYjavv_poR2cfD3qrjaf89AWvKbPdYqN2IZeNZ3HHRRKlf9UO8MjFMUGcA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7B9lAuQMtfaIFUqsTJ7fondnLclq62tF1VqJW4Wbbj7YGyi7bZQznxCDwjT9KZZBO0CIQExzi25Mx4Mp_tmW8Adl2ZaRWKyFzhSqZUkAz9vGfKSNwcaLraogTns7EeXar3H7M2mpByYRp-iO7AjSyj_l-TgdOB9P5P1lBKwabYrIK4LfV9WKOy3lTE4N2HjkFK4PJsEoykZFSHvuVt7Iv91fErfqk3Q_v6HeZchbC1Dxo-At_Ovgk9-bS3qPxe-PoLseN_fd5jeLhEqOmgWVIbcC9ON2H9sC0M9wT0ID2_nde01D--fT9AN1im57Pr289xniIETofupsIXdJF_FdOGwBP340_hcnh0cThiy_ILLGRKahYlYiUtTN-rIke9cWMmuhDGEQlfqLNOifxLR5eFSel5KHPOg5nIwmdOo90_g950No0vIEWNe1FkAfeaUsm8dKU00pTO8dz3vcsTYK3wbVhyk1OJjGvbsCoLS9KwnTQSeNv1_9Kwcvyx5xbp0iKeIFLcQNFDobKcOGyESGC7VbFd2u6NFQSpiDKZJ7DTvUYZ01WKm8bZAvugFzdG8swk8LxZGt1EqJXLTCUgagX_ZYZ2MD4-6p5e_sugN7A-ujg7tafH45MteEDtdcSN2IZeNV_EV4ibKv-6tow7glEKig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkIAL74JpASMhcdo2-_CufQylUcsjihCVelvtKxwoSZU6h3LiJ_Ab-SXM2LEhCIQER-9DWs_seL71znwD8MzFQqtQJeYqF5lSQTL0854pI_FwoOlqixKc30704bF6dVKc_JTF3_JD9D_cyDKa7zUZ-Fmc7f0gDaUMbArNqojaUl-GK0qjxRAsetcTSAncnW1-kZSMytB3tI1Dsbc5f8MtDRZoXr-DnJsItnFB45vgusW3kScfd1e13w2ff-F1_J-3uwU31vg0H7Ub6jZcSvM7cG2_Kwt3F_Qon14sG1Lqb1--vkAnGPPp4vTiU1rmCIDzsTuvsYOu8T-kvKXvxNP4PTgeH7zfP2Tr4gssFEpqliQiJS3M0KuqRK1xY2a6EsYRBV9ock6J-ksnV4RZ9DzEkvNgZrLyhdNo9VswmC_m6QHkqG8vqiLgSVMqWUYXpZEmOsdLP_SuzIB1srdhzUxOBTJObcupLCxJw_bSyOB5P_6s5eT448htUqVFNEGUuIFih0JtOTHYCJHBTqdhu7bccysIUBFhMs_gad-NMqaLFDdPixWOQR9ujOSFyeB-uzP6hVArl4XKQDT6_csK7WhydNA_PfyXSU_g6vTl2L45mrzehuvU3ITbiB0Y1MtVeoSgqfaPG7v4DmjOCUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pyrazine%E2%80%90Based+Polymer+for+Fast%E2%80%90Charge+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mao%2C+Minglei&rft.au=Luo%2C+Chao&rft.au=Pollard%2C+Travis+P&rft.au=Hou%2C+Singyuk&rft.date=2019-12-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=49&rft.spage=17820&rft.epage=17826&rft_id=info:doi/10.1002%2Fanie.201910916&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon