A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries
Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that ca...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 57; no. 24; pp. 7146 - 7150 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
11.06.2018
Wiley Blackwell (John Wiley & Sons) |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries.
A universal ultrafast organic cathode for multivalent batteries is reported. In contrast to slow solid‐state ion diffusion and phase transformation in inorganic materials with a stiff crystal structure, the soft structure of the PI@CNT composite with the ion‐coordination charge storage mechanism ensures ultrafast reaction kinetics, improving the traditional low power and poor cycle life of multivalent battery chemistries. |
---|---|
AbstractList | Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+, Mg2+, Al3+) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. A universal ultrafast organic cathode for multivalent batteries is reported. In contrast to slow solid‐state ion diffusion and phase transformation in inorganic materials with a stiff crystal structure, the soft structure of the PI@CNT composite with the ion‐coordination charge storage mechanism ensures ultrafast reaction kinetics, improving the traditional low power and poor cycle life of multivalent battery chemistries. Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+ , Mg2+ , Al3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries.Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li+ , Mg2+ , Al3+ ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries. Abstract Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. Low-cost multivalent battery chemistries (Mg , Al ) have been extensively investigated for large-scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li , Mg , Al ) at an extremely fast rate. The ion-coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (-40 to 50 °C), making the low-cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion-coordinated mechanism opens a new foundation for the development of high-energy and high-power multivalent batteries. Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their commercialization is plagued by the poor power density and cycle life of cathodes. A universal polyimides@CNT (PI@CNT) cathode is now presented that can reversibly store various cations with different valences (Li + , Mg 2+ , Al 3+ ) at an extremely fast rate. The ion‐coordination charge storage mechanism of PI@CNT is systemically investigated. Full cells using PI@CNT cathodes and corresponding metal anodes exhibit long cycle life (>10000 cycles), fast kinetics (>20 C), and wide operating temperature range (−40 to 50 °C), making the low‐cost industrial polyimides universal cathodes for different multivalent metal batteries. The stable ion‐coordinated mechanism opens a new foundation for the development of high‐energy and high‐power multivalent batteries. |
Author | Wang, Chunsheng Li, Xiaogang Deng, Tao Luo, Chao Gao, Tao Wang, Ruixing Wang, Fei Chen, Ji Hou, Singyuk Ji, Xiao Chen, Long Wang, Luning Fan, Xiulin |
Author_xml | – sequence: 1 givenname: Xiulin surname: Fan fullname: Fan, Xiulin organization: University of Maryland – sequence: 2 givenname: Fei surname: Wang fullname: Wang, Fei organization: Sensor and Electron Devices Directorate Power and Energy Division U.S. Army Research Laboratory – sequence: 3 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: University of Maryland – sequence: 4 givenname: Ruixing surname: Wang fullname: Wang, Ruixing organization: University of Maryland – sequence: 5 givenname: Tao surname: Gao fullname: Gao, Tao organization: University of Maryland – sequence: 6 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: University of Maryland – sequence: 7 givenname: Ji surname: Chen fullname: Chen, Ji organization: University of Maryland – sequence: 8 givenname: Tao surname: Deng fullname: Deng, Tao organization: University of Maryland – sequence: 9 givenname: Xiaogang surname: Li fullname: Li, Xiaogang organization: University of Maryland – sequence: 10 givenname: Long surname: Chen fullname: Chen, Long organization: University of Maryland – sequence: 11 givenname: Chao surname: Luo fullname: Luo, Chao organization: University of Maryland – sequence: 12 givenname: Luning surname: Wang fullname: Wang, Luning organization: University of Maryland – sequence: 13 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29704298$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1437068$$D View this record in Osti.gov |
BookMark | eNqFkctrGzEQh0VJaV699liW9tKLXT1Xu0fXpG3AaSjEZ6HVjmoFWUolbUL--8g4DwiUooOE-L5hZn7H6CDEAAh9IHhOMKZfdXAwp5h0mEnM3qAjIiiZMSnZQX1zxmayE-QQHed8Xfmuw-07dEh7iTntuyP0e9Gsg7uFlLVvLtOfWs80S102cYTGxtSsfUna6lyalSsbN20bHcbmYvLF3WoPoTQXUKr7TZcCyUE-RW-t9hneP94naP397Gr5c7a6_HG-XKxmRuza4lJzIykWXA6aWIrxwC1px_qhJdft2EtmoGuNBWLICGQQgnNNhbEDtoayE_RpXzfm4lQ2roDZmBgCmKLq5BK3XYW-7KGbFP9OkIvaumzAex0gTllRzCgnjApR0c-v0Os4pVBHqJSop-vbHfXxkZqGLYzqJrmtTvfqaaMV4HvApJhzAqtqZ7q4GOoenVcEq11waheceg6uavNX2lPlfwr9XrhzHu7_Q6vFr_OzF_cBpRio9w |
CitedBy_id | crossref_primary_10_1039_C9TA04869C crossref_primary_10_1016_j_cej_2023_145786 crossref_primary_10_1002_ange_202409286 crossref_primary_10_1016_j_compositesb_2021_109073 crossref_primary_10_1002_anie_202306091 crossref_primary_10_1002_cssc_202000054 crossref_primary_10_1002_adma_202201046 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1002_adfm_202004573 crossref_primary_10_1016_j_cej_2021_134253 crossref_primary_10_1021_acs_chemrev_9b00482 crossref_primary_10_1039_C9NR05623H crossref_primary_10_1002_ange_201814294 crossref_primary_10_1039_C9CC05745E crossref_primary_10_1039_D1TA00528F crossref_primary_10_1002_anie_202403424 crossref_primary_10_1002_adma_202409904 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_1016_j_cej_2025_160145 crossref_primary_10_1021_acsami_0c08214 crossref_primary_10_1002_smtd_202200363 crossref_primary_10_1016_j_ensm_2019_10_007 crossref_primary_10_1002_aenm_202000697 crossref_primary_10_1063_5_0119904 crossref_primary_10_1002_cssc_202202358 crossref_primary_10_1016_j_jpowsour_2020_228401 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1149_1945_7111_ad1c12 crossref_primary_10_1002_ange_201903152 crossref_primary_10_1021_acs_energyfuels_1c00860 crossref_primary_10_1002_chem_201804229 crossref_primary_10_1039_D0TA03321A crossref_primary_10_1039_D0TA09404H crossref_primary_10_1007_s40843_020_1375_2 crossref_primary_10_1002_adfm_202111043 crossref_primary_10_1002_ange_201910916 crossref_primary_10_1002_smll_202000730 crossref_primary_10_1002_aenm_202101446 crossref_primary_10_1021_acs_jpcc_3c00385 crossref_primary_10_1021_acsnano_4c18374 crossref_primary_10_1016_j_mattod_2022_04_010 crossref_primary_10_1002_smll_201901083 crossref_primary_10_1016_j_nanoen_2020_104583 crossref_primary_10_1002_aenm_202301631 crossref_primary_10_1039_D2NJ03447F crossref_primary_10_1016_j_ensm_2020_05_029 crossref_primary_10_1021_acsami_0c11241 crossref_primary_10_1016_j_cej_2023_147305 crossref_primary_10_1016_j_jechem_2021_06_034 crossref_primary_10_1016_j_ccr_2024_216097 crossref_primary_10_1021_acsnano_4c06653 crossref_primary_10_1021_acs_chemmater_2c01497 crossref_primary_10_1039_C9TA08303K crossref_primary_10_1039_C9TA12660K crossref_primary_10_1002_EXP_20220066 crossref_primary_10_1016_j_electacta_2023_143302 crossref_primary_10_1016_j_jcis_2022_06_141 crossref_primary_10_1038_s41467_018_06708_x crossref_primary_10_1016_j_dyepig_2021_109352 crossref_primary_10_1016_j_ensm_2022_11_052 crossref_primary_10_1016_j_jechem_2021_06_028 crossref_primary_10_1021_acs_nanolett_0c01040 crossref_primary_10_1021_acs_jpcc_3c02353 crossref_primary_10_1016_j_cej_2023_147021 crossref_primary_10_1021_acsami_9b13118 crossref_primary_10_1039_D0TA04526H crossref_primary_10_1002_anie_202116194 crossref_primary_10_1021_acsami_2c18869 crossref_primary_10_1016_j_cej_2023_148503 crossref_primary_10_1016_j_jpowsour_2021_229617 crossref_primary_10_1002_eem2_12076 crossref_primary_10_1002_smll_202200463 crossref_primary_10_1016_j_cej_2021_130995 crossref_primary_10_1002_advs_201900431 crossref_primary_10_1002_ange_201807121 crossref_primary_10_1002_aenm_202400147 crossref_primary_10_1016_j_cej_2022_139570 crossref_primary_10_1016_j_cej_2024_148806 crossref_primary_10_1002_chem_202100223 crossref_primary_10_1021_acsaem_3c00969 crossref_primary_10_1021_acsaem_1c03612 crossref_primary_10_1039_D4CS01072H crossref_primary_10_6023_A22090385 crossref_primary_10_1002_adma_202406106 crossref_primary_10_1002_anie_202216797 crossref_primary_10_1021_acsami_3c11270 crossref_primary_10_1016_j_jpowsour_2021_230722 crossref_primary_10_1002_ange_202116194 crossref_primary_10_1002_anie_202216713 crossref_primary_10_1021_acs_chemrev_2c00374 crossref_primary_10_2139_ssrn_4173695 crossref_primary_10_1021_acsami_2c03389 crossref_primary_10_1016_j_jpowsour_2020_229027 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1038_s41560_020_00734_0 crossref_primary_10_1002_aenm_201904199 crossref_primary_10_1021_acsaem_0c02526 crossref_primary_10_3389_fchem_2018_00656 crossref_primary_10_1016_j_ensm_2022_03_033 crossref_primary_10_1002_ange_202216797 crossref_primary_10_1016_j_enchem_2020_100030 crossref_primary_10_1038_s41467_021_22633_y crossref_primary_10_1002_anie_202000566 crossref_primary_10_1016_j_ensm_2019_07_033 crossref_primary_10_1016_j_ensm_2022_06_018 crossref_primary_10_1016_j_scib_2020_05_006 crossref_primary_10_1002_ange_202216713 crossref_primary_10_1002_smtd_202000039 crossref_primary_10_1016_j_matchemphys_2022_126391 crossref_primary_10_1021_acsaem_9b00443 crossref_primary_10_1016_j_mtphys_2021_100499 crossref_primary_10_1021_acsami_8b19662 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1002_adma_201901478 crossref_primary_10_1002_aenm_202203719 crossref_primary_10_1016_j_est_2023_110323 crossref_primary_10_1021_acsnano_2c05090 crossref_primary_10_1002_ange_202306091 crossref_primary_10_1016_j_est_2025_116213 crossref_primary_10_1039_D2TA02083A crossref_primary_10_1002_batt_202300285 crossref_primary_10_1016_j_jcis_2023_03_106 crossref_primary_10_1002_anie_202409286 crossref_primary_10_1007_s40820_024_01495_1 crossref_primary_10_1016_j_jpowsour_2019_227007 crossref_primary_10_1002_smll_202002953 crossref_primary_10_1016_j_jpowsour_2021_230261 crossref_primary_10_1002_advs_202302490 crossref_primary_10_1016_j_cej_2024_156359 crossref_primary_10_1016_j_joule_2020_12_021 crossref_primary_10_1039_D0CC05344A crossref_primary_10_1039_D2TA09988H crossref_primary_10_1002_ange_202403424 crossref_primary_10_1002_anie_201807121 crossref_primary_10_1002_adma_202005781 crossref_primary_10_1002_anie_201814294 crossref_primary_10_1039_D1TA09194H crossref_primary_10_1002_smll_202201362 crossref_primary_10_1002_anie_201903152 crossref_primary_10_1021_acsaem_3c02025 crossref_primary_10_1007_s12598_021_01941_8 crossref_primary_10_1002_eem2_12564 crossref_primary_10_1039_D0TA12243B crossref_primary_10_1039_D3QM00297G crossref_primary_10_1021_acsenergylett_5c00139 crossref_primary_10_1016_j_xcrp_2022_100951 crossref_primary_10_1002_ange_201814625 crossref_primary_10_1016_j_jallcom_2020_155678 crossref_primary_10_2139_ssrn_4050075 crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1016_j_electacta_2022_141447 crossref_primary_10_1002_cssc_202301223 crossref_primary_10_1002_aenm_202203253 crossref_primary_10_1002_anie_201915666 crossref_primary_10_1016_j_nanoen_2019_103902 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_1021_acsami_9b20384 crossref_primary_10_1016_j_joule_2018_11_022 crossref_primary_10_1002_cssc_202401397 crossref_primary_10_1016_j_ceramint_2023_05_153 crossref_primary_10_1021_acs_chemmater_1c01072 crossref_primary_10_1002_adma_202102634 crossref_primary_10_1021_acsami_0c07292 crossref_primary_10_1039_D2QI00959E crossref_primary_10_1002_eem2_12275 crossref_primary_10_1002_marc_202200198 crossref_primary_10_1007_s40843_021_1791_1 crossref_primary_10_1002_anie_201910916 crossref_primary_10_2139_ssrn_4055903 crossref_primary_10_1002_celc_202400550 crossref_primary_10_1002_anie_201814625 crossref_primary_10_1002_adma_202200662 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1002_cssc_202000883 crossref_primary_10_1002_smll_202307827 crossref_primary_10_1115_1_4049574 crossref_primary_10_1016_j_cej_2025_161944 crossref_primary_10_1016_j_ensm_2019_11_023 crossref_primary_10_1016_j_joule_2020_05_018 crossref_primary_10_1002_ange_202000566 crossref_primary_10_1002_cssc_201900539 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1039_D3CC02652C crossref_primary_10_1002_adsu_202100418 crossref_primary_10_1039_C8CC09677E crossref_primary_10_1039_D0TA06326F crossref_primary_10_1002_ange_202008960 crossref_primary_10_1002_ange_201915666 |
Cites_doi | 10.1021/acsenergylett.7b00040 10.1002/anie.201105006 10.1038/nmat4041 10.1038/35037553 10.1002/aenm.201401410 10.1016/j.ccr.2014.11.005 10.1038/ncomms10999 10.1126/science.aak9991 10.1021/acs.chemrev.6b00614 10.1038/nmat4777 10.1002/adma.201602583 10.1039/c3ee40847g 10.1002/anie.201002439 10.1126/sciadv.1501038 10.1038/nature15746 10.1016/j.nanoen.2017.02.014 10.1002/ange.201603531 10.1002/ange.201105006 10.1039/c1cc15779e 10.1021/acs.chemmater.5b01918 10.1021/acsenergylett.6b00145 10.1038/ncomms12122 10.1039/b403855j 10.1038/nchem.2085 10.7567/APEX.9.011801 10.1002/ange.201002439 10.1038/nature14340 10.1039/C6EE00724D 10.1021/cm9016497 10.1038/nmat2612 10.1021/jacs.5b07820 10.1021/cm401250c 10.1038/nmat4810 10.1021/acscentsci.7b00361 10.1021/cr500192f 10.1002/adma.201604685 10.1002/anie.201603531 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 OTOTI |
DOI | 10.1002/anie.201803703 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7150 |
ExternalDocumentID | 1437068 29704298 10_1002_anie_201803703 ANIE201803703 |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1438198 – fundername: Basic Energy Sciences funderid: DESC0001160 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OTOTI |
ID | FETCH-LOGICAL-c5433-47a4c720547ba1f200b4f16d054a74a6d973ce86cfe1c1de1b5544a25cfb0fc23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Mon Mar 25 05:12:45 EDT 2024 Fri Jul 11 15:36:58 EDT 2025 Fri Jul 25 10:25:27 EDT 2025 Wed Feb 19 02:32:21 EST 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 02:26:25 EDT 2025 Wed Jan 22 16:17:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | lithium ion batteries magnesium aluminum multivalent batteries organic cathodes |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5433-47a4c720547ba1f200b4f16d054a74a6d973ce86cfe1c1de1b5544a25cfb0fc23 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0002-8626-6381 0000000286266381 |
OpenAccessLink | https://www.osti.gov/biblio/1437068 |
PMID | 29704298 |
PQID | 2050508965 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1437068 proquest_miscellaneous_2032413255 proquest_journals_2050508965 pubmed_primary_29704298 crossref_citationtrail_10_1002_anie_201803703 crossref_primary_10_1002_anie_201803703 wiley_primary_10_1002_anie_201803703_ANIE201803703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 11, 2018 |
PublicationDateYYYYMMDD | 2018-06-11 |
PublicationDate_xml | – month: 06 year: 2018 text: June 11, 2018 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 2 2015; 5 2013; 25 2017; 3 2015; 520 2015; 287 2015; 527 2010 2010; 49 122 2017; 29 2004 2017; 356 2015; 7 2013; 6 2014; 114 2017; 117 2000; 407 2010; 22 2016; 7 2015; 27 2016; 1 2016 2016; 55 128 2016; 2 2015; 137 2017; 16 2012 2012; 51 124 2017; 34 2014; 13 2011; 47 2016; 28 2016; 9 2010; 9 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_1_2 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_42_2 e_1_2_2_43_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_25_2 e_1_2_2_26_1 e_1_2_2_14_1 e_1_2_2_36_2 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_31_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_35_2 |
References_xml | – volume: 29 start-page: 1604685 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 2338 year: 2013 end-page: 2360 publication-title: Energy Environ. Sci. – volume: 27 start-page: 4926 year: 2015 end-page: 4929 publication-title: Chem. Mater. – volume: 7 start-page: 12122 year: 2016 publication-title: Nat. Commun. – volume: 356 start-page: 415 year: 2017 end-page: 418 publication-title: Science – volume: 16 start-page: 454 year: 2017 end-page: 460 publication-title: Nat. Mater. – volume: 16 start-page: 45 year: 2017 end-page: 56 publication-title: Nat. Mater. – volume: 9 start-page: 2273 year: 2016 end-page: 2277 publication-title: Energy Environ. Sci. – volume: 25 start-page: 3062 year: 2013 end-page: 3071 publication-title: Chem. Mater. – volume: 2 start-page: 1115 year: 2017 end-page: 1121 publication-title: ACS Energy Lett. – volume: 9 start-page: 011801 year: 2016 publication-title: Appl. Phys. Express – volume: 1 start-page: 297 year: 2016 end-page: 301 publication-title: ACS Energy Lett. – volume: 34 start-page: 26 year: 2017 end-page: 35 publication-title: Nano Energy – volume: 137 start-page: 12388 year: 2015 end-page: 12393 publication-title: J. Am. Chem. Soc. – volume: 527 start-page: 78 year: 2015 end-page: 81 publication-title: Nature – volume: 49 122 start-page: 8444 8622 year: 2010 2010 end-page: 8448 8626 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 7626 year: 2016 end-page: 7632 publication-title: Adv. Mater. – volume: 47 start-page: 12610 year: 2011 end-page: 12612 publication-title: Chem. Commun. – volume: 520 start-page: 324 year: 2015 end-page: 328 publication-title: Nature – volume: 51 124 start-page: 5798 5898 year: 2012 2012 end-page: 5800 5900 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 1121 year: 2017 end-page: 1128 publication-title: ACS Cent. Sci. – volume: 5 start-page: 1401410 year: 2015 publication-title: Adv. Energy Mater. – volume: 55 128 start-page: 9898 10052 year: 2016 2016 end-page: 9901 10055 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 287 start-page: 15 year: 2015 end-page: 27 publication-title: Coord. Chem. Rev. – volume: 13 start-page: 961 year: 2014 end-page: 969 publication-title: Nat. Mater. – start-page: 2080 year: 2004 end-page: 2081 publication-title: Chem. Commun. – volume: 7 start-page: 10999 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 19 year: 2015 end-page: 29 publication-title: Nat. Chem. – volume: 407 start-page: 724 year: 2000 end-page: 727 publication-title: Nature – volume: 22 start-page: 860 year: 2010 end-page: 868 publication-title: Chem. Mater. – volume: 9 start-page: 146 year: 2010 end-page: 151 publication-title: Nat. Mater. – volume: 2 start-page: 1501038 year: 2016 publication-title: Sci. Adv. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 publication-title: Chem. Rev. – volume: 117 start-page: 4287 year: 2017 end-page: 4341 publication-title: Chem. Rev. – ident: e_1_2_2_18_2 doi: 10.1021/acsenergylett.7b00040 – ident: e_1_2_2_40_1 – ident: e_1_2_2_1_1 doi: 10.1002/anie.201105006 – ident: e_1_2_2_20_1 doi: 10.1038/nmat4041 – ident: e_1_2_2_10_2 doi: 10.1038/35037553 – ident: e_1_2_2_23_2 doi: 10.1002/aenm.201401410 – ident: e_1_2_2_24_2 doi: 10.1016/j.ccr.2014.11.005 – ident: e_1_2_2_15_2 doi: 10.1038/ncomms10999 – ident: e_1_2_2_2_1 doi: 10.1126/science.aak9991 – ident: e_1_2_2_11_2 doi: 10.1021/acs.chemrev.6b00614 – ident: e_1_2_2_17_2 doi: 10.1038/nmat4777 – ident: e_1_2_2_36_2 doi: 10.1002/adma.201602583 – ident: e_1_2_2_37_1 – ident: e_1_2_2_7_2 doi: 10.1039/c3ee40847g – ident: e_1_2_2_31_1 doi: 10.1002/anie.201002439 – ident: e_1_2_2_35_2 doi: 10.1126/sciadv.1501038 – ident: e_1_2_2_5_2 doi: 10.1038/nature15746 – ident: e_1_2_2_12_2 doi: 10.1016/j.nanoen.2017.02.014 – ident: e_1_2_2_34_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201603531 – ident: e_1_2_2_1_2 doi: 10.1002/ange.201105006 – ident: e_1_2_2_3_1 – ident: e_1_2_2_22_2 doi: 10.1039/c1cc15779e – ident: e_1_2_2_25_2 doi: 10.1021/acs.chemmater.5b01918 – ident: e_1_2_2_28_2 doi: 10.1021/acsenergylett.6b00145 – ident: e_1_2_2_43_1 doi: 10.1038/ncomms12122 – ident: e_1_2_2_14_1 – ident: e_1_2_2_33_1 doi: 10.1039/b403855j – ident: e_1_2_2_4_2 doi: 10.1038/nchem.2085 – ident: e_1_2_2_32_1 doi: 10.7567/APEX.9.011801 – ident: e_1_2_2_31_2 doi: 10.1002/ange.201002439 – ident: e_1_2_2_13_1 doi: 10.1038/nature14340 – ident: e_1_2_2_30_1 doi: 10.1039/C6EE00724D – ident: e_1_2_2_27_2 doi: 10.1021/cm9016497 – ident: e_1_2_2_6_1 – ident: e_1_2_2_38_2 doi: 10.1038/nmat2612 – ident: e_1_2_2_42_2 doi: 10.1021/jacs.5b07820 – ident: e_1_2_2_9_1 – ident: e_1_2_2_21_1 – ident: e_1_2_2_29_1 doi: 10.1021/cm401250c – ident: e_1_2_2_39_2 doi: 10.1038/nmat4810 – ident: e_1_2_2_19_2 doi: 10.1021/acscentsci.7b00361 – ident: e_1_2_2_8_2 doi: 10.1021/cr500192f – ident: e_1_2_2_16_2 doi: 10.1002/adma.201604685 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201603531 |
SSID | ssj0028806 |
Score | 2.6223454 |
Snippet | Low‐cost multivalent battery chemistries (Mg2+, Al3+) have been extensively investigated for large‐scale energy storage applications. However, their... Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However, their... Low-cost multivalent battery chemistries (Mg , Al ) have been extensively investigated for large-scale energy storage applications. However, their... Low-cost multivalent battery chemistries (Mg2+ , Al3+ ) have been extensively investigated for large-scale energy storage applications. However, their... Abstract Low‐cost multivalent battery chemistries (Mg 2+ , Al 3+ ) have been extensively investigated for large‐scale energy storage applications. However,... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7146 |
SubjectTerms | Aluminum Batteries Cathodes Cations Commercialization Energy storage Ion charge Lithium lithium ion batteries Magnesium multivalent batteries Operating temperature organic cathodes Organic chemistry Polyimide resins |
Title | A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201803703 https://www.ncbi.nlm.nih.gov/pubmed/29704298 https://www.proquest.com/docview/2050508965 https://www.proquest.com/docview/2032413255 https://www.osti.gov/biblio/1437068 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hvdBLefRBYEFGqtRTYGMnTnJcrUCAAKlVV-IW2Y6tIpYsYrMXfj0zcRLYqlUluCWxHTn2jOebeOYzwLfcKrIbEoVXyzDWXIQazUiYWotgRHEnbRMgey3PpvHFTXLzKovf80P0P9xIM5r1mhRc6cXxC2koZWBTaFY2EmlD90kBW4SKfvb8URyF06cXCRHSKfQda-OIH682X7FKgzlq198Q5yqAbSzQ6Qaoru8-8OTuaFnrI_P0B63jez5uEz628JSNvTxtwZqttmF90p0K9wl-jFkby4HVfCKnYZRGOC8tQwDMprP6UTm1qNnlbf37dnnPVFWyJs8XhRpNHLuyCPiZJ_ZEP_0zTE9Pfk3OwvZYhtAkNJBxqmKTcsR6qVaRQzXTsYtkiQ9UGitZ5qkwNpPG2chEpY00QpZY8cQ4PXKGiy8wqOaV3QFmREKLgBWlE7F1CPdcmauS3KQ805kLIOympTAtZzkdnTErPNsyL2igin6gAvje13_wbB3_rLlHs1wgziCyXENRRaZGRwgLZRbAsJv8otXpBbbFzo6yXCYBHPbFOPy0xaIqO19SHUEbleinBfDVC03fEZ6nZP3x5byZ-v_0sBhfn5_0d7tvabQHH-iaItuiaAiD-nFp9xFD1fqg0ZNnoqMQWw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5Vy6FceD9CCxgJxCntxnZeBw6rPrRLtyuBulJvwXZssaJkUTcrBP-Kv8IvYiZOghaBkJB64JjESRx7xvONM_MNwPPcKrIbCQqvTkKpuQg1mpEwtRbBiOIusU2A7CwZz-Xr8_h8C751uTCeH6LfcCPNaNZrUnDakN7_yRpKKdgUm5UNBYptG1d5Yr98Rq9t9WpyiFP8gvPjo7ODcdgWFghNLIUIZaqkSTmilVSryKGgaOmipMQTKpUqKfNUGJslxtnIRKWNNBpdqXhsnB46Q1wHuOpfozLiRNd_-LZnrOKoDj6hCV9Dde87nsgh39_s74YdHCxRn3-HcTchc2Pzjm_C9260fKjLh711rffM11-IJP-r4bwFN1oEzkZeZW7Dlq3uwPZBV_juLrwZsTZcBZv5XFXDKFNyWVqGGJ_NL-pL5dSqZtNF_X6x_shUVbImlRn1Fq04O7Xo0zDPXbqwq3swv5Ivug-DalnZh8CMiGmds6J0QlqHiNaVuSrJE8wznbkAwk4OCtPSslN1kIvCE0rzgiam6CcmgJd9-0-ekOSPLXdIrAqEUsQHbChwytTo6-HFJAtgt5O2ol22VngvdnaY5UkcwLP-Mg4__UVSlV2uqY2gf7HoigbwwEtp3xGepwRw8OG8kbW_9LAYzSZH_dGjf7npKWyPz06nxXQyO9mB63SeAvmiaBcG9eXaPkbIWOsnjZIyeHfVYvwD7DNuWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5ViwRcyj8NLWAkEKe0ieM4yaGHVberLi0rQKzUW7AdW6wo2aqbFYKn4lV4o87kDy0CISH1wDGJkzj2jOebeOYbgOeZVWQ3JAqvlr7QPPI1mhE_sRbBiOJO2jpAdiqPZuLVaXy6Ad-7XJiGH6L_4UaaUa_XpODnhdv7SRpKGdgUmpUGEUptG1Z5bL9-QadtuT8Z4Qy_4Hx8-P7gyG_rCvgmFlHki0QJk3AEK4lWoUM50cKFssATKhFKFlkSGZtK42xowsKGGm2uUDw2TgfOENUBLvrXhAwyKhYxetcTVnHUhiafCV9DZe87msiA7633d80MDhaozr-DuOuIuTZ541vwoxusJtLl0-6q0rvm2y88kv_TaN6GzRZ_s2GjMHdgw5Z34cZBV_buHrwdsjZYBZs1maqGUZ7korAMET6bnVUXyqllxU7m1cf56jNTZcHqRGbUWrTh7LVFj4Y1zKVzu7wPsyv5ogcwKBel3QJmophWORsVLhLWIZ51RaYK8gOzVKfOA78Tg9y0pOxUG-Qsb-ikeU4Tk_cT48HLvv15Q0fyx5bbJFU5AiliAzYUNmUq9PTwokw92OmELW8XrSXei50N0kzGHjzrL-Pw0x6SKu1iRW0i2olFR9SDh42Q9h3hWULwBh_Oa1H7Sw_z4XRy2B89-pebnsL1N6NxfjKZHm_DTTpNUXxhuAOD6mJlHyNerPSTWkUZfLhqKb4EDwptCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Universal+Organic+Cathode+for+Ultrafast+Lithium+and+Multivalent+Metal+Batteries&rft.jtitle=Angewandte+Chemie+%28International+ed.%29&rft.au=Fan%2C+Xiulin&rft.au=Wang%2C+Fei&rft.au=Ji%2C+Xiao&rft.au=Wang%2C+Ruixing&rft.date=2018-06-11&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.201803703&rft.externalDocID=1437068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |