Mineral nutrition of campos rupestres plant species on contrasting nutrient‐impoverished soil types
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P‐acquisiti...
Saved in:
Published in | The New phytologist Vol. 205; no. 3; pp. 1183 - 1194 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Academic Press
01.02.2015
New Phytologist Trust Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P‐acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient‐acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate‐releasing strategies. Communities on the most P‐impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate‐releasing P‐mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P‐impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P‐impoverished ecosystems. |
---|---|
AbstractList | In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems. Summary In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems. Summary In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P‐acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient‐acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate‐releasing strategies. Communities on the most P‐impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate‐releasing P‐mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P‐impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P‐impoverished ecosystems. In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems. In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems. In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P‐acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient‐acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal ( AM ) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate‐releasing strategies. Communities on the most P‐impoverished soils had the highest proportion of nonmycorrhizal ( NM ) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate‐releasing P‐mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P‐impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P‐impoverished ecosystems. |
Author | Oliveira, Rafael S Pearse, Stuart J Lambers, Hans Galvão, Hugo C Campos, Mariana C. R Eller, Cleiton B |
Author_xml | – sequence: 1 fullname: Oliveira, Rafael S – sequence: 2 fullname: Galvão, Hugo C – sequence: 3 fullname: Campos, Mariana C. R – sequence: 4 fullname: Eller, Cleiton B – sequence: 5 fullname: Pearse, Stuart J – sequence: 6 fullname: Lambers, Hans |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25425486$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1qFDEYhoO02G31wBvQAU_0YLbJ5Gcyh1LUCvUHtOBZyGS-2c0ym4xJxrJnXoLX6JWY7bQ9KFgMgRB4npcvvDlGB847QOgZwUuS16kb10tCSc0foQVhoiklofUBWmBcyVIw8f0IHce4wRg3XFSP0VHFWd5SLBB8tA6CHgo3pWCT9a7wfWH0dvSxCNMIMQWIxThol4o4grH5liHjXQo6JutWswou_fn122bvJwQb19AV0duhSLuc8QQd9nqI8PTmPEGX795-OzsvLz6__3D25qI0nFFeEtlRjgUwaPveAG3brqGYNC1lHTTaEAKdNjW0NTG4ZaY3NWsNJ0yLTteypSfo1Zw7Bv9jyrOrrY0Ghjw9-CkqIhrGMWGs-Q-UV7SpORMZfXkP3fgpuPwQVXFCpWw4xw9RRDCWa6nxnnp-Q03tFjo1BrvVYaduG8nA6xkwwccYoL9DCFb7tlVuW123ndnTe6yxSe9LzN3Y4SHjyg6w-3e0-vTl_NZYzsYmJh_uDAdX43qX_OBXNj-1wlzRnCFpFl7MQq-90qv8F9Tl1woTjjGRdVVL-heH6NcG |
CitedBy_id | crossref_primary_10_1007_s13199_018_0546_3 crossref_primary_10_1111_nph_17985 crossref_primary_10_1111_aec_12470 crossref_primary_10_1007_s42729_020_00396_7 crossref_primary_10_1111_plb_13596 crossref_primary_10_1177_19400829211042255 crossref_primary_10_1007_s11629_022_7838_z crossref_primary_10_1590_s1678_3921_pab2024_v59_03491p crossref_primary_10_1016_j_jnc_2022_126131 crossref_primary_10_1093_biolinnean_blaa097 crossref_primary_10_1111_1365_2664_14561 crossref_primary_10_1590_0102_33062020abb0041 crossref_primary_10_1111_1442_1984_12255 crossref_primary_10_3389_fpls_2017_02141 crossref_primary_10_1007_s11104_017_3503_7 crossref_primary_10_1038_nplants_2015_109 crossref_primary_10_1111_gcb_16147 crossref_primary_10_1007_s11629_020_6125_0 crossref_primary_10_1016_j_apsoil_2018_07_011 crossref_primary_10_1016_j_landurbplan_2020_103948 crossref_primary_10_1007_s11104_017_3330_x crossref_primary_10_1016_j_geoderma_2023_116500 crossref_primary_10_1600_036364421X16370110179528 crossref_primary_10_1007_s11104_021_04886_0 crossref_primary_10_1016_j_ppees_2019_04_001 crossref_primary_10_1590_0102_33062017abb0020 crossref_primary_10_1071_BT19188 crossref_primary_10_1016_j_scitotenv_2021_149769 crossref_primary_10_3389_ffgc_2021_704469 crossref_primary_10_1111_rec_12713 crossref_primary_10_1007_s11104_022_05517_y crossref_primary_10_1016_j_rmb_2016_09_004 crossref_primary_10_1111_nph_16807 crossref_primary_10_1590_2317_1545v44259954 crossref_primary_10_1007_s40415_020_00660_1 crossref_primary_10_1111_jvs_12997 crossref_primary_10_1111_nph_16405 crossref_primary_10_1111_nph_17854 crossref_primary_10_1590_2317_1545v46288345 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_1111_ddi_13832 crossref_primary_10_3389_fpls_2023_1277013 crossref_primary_10_1007_s12224_022_09410_5 crossref_primary_10_1093_botlinnean_boz103 crossref_primary_10_1007_s11104_016_2919_9 crossref_primary_10_1111_1440_1703_12218 crossref_primary_10_1590_1676_0611_bn_2023_1517 crossref_primary_10_1007_s11104_015_2764_2 crossref_primary_10_1016_j_envexpbot_2021_104556 crossref_primary_10_1093_aob_mcw163 crossref_primary_10_1093_aob_mcy063 crossref_primary_10_1007_s11356_017_0451_y crossref_primary_10_1016_j_tplants_2014_10_007 crossref_primary_10_1111_1365_2435_12462 crossref_primary_10_1111_1365_2745_13519 crossref_primary_10_1016_j_flora_2023_152337 crossref_primary_10_1007_s12229_019_09216_9 crossref_primary_10_1007_s11104_021_04988_9 crossref_primary_10_1590_0102_33062017abb0322 crossref_primary_10_1038_s41396_022_01345_1 crossref_primary_10_1111_rec_12537 crossref_primary_10_1016_j_flora_2024_152474 crossref_primary_10_1071_FP23207 crossref_primary_10_1111_1365_2745_14445 crossref_primary_10_1111_1365_2745_13111 crossref_primary_10_1007_s11104_017_3427_2 crossref_primary_10_1016_j_pedobi_2023_150908 crossref_primary_10_1093_jpe_rtaa030 crossref_primary_10_1016_j_flora_2016_11_018 crossref_primary_10_1590_0001_3765202320201399 crossref_primary_10_1111_1365_2435_13325 crossref_primary_10_1111_1365_2435_13324 crossref_primary_10_1038_s41597_019_0141_3 crossref_primary_10_1007_s10668_020_00665_6 crossref_primary_10_1016_j_flora_2016_12_005 crossref_primary_10_1016_j_pbi_2015_04_002 crossref_primary_10_1590_2175_7860202172054 crossref_primary_10_1007_s11104_016_2984_0 crossref_primary_10_1111_nph_14674 crossref_primary_10_1093_biolinnean_blaa179 crossref_primary_10_1093_biolinnean_blaa213 crossref_primary_10_1016_j_ppees_2024_125778 crossref_primary_10_1038_s41598_023_40828_9 crossref_primary_10_1093_biolinnean_blaa175 crossref_primary_10_1002_eco_1918 crossref_primary_10_1111_btp_13343 crossref_primary_10_1016_j_flora_2017_02_006 crossref_primary_10_1111_ppl_12700 crossref_primary_10_1111_ppl_12704 crossref_primary_10_1016_j_flora_2016_12_001 crossref_primary_10_1016_j_jenvman_2022_116655 crossref_primary_10_1016_j_envres_2022_114222 crossref_primary_10_1093_botlinnean_boab017 crossref_primary_10_1016_j_jnc_2025_126861 crossref_primary_10_1016_j_apsoil_2024_105618 crossref_primary_10_1007_s11104_020_04690_2 crossref_primary_10_1007_s11104_024_07036_4 crossref_primary_10_1111_nph_16729 crossref_primary_10_1016_j_sajb_2016_05_015 crossref_primary_10_1002_eco_1932 crossref_primary_10_1007_s11104_015_2637_8 crossref_primary_10_5713_ajas_18_0955 crossref_primary_10_1590_s1678_3921_pab2024_v59_03491 crossref_primary_10_1007_s11104_015_2735_7 crossref_primary_10_1007_s40626_020_00180_z crossref_primary_10_1007_s11104_020_04760_5 crossref_primary_10_1016_j_sajb_2021_03_025 crossref_primary_10_1016_j_scitotenv_2020_136637 crossref_primary_10_1016_j_ympev_2021_107163 crossref_primary_10_1016_j_envexpbot_2020_104164 crossref_primary_10_1111_1365_2435_13221 crossref_primary_10_1111_geb_13457 crossref_primary_10_1590_0102_33062018abb0013 crossref_primary_10_1093_biolinnean_blaa153 crossref_primary_10_1590_0001_3765202320220128 crossref_primary_10_1111_1440_1703_12413 crossref_primary_10_1007_s11104_015_2725_9 crossref_primary_10_1007_s11104_016_3142_4 crossref_primary_10_1007_s11104_021_05079_5 crossref_primary_10_1016_j_catena_2025_108961 crossref_primary_10_1038_s41598_017_07398_z crossref_primary_10_1111_1365_2435_13479 crossref_primary_10_1016_j_flora_2017_03_012 crossref_primary_10_1016_j_geomorph_2021_107985 crossref_primary_10_1111_1365_2435_14726 crossref_primary_10_1111_jse_13052 crossref_primary_10_1007_s11258_017_0778_y crossref_primary_10_1093_biolinnean_blab013 crossref_primary_10_1002_ece3_7734 crossref_primary_10_1007_s11629_021_7013_y crossref_primary_10_1007_s11056_019_09704_1 crossref_primary_10_1007_s11258_017_0765_3 crossref_primary_10_1111_pce_15038 crossref_primary_10_1093_treephys_tpv012 crossref_primary_10_1111_jvs_13029 crossref_primary_10_1007_s11258_019_00982_5 crossref_primary_10_1016_j_flora_2017_03_010 |
Cites_doi | 10.1007/s11104-011-0874-z 10.1071/BT96049 10.1080/00103629409369077 10.1111/j.1469-8137.2012.04285.x 10.2307/1939338 10.1007/BF00044230 10.2307/2845050 10.1111/j.1469-8137.2009.02875.x 10.1039/AN9830800361 10.1007/s11104-010-0444-9 10.1111/j.1365-3040.1989.tb01942.x 10.1007/s00442-014-3033-4 10.1007/s11104-008-9877-9 10.1016/j.tree.2007.10.008 10.1007/s11104-011-0879-7 10.1007/BF01343648 10.1071/EA9630190 10.1097/00010694-193401000-00003 10.2136/sssaj1982.03615995004600020020x 10.1111/pce.12117 10.1080/00103628609367733 10.1007/s00442-013-2747-z 10.1007/s11104-004-2725-7 10.1046/j.1365-2435.2000.00417.x 10.1111/j.1469-8137.2006.01697.x 10.1007/s11104-009-0068-0 10.1007/s005720100129 10.1111/j.1466-8238.2011.00752.x 10.1111/j.1365-3040.2007.01733.x 10.1073/pnas.1114199109 10.1093/aob/mcl114 10.1038/35002501 10.1111/j.1469-8137.2004.01192.x 10.1016/S0065-2504(08)60148-8 10.1111/j.1365-3040.2006.01574.x 10.1111/1365-2745.12196 10.1016/j.gca.2006.06.1548 10.2307/2260320 10.1093/aob/mcr107 10.1016/S0065-2504(08)60016-1 10.1111/pce.12240 10.2307/2404783 10.1086/284289 10.1111/j.1365-2745.2012.01962.x 10.1071/S96047 10.1016/j.ppees.2014.02.001 10.1071/BT9900459 10.1097/00010694-194501000-00006 10.1093/aob/mcs242 10.1023/A:1022367312851 10.1071/FP03212 10.1590/S0100-84042007000400003 10.1890/04-1830 10.1007/BF00010712 10.1890/11-0416.1 10.2307/2260068 10.1093/aob/mcs299 10.1046/j.1365-2435.2003.00694.x 10.1590/S0100-84042007000400009 10.1111/j.1095-8339.2012.01310.x 10.1016/j.tplants.2014.10.007 10.1046/j.1365-2745.2002.00689.x |
ContentType | Journal Article |
Copyright | 2015 New Phytologist Trust 2014 The Authors. New Phytologist © 2014 New Phytologist Trust 2014 The Authors. New Phytologist © 2014 New Phytologist Trust. Copyright © 2015 New Phytologist Trust |
Copyright_xml | – notice: 2015 New Phytologist Trust – notice: 2014 The Authors. New Phytologist © 2014 New Phytologist Trust – notice: 2014 The Authors. New Phytologist © 2014 New Phytologist Trust. – notice: Copyright © 2015 New Phytologist Trust |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.13175 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1194 |
ExternalDocumentID | 3554497101 25425486 10_1111_nph_13175 NPH13175 newphytologist.205.3.1183 US201500187278 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: Brazilian National Council for Scientific Research funderid: CNPq 474670/2008‐2 – fundername: Mary Janet Lindsay of Yanchep Memorial Fund – fundername: FAPESP funderid: 2010/17204‐0 – fundername: Australian Research Council funderid: DP0985685; DP110101120 – fundername: ANZ Holsworth Wildlife Foundation – fundername: CNPq |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABVKB ABXSQ ACHIC AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG ABGDZ ADXHL AGHNM AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5435-18d3506e4ebffce3bbd93019b34de9ac11edac7eb71c0b4cfc74bc514a6da78b3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:28:25 EDT 2025 Thu Jul 10 19:59:31 EDT 2025 Fri Jul 25 11:56:15 EDT 2025 Fri Jul 25 10:32:53 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 03:09:20 EDT 2025 Wed Aug 20 07:25:55 EDT 2025 Sun Aug 24 12:10:35 EDT 2025 Wed Dec 27 19:15:37 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | dauciform roots cerrado sand-binding roots leaf nutrient concentrations nitrogen : phosphorus (N : P) ratio mycorrhizas leaf manganese (Mn) concentration phosphorus nutrition |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 The Authors. New Phytologist © 2014 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5435-18d3506e4ebffce3bbd93019b34de9ac11edac7eb71c0b4cfc74bc514a6da78b3 |
Notes | http://dx.doi.org/10.1111/nph.13175 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25425486 |
PQID | 1644469700 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1694501449 proquest_miscellaneous_1652397546 proquest_journals_2513889550 proquest_journals_1644469700 pubmed_primary_25425486 crossref_primary_10_1111_nph_13175 crossref_citationtrail_10_1111_nph_13175 wiley_primary_10_1111_nph_13175_NPH13175 jstor_primary_newphytologist_205_3_1183 fao_agris_US201500187278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2015 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2015 |
Publisher | Academic Press New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: Academic Press – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2006; 70 2004; 164 1987; 75 1984; 124 1997; 45 1995; 76 1955; 6 2006; 170 2003; 17 2007; 30 2014; 176 2014; 174 1996; 33 2004; 31 2003; 248 2000; 14 2000; 403 1934; 37 2014; 16 2009; 320 2013; 111 2008; 23 2006; 29 2009; 322 2002; 90 2001; 11 2012; 21 1983; 108 1994; 113 2012; 82 2012; 100 1991; 134 2005; 274 2012 1990; 38 2006; 98 1945; 59 1988; 15 1954 1997 1986; 17 1996 2005; 86 2005 2012; 109 1911 1984; 72 1982; 46 2012; 196 1989; 12 2013; 36 2011; 108 2012; 111 2011; 349 2011; 348 2010; 334 2000; 30 1997; 35 1963; 3 2014; 37 2009; 183 2014 2014b 2014a 1992; 22 2013; 171 1994; 5 2014; 102 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Lambers H (e_1_2_6_36_1) 2014 e_1_2_6_19_1 Brundrett M (e_1_2_6_9_1) 1996 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Giulietti AM (e_1_2_6_18_1) 1997 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Alves RJV (e_1_2_6_4_1) 1994; 113 Epstein E (e_1_2_6_16_1) 2005 e_1_2_6_8_1 R Development Core Team (e_1_2_6_48_1) 2012 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 171 start-page: 225 year: 2013 end-page: 243 article-title: Molecular phylogenetics and biogeography of Neotropical Paepalanthoideae with emphasis on Brazilian Paepalanthus (Eriocaulaceae) publication-title: Botanical Journal of the Linnean Society – volume: 38 start-page: 459 year: 1990 end-page: 474 article-title: Sclerophylly and foliar nutrient status of Mediterranean‐climate plant communities in Southern Australia publication-title: Australian Journal of Botany – volume: 30 start-page: 569 year: 2007 end-page: 577 article-title: Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço publication-title: Revista Brasileira de Botânica – year: 2005 – volume: 37 start-page: 29 year: 1934 end-page: 38 article-title: An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method publication-title: Soil Science – volume: 23 start-page: 95 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology and Evolution – volume: 6 start-page: 391 year: 1955 end-page: 408 article-title: Characterization of soil phosphorus by anion exchange resin adsorption and P ‐equilibration publication-title: Plant and Soil – volume: 108 start-page: 87 year: 2011 end-page: 102 article-title: Five vicarious genera from Gondwana: the Velloziaceae as shown by molecules and morphology publication-title: Annals of Botany – year: 2014b article-title: Leaf manganese accumulation and phosphorus‐acquisition efficiency publication-title: Trends in Plant Science – volume: 113 start-page: 125 year: 1994 end-page: 139 article-title: Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil publication-title: Vegetatio – volume: 108 start-page: 361 year: 1983 end-page: 367 article-title: Spectrophotometric determination of phosphate in river waters with molybdate and malachite green publication-title: Analyst – volume: 176 start-page: 345 year: 2014 end-page: 355 article-title: Convergence of a specialized root trait in plants from nutrient‐impoverished soils: phosphorus‐acquisition strategy in a nonmycorrhizal cactus publication-title: Oecologia – volume: 36 start-page: 1911 year: 2013 end-page: 1915 article-title: Interactions between arbuscular mycorrhizal and non‐mycorrhizal plants: do non‐mycorrhizal species at both extremes of nutrient availability play the same game? publication-title: Plant, Cell & Environment – volume: 31 start-page: 551 year: 2004 end-page: 558 article-title: Leaf trait relationships in Australian plant species publication-title: Functional Plant Biology – volume: 11 start-page: 245 year: 2001 end-page: 255 article-title: Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species publication-title: Mycorrhiza – year: 2014 – volume: 33 start-page: 1441 year: 1996 end-page: 1450 article-title: The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation publication-title: Journal of Applied Ecology – volume: 72 start-page: 575 year: 1984 end-page: 584 article-title: Variation of forms of phosphorus in the sandy soils of coastal fynbos, South‐Western Cape publication-title: Journal of Ecology – volume: 70 start-page: 4477 year: 2006 end-page: 4490 article-title: Reaction of MnIII, IV (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally‐related organic compounds publication-title: Geochimica et Cosmochimica Acta – volume: 111 start-page: 143 year: 2012 end-page: 150 article-title: The role of multiple partners in a digestive mutualism with a protocarnivorous plant publication-title: Annals of Botany – volume: 15 start-page: 97 year: 1988 end-page: 108 article-title: Soil resources and plant communities of the central Brazilian cerrado and their development publication-title: Journal of Biogeography – volume: 403 start-page: 853 year: 2000 end-page: 858 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature – volume: 76 start-page: 712 year: 1995 end-page: 720 article-title: Foliar nutrients during long‐term soil development in Hawaiian montane rain forest publication-title: Ecology – volume: 274 start-page: 101 year: 2005 end-page: 125 article-title: Cluster roots: a curiosity in context publication-title: Plant and Soil – volume: 17 start-page: 547 year: 1986 end-page: 566 article-title: Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion‐exchange resin procedure publication-title: Communications in Soil Science and Plant Analysis – volume: 98 start-page: 693 year: 2006 end-page: 713 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Annals of Botany – volume: 12 start-page: 285 year: 1989 end-page: 292 article-title: Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin ( L.) publication-title: Plant, Cell & Environment – volume: 348 start-page: 453 year: 2011 end-page: 470 article-title: Sand‐binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context publication-title: Plant and Soil – volume: 75 start-page: 1159 year: 1987 end-page: 1171 article-title: Variations in soil phosphorus content in the Fynbos biome, South Africa publication-title: Journal of Ecology – start-page: 397 year: 1997 end-page: 404 – volume: 196 start-page: 1098 year: 2012 end-page: 1108 article-title: Proteaceae from severely phosphorus‐impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus‐use efficiency publication-title: New Phytologist – volume: 124 start-page: 479 year: 1984 end-page: 497 article-title: Carnivory in the bromeliad , with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient‐poor habitats publication-title: American Naturalist – volume: 109 start-page: 1154 year: 2012 end-page: 1158 article-title: Underground leaves of Philcoxia trap and digest nematodes publication-title: Proceedings of the National Academy of Sciences, USA – volume: 174 start-page: 23 year: 2014 end-page: 31 article-title: Does cluster‐root activity benefit nutrient uptake and growth of co‐existing species? publication-title: Oecologia – volume: 16 start-page: 64 year: 2014 end-page: 74 article-title: Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 30 start-page: 1 year: 2000 end-page: 67 article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns publication-title: Advances in Ecological Research – volume: 322 start-page: 49 year: 2009 end-page: 86 article-title: OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes publication-title: Plant and Soil – volume: 111 start-page: 445 year: 2013 end-page: 454 article-title: Downregulation of net phosphorus‐uptake capacity is inversely related to leaf phosphorus‐resorption proficiency in four species from a phosphorus‐impoverished environment publication-title: Annals of Botany – volume: 320 start-page: 37 year: 2009 end-page: 77 article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis publication-title: Plant and Soil – volume: 22 start-page: 187 year: 1992 end-page: 261 article-title: Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences publication-title: Advances in Ecological Research – year: 1996 – volume: 183 start-page: 1085 year: 2009 end-page: 1096 article-title: Summer dormancy and winter growth: root survival strategy in a perennial monocotyledon publication-title: New Phytologist – volume: 90 start-page: 534 year: 2002 end-page: 543 article-title: Convergence towards higher leaf mass per area in dry and nutrient‐poor habitats has different consequences for leaf life span publication-title: Journal of Ecology – volume: 349 start-page: 341 year: 2011 end-page: 353 article-title: Savanna soil fertility limits growth but not survival of tropical forest tree seedlings publication-title: Plant and Soil – volume: 46 start-page: 314 year: 1982 end-page: 317 article-title: Dissolution of oxides of manganese and iron by root exudate components publication-title: Soil Science Society of America Journal – year: 1954 – volume: 3 start-page: 190 year: 1963 end-page: 197 article-title: The estimation of the phosphorus fertilizer requirements of wheat in New South Wales by soil analysis publication-title: Australian Journal of Agriculture and Animal Husbandry – volume: 164 start-page: 243 year: 2004 end-page: 266 article-title: N : P ratios in terrestrial plants: variation and functional significance publication-title: New Phytologist – volume: 100 start-page: 631 year: 2012 end-page: 642 article-title: Experimental assessment of nutrient limitation along a 2‐million‐year dune chronosequence in the south‐western Australia biodiversity hotspot publication-title: Journal of Ecology – volume: 35 start-page: 227 year: 1997 end-page: 239 article-title: Soil phosphorus: its measurement, and its uptake by plants publication-title: Australian Journal of Soil Research – year: 2012 – year: 1911 – volume: 30 start-page: 641 year: 2007 end-page: 656 article-title: Floristics, structure and soil of insular vegetation in four quartzite‐sandstone outcrops of “Chapada Diamantina”, Northeast Brazil publication-title: Revista Brasileira de Botânica – volume: 17 start-page: 10 year: 2003 end-page: 19 article-title: Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species publication-title: Functional Ecology – volume: 134 start-page: 1 year: 1991 end-page: 20 article-title: Mechanisms of adaptation of plants to acid soils publication-title: Plant and Soil – volume: 248 start-page: 187 year: 2003 end-page: 197 article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake publication-title: Plant and Soil – volume: 30 start-page: 1557 year: 2007 end-page: 1565 article-title: species (Proteaceae) from severely phosphorus‐impoverished soils exhibit extreme efficiency in the use and re‐mobilization of phosphorus publication-title: Plant, Cell & Environment – volume: 21 start-page: 1147 year: 2012 end-page: 1156 article-title: Phylogenetic ecology of foliar N and P concentrations and N: P ratios across mediterranean‐type ecosystems publication-title: Global Ecology and Biogeography: A Journal of Macroecology – volume: 102 start-page: 396 year: 2014 end-page: 410 article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence publication-title: Journal of Ecology – start-page: 101 year: 2014a end-page: 127 – volume: 29 start-page: 1989 year: 2006 end-page: 1999 article-title: Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots publication-title: Plant Cell & Environment – volume: 59 start-page: 39 year: 1945 end-page: 46 article-title: Determination of total, organic and available forms of phosphorus in soils publication-title: Soil Science – volume: 86 start-page: 2780 year: 2005 end-page: 2792 article-title: Resorption efficiency decreases with increasing green leaf nutrients in a global data set publication-title: Ecology – volume: 14 start-page: 397 year: 2000 end-page: 399 article-title: Roots, foraging and the exploitation of soil nutrient patches: the role of mycorrhizal symbiosis publication-title: Functional Ecology – volume: 45 start-page: 41 year: 1997 end-page: 51 article-title: Cluster roots and mycorrhizae in : their ocurrence and formation in relation to phosphorus supply publication-title: Australian Journal of Botany – volume: 334 start-page: 11 year: 2010 end-page: 31 article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies publication-title: Plant and Soil – volume: 170 start-page: 491 year: 2006 end-page: 500 article-title: Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in (Cyperaceae) publication-title: New Phytologist – volume: 37 start-page: 1276 year: 2014 end-page: 1298 article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus‐use efficiency of Proteaceae species publication-title: Plant, Cell & Environment – volume: 5 start-page: 739 year: 1994 end-page: 751 article-title: Soil testing and plant analysis in Brazil publication-title: Communications in Soil Science and Plant Analysis – volume: 82 start-page: 205 year: 2012 end-page: 220 article-title: Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants publication-title: Ecological Monographs – ident: e_1_2_6_54_1 doi: 10.1007/s11104-011-0874-z – ident: e_1_2_6_49_1 doi: 10.1071/BT96049 – ident: e_1_2_6_60_1 doi: 10.1080/00103629409369077 – ident: e_1_2_6_31_1 doi: 10.1111/j.1469-8137.2012.04285.x – ident: e_1_2_6_66_1 doi: 10.2307/1939338 – volume-title: R: a language and environment for statistical computing year: 2012 ident: e_1_2_6_48_1 – volume: 113 start-page: 125 year: 1994 ident: e_1_2_6_4_1 article-title: Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil publication-title: Vegetatio doi: 10.1007/BF00044230 – ident: e_1_2_6_17_1 doi: 10.2307/2845050 – ident: e_1_2_6_45_1 – ident: e_1_2_6_28_1 – ident: e_1_2_6_52_1 doi: 10.1111/j.1469-8137.2009.02875.x – ident: e_1_2_6_41_1 doi: 10.1039/AN9830800361 – ident: e_1_2_6_30_1 doi: 10.1007/s11104-010-0444-9 – ident: e_1_2_6_15_1 doi: 10.1111/j.1365-3040.1989.tb01942.x – ident: e_1_2_6_2_1 doi: 10.1007/s00442-014-3033-4 – ident: e_1_2_6_10_1 doi: 10.1007/s11104-008-9877-9 – ident: e_1_2_6_34_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_6_65_1 doi: 10.1007/s11104-011-0879-7 – ident: e_1_2_6_5_1 doi: 10.1007/BF01343648 – ident: e_1_2_6_11_1 doi: 10.1071/EA9630190 – ident: e_1_2_6_67_1 doi: 10.1097/00010694-193401000-00003 – ident: e_1_2_6_25_1 doi: 10.2136/sssaj1982.03615995004600020020x – ident: e_1_2_6_37_1 doi: 10.1111/pce.12117 – ident: e_1_2_6_61_1 doi: 10.1080/00103628609367733 – volume-title: Mineral nutrition of plants: principles and perspectives year: 2005 ident: e_1_2_6_16_1 – ident: e_1_2_6_42_1 doi: 10.1007/s00442-013-2747-z – ident: e_1_2_6_51_1 doi: 10.1007/s11104-004-2725-7 – ident: e_1_2_6_58_1 doi: 10.1046/j.1365-2435.2000.00417.x – ident: e_1_2_6_47_1 doi: 10.1111/j.1469-8137.2006.01697.x – ident: e_1_2_6_23_1 doi: 10.1007/s11104-009-0068-0 – ident: e_1_2_6_6_1 – ident: e_1_2_6_53_1 doi: 10.1007/s005720100129 – ident: e_1_2_6_56_1 doi: 10.1111/j.1466-8238.2011.00752.x – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-3040.2007.01733.x – ident: e_1_2_6_46_1 doi: 10.1073/pnas.1114199109 – ident: e_1_2_6_35_1 doi: 10.1093/aob/mcl114 – ident: e_1_2_6_43_1 doi: 10.1038/35002501 – ident: e_1_2_6_20_1 doi: 10.1111/j.1469-8137.2004.01192.x – ident: e_1_2_6_33_1 doi: 10.1016/S0065-2504(08)60148-8 – start-page: 101 volume-title: Plant life on the sandplains in Southwest Australia, a global biodiversity hotspot year: 2014 ident: e_1_2_6_36_1 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-3040.2006.01574.x – ident: e_1_2_6_21_1 doi: 10.1111/1365-2745.12196 – ident: e_1_2_6_68_1 doi: 10.1016/j.gca.2006.06.1548 – ident: e_1_2_6_69_1 doi: 10.2307/2260320 – ident: e_1_2_6_39_1 doi: 10.1093/aob/mcr107 – ident: e_1_2_6_3_1 doi: 10.1016/S0065-2504(08)60016-1 – ident: e_1_2_6_57_1 doi: 10.1111/pce.12240 – start-page: 397 volume-title: Centres of plant diversity. A guide and strategies for the conservation, Vol. 3. The Americas year: 1997 ident: e_1_2_6_18_1 – ident: e_1_2_6_27_1 doi: 10.2307/2404783 – ident: e_1_2_6_19_1 doi: 10.1086/284289 – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-2745.2012.01962.x – ident: e_1_2_6_22_1 doi: 10.1071/S96047 – ident: e_1_2_6_64_1 doi: 10.1016/j.ppees.2014.02.001 – ident: e_1_2_6_55_1 doi: 10.1071/BT9900459 – ident: e_1_2_6_8_1 doi: 10.1097/00010694-194501000-00006 – ident: e_1_2_6_44_1 doi: 10.1093/aob/mcs242 – ident: e_1_2_6_24_1 – ident: e_1_2_6_62_1 doi: 10.1023/A:1022367312851 – ident: e_1_2_6_70_1 doi: 10.1071/FP03212 – ident: e_1_2_6_7_1 doi: 10.1590/S0100-84042007000400003 – ident: e_1_2_6_26_1 doi: 10.1890/04-1830 – volume-title: Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32 year: 1996 ident: e_1_2_6_9_1 – ident: e_1_2_6_38_1 doi: 10.1007/BF00010712 – ident: e_1_2_6_63_1 doi: 10.1890/11-0416.1 – ident: e_1_2_6_40_1 doi: 10.2307/2260068 – ident: e_1_2_6_13_1 doi: 10.1093/aob/mcs299 – ident: e_1_2_6_71_1 doi: 10.1046/j.1365-2435.2003.00694.x – ident: e_1_2_6_12_1 doi: 10.1590/S0100-84042007000400009 – ident: e_1_2_6_59_1 doi: 10.1111/j.1095-8339.2012.01310.x – ident: e_1_2_6_32_1 doi: 10.1016/j.tplants.2014.10.007 – ident: e_1_2_6_72_1 doi: 10.1046/j.1365-2745.2002.00689.x |
SSID | ssj0009562 |
Score | 2.5223796 |
Snippet | In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in... In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in... Summary In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly... In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in... Summary In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly... |
SourceID | proquest pubmed crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1183 |
SubjectTerms | Acid soils Arbuscular mycorrhizas Biodiversity Biodiversity hot spots Brazil cerrado Colonization Concentration gradient dauciform roots Dominant species Ecosystem ecosystems Forest soils functional diversity Herbs leaf manganese (Mn) concentration leaf nutrient concentrations Leaves Manganese Mineral nutrients Minerals - analysis Morphology Mycorrhizae mycorrhizas Nitrogen Nitrogen - analysis nitrogen : phosphorus (N : P) ratio Nutrients Nutrition Nutritional Physiological Phenomena Phosphorus Phosphorus - analysis phosphorus nutrition Plant Leaves - chemistry Plant nutrition Plant roots Plant Roots - chemistry Plant species Plants Plants - metabolism Sandy soils sand‐binding roots Savanna soils Soil Soil - chemistry Soil ecology Soil science Soil types Soils Species Species Specificity vesicular arbuscular mycorrhizae |
Title | Mineral nutrition of campos rupestres plant species on contrasting nutrient‐impoverished soil types |
URI | https://www.jstor.org/stable/newphytologist.205.3.1183 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13175 https://www.ncbi.nlm.nih.gov/pubmed/25425486 https://www.proquest.com/docview/1644469700 https://www.proquest.com/docview/2513889550 https://www.proquest.com/docview/1652397546 https://www.proquest.com/docview/1694501449 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB_OwwdfPP9fz1OiCPrSpX-StMUnFY9FuEPUhX0QQpKmd4trW667gj75EfyMfhJn0m25k1VE6EOhk9BMZpLfJJNfAJ5EmaazsiKMXV6EXOos1EKkYRJrjA4ML52jpYHjEzmd8TdzMd-B58NZmJ4fYlxwI8_w4zU5uDbdBSev27NJTLMfjr-Uq0WA6F1ygXBXJgMDs-RyvmEVoiyeseSluehKpZshKXEb3LyMXv30c7QHH4cf77NOPk3WKzOx337jdPzPlt2A6xtYyl70dnQTdlx9C66-bBA6fr0N7njhyalZPXD3s6ZiVn9um46dr1vnT5ywdondxOjsJobfDIV8HrzuKLO6L4oz3M_vPxZY7gtRRJ-5knXNYsloIbi7A7Oj1x9eTcPN_QyhFYiywjgvUxFJx52pKutSY8oCx4vCpNjFhbZx7EptM2ey2EaG28pm3FhEaFqWOstNehd266Z2-8CM1GlVaiEdQrrSJsaihBBCc4cDoJMBPBt6StkNeTndobFUQxCDSlNeaQE8HkXbnrFjm9A-drfSp9hWNXuf0LoPXU-YZHkAT70NjIUxvEGL97cJo-epJBIqxeryNIDDwUrUxvM7heEnRthFFkVbPyOcTPO8QPcI4NH4GV2a9ml07Zo1VSEShImCy7_JFJy2hHkRwL3eQMcfxpgfn5yU5s3sz2pQJ2-n_uXg30XvwzVSV5-5fgi7q_O1e4DAbGUeeg_8BcySNVo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbaggQX_qGBAgaB6CWrxLGd5MABKNWWdlcIutLejO047apLsmp2QeXEI_AgvAovwZMwdn7UogVx6YHbrjK2nPHM-JvJeAahJ0Es7V1Z5ocmSX3KZexLxiKfhBK8A0UzY2xoYDDk_RF9M2bjFfS9vQtT14foAm5WM5y9tgpuA9KntLyYHfZCe_w1KZW75uQzOGzV850t2N2nhGy_3n_V95ueAr5mgAz8MMkiFnBDjcpzbSKlshRkPFURLCuVOgxNJnVsVBzqQFGd65gqDahC8kzGiYpg3lV0wXYQt5X6t96RUyV-OWlrPnPKx00dI5s31C31zOm3msuyTYNcBnDP4mV34G1fRT9aVtV5Lke9xVz19Jffqkj-L7y8hq40yBu_qFXlOloxxQ108WUJ6PjkJjKDiau_jYu2PQEuc6zlx1lZ4ePFzLhLNXg2BUnE9nrqBP4BkUv1l5VNHq-HwiH-8-u3CYz7ZKtgH5oMV-Vkim2su7qFRufyirfRWlEWZh1hxWWUZ5JxA6g100RpoGCMSWrAxhvuoc1WNIRu6rPbNiFT0fppsEnCbZKHHneks7ooyTKidZAvIQ_gXcXoPbGhLduBkcSJh545oesGgwcHSu0aJoNxESRgIoLpkshDG61Yisa4VQI8bEp5GgfB0seAmKMkScECeOhR9xislv0UJQtTLuwUjAASZpT_jSal9qs3TT10p9aIbsGEwVlDE8s0J9d_ZoMYvu27H3f_nfQhutTfH-yJvZ3h7j102bKuTtTfQGvz44W5Dzh0rh449cfow3nryC8Tz5dr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbaghAX_qGBAgaB4JJV4thOcuAALKstpasKqLQ3YzsOXbEkUbMLKicegffgVXgKnoSx86MWLYhLD9x2lbHljOfnG2c8g9CDIJb2rizzQ5OkPuUy9iVjkU9CCdGBopkx9mhgd8LH-_TllE3X0PfuLkxTH6I_cLOa4ey1VfAqy48peVEdDELr_dqMyh1z9BnitfrJ9hA29yEhoxdvn4_9tqWArxkAAz9MsogF3FCj8lybSKksBRFPVQSrSqUOQ5NJHRsVhzpQVOc6pkoDqJA8k3GiIph3HZ2hPEhtn4jha3Kswi8nXclnTvm0LWNk04b6pZ5wfuu5LLssyFX49iRcdv5udBH96DjVpLl8GCwXaqC__FZE8j9h5SV0ocXd-GmjKJfRmimuoLPPSsDGR1eR2Z256tu46JoT4DLHWn6syhofLivjrtTgag5yiO3l1Bn8AyKX6C9rmzreDAUX_vPrtxmM-2RrYB-YDNflbI7tSXd9De2fyiteRxtFWZhNhBWXUZ5Jxg1g1kwTpYGCMSapAQtvuIced5IhdFud3TYJmYsuSoNNEm6TPHS_J62akiSriDZBvIR8D-8q9t8Qe7Bl-y-SOPHQIydz_WCI30ClXbtkMC2CBExEMF0SeWirk0rRmrZaQHxNKU_jIFj5GPBylCQp6L-H7vWPwWbZD1GyMOXSTsEI4GBG-d9oUmq_edPUQzcahegXTBh4GppYpjmx_jMbxGRv7H7c_HfSu-jc3nAkXm1Pdm6h85ZzTZb-FtpYHC7NbQChC3XHKT9G705bRX4Bu5SWGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+nutrition+of+campos+rupestres+plant+species+on+contrasting+nutrient%E2%80%90impoverished+soil+types&rft.jtitle=The+New+phytologist&rft.au=Oliveira%2C+Rafael+S&rft.au=Galv%C3%A3o%2C+Hugo+C&rft.au=Campos%2C+Mariana+C.+R&rft.au=Eller%2C+Cleiton+B&rft.date=2015-02-01&rft.pub=Academic+Press&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=205&rft.issue=3&rft.spage=1183&rft.epage=1194&rft_id=info:doi/10.1111%2Fnph.13175&rft.externalDocID=US201500187278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |