A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries

Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that ca...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 57; no. 24; pp. 7146 - 7150
Main Authors Fan, Xiulin, Wang, Fei, Ji, Xiao, Wang, Ruixing, Gao, Tao, Hou, Singyuk, Chen, Ji, Deng, Tao, Li, Xiaogang, Chen, Long, Luo, Chao, Wang, Luning, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.06.2018
Wiley Blackwell (John Wiley & Sons)
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. A universal ultrafast organic cathode for multivalent batteries is reported. In contrast to slow solid‐state ion diffusion and phase transformation in inorganic materials with a stiff crystal structure, the soft structure of the PI@CNT composite with the ion‐coordination charge storage mechanism ensures ultrafast reaction kinetics, improving the traditional low power and poor cycle life of multivalent battery chemistries.
AbstractList Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.
Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. A universal ultrafast organic cathode for multivalent batteries is reported. In contrast to slow solid‐state ion diffusion and phase transformation in inorganic materials with a stiff crystal structure, the soft structure of the PI@CNT composite with the ion‐coordination charge storage mechanism ensures ultrafast reaction kinetics, improving the traditional low power and poor cycle life of multivalent battery chemistries.
Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+ , Mg2+ , Al3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries.Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+ , Mg2+ , Al3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries.
Abstract Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.
Low-cost multivalent battery chemistries (Mg , Al ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li , Mg , Al ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries.
Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.
Author Wang, Chunsheng
Li, Xiaogang
Deng, Tao
Luo, Chao
Gao, Tao
Wang, Ruixing
Wang, Fei
Chen, Ji
Hou, Singyuk
Ji, Xiao
Chen, Long
Wang, Luning
Fan, Xiulin
Author_xml – sequence: 1
  givenname: Xiulin
  surname: Fan
  fullname: Fan, Xiulin
  organization: University of Maryland
– sequence: 2
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Sensor and Electron Devices Directorate Power and Energy Division U.S. Army Research Laboratory
– sequence: 3
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: University of Maryland
– sequence: 4
  givenname: Ruixing
  surname: Wang
  fullname: Wang, Ruixing
  organization: University of Maryland
– sequence: 5
  givenname: Tao
  surname: Gao
  fullname: Gao, Tao
  organization: University of Maryland
– sequence: 6
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: University of Maryland
– sequence: 7
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: University of Maryland
– sequence: 8
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: University of Maryland
– sequence: 9
  givenname: Xiaogang
  surname: Li
  fullname: Li, Xiaogang
  organization: University of Maryland
– sequence: 10
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: University of Maryland
– sequence: 11
  givenname: Chao
  surname: Luo
  fullname: Luo, Chao
  organization: University of Maryland
– sequence: 12
  givenname: Luning
  surname: Wang
  fullname: Wang, Luning
  organization: University of Maryland
– sequence: 13
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29704298$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1437068$$D View this record in Osti.gov
BookMark eNqFkctrGzEQh0VJaV699liW9tKLXT1Xu0fXpG3AaSjEZ6HVjmoFWUolbUL--8g4DwiUooOE-L5hZn7H6CDEAAh9IHhOMKZfdXAwp5h0mEnM3qAjIiiZMSnZQX1zxmayE-QQHed8Xfmuw-07dEh7iTntuyP0e9Gsg7uFlLVvLtOfWs80S102cYTGxtSsfUna6lyalSsbN20bHcbmYvLF3WoPoTQXUKr7TZcCyUE-RW-t9hneP94naP397Gr5c7a6_HG-XKxmRuza4lJzIykWXA6aWIrxwC1px_qhJdft2EtmoGuNBWLICGQQgnNNhbEDtoayE_RpXzfm4lQ2roDZmBgCmKLq5BK3XYW-7KGbFP9OkIvaumzAex0gTllRzCgnjApR0c-v0Os4pVBHqJSop-vbHfXxkZqGLYzqJrmtTvfqaaMV4HvApJhzAqtqZ7q4GOoenVcEq11waheceg6uavNX2lPlfwr9XrhzHu7_Q6vFr_OzF_cBpRio9w
CitedBy_id crossref_primary_10_1039_C9TA04869C
crossref_primary_10_1016_j_cej_2023_145786
crossref_primary_10_1002_ange_202409286
crossref_primary_10_1016_j_compositesb_2021_109073
crossref_primary_10_1002_anie_202306091
crossref_primary_10_1002_cssc_202000054
crossref_primary_10_1002_adma_202201046
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1002_adfm_202004573
crossref_primary_10_1016_j_cej_2021_134253
crossref_primary_10_1021_acs_chemrev_9b00482
crossref_primary_10_1039_C9NR05623H
crossref_primary_10_1002_ange_201814294
crossref_primary_10_1039_C9CC05745E
crossref_primary_10_1039_D1TA00528F
crossref_primary_10_1002_anie_202403424
crossref_primary_10_1002_adma_202409904
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_1016_j_cej_2025_160145
crossref_primary_10_1021_acsami_0c08214
crossref_primary_10_1002_smtd_202200363
crossref_primary_10_1016_j_ensm_2019_10_007
crossref_primary_10_1002_aenm_202000697
crossref_primary_10_1063_5_0119904
crossref_primary_10_1002_cssc_202202358
crossref_primary_10_1016_j_jpowsour_2020_228401
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1149_1945_7111_ad1c12
crossref_primary_10_1002_ange_201903152
crossref_primary_10_1021_acs_energyfuels_1c00860
crossref_primary_10_1002_chem_201804229
crossref_primary_10_1039_D0TA03321A
crossref_primary_10_1039_D0TA09404H
crossref_primary_10_1007_s40843_020_1375_2
crossref_primary_10_1002_adfm_202111043
crossref_primary_10_1002_ange_201910916
crossref_primary_10_1002_smll_202000730
crossref_primary_10_1002_aenm_202101446
crossref_primary_10_1021_acs_jpcc_3c00385
crossref_primary_10_1021_acsnano_4c18374
crossref_primary_10_1016_j_mattod_2022_04_010
crossref_primary_10_1002_smll_201901083
crossref_primary_10_1016_j_nanoen_2020_104583
crossref_primary_10_1002_aenm_202301631
crossref_primary_10_1039_D2NJ03447F
crossref_primary_10_1016_j_ensm_2020_05_029
crossref_primary_10_1021_acsami_0c11241
crossref_primary_10_1016_j_cej_2023_147305
crossref_primary_10_1016_j_jechem_2021_06_034
crossref_primary_10_1016_j_ccr_2024_216097
crossref_primary_10_1021_acsnano_4c06653
crossref_primary_10_1021_acs_chemmater_2c01497
crossref_primary_10_1039_C9TA08303K
crossref_primary_10_1039_C9TA12660K
crossref_primary_10_1002_EXP_20220066
crossref_primary_10_1016_j_electacta_2023_143302
crossref_primary_10_1016_j_jcis_2022_06_141
crossref_primary_10_1038_s41467_018_06708_x
crossref_primary_10_1016_j_dyepig_2021_109352
crossref_primary_10_1016_j_ensm_2022_11_052
crossref_primary_10_1016_j_jechem_2021_06_028
crossref_primary_10_1021_acs_nanolett_0c01040
crossref_primary_10_1021_acs_jpcc_3c02353
crossref_primary_10_1016_j_cej_2023_147021
crossref_primary_10_1021_acsami_9b13118
crossref_primary_10_1039_D0TA04526H
crossref_primary_10_1002_anie_202116194
crossref_primary_10_1021_acsami_2c18869
crossref_primary_10_1016_j_cej_2023_148503
crossref_primary_10_1016_j_jpowsour_2021_229617
crossref_primary_10_1002_eem2_12076
crossref_primary_10_1002_smll_202200463
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1002_advs_201900431
crossref_primary_10_1002_ange_201807121
crossref_primary_10_1002_aenm_202400147
crossref_primary_10_1016_j_cej_2022_139570
crossref_primary_10_1016_j_cej_2024_148806
crossref_primary_10_1002_chem_202100223
crossref_primary_10_1021_acsaem_3c00969
crossref_primary_10_1021_acsaem_1c03612
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_6023_A22090385
crossref_primary_10_1002_adma_202406106
crossref_primary_10_1002_anie_202216797
crossref_primary_10_1021_acsami_3c11270
crossref_primary_10_1016_j_jpowsour_2021_230722
crossref_primary_10_1002_ange_202116194
crossref_primary_10_1002_anie_202216713
crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_2139_ssrn_4173695
crossref_primary_10_1021_acsami_2c03389
crossref_primary_10_1016_j_jpowsour_2020_229027
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1038_s41560_020_00734_0
crossref_primary_10_1002_aenm_201904199
crossref_primary_10_1021_acsaem_0c02526
crossref_primary_10_3389_fchem_2018_00656
crossref_primary_10_1016_j_ensm_2022_03_033
crossref_primary_10_1002_ange_202216797
crossref_primary_10_1016_j_enchem_2020_100030
crossref_primary_10_1038_s41467_021_22633_y
crossref_primary_10_1002_anie_202000566
crossref_primary_10_1016_j_ensm_2019_07_033
crossref_primary_10_1016_j_ensm_2022_06_018
crossref_primary_10_1016_j_scib_2020_05_006
crossref_primary_10_1002_ange_202216713
crossref_primary_10_1002_smtd_202000039
crossref_primary_10_1016_j_matchemphys_2022_126391
crossref_primary_10_1021_acsaem_9b00443
crossref_primary_10_1016_j_mtphys_2021_100499
crossref_primary_10_1021_acsami_8b19662
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1002_adma_201901478
crossref_primary_10_1002_aenm_202203719
crossref_primary_10_1016_j_est_2023_110323
crossref_primary_10_1021_acsnano_2c05090
crossref_primary_10_1002_ange_202306091
crossref_primary_10_1016_j_est_2025_116213
crossref_primary_10_1039_D2TA02083A
crossref_primary_10_1002_batt_202300285
crossref_primary_10_1016_j_jcis_2023_03_106
crossref_primary_10_1002_anie_202409286
crossref_primary_10_1007_s40820_024_01495_1
crossref_primary_10_1016_j_jpowsour_2019_227007
crossref_primary_10_1002_smll_202002953
crossref_primary_10_1016_j_jpowsour_2021_230261
crossref_primary_10_1002_advs_202302490
crossref_primary_10_1016_j_cej_2024_156359
crossref_primary_10_1016_j_joule_2020_12_021
crossref_primary_10_1039_D0CC05344A
crossref_primary_10_1039_D2TA09988H
crossref_primary_10_1002_ange_202403424
crossref_primary_10_1002_anie_201807121
crossref_primary_10_1002_adma_202005781
crossref_primary_10_1002_anie_201814294
crossref_primary_10_1039_D1TA09194H
crossref_primary_10_1002_smll_202201362
crossref_primary_10_1002_anie_201903152
crossref_primary_10_1021_acsaem_3c02025
crossref_primary_10_1007_s12598_021_01941_8
crossref_primary_10_1002_eem2_12564
crossref_primary_10_1039_D0TA12243B
crossref_primary_10_1039_D3QM00297G
crossref_primary_10_1021_acsenergylett_5c00139
crossref_primary_10_1016_j_xcrp_2022_100951
crossref_primary_10_1002_ange_201814625
crossref_primary_10_1016_j_jallcom_2020_155678
crossref_primary_10_2139_ssrn_4050075
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1016_j_electacta_2022_141447
crossref_primary_10_1002_cssc_202301223
crossref_primary_10_1002_aenm_202203253
crossref_primary_10_1002_anie_201915666
crossref_primary_10_1016_j_nanoen_2019_103902
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_1021_acsami_9b20384
crossref_primary_10_1016_j_joule_2018_11_022
crossref_primary_10_1002_cssc_202401397
crossref_primary_10_1016_j_ceramint_2023_05_153
crossref_primary_10_1021_acs_chemmater_1c01072
crossref_primary_10_1002_adma_202102634
crossref_primary_10_1021_acsami_0c07292
crossref_primary_10_1039_D2QI00959E
crossref_primary_10_1002_eem2_12275
crossref_primary_10_1002_marc_202200198
crossref_primary_10_1007_s40843_021_1791_1
crossref_primary_10_1002_anie_201910916
crossref_primary_10_2139_ssrn_4055903
crossref_primary_10_1002_celc_202400550
crossref_primary_10_1002_anie_201814625
crossref_primary_10_1002_adma_202200662
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1002_cssc_202000883
crossref_primary_10_1002_smll_202307827
crossref_primary_10_1115_1_4049574
crossref_primary_10_1016_j_cej_2025_161944
crossref_primary_10_1016_j_ensm_2019_11_023
crossref_primary_10_1016_j_joule_2020_05_018
crossref_primary_10_1002_ange_202000566
crossref_primary_10_1002_cssc_201900539
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1002_adsu_202100418
crossref_primary_10_1039_C8CC09677E
crossref_primary_10_1039_D0TA06326F
crossref_primary_10_1002_ange_202008960
crossref_primary_10_1002_ange_201915666
Cites_doi 10.1021/acsenergylett.7b00040
10.1002/anie.201105006
10.1038/nmat4041
10.1038/35037553
10.1002/aenm.201401410
10.1016/j.ccr.2014.11.005
10.1038/ncomms10999
10.1126/science.aak9991
10.1021/acs.chemrev.6b00614
10.1038/nmat4777
10.1002/adma.201602583
10.1039/c3ee40847g
10.1002/anie.201002439
10.1126/sciadv.1501038
10.1038/nature15746
10.1016/j.nanoen.2017.02.014
10.1002/ange.201603531
10.1002/ange.201105006
10.1039/c1cc15779e
10.1021/acs.chemmater.5b01918
10.1021/acsenergylett.6b00145
10.1038/ncomms12122
10.1039/b403855j
10.1038/nchem.2085
10.7567/APEX.9.011801
10.1002/ange.201002439
10.1038/nature14340
10.1039/C6EE00724D
10.1021/cm9016497
10.1038/nmat2612
10.1021/jacs.5b07820
10.1021/cm401250c
10.1038/nmat4810
10.1021/acscentsci.7b00361
10.1021/cr500192f
10.1002/adma.201604685
10.1002/anie.201603531
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.201803703
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7150
ExternalDocumentID 1437068
29704298
10_1002_anie_201803703
ANIE201803703
Genre shortCommunication
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1438198
– fundername: Basic Energy Sciences
  funderid: DESC0001160
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OTOTI
ID FETCH-LOGICAL-c5433-47a4c720547ba1f200b4f16d054a74a6d973ce86cfe1c1de1b5544a25cfb0fc23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Mon Mar 25 05:12:45 EDT 2024
Fri Jul 11 15:36:58 EDT 2025
Fri Jul 25 10:25:27 EDT 2025
Wed Feb 19 02:32:21 EST 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 02:26:25 EDT 2025
Wed Jan 22 16:17:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords lithium ion batteries
magnesium
aluminum
multivalent batteries
organic cathodes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5433-47a4c720547ba1f200b4f16d054a74a6d973ce86cfe1c1de1b5544a25cfb0fc23
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-8626-6381
0000000286266381
OpenAccessLink https://www.osti.gov/biblio/1437068
PMID 29704298
PQID 2050508965
PQPubID 946352
PageCount 5
ParticipantIDs osti_scitechconnect_1437068
proquest_miscellaneous_2032413255
proquest_journals_2050508965
pubmed_primary_29704298
crossref_citationtrail_10_1002_anie_201803703
crossref_primary_10_1002_anie_201803703
wiley_primary_10_1002_anie_201803703_ANIE201803703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 11, 2018
PublicationDateYYYYMMDD 2018-06-11
PublicationDate_xml – month: 06
  year: 2018
  text: June 11, 2018
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 2
2015; 5
2013; 25
2017; 3
2015; 520
2015; 287
2015; 527
2010 2010; 49 122
2017; 29
2004
2017; 356
2015; 7
2013; 6
2014; 114
2017; 117
2000; 407
2010; 22
2016; 7
2015; 27
2016; 1
2016 2016; 55 128
2016; 2
2015; 137
2017; 16
2012 2012; 51 124
2017; 34
2014; 13
2011; 47
2016; 28
2016; 9
2010; 9
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_1_2
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_42_2
e_1_2_2_43_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_25_2
e_1_2_2_26_1
e_1_2_2_14_1
e_1_2_2_36_2
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_35_2
References_xml – volume: 29
  start-page: 1604685
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2338
  year: 2013
  end-page: 2360
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 4926
  year: 2015
  end-page: 4929
  publication-title: Chem. Mater.
– volume: 7
  start-page: 12122
  year: 2016
  publication-title: Nat. Commun.
– volume: 356
  start-page: 415
  year: 2017
  end-page: 418
  publication-title: Science
– volume: 16
  start-page: 454
  year: 2017
  end-page: 460
  publication-title: Nat. Mater.
– volume: 16
  start-page: 45
  year: 2017
  end-page: 56
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2273
  year: 2016
  end-page: 2277
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 3062
  year: 2013
  end-page: 3071
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1115
  year: 2017
  end-page: 1121
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 011801
  year: 2016
  publication-title: Appl. Phys. Express
– volume: 1
  start-page: 297
  year: 2016
  end-page: 301
  publication-title: ACS Energy Lett.
– volume: 34
  start-page: 26
  year: 2017
  end-page: 35
  publication-title: Nano Energy
– volume: 137
  start-page: 12388
  year: 2015
  end-page: 12393
  publication-title: J. Am. Chem. Soc.
– volume: 527
  start-page: 78
  year: 2015
  end-page: 81
  publication-title: Nature
– volume: 49 122
  start-page: 8444 8622
  year: 2010 2010
  end-page: 8448 8626
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 7626
  year: 2016
  end-page: 7632
  publication-title: Adv. Mater.
– volume: 47
  start-page: 12610
  year: 2011
  end-page: 12612
  publication-title: Chem. Commun.
– volume: 520
  start-page: 324
  year: 2015
  end-page: 328
  publication-title: Nature
– volume: 51 124
  start-page: 5798 5898
  year: 2012 2012
  end-page: 5800 5900
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 1121
  year: 2017
  end-page: 1128
  publication-title: ACS Cent. Sci.
– volume: 5
  start-page: 1401410
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 55 128
  start-page: 9898 10052
  year: 2016 2016
  end-page: 9901 10055
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 287
  start-page: 15
  year: 2015
  end-page: 27
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 961
  year: 2014
  end-page: 969
  publication-title: Nat. Mater.
– start-page: 2080
  year: 2004
  end-page: 2081
  publication-title: Chem. Commun.
– volume: 7
  start-page: 10999
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  publication-title: Nat. Chem.
– volume: 407
  start-page: 724
  year: 2000
  end-page: 727
  publication-title: Nature
– volume: 22
  start-page: 860
  year: 2010
  end-page: 868
  publication-title: Chem. Mater.
– volume: 9
  start-page: 146
  year: 2010
  end-page: 151
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1501038
  year: 2016
  publication-title: Sci. Adv.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  publication-title: Chem. Rev.
– volume: 117
  start-page: 4287
  year: 2017
  end-page: 4341
  publication-title: Chem. Rev.
– ident: e_1_2_2_18_2
  doi: 10.1021/acsenergylett.7b00040
– ident: e_1_2_2_40_1
– ident: e_1_2_2_1_1
  doi: 10.1002/anie.201105006
– ident: e_1_2_2_20_1
  doi: 10.1038/nmat4041
– ident: e_1_2_2_10_2
  doi: 10.1038/35037553
– ident: e_1_2_2_23_2
  doi: 10.1002/aenm.201401410
– ident: e_1_2_2_24_2
  doi: 10.1016/j.ccr.2014.11.005
– ident: e_1_2_2_15_2
  doi: 10.1038/ncomms10999
– ident: e_1_2_2_2_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_2_11_2
  doi: 10.1021/acs.chemrev.6b00614
– ident: e_1_2_2_17_2
  doi: 10.1038/nmat4777
– ident: e_1_2_2_36_2
  doi: 10.1002/adma.201602583
– ident: e_1_2_2_37_1
– ident: e_1_2_2_7_2
  doi: 10.1039/c3ee40847g
– ident: e_1_2_2_31_1
  doi: 10.1002/anie.201002439
– ident: e_1_2_2_35_2
  doi: 10.1126/sciadv.1501038
– ident: e_1_2_2_5_2
  doi: 10.1038/nature15746
– ident: e_1_2_2_12_2
  doi: 10.1016/j.nanoen.2017.02.014
– ident: e_1_2_2_34_1
– ident: e_1_2_2_26_1
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201603531
– ident: e_1_2_2_1_2
  doi: 10.1002/ange.201105006
– ident: e_1_2_2_3_1
– ident: e_1_2_2_22_2
  doi: 10.1039/c1cc15779e
– ident: e_1_2_2_25_2
  doi: 10.1021/acs.chemmater.5b01918
– ident: e_1_2_2_28_2
  doi: 10.1021/acsenergylett.6b00145
– ident: e_1_2_2_43_1
  doi: 10.1038/ncomms12122
– ident: e_1_2_2_14_1
– ident: e_1_2_2_33_1
  doi: 10.1039/b403855j
– ident: e_1_2_2_4_2
  doi: 10.1038/nchem.2085
– ident: e_1_2_2_32_1
  doi: 10.7567/APEX.9.011801
– ident: e_1_2_2_31_2
  doi: 10.1002/ange.201002439
– ident: e_1_2_2_13_1
  doi: 10.1038/nature14340
– ident: e_1_2_2_30_1
  doi: 10.1039/C6EE00724D
– ident: e_1_2_2_27_2
  doi: 10.1021/cm9016497
– ident: e_1_2_2_6_1
– ident: e_1_2_2_38_2
  doi: 10.1038/nmat2612
– ident: e_1_2_2_42_2
  doi: 10.1021/jacs.5b07820
– ident: e_1_2_2_9_1
– ident: e_1_2_2_21_1
– ident: e_1_2_2_29_1
  doi: 10.1021/cm401250c
– ident: e_1_2_2_39_2
  doi: 10.1038/nmat4810
– ident: e_1_2_2_19_2
  doi: 10.1021/acscentsci.7b00361
– ident: e_1_2_2_8_2
  doi: 10.1021/cr500192f
– ident: e_1_2_2_16_2
  doi: 10.1002/adma.201604685
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201603531
SSID ssj0028806
Score 2.6223454
Snippet Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their...
Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their...
Low-cost multivalent battery chemistries (Mg , Al ) have been extensively investigated for large-scale energy storage applications. However, their...
Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their...
Abstract Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However,...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7146
SubjectTerms Aluminum
Batteries
Cathodes
Cations
Commercialization
Energy storage
Ion charge
Lithium
lithium ion batteries
Magnesium
multivalent batteries
Operating temperature
organic cathodes
Organic chemistry
Polyimide resins
Title A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803703
https://www.ncbi.nlm.nih.gov/pubmed/29704298
https://www.proquest.com/docview/2050508965
https://www.proquest.com/docview/2032413255
https://www.osti.gov/biblio/1437068
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hvdBLefRBYEFGqtRTYGMnTnJcrUCAAKlVV-IW2Y6tIpYsYrMXfj0zcRLYqlUluCWxHTn2jOebeOYzwLfcKrIbEoVXyzDWXIQazUiYWotgRHEnbRMgey3PpvHFTXLzKovf80P0P9xIM5r1mhRc6cXxC2koZWBTaFY2EmlD90kBW4SKfvb8URyF06cXCRHSKfQda-OIH682X7FKgzlq198Q5yqAbSzQ6Qaoru8-8OTuaFnrI_P0B63jez5uEz628JSNvTxtwZqttmF90p0K9wl-jFkby4HVfCKnYZRGOC8tQwDMprP6UTm1qNnlbf37dnnPVFWyJs8XhRpNHLuyCPiZJ_ZEP_0zTE9Pfk3OwvZYhtAkNJBxqmKTcsR6qVaRQzXTsYtkiQ9UGitZ5qkwNpPG2chEpY00QpZY8cQ4PXKGiy8wqOaV3QFmREKLgBWlE7F1CPdcmauS3KQ805kLIOympTAtZzkdnTErPNsyL2igin6gAvje13_wbB3_rLlHs1wgziCyXENRRaZGRwgLZRbAsJv8otXpBbbFzo6yXCYBHPbFOPy0xaIqO19SHUEbleinBfDVC03fEZ6nZP3x5byZ-v_0sBhfn5_0d7tvabQHH-iaItuiaAiD-nFp9xFD1fqg0ZNnoqMQWw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vy6FceD9CCxgJxCntxnZeBw6rPrRLtyuBulJvwXZssaJkUTcrBP-Kv8IvYiZOghaBkJB64JjESRx7xvONM_MNwPPcKrIbCQqvTkKpuQg1mpEwtRbBiOIusU2A7CwZz-Xr8_h8C751uTCeH6LfcCPNaNZrUnDakN7_yRpKKdgUm5UNBYptG1d5Yr98Rq9t9WpyiFP8gvPjo7ODcdgWFghNLIUIZaqkSTmilVSryKGgaOmipMQTKpUqKfNUGJslxtnIRKWNNBpdqXhsnB46Q1wHuOpfozLiRNd_-LZnrOKoDj6hCV9Dde87nsgh39_s74YdHCxRn3-HcTchc2Pzjm_C9260fKjLh711rffM11-IJP-r4bwFN1oEzkZeZW7Dlq3uwPZBV_juLrwZsTZcBZv5XFXDKFNyWVqGGJ_NL-pL5dSqZtNF_X6x_shUVbImlRn1Fq04O7Xo0zDPXbqwq3swv5Ivug-DalnZh8CMiGmds6J0QlqHiNaVuSrJE8wznbkAwk4OCtPSslN1kIvCE0rzgiam6CcmgJd9-0-ekOSPLXdIrAqEUsQHbChwytTo6-HFJAtgt5O2ol22VngvdnaY5UkcwLP-Mg4__UVSlV2uqY2gf7HoigbwwEtp3xGepwRw8OG8kbW_9LAYzSZH_dGjf7npKWyPz06nxXQyO9mB63SeAvmiaBcG9eXaPkbIWOsnjZIyeHfVYvwD7DNuWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5ViwRcyj8NLWAkEKe0ieM4yaGHVberLi0rQKzUW7AdW6wo2aqbFYKn4lV4o87kDy0CISH1wDGJkzj2jOebeOYbgOeZVWQ3JAqvlr7QPPI1mhE_sRbBiOJO2jpAdiqPZuLVaXy6Ad-7XJiGH6L_4UaaUa_XpODnhdv7SRpKGdgUmpUGEUptG1Z5bL9-QadtuT8Z4Qy_4Hx8-P7gyG_rCvgmFlHki0QJk3AEK4lWoUM50cKFssATKhFKFlkSGZtK42xowsKGGm2uUDw2TgfOENUBLvrXhAwyKhYxetcTVnHUhiafCV9DZe87msiA7633d80MDhaozr-DuOuIuTZ541vwoxusJtLl0-6q0rvm2y88kv_TaN6GzRZ_s2GjMHdgw5Z34cZBV_buHrwdsjZYBZs1maqGUZ7korAMET6bnVUXyqllxU7m1cf56jNTZcHqRGbUWrTh7LVFj4Y1zKVzu7wPsyv5ogcwKBel3QJmophWORsVLhLWIZ51RaYK8gOzVKfOA78Tg9y0pOxUG-Qsb-ikeU4Tk_cT48HLvv15Q0fyx5bbJFU5AiliAzYUNmUq9PTwokw92OmELW8XrSXei50N0kzGHjzrL-Pw0x6SKu1iRW0i2olFR9SDh42Q9h3hWULwBh_Oa1H7Sw_z4XRy2B89-pebnsL1N6NxfjKZHm_DTTpNUXxhuAOD6mJlHyNerPSTWkUZfLhqKb4EDwptCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Universal+Organic+Cathode+for+Ultrafast+Lithium+and+Multivalent+Metal+Batteries&rft.jtitle=Angewandte+Chemie+%28International+ed.%29&rft.au=Fan%2C+Xiulin&rft.au=Wang%2C+Fei&rft.au=Ji%2C+Xiao&rft.au=Wang%2C+Ruixing&rft.date=2018-06-11&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.201803703&rft.externalDocID=1437068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon