A Pyrazine‐Based Polymer for Fast‐Charge Batteries
The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batt...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 58; no. 49; pp. 17820 - 17826 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.12.2019
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201910916 |
Cover
Loading…
Abstract | The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. |
---|---|
AbstractList | The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g
−1
at 50 mA g
−1
, corresponding to the energy density of 440 Wh kg
−1
, and still retains 100 mAh g
−1
at 10 Ag
−1
after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g
−1
after 200 cycles in Mg batteries and 92 mAh g
−1
after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Here, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1, corresponding to the energy density of 440 Wh kg-1, and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g at 50 mA g , corresponding to the energy density of 440 Wh kg , and still retains 100 mAh g at 10 Ag after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g after 200 cycles in Mg batteries and 92 mAh g after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. Poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for metal batteries. Exceptional performance is observed in Na and in more challenging Mg and Al batteries. The electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na‐ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g−1 at 50 mA g−1, corresponding to the energy density of 440 Wh kg−1, and still retains 100 mAh g−1 at 10 Ag−1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g−1 after 200 cycles in Mg batteries and 92 mAh g−1 after 100 cycles in Al batteries. DFT calculations, X‐ray photoelectron spectroscopy, Raman, and FTIR show that the electron‐deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions. |
Author | Wang, Chunsheng Yue, Jinming Deng, Tao Luo, Chao Gao, Tao Borodin, Oleg Mao, Minglei Pollard, Travis P. Hou, Singyuk Tong, Yuxin Ma, Jianmin Suo, Liumin Cui, Chunyu Fan, Xiulin Yang, Gaojing Zhang, Ming |
Author_xml | – sequence: 1 givenname: Minglei surname: Mao fullname: Mao, Minglei organization: Chinese Academy of Sciences – sequence: 2 givenname: Chao surname: Luo fullname: Luo, Chao email: cluo@gmu.edu organization: George Mason University – sequence: 3 givenname: Travis P. surname: Pollard fullname: Pollard, Travis P. organization: US Army Research Laboratory – sequence: 4 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: University of Maryland – sequence: 5 givenname: Tao surname: Gao fullname: Gao, Tao organization: University of Maryland – sequence: 6 givenname: Xiulin surname: Fan fullname: Fan, Xiulin organization: University of Maryland – sequence: 7 givenname: Chunyu surname: Cui fullname: Cui, Chunyu organization: Hunan University – sequence: 8 givenname: Jinming surname: Yue fullname: Yue, Jinming organization: Chinese Academy of Sciences – sequence: 9 givenname: Yuxin surname: Tong fullname: Tong, Yuxin organization: Chinese Academy of Sciences – sequence: 10 givenname: Gaojing surname: Yang fullname: Yang, Gaojing organization: Chinese Academy of Sciences – sequence: 11 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 12 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: Hunan University – sequence: 13 givenname: Jianmin surname: Ma fullname: Ma, Jianmin organization: Hunan University – sequence: 14 givenname: Liumin surname: Suo fullname: Suo, Liumin organization: Chinese Academy of Sciences – sequence: 15 givenname: Oleg surname: Borodin fullname: Borodin, Oleg email: oleg.a.borodin.civ@mail.mil organization: US Army Research Laboratory – sequence: 16 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31571354$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1767522$$D View this record in Osti.gov |
BookMark | eNqFkU1rVDEUhoNU7IduXcpFN27umJPPm-V0aG2haBe6DpnMuTblTlKTDGVc-RP8jf4SU6atUBBXCeR5TnjPe0j2YopIyGugM6CUfXAx4IxRMEANqGfkACSDnmvN99pdcN7rQcI-OSzluvHDQNULss9BauBSHBA17y632f0IEX___HXsCq66yzRt15i7MeXu1JXaHhZXLn_D7tjVijlgeUmej24q-Or-PCJfT0--LM76i88fzxfzi95LwVWPXAmhmKZLYQbQCrQelWHaSaDcUyoUhYEahU76cbUEvxoAvB65WUqntOFH5O1ubio12OJDRX_lU4zoq20DtWSsQe930E1O3zdYql2H4nGaXMS0KZYxY9pCWuaGvnuCXqdNji2CZRy0BGMENOrNPbVZrnFlb3JYu7y1D2trwGwH-JxKyTg-IkDtXS_2rhf72EsTxBOhRXE1pFizC9O_NbPTbsOE2_98Yuefzk_-un8ApWSfJQ |
CitedBy_id | crossref_primary_10_1021_acsenergylett_0c01750 crossref_primary_10_2139_ssrn_4048204 crossref_primary_10_1016_j_compositesb_2022_109750 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1002_ange_202302754 crossref_primary_10_1016_j_jpowsour_2022_231383 crossref_primary_10_1016_j_carbon_2021_12_051 crossref_primary_10_1002_anie_202218745 crossref_primary_10_1016_j_colsurfa_2022_130799 crossref_primary_10_1002_adma_202402681 crossref_primary_10_1002_cssc_202202358 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1016_j_est_2022_105471 crossref_primary_10_3390_polym14132608 crossref_primary_10_1002_ange_202311460 crossref_primary_10_1021_acs_energyfuels_1c00860 crossref_primary_10_1016_j_ensm_2022_05_013 crossref_primary_10_1021_acs_chemrev_0c01257 crossref_primary_10_1021_acsami_2c06208 crossref_primary_10_1002_adfm_202111043 crossref_primary_10_1016_j_cjsc_2024_100249 crossref_primary_10_1016_j_mattod_2022_04_010 crossref_primary_10_1002_cssc_202101324 crossref_primary_10_1021_acsami_4c06897 crossref_primary_10_1021_acssuschemeng_3c01448 crossref_primary_10_1098_rsos_210567 crossref_primary_10_1002_ange_202117661 crossref_primary_10_1039_D4CC02769H crossref_primary_10_1039_D2TA00723A crossref_primary_10_1016_j_jechem_2021_12_022 crossref_primary_10_1007_s40843_023_2796_5 crossref_primary_10_1021_acs_nanolett_0c01040 crossref_primary_10_1016_j_cej_2022_138238 crossref_primary_10_1016_j_jcis_2022_05_068 crossref_primary_10_1021_acs_nanolett_2c00965 crossref_primary_10_6023_cjoc202105031 crossref_primary_10_1002_adma_202307298 crossref_primary_10_1021_acs_inorgchem_0c00227 crossref_primary_10_1002_mame_202200303 crossref_primary_10_1002_anie_202410110 crossref_primary_10_2174_0113852728279887240109110636 crossref_primary_10_1016_j_cej_2024_148806 crossref_primary_10_1021_acsami_1c12150 crossref_primary_10_1021_acsami_1c18256 crossref_primary_10_1039_D4CS01072H crossref_primary_10_3866_PKU_WHXB202303060 crossref_primary_10_1002_jcc_27236 crossref_primary_10_1016_j_ensm_2023_102820 crossref_primary_10_1002_adma_202406106 crossref_primary_10_1002_anie_202216797 crossref_primary_10_1039_D1TA07323K crossref_primary_10_1002_adfm_201909597 crossref_primary_10_1002_smtd_202400185 crossref_primary_10_1016_j_jpowsour_2020_229426 crossref_primary_10_1021_acsaem_3c01679 crossref_primary_10_1039_D4TA05193A crossref_primary_10_1002_ange_202203646 crossref_primary_10_1149_1945_7111_ab8827 crossref_primary_10_1016_j_enchem_2020_100030 crossref_primary_10_1021_acsapm_4c02203 crossref_primary_10_3389_fenrg_2020_605129 crossref_primary_10_1002_adfm_202210717 crossref_primary_10_1002_smtd_202000039 crossref_primary_10_1016_j_ceja_2023_100499 crossref_primary_10_1007_s11581_023_04914_2 crossref_primary_10_1007_s12598_020_01576_1 crossref_primary_10_1016_j_cej_2023_147760 crossref_primary_10_1002_ange_202309125 crossref_primary_10_1039_D0TA04741D crossref_primary_10_1016_j_cej_2023_144248 crossref_primary_10_1016_j_esci_2025_100379 crossref_primary_10_1016_j_jhazmat_2020_124546 crossref_primary_10_1039_D3SC05843C crossref_primary_10_1002_ange_202306091 crossref_primary_10_1039_D0CC08273B crossref_primary_10_1002_adma_202005781 crossref_primary_10_1002_ange_202410110 crossref_primary_10_1002_anie_202302754 crossref_primary_10_1002_cssc_202201219 crossref_primary_10_1002_cssc_202202305 crossref_primary_10_1021_acsaem_0c00729 crossref_primary_10_1039_D2TA04174J crossref_primary_10_1016_j_ccr_2022_214597 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1016_j_ensm_2021_08_043 crossref_primary_10_1002_adfm_202413611 crossref_primary_10_1021_acsami_9b20384 crossref_primary_10_1039_D3FD00132F crossref_primary_10_1016_j_molliq_2023_122876 crossref_primary_10_1002_marc_202200198 crossref_primary_10_1080_10406638_2022_2092873 crossref_primary_10_1016_j_ensm_2021_07_008 crossref_primary_10_1016_j_ensm_2022_09_016 crossref_primary_10_1016_j_cej_2022_139016 crossref_primary_10_1016_j_pnsc_2023_12_018 crossref_primary_10_1021_acsami_2c09618 crossref_primary_10_1016_j_nanoen_2022_107554 crossref_primary_10_1039_D3CC02652C crossref_primary_10_1002_anie_202309125 crossref_primary_10_1002_cjoc_202400647 crossref_primary_10_1016_j_electacta_2021_139620 crossref_primary_10_1021_acsami_3c00904 crossref_primary_10_1002_adma_202109658 crossref_primary_10_1016_j_cej_2022_138051 crossref_primary_10_1016_j_ensm_2024_103334 crossref_primary_10_1016_j_cattod_2021_09_040 crossref_primary_10_1002_aenm_202101562 crossref_primary_10_1002_anie_202306091 crossref_primary_10_1016_j_electacta_2023_142552 crossref_primary_10_1016_j_inoche_2025_114072 crossref_primary_10_1021_acsnano_3c06189 crossref_primary_10_1016_j_mtcomm_2023_107768 crossref_primary_10_1021_acsami_2c14365 crossref_primary_10_1039_D1TA00528F crossref_primary_10_1002_anie_202403424 crossref_primary_10_1002_anie_202117661 crossref_primary_10_1021_acsami_2c07383 crossref_primary_10_1055_a_1512_5753 crossref_primary_10_1002_smtd_202300663 crossref_primary_10_1002_aenm_202002917 crossref_primary_10_1016_j_electacta_2022_141730 crossref_primary_10_1021_acsaem_1c01970 crossref_primary_10_1016_j_apsusc_2022_152859 crossref_primary_10_1002_aenm_202101446 crossref_primary_10_1016_j_apcata_2022_118681 crossref_primary_10_1021_acsnano_4c18374 crossref_primary_10_1021_acs_nanolett_3c04566 crossref_primary_10_1016_j_chempr_2023_12_007 crossref_primary_10_1021_acsami_3c17710 crossref_primary_10_1021_acsami_9b19623 crossref_primary_10_1016_j_ensm_2024_103674 crossref_primary_10_1039_D2TA00896C crossref_primary_10_1002_anie_202311460 crossref_primary_10_1002_ange_202016240 crossref_primary_10_1002_EXP_20220066 crossref_primary_10_1016_j_jcis_2024_06_151 crossref_primary_10_1039_D1SE01649K crossref_primary_10_1039_C9CC09846A crossref_primary_10_1002_admt_202200306 crossref_primary_10_1002_adfm_202209777 crossref_primary_10_1002_adfm_202211950 crossref_primary_10_1002_anie_202203646 crossref_primary_10_1016_j_ensm_2021_02_022 crossref_primary_10_1016_j_cej_2021_130995 crossref_primary_10_1021_acsami_4c09181 crossref_primary_10_1002_aenm_202100381 crossref_primary_10_1016_j_ensm_2025_104011 crossref_primary_10_1002_aenm_202403011 crossref_primary_10_1002_ange_202218745 crossref_primary_10_6023_A22090385 crossref_primary_10_1002_batt_202200160 crossref_primary_10_1021_acs_macromol_4c00978 crossref_primary_10_1039_D1TA03842G crossref_primary_10_1007_s11426_024_2456_x crossref_primary_10_1021_acsami_3c11270 crossref_primary_10_1002_marc_202200782 crossref_primary_10_1002_cjoc_202200819 crossref_primary_10_1021_acsnano_4c16314 crossref_primary_10_1002_adfm_202415186 crossref_primary_10_1016_j_cej_2022_138652 crossref_primary_10_1016_j_ensm_2022_03_033 crossref_primary_10_1002_ange_202216797 crossref_primary_10_1002_anie_202016240 crossref_primary_10_1016_j_ensm_2022_06_018 crossref_primary_10_1021_acs_nanolett_0c02908 crossref_primary_10_1039_D3CC03233G crossref_primary_10_1016_j_jcis_2024_03_127 crossref_primary_10_1039_D4ME00049H crossref_primary_10_1002_adma_202110109 crossref_primary_10_1002_aesr_202300217 crossref_primary_10_1016_j_cej_2024_156359 crossref_primary_10_1002_ange_202403424 crossref_primary_10_1039_D2TA03264C crossref_primary_10_1021_acsami_0c20915 crossref_primary_10_1002_smll_202201362 crossref_primary_10_1002_adfm_202107718 crossref_primary_10_1016_j_xcrp_2022_101240 crossref_primary_10_1002_smll_202308881 crossref_primary_10_1002_aenm_202100330 crossref_primary_10_1021_acsnano_1c06530 crossref_primary_10_1002_batt_202300472 crossref_primary_10_1021_acsami_4c16866 crossref_primary_10_1021_acsenergylett_5c00139 crossref_primary_10_1016_j_est_2024_111287 crossref_primary_10_1039_D2CC02021A crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1016_j_jpowsour_2024_234679 crossref_primary_10_1002_smll_202104993 crossref_primary_10_1016_j_ensm_2021_01_016 crossref_primary_10_1002_aenm_202203253 crossref_primary_10_1002_aenm_202302495 crossref_primary_10_1016_j_jhazmat_2024_134808 crossref_primary_10_1002_cssc_202401397 crossref_primary_10_1021_acsami_0c07292 crossref_primary_10_1002_admi_202300464 crossref_primary_10_1021_accountsmr_3c00284 crossref_primary_10_1016_j_ensm_2023_102993 crossref_primary_10_1002_adma_202200662 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1038_s41467_025_58126_5 crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1039_D3TA07593A crossref_primary_10_1039_D0EE02111C crossref_primary_10_1021_acsami_4c06959 crossref_primary_10_1016_j_cej_2020_124370 |
Cites_doi | 10.1016/j.surfcoat.2005.10.046 10.1039/c3ee40709h 10.1002/ange.201803703 10.1021/acs.chemrev.6b00070 10.1021/acs.nanolett.6b00954 10.1038/natrevmats.2016.13 10.1126/science.1212741 10.1021/jacs.5b13279 10.1002/aenm.201200947 10.1002/aenm.201301651 10.1016/S0039-6028(00)00128-X 10.1002/anie.201103493 10.1021/acs.chemmater.5b01918 10.1186/s13321-016-0129-3 10.1002/adma.201405416 10.1126/science.aak9991 10.1002/anie.201506673 10.1021/acs.nanolett.9b02963 10.1021/cr5003003 10.1039/C6CP04225B 10.1021/acsnano.6b06446 10.1002/aenm.201200026 10.1016/j.ccr.2014.11.005 10.1021/acssuschemeng.7b03165 10.1142/9789814317665_0024 10.1002/ange.201511553 10.1016/j.pmatsci.2014.04.001 10.1021/cr100290v 10.1021/acs.chemmater.8b05218 10.1002/ange.201506673 10.1002/aenm.201601792 10.1021/cr500192f 10.1002/adma.201203119 10.1002/anie.201607194 10.1002/anie.201510686 10.1149/2.015401jes 10.1002/anie.201301850 10.1039/C8CC09307E 10.1246/cl.2011.222 10.1016/j.chempr.2017.09.004 10.1002/ange.201002439 10.1021/cr500049y 10.1039/C7TA00282C 10.1016/S0169-4332(03)00579-8 10.1039/C8CS00319J 10.1021/acs.chemmater.8b01345 10.1038/nmat4919 10.1002/aenm.201600140 10.1039/C7TA00228A 10.1039/C9CE00531E 10.1002/aenm.201602093 10.1021/ja306663g 10.1039/C6EE00724D 10.1039/C6TA03956A 10.1002/anie.201511553 10.1002/anie.201803703 10.1073/pnas.1717892115 10.1002/adma.200803554 10.1016/j.nanoen.2018.02.060 10.1038/35037553 10.1002/ange.201812685 10.1039/C6CS00173D 10.1038/ncomms6335 10.1021/acsenergylett.6b00145 10.1021/acs.nanolett.7b01152 10.1149/1.2806175 10.1002/ange.201103493 10.1016/j.nanoen.2018.01.001 10.1039/C7CP06279F 10.1039/c3ee40871j 10.1002/ange.201607194 10.1002/ange.201510686 10.1038/s41560-018-0291-0 10.1002/adma.201706498 10.1002/ange.201301850 10.1002/adfm.201602114 10.1002/anie.201002439 10.1107/S0021889811038970 10.1002/anie.201812685 10.1002/aenm.201402034 10.1016/j.ensm.2018.06.027 10.1016/j.nanoen.2015.03.041 10.1039/C4CC01002G 10.1021/acsami.8b02425 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) Univ. of Maryland, College Park, MD (United States) |
CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/anie.201910916 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17826 |
ExternalDocumentID | 1767522 31571354 10_1002_anie_201910916 ANIE201910916 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201606130050 – fundername: the National Natural Science Foundation of China funderid: 21905299 – fundername: China Postdoctoral Science Foundation funderid: 2019TQ0346 – fundername: the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences funderid: DESC0001160 – fundername: the US National Science Foundation funderid: 1438198 – fundername: the National Natural Science Foundation of China grantid: 21905299 – fundername: China Postdoctoral Science Foundation grantid: 2019TQ0346 – fundername: the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences grantid: DESC0001160 – fundername: China Scholarship Council grantid: 201606130050 – fundername: the US National Science Foundation grantid: 1438198 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 EJD OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c5436-e36446270b498176177f6927a5103c0046018096ea5cfdb1cd811c7f39b5a6793 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu May 18 22:48:02 EDT 2023 Thu Jul 10 19:55:48 EDT 2025 Sun Jul 13 04:37:34 EDT 2025 Wed Feb 19 02:30:40 EST 2025 Tue Jul 01 02:26:58 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:39:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | rechargeable Al batteries fast charging polymer cathodes rechargeable Mg batteries sodium ion batteries |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5436-e36446270b498176177f6927a5103c0046018096ea5cfdb1cd811c7f39b5a6793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 China Scholarship Council SC0001160; 1438198; 201606130050; 21905299; 2019TQ0346 National Science Foundation (NSF) National Natural Science Foundation of China (NSFC) USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-8626-6381 0000000286266381 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1767522 |
PMID | 31571354 |
PQID | 2317519941 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1767522 proquest_miscellaneous_2299773157 proquest_journals_2317519941 pubmed_primary_31571354 crossref_primary_10_1002_anie_201910916 crossref_citationtrail_10_1002_anie_201910916 wiley_primary_10_1002_anie_201910916_ANIE201910916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2, 2019 |
PublicationDateYYYYMMDD | 2019-12-02 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2, 2019 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 5 2017; 7 2013; 3 2017; 3 2019; 55 2019; 16 2019; 19 2018; 45 2017; 356 2013; 6 2011; 111 2014; 66 2018; 47 2013 2013; 52 125 2000; 407 2018; 6 2014; 5 2014; 4 2012; 134 2019; 21 2018 2018; 57 130 2015 2015; 54 127 2018; 30 2014; 161 2016; 116 2008; 155 2012; 24 2014; 50 2016; 45 2006; 201 2015; 13 2011; 334 2003; 218 2019; 4 2015; 5 2009; 21 2019; 31 2010 2015; 287 2000; 454–456 2011; 40 2010 2010; 49 122 2016; 18 2016; 16 2018; 20 2014; 114 2019 2019; 58 131 2016; 4 2016; 6 2012; 2 2016; 1 2015; 27 2016 2016; 55 128 2017; 17 2017; 16 2017; 11 2018; 115 2011; 44 2011 2011; 50 123 2016; 138 2018; 10 2016; 26 2016; 8 2016; 9 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_95_2 e_1_2_6_30_1 e_1_2_6_91_2 e_1_2_6_19_2 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_1 e_1_2_6_99_1 e_1_2_6_57_2 e_1_2_6_64_2 e_1_2_6_41_3 e_1_2_6_41_2 e_1_2_6_83_1 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_87_2 e_1_2_6_45_2 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_96_2 e_1_2_6_73_1 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_1 e_1_2_6_58_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_61_3 e_1_2_6_42_2 e_1_2_6_80_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_65_3 e_1_2_6_88_1 e_1_2_6_69_1 e_1_2_6_46_2 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_2 e_1_2_6_70_1 e_1_2_6_93_1 (e_1_2_6_75_3) 2019; 131 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_17_2 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_62_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_81_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_47_1 e_1_2_6_89_2 e_1_2_6_52_1 e_1_2_6_75_2 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_90_3 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_98_2 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_2 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_48_1 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_67_3 |
References_xml | – volume: 16 start-page: 434 year: 2019 end-page: 454 publication-title: Energy Storage Mater. – volume: 47 start-page: 8804 year: 2018 end-page: 8841 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 5335 year: 2014 publication-title: Nat. Commun. – volume: 30 start-page: 1706498 year: 2018 publication-title: Adv. Mater. – volume: 44 start-page: 1272 year: 2011 end-page: 1276 publication-title: J. Appl. Crystallogr. – volume: 356 start-page: 415 year: 2017 end-page: 418 publication-title: Science – volume: 55 128 start-page: 1805 1837 year: 2016 2016 end-page: 1809 1841 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 12528 12716 year: 2016 2016 end-page: 12532 12720 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 11491 year: 2016 end-page: 11497 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6347 year: 2017 end-page: 6367 publication-title: J. Mater. Chem. A – volume: 45 start-page: 346 year: 2018 end-page: 352 publication-title: Nano Energy – volume: 18 start-page: 26651 year: 2016 end-page: 26660 publication-title: Phys. Chem. Chem. Phys. – volume: 52 125 start-page: 8322 8480 year: 2013 2013 end-page: 8328 8486 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 2374 year: 2016 end-page: 2382 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 297 year: 2016 end-page: 301 publication-title: ACS Energy Lett. – volume: 27 start-page: 2907 year: 2015 end-page: 2912 publication-title: Adv. Mater. – volume: 161 start-page: 6 year: 2014 end-page: 9 publication-title: J. Electrochem. Soc. – volume: 50 start-page: 4788 year: 2014 end-page: 4790 publication-title: Chem. Commun. – volume: 114 start-page: 11683 year: 2014 end-page: 11720 publication-title: Chem. Rev. – volume: 55 start-page: 608 year: 2019 end-page: 611 publication-title: Chem. Commun. – volume: 40 start-page: 222 year: 2011 end-page: 227 publication-title: Chem. Lett. – volume: 49 122 start-page: 8444 8622 year: 2010 2010 end-page: 8448 8626 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 537 year: 2015 end-page: 545 publication-title: Nano Energy – volume: 2 start-page: 710 year: 2012 end-page: 721 publication-title: Adv. Energy Mater. – volume: 134 start-page: 19694 year: 2012 end-page: 19700 publication-title: J. Am. Chem. Soc. – volume: 287 start-page: 15 year: 2015 end-page: 27 publication-title: Coord. Chem. Rev. – volume: 54 127 start-page: 13947 14153 year: 2015 2015 end-page: 13951 14157 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 7146 7264 year: 2018 2018 end-page: 7150 7268 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 3830 year: 2017 end-page: 3836 publication-title: Nano Lett. – volume: 454–456 start-page: 995 year: 2000 end-page: 999 publication-title: Surf. Sci. – volume: 45 start-page: 6345 year: 2016 end-page: 6404 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 232 year: 2018 end-page: 237 publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 3577 year: 2011 end-page: 3613 publication-title: Chem. Rev. – volume: 21 start-page: 3755 year: 2019 end-page: 3769 publication-title: CrystEngComm – volume: 16 start-page: 3329 year: 2016 end-page: 3334 publication-title: Nano Lett. – volume: 58 131 start-page: 849 859 year: 2019 2019 end-page: 853 863 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 155 start-page: 103 year: 2008 end-page: 109 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 2280 year: 2013 end-page: 2301 publication-title: Energy Environ. Sci. – volume: 4 start-page: 51 year: 2019 end-page: 59 publication-title: Nat. Energy – volume: 26 start-page: 6896 year: 2016 end-page: 6903 publication-title: Adv. Funct. Mater. – volume: 115 start-page: 2004 year: 2018 end-page: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 50 123 start-page: 8753 8912 year: 2011 2011 end-page: 8757 8916 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 218 start-page: 58 year: 2003 end-page: 69 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 5646 year: 2017 end-page: 5660 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4926 year: 2015 end-page: 4929 publication-title: Chem. Mater. – volume: 6 start-page: 2265 year: 2013 end-page: 2279 publication-title: Energy Environ. Sci. – volume: 66 start-page: 1 year: 2014 end-page: 86 publication-title: Prog. Mater. Sci. – volume: 3 start-page: 600 year: 2013 end-page: 605 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1402034 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 start-page: 469 year: 2017 end-page: 477 publication-title: ACS Nano – volume: 19 start-page: 6665 year: 2019 end-page: 6672 publication-title: Nano Lett. – volume: 9 start-page: 2273 year: 2016 end-page: 2277 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1601792 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16013 year: 2016 publication-title: Nat. Rev. Mater. – volume: 114 start-page: 11414 year: 2014 end-page: 11443 publication-title: Chem. Rev. – volume: 30 start-page: 4683 year: 2018 end-page: 4693 publication-title: Chem. Mater. – volume: 24 start-page: 6397 year: 2012 end-page: 6409 publication-title: Adv. Mater. – volume: 21 start-page: 2339 year: 2009 end-page: 2344 publication-title: Adv. Mater. – volume: 55 128 start-page: 3106 3158 year: 2016 2016 end-page: 3111 3163 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 334 start-page: 928 year: 2011 end-page: 935 publication-title: Science – volume: 31 start-page: 3183 year: 2019 end-page: 3191 publication-title: Chem. Mater. – volume: 3 start-page: 1050 year: 2017 end-page: 1062 publication-title: Chem – volume: 7 start-page: 1602093 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 14767 year: 2018 end-page: 14776 publication-title: ACS Appl. Mater. Interfaces – volume: 201 start-page: 1 year: 2006 end-page: 9 publication-title: Surf. Coat. Technol. – volume: 407 start-page: 724 year: 2000 publication-title: Nature – volume: 8 start-page: 17 year: 2016 publication-title: J. Cheminf. – volume: 116 start-page: 9438 year: 2016 end-page: 9484 publication-title: Chem. Rev. – volume: 47 start-page: 210 year: 2018 end-page: 216 publication-title: Nano Energy – start-page: 171 year: 2010 end-page: 179 – volume: 4 start-page: 1301651 year: 2014 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1772 year: 2018 end-page: 1779 publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 841 year: 2017 publication-title: Nat. Mater. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 publication-title: Chem. Rev. – volume: 6 start-page: 1600140 year: 2016 publication-title: Adv. Energy Mater. – ident: e_1_2_6_24_2 doi: 10.1016/j.surfcoat.2005.10.046 – ident: e_1_2_6_45_2 doi: 10.1039/c3ee40709h – ident: e_1_2_6_41_3 doi: 10.1002/ange.201803703 – ident: e_1_2_6_39_2 doi: 10.1021/acs.chemrev.6b00070 – ident: e_1_2_6_85_2 doi: 10.1021/acs.nanolett.6b00954 – ident: e_1_2_6_6_2 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_6_2_2 doi: 10.1126/science.1212741 – ident: e_1_2_6_81_2 doi: 10.1021/jacs.5b13279 – ident: e_1_2_6_46_2 doi: 10.1002/aenm.201200947 – ident: e_1_2_6_63_1 – ident: e_1_2_6_87_2 doi: 10.1002/aenm.201301651 – ident: e_1_2_6_89_2 doi: 10.1016/S0039-6028(00)00128-X – ident: e_1_2_6_69_1 doi: 10.1002/anie.201103493 – ident: e_1_2_6_36_2 doi: 10.1021/acs.chemmater.5b01918 – ident: e_1_2_6_82_1 doi: 10.1186/s13321-016-0129-3 – ident: e_1_2_6_94_1 – ident: e_1_2_6_58_1 – ident: e_1_2_6_44_1 – ident: e_1_2_6_59_2 doi: 10.1002/adma.201405416 – ident: e_1_2_6_5_2 doi: 10.1126/science.aak9991 – ident: e_1_2_6_61_2 doi: 10.1002/anie.201506673 – ident: e_1_2_6_25_2 doi: 10.1021/acs.nanolett.9b02963 – ident: e_1_2_6_16_2 doi: 10.1021/cr5003003 – ident: e_1_2_6_88_1 – ident: e_1_2_6_15_1 – ident: e_1_2_6_79_2 doi: 10.1039/C6CP04225B – ident: e_1_2_6_93_1 doi: 10.1021/acsnano.6b06446 – ident: e_1_2_6_9_2 doi: 10.1002/aenm.201200026 – ident: e_1_2_6_19_2 doi: 10.1016/j.ccr.2014.11.005 – ident: e_1_2_6_34_1 – ident: e_1_2_6_18_1 – ident: e_1_2_6_76_2 doi: 10.1021/acssuschemeng.7b03165 – ident: e_1_2_6_17_2 doi: 10.1142/9789814317665_0024 – ident: e_1_2_6_47_2 doi: 10.1002/ange.201511553 – ident: e_1_2_6_20_2 doi: 10.1016/j.pmatsci.2014.04.001 – ident: e_1_2_6_74_1 – ident: e_1_2_6_78_1 – ident: e_1_2_6_3_2 doi: 10.1021/cr100290v – ident: e_1_2_6_33_1 doi: 10.1021/acs.chemmater.8b05218 – ident: e_1_2_6_52_1 – ident: e_1_2_6_61_3 doi: 10.1002/ange.201506673 – ident: e_1_2_6_64_2 doi: 10.1002/aenm.201601792 – ident: e_1_2_6_8_2 doi: 10.1021/cr500192f – ident: e_1_2_6_30_1 – ident: e_1_2_6_50_2 doi: 10.1002/adma.201203119 – ident: e_1_2_6_65_2 doi: 10.1002/anie.201607194 – ident: e_1_2_6_90_2 doi: 10.1002/anie.201510686 – ident: e_1_2_6_72_2 doi: 10.1149/2.015401jes – ident: e_1_2_6_67_2 doi: 10.1002/anie.201301850 – ident: e_1_2_6_68_1 doi: 10.1039/C8CC09307E – ident: e_1_2_6_71_2 doi: 10.1246/cl.2011.222 – ident: e_1_2_6_66_2 doi: 10.1016/j.chempr.2017.09.004 – ident: e_1_2_6_62_2 doi: 10.1002/ange.201002439 – ident: e_1_2_6_28_2 doi: 10.1021/cr500049y – ident: e_1_2_6_32_2 doi: 10.1039/C7TA00282C – ident: e_1_2_6_91_2 doi: 10.1016/S0169-4332(03)00579-8 – ident: e_1_2_6_43_2 doi: 10.1039/C8CS00319J – ident: e_1_2_6_96_2 doi: 10.1021/acs.chemmater.8b01345 – ident: e_1_2_6_92_2 doi: 10.1038/nmat4919 – ident: e_1_2_6_42_2 doi: 10.1002/aenm.201600140 – ident: e_1_2_6_31_2 doi: 10.1039/C7TA00228A – ident: e_1_2_6_14_2 doi: 10.1039/C9CE00531E – ident: e_1_2_6_21_2 doi: 10.1002/aenm.201602093 – ident: e_1_2_6_40_1 – ident: e_1_2_6_60_2 doi: 10.1021/ja306663g – ident: e_1_2_6_37_1 – ident: e_1_2_6_97_2 doi: 10.1039/C6EE00724D – ident: e_1_2_6_84_2 doi: 10.1039/C6TA03956A – ident: e_1_2_6_22_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_47_1 doi: 10.1002/anie.201511553 – ident: e_1_2_6_83_1 – ident: e_1_2_6_55_1 – ident: e_1_2_6_41_2 doi: 10.1002/anie.201803703 – ident: e_1_2_6_57_2 doi: 10.1073/pnas.1717892115 – ident: e_1_2_6_49_2 doi: 10.1002/adma.200803554 – ident: e_1_2_6_98_2 doi: 10.1016/j.nanoen.2018.02.060 – ident: e_1_2_6_35_2 doi: 10.1038/35037553 – volume: 131 start-page: 859 year: 2019 ident: e_1_2_6_75_3 publication-title: Angew. Chem. doi: 10.1002/ange.201812685 – ident: e_1_2_6_38_2 doi: 10.1039/C6CS00173D – ident: e_1_2_6_53_2 doi: 10.1038/ncomms6335 – ident: e_1_2_6_95_2 doi: 10.1021/acsenergylett.6b00145 – ident: e_1_2_6_11_2 doi: 10.1021/acs.nanolett.7b01152 – ident: e_1_2_6_23_2 doi: 10.1149/1.2806175 – ident: e_1_2_6_69_2 doi: 10.1002/ange.201103493 – ident: e_1_2_6_26_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_12_2 doi: 10.1016/j.nanoen.2018.01.001 – ident: e_1_2_6_80_2 doi: 10.1039/C7CP06279F – ident: e_1_2_6_27_2 doi: 10.1039/c3ee40871j – ident: e_1_2_6_48_1 – ident: e_1_2_6_65_3 doi: 10.1002/ange.201607194 – ident: e_1_2_6_90_3 doi: 10.1002/ange.201510686 – ident: e_1_2_6_99_1 doi: 10.1038/s41560-018-0291-0 – ident: e_1_2_6_56_2 doi: 10.1002/adma.201706498 – ident: e_1_2_6_67_3 doi: 10.1002/ange.201301850 – ident: e_1_2_6_7_1 – ident: e_1_2_6_54_2 doi: 10.1002/adfm.201602114 – ident: e_1_2_6_62_1 doi: 10.1002/anie.201002439 – ident: e_1_2_6_77_1 doi: 10.1107/S0021889811038970 – ident: e_1_2_6_10_1 – ident: e_1_2_6_75_2 doi: 10.1002/anie.201812685 – ident: e_1_2_6_51_1 doi: 10.1002/aenm.201402034 – ident: e_1_2_6_13_2 doi: 10.1016/j.ensm.2018.06.027 – ident: e_1_2_6_86_2 doi: 10.1016/j.nanoen.2015.03.041 – ident: e_1_2_6_70_1 – ident: e_1_2_6_73_1 doi: 10.1039/C4CC01002G – ident: e_1_2_6_29_2 doi: 10.1021/acsami.8b02425 |
SSID | ssj0028806 |
Score | 2.6497889 |
SecondaryResourceType | review_article |
Snippet | The lack of high‐power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN),... The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN),... The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Here, poly(hexaazatrinaphthalene) (PHATN),... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17820 |
SubjectTerms | Aluminum bio-inspired Cathodes charge transport defects Electrode materials ENERGY STORAGE energy storage (including batteries and capacitors) fast charging Flux density Magnesium Metal ions Photoelectron spectroscopy Photoelectrons polymer cathodes Polymers Pyrazine rechargeable AI batteries rechargeable Al batteries Rechargeable batteries rechargeable Mg batteries Sodium sodium ion batteries synthesis (novel materials) synthesis (scalable processing) synthesis (self-assembly) |
Title | A Pyrazine‐Based Polymer for Fast‐Charge Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201910916 https://www.ncbi.nlm.nih.gov/pubmed/31571354 https://www.proquest.com/docview/2317519941 https://www.proquest.com/docview/2299773157 https://www.osti.gov/servlets/purl/1767522 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHVS70UqAvlke1lSpxMsSPtXePARHRSkWoAombZXsdDtCkSjYHOPER-Ix8EmZ2s0tTtaoEt2zWKzkez87f8czPAF9cmWkVishc4UqmVJAM47xnykhcHGja2qIC5-8n-vhcfbvILn6r4m_4EN0fbuQZ9fuaHNz52f4TNJQqsCk1qyC0JTG3KWGLVNGPjh8lcHI25UVSMjqFvqU29sX-8uNLUak3Qe_6m-JcFrB1BBqugmv73iSeXO3NK78Xbv_AOr7kx63Bm4U8TQfNfFqHV3H8FlYO21Ph3oEepKc305pJ_XB3f4AxsExPJ9c3P-M0Rf2bDt2swhu0i38Z04beiYvx93A-PDo7PGaLsxdYyJTULEoUSlqYvldFjkbjxox0IYwjAl-oS06J_KWjy8Ko9DyUOefBjGThM6fR6T9AbzwZxw1I0dxeFFnAhaZUMi9dKY00pXM8933v8gRYO_Y2LMDkdD7GtW2QysLSaNhuNBLY7dr_apAc_2y5Raa0KCaIiBsodShUlhPARogEtlsL24XjzqwgPUW8ZJ7A5-42jjHto7hxnMyxDYZwYyTPTAIfm5nRdYS-5TJTCYjavv_poR2cfD3qrjaf89AWvKbPdYqN2IZeNZ3HHRRKlf9UO8MjFMUGcA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7B9lAuQMtfaIFUqsTJ7fondnLclq62tF1VqJW4Wbbj7YGyi7bZQznxCDwjT9KZZBO0CIQExzi25Mx4Mp_tmW8Adl2ZaRWKyFzhSqZUkAz9vGfKSNwcaLraogTns7EeXar3H7M2mpByYRp-iO7AjSyj_l-TgdOB9P5P1lBKwabYrIK4LfV9WKOy3lTE4N2HjkFK4PJsEoykZFSHvuVt7Iv91fErfqk3Q_v6HeZchbC1Dxo-At_Ovgk9-bS3qPxe-PoLseN_fd5jeLhEqOmgWVIbcC9ON2H9sC0M9wT0ID2_nde01D--fT9AN1im57Pr289xniIETofupsIXdJF_FdOGwBP340_hcnh0cThiy_ILLGRKahYlYiUtTN-rIke9cWMmuhDGEQlfqLNOifxLR5eFSel5KHPOg5nIwmdOo90_g950No0vIEWNe1FkAfeaUsm8dKU00pTO8dz3vcsTYK3wbVhyk1OJjGvbsCoLS9KwnTQSeNv1_9Kwcvyx5xbp0iKeIFLcQNFDobKcOGyESGC7VbFd2u6NFQSpiDKZJ7DTvUYZ01WKm8bZAvugFzdG8swk8LxZGt1EqJXLTCUgagX_ZYZ2MD4-6p5e_sugN7A-ujg7tafH45MteEDtdcSN2IZeNV_EV4ibKv-6tow7glEKig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkIAL74JpASMhcdo2-_CufQylUcsjihCVelvtKxwoSZU6h3LiJ_Ab-SXM2LEhCIQER-9DWs_seL71znwD8MzFQqtQJeYqF5lSQTL0854pI_FwoOlqixKc30704bF6dVKc_JTF3_JD9D_cyDKa7zUZ-Fmc7f0gDaUMbArNqojaUl-GK0qjxRAsetcTSAncnW1-kZSMytB3tI1Dsbc5f8MtDRZoXr-DnJsItnFB45vgusW3kScfd1e13w2ff-F1_J-3uwU31vg0H7Ub6jZcSvM7cG2_Kwt3F_Qon14sG1Lqb1--vkAnGPPp4vTiU1rmCIDzsTuvsYOu8T-kvKXvxNP4PTgeH7zfP2Tr4gssFEpqliQiJS3M0KuqRK1xY2a6EsYRBV9ock6J-ksnV4RZ9DzEkvNgZrLyhdNo9VswmC_m6QHkqG8vqiLgSVMqWUYXpZEmOsdLP_SuzIB1srdhzUxOBTJObcupLCxJw_bSyOB5P_6s5eT448htUqVFNEGUuIFih0JtOTHYCJHBTqdhu7bccysIUBFhMs_gad-NMqaLFDdPixWOQR9ujOSFyeB-uzP6hVArl4XKQDT6_csK7WhydNA_PfyXSU_g6vTl2L45mrzehuvU3ITbiB0Y1MtVeoSgqfaPG7v4DmjOCUI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pyrazine%E2%80%90Based+Polymer+for+Fast%E2%80%90Charge+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mao%2C+Minglei&rft.au=Luo%2C+Chao&rft.au=Pollard%2C+Travis+P&rft.au=Hou%2C+Singyuk&rft.date=2019-12-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=49&rft.spage=17820&rft.epage=17826&rft_id=info:doi/10.1002%2Fanie.201910916&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |