Well‐Dispersed Nickel‐ and Zinc‐Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction
The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 16; pp. e1807771 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.04.2019
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
A controlled tailoring of electronic structure of an oxide for the hydrogen evolution reaction (HER) is reported. Dual Ni and Zn doping is shown to be responsible for a significant increase in the HER activity of the host oxide, which was previously considered as catalytically inactive. The engineered oxide nanorods exhibit significantly high HER activity and are amongst the most active reported. |
---|---|
AbstractList | The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
A controlled tailoring of electronic structure of an oxide for the hydrogen evolution reaction (HER) is reported. Dual Ni and Zn doping is shown to be responsible for a significant increase in the HER activity of the host oxide, which was previously considered as catalytically inactive. The engineered oxide nanorods exhibit significantly high HER activity and are amongst the most active reported. The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm −2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm-2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm-2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. Abstract The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm −2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. |
Author | Ling, Tao Zheng, Lirong Hu, Wen‐Bin Davey, Kenneth Han, Lili Zhang, Tong Xu, Zhengrui Qiao, Shi‐Zhang Ge, Binghui Du, Xi‐Wen Lin, Feng |
Author_xml | – sequence: 1 givenname: Tao surname: Ling fullname: Ling, Tao email: lingt04@tju.edu.cn organization: The University of Adelaide – sequence: 2 givenname: Tong surname: Zhang fullname: Zhang, Tong organization: Tianjin University – sequence: 3 givenname: Binghui surname: Ge fullname: Ge, Binghui organization: Anhui University – sequence: 4 givenname: Lili surname: Han fullname: Han, Lili organization: Tianjin University – sequence: 5 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Chinese Academy of Sciences – sequence: 6 givenname: Feng surname: Lin fullname: Lin, Feng organization: Virginia Tech – sequence: 7 givenname: Zhengrui surname: Xu fullname: Xu, Zhengrui organization: Virginia Tech – sequence: 8 givenname: Wen‐Bin surname: Hu fullname: Hu, Wen‐Bin organization: Tianjin University – sequence: 9 givenname: Xi‐Wen surname: Du fullname: Du, Xi‐Wen organization: Tianjin University – sequence: 10 givenname: Kenneth surname: Davey fullname: Davey, Kenneth organization: The University of Adelaide – sequence: 11 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30828895$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1497740$$D View this record in Osti.gov |
BookMark | eNqFkUFvFCEYhompsdvWq0dD9OJlV2CHGThu2tU1aW2im5h4ISx809KysMJMdW_-BE_-QH-JjFtr0sT0xBd4HsjLe4D2QgyA0DNKJpQQ9lrbtZ4wQgVpmoY-QiPKGR1XRPI9NCJyyseyrsQ-Osj5ihAia1I_QftTIpgQko_Qz0_g_a_vP05c3kDKYPF7Z65h2MI6WPzZBVPmpXY-pnI692C6FIMz-GOXetP1CXBsscbLpEN2nYsBn0GnPT7_5izgNia8cBeXfotnpnM3gGf-WnsXAC-2NsULCHh-E33_x_wA2gzDEXrcap_h6e16iJZv5svjxfj0_O2749np2PBqSsfWSNFWVWvFFBhlRq70qpGrthbc1rSpuWUEWi6INkPeBiQxNRfSSi4NrKaH6MXu2pg7p7JxHZhLE0MoIRWtZNNUpECvdtAmxS895E6tXTbl23SA2GfFqGgkrwVhBX15D72KfQolgWKs9MUF46JQz2-pfrUGqzbJrXXaqr-tFGCyA0yKOSdo7xBK1FC7GmpXd7UXobonlCh6-Mguleb-r8md9tV52D7wiJqdnM3-ub8BtQPFKA |
CitedBy_id | crossref_primary_10_1002_ente_201901310 crossref_primary_10_1002_ijch_202100053 crossref_primary_10_1021_acssuschemeng_1c01490 crossref_primary_10_1016_j_cej_2023_142314 crossref_primary_10_1039_D1NA00043H crossref_primary_10_35848_1882_0786_acb893 crossref_primary_10_1038_s41467_021_26256_1 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1002_cssc_202300479 crossref_primary_10_1021_acs_iecr_1c03517 crossref_primary_10_1039_D2NJ05485J crossref_primary_10_1021_acs_jpclett_0c00703 crossref_primary_10_1080_15567036_2022_2069884 crossref_primary_10_1021_acsami_2c21054 crossref_primary_10_1021_acsami_0c22767 crossref_primary_10_1021_acsmaterialslett_0c00549 crossref_primary_10_1039_D3SU00179B crossref_primary_10_1016_j_cej_2023_143996 crossref_primary_10_1007_s10311_023_01616_z crossref_primary_10_1002_aenm_202402424 crossref_primary_10_1002_advs_201902034 crossref_primary_10_1002_aenm_202102141 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1021_jacs_9b12005 crossref_primary_10_1007_s12274_020_2819_4 crossref_primary_10_1007_s12598_021_01772_7 crossref_primary_10_1007_s40843_020_1292_6 crossref_primary_10_1002_smtd_202000988 crossref_primary_10_1007_s40843_021_1926_9 crossref_primary_10_1016_j_gee_2020_10_013 crossref_primary_10_1021_acs_chemmater_4c02686 crossref_primary_10_3389_fchem_2020_00426 crossref_primary_10_1007_s12274_019_2582_6 crossref_primary_10_1021_jacs_9b12113 crossref_primary_10_1002_celc_202000919 crossref_primary_10_3390_en14248535 crossref_primary_10_1002_adma_202401448 crossref_primary_10_1021_acsaem_1c02877 crossref_primary_10_1016_j_ijhydene_2021_07_059 crossref_primary_10_1021_acsaem_1c00212 crossref_primary_10_1016_j_memsci_2021_119782 crossref_primary_10_1039_C9TA12099H crossref_primary_10_1016_j_ccr_2023_215639 crossref_primary_10_1039_D4QI02986K crossref_primary_10_3390_ma14154073 crossref_primary_10_1002_adfm_202202068 crossref_primary_10_1039_D0QI00146E crossref_primary_10_1002_aenm_202300177 crossref_primary_10_1002_eem2_12198 crossref_primary_10_1039_D0NR02161J crossref_primary_10_1039_C9SE01128E crossref_primary_10_1039_D2RA07648A crossref_primary_10_1039_D4NR03572K crossref_primary_10_1002_smll_201901545 crossref_primary_10_1016_j_mattod_2019_05_021 crossref_primary_10_1002_cssc_201902599 crossref_primary_10_1016_j_jcat_2022_04_009 crossref_primary_10_1039_D1NR06125A crossref_primary_10_1021_acsnano_0c08808 crossref_primary_10_1088_2515_7639_abc40c crossref_primary_10_1021_acsaem_9b01563 crossref_primary_10_1039_C9TA09283H crossref_primary_10_1016_j_cej_2023_143045 crossref_primary_10_3390_nano12224072 crossref_primary_10_1002_anie_202005745 crossref_primary_10_1002_adfm_202417880 crossref_primary_10_1039_D3QI00138E crossref_primary_10_1016_j_jcis_2021_06_166 crossref_primary_10_1039_D0NJ00192A crossref_primary_10_1039_D1CS00330E crossref_primary_10_1016_j_cej_2021_130240 crossref_primary_10_1007_s40843_020_1566_6 crossref_primary_10_1002_chem_201903508 crossref_primary_10_3390_catal13050798 crossref_primary_10_1002_anie_202319010 crossref_primary_10_1039_D3QI01349A crossref_primary_10_1002_cey2_555 crossref_primary_10_1039_D4RA02063D crossref_primary_10_1002_inf2_12251 crossref_primary_10_1186_s11671_021_03596_x crossref_primary_10_1002_slct_202404254 crossref_primary_10_1039_D4RA05868B crossref_primary_10_1002_adfm_202100233 crossref_primary_10_1007_s40843_022_2234_5 crossref_primary_10_1016_j_gee_2020_07_009 crossref_primary_10_1016_j_cej_2023_144922 crossref_primary_10_1021_acscatal_2c02081 crossref_primary_10_1021_acscentsci_9b01110 crossref_primary_10_1002_adfm_202310826 crossref_primary_10_1002_adma_202001866 crossref_primary_10_1039_D0TA05038E crossref_primary_10_1088_1361_6528_ab3cba crossref_primary_10_1016_j_mtchem_2022_100914 crossref_primary_10_1002_smll_202303928 crossref_primary_10_1002_ange_202313172 crossref_primary_10_1002_cctc_202401936 crossref_primary_10_1016_S1872_2040_19_61211_9 crossref_primary_10_12677_japc_2024_134068 crossref_primary_10_1007_s11144_021_01956_3 crossref_primary_10_1039_C9NR08812A crossref_primary_10_1016_j_cej_2022_138157 crossref_primary_10_1002_celc_202100044 crossref_primary_10_1002_smll_202108034 crossref_primary_10_1002_anie_202313172 crossref_primary_10_1007_s12598_024_02845_z crossref_primary_10_1021_acsami_2c20863 crossref_primary_10_1021_acssuschemeng_9b04996 crossref_primary_10_1039_C9CY02189B crossref_primary_10_1002_ange_202005745 crossref_primary_10_1016_j_ijoes_2023_100187 crossref_primary_10_1021_acssuschemeng_9b02216 crossref_primary_10_1002_advs_202102859 crossref_primary_10_1016_j_ceramint_2021_03_301 crossref_primary_10_1038_s41467_022_34976_1 crossref_primary_10_1063_5_0018309 crossref_primary_10_1016_j_apsusc_2021_149280 crossref_primary_10_1039_C9NR06976C crossref_primary_10_1021_acscatal_3c03821 crossref_primary_10_1016_j_jelechem_2022_116628 crossref_primary_10_1039_D1TA00908G crossref_primary_10_1002_aenm_202402521 crossref_primary_10_1002_ange_202315003 crossref_primary_10_1002_adma_202204624 crossref_primary_10_1002_admi_202100545 crossref_primary_10_1002_smll_202104241 crossref_primary_10_1007_s42765_022_00146_7 crossref_primary_10_1016_j_electacta_2020_136051 crossref_primary_10_3390_cryst12050666 crossref_primary_10_3390_catal12030261 crossref_primary_10_1039_C9TA03686E crossref_primary_10_1002_aenm_202000067 crossref_primary_10_1016_j_cej_2020_127159 crossref_primary_10_1039_D4YA00272E crossref_primary_10_1002_smll_202100203 crossref_primary_10_1002_anie_202315003 crossref_primary_10_1021_acsaem_0c02168 crossref_primary_10_1039_D1TA00039J crossref_primary_10_1039_D2CC03371B crossref_primary_10_1021_acssuschemeng_9b03166 crossref_primary_10_1039_C9TA08633A crossref_primary_10_20964_2022_12_49 crossref_primary_10_1039_D1NR01726H crossref_primary_10_1021_acsami_4c06365 crossref_primary_10_1039_D1EE01487K crossref_primary_10_1002_aenm_202301222 crossref_primary_10_1016_j_jcis_2022_02_119 crossref_primary_10_1002_smll_202006153 crossref_primary_10_1039_D4NR00377B crossref_primary_10_1039_D2TA04789F crossref_primary_10_1002_aenm_202202394 crossref_primary_10_1021_acscatal_0c01733 crossref_primary_10_1021_acsnano_3c12049 crossref_primary_10_1002_aesr_202100034 crossref_primary_10_1007_s11581_023_05363_7 crossref_primary_10_1039_D2SC06298D crossref_primary_10_1039_D4QI03353A crossref_primary_10_1039_D1TA06548C crossref_primary_10_1002_anie_201914647 crossref_primary_10_1016_j_matdes_2023_112606 crossref_primary_10_1007_s12678_024_00864_z crossref_primary_10_1039_D3TA04848A crossref_primary_10_1002_adfm_202010718 crossref_primary_10_1016_j_microc_2020_105282 crossref_primary_10_1016_j_cogsc_2020_04_003 crossref_primary_10_1039_D1NR00169H crossref_primary_10_1039_D1NR06285A crossref_primary_10_1007_s40820_022_00793_w crossref_primary_10_1039_D0TA02549F crossref_primary_10_1016_j_jallcom_2022_167828 crossref_primary_10_1002_ange_201914647 crossref_primary_10_1039_D1TA06897K crossref_primary_10_1002_ange_202319010 crossref_primary_10_1021_jacs_0c05139 crossref_primary_10_1016_j_mtnano_2021_100150 crossref_primary_10_1021_acsenergylett_9b02316 crossref_primary_10_1021_acsaem_1c02921 crossref_primary_10_1007_s11581_022_04774_2 crossref_primary_10_1016_j_jelechem_2023_117785 crossref_primary_10_1007_s12598_024_02649_1 crossref_primary_10_1002_admi_201901364 crossref_primary_10_1002_ente_201901079 crossref_primary_10_1002_adma_202301133 crossref_primary_10_1021_acscatal_9b01637 crossref_primary_10_1016_j_ccr_2023_215109 crossref_primary_10_1080_17518253_2021_1910735 crossref_primary_10_1016_j_jelechem_2023_117191 crossref_primary_10_1016_j_pmatsci_2023_101069 crossref_primary_10_1016_j_jechem_2021_03_007 crossref_primary_10_1039_D0TA06565J crossref_primary_10_1063_5_0160416 crossref_primary_10_1002_cey2_79 crossref_primary_10_1002_cssc_202102049 crossref_primary_10_1016_j_jelechem_2022_117116 crossref_primary_10_1021_acs_inorgchem_4c04811 crossref_primary_10_1039_D0EE02485F crossref_primary_10_1016_j_cej_2021_132955 crossref_primary_10_1021_acscatal_4c00267 crossref_primary_10_1039_D4CC04767B crossref_primary_10_1016_j_jpowsour_2021_229551 crossref_primary_10_1016_j_coelec_2020_01_018 crossref_primary_10_1039_C9CY01645G crossref_primary_10_1039_C9TA06589J crossref_primary_10_1021_acsami_1c05648 crossref_primary_10_1021_acsanm_0c02222 crossref_primary_10_1021_acs_inorgchem_1c03976 crossref_primary_10_1002_adma_202404787 crossref_primary_10_1002_chem_202003979 crossref_primary_10_1039_D4CS00370E crossref_primary_10_1016_j_rinp_2024_107611 crossref_primary_10_1039_D4DT00615A crossref_primary_10_1021_acsami_2c06990 crossref_primary_10_1002_anie_202013985 crossref_primary_10_1002_adma_201907168 crossref_primary_10_15541_jim20240102 crossref_primary_10_1002_celc_202200775 crossref_primary_10_1016_j_esci_2022_08_002 crossref_primary_10_1039_D4NR00827H crossref_primary_10_1016_j_jechem_2022_06_031 crossref_primary_10_1016_j_jallcom_2024_175847 crossref_primary_10_1002_cssc_202301862 crossref_primary_10_1021_acs_accounts_0c00127 crossref_primary_10_1039_D1TA08457G crossref_primary_10_1039_D1CC05375B crossref_primary_10_1016_j_jechem_2021_11_025 crossref_primary_10_1016_j_seppur_2022_122947 crossref_primary_10_3390_ma17246134 crossref_primary_10_12677_AAC_2023_134052 crossref_primary_10_1002_ange_202013985 crossref_primary_10_1021_acs_jpclett_1c02490 crossref_primary_10_1007_s40843_020_1452_9 crossref_primary_10_1002_adma_202405970 crossref_primary_10_1007_s12274_020_2983_6 crossref_primary_10_1039_D0CS00575D crossref_primary_10_1039_D1CE00286D crossref_primary_10_1002_adma_201907399 crossref_primary_10_1039_C9TA13632K crossref_primary_10_1039_D0TA09749G crossref_primary_10_1007_s11581_021_04037_6 crossref_primary_10_1016_j_jechem_2023_10_044 crossref_primary_10_1021_acssuschemeng_1c05722 crossref_primary_10_1039_D2TA02957J crossref_primary_10_1073_pnas_2209760120 crossref_primary_10_1016_j_apsusc_2020_148742 crossref_primary_10_1016_j_ijhydene_2023_10_311 crossref_primary_10_1016_j_nanoen_2020_104761 |
Cites_doi | 10.1021/cr1002326 10.1038/ncomms2812 10.1021/cs300691m 10.1039/c1cs15228a 10.1021/ja305623m 10.1038/ncomms12876 10.1002/adma.201804653 10.1021/cm504076n 10.1038/ncomms8261 10.1038/nmat4465 10.1021/cr020730k 10.1126/science.1142593 10.1002/adma.201604607 10.1021/acs.nanolett.5b02205 10.1016/j.ijhydene.2013.01.151 10.1038/ncomms5191 10.1038/nnano.2015.48 10.1126/science.aaf1525 10.1021/cm9021563 10.1021/cr100246c 10.1038/nenergy.2016.53 10.1016/j.cattod.2008.08.039 10.1002/anie.201208582 10.1002/anie.201410697 10.1126/sciadv.aau6261 10.1021/ja5082553 10.1038/s41467-017-01872-y 10.1038/ncomms7430 10.1038/ncomms12272 10.1103/PhysRevB.77.245208 10.1002/anie.201407031 10.1038/ncomms3439 10.1038/ncomms5695 10.1039/C6EE01109H 10.1038/nchem.121 10.1039/C6EE01786J 10.1007/s12274-015-0965-x 10.1021/jacs.6b11291 10.1002/adma.201802011 10.1126/science.1212858 10.1021/cm4040903 10.1038/nchem.1069 10.1039/C2CS35241A 10.1038/nmat3087 10.1126/science.1211934 10.1021/acs.nanolett.5b03709 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201807771 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1497740 30828895 10_1002_adma_201807771 ADMA201807771 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Fund for Excellent Young Scholars funderid: 51722103 – fundername: Natural Science Foundation of China funderid: 51571149; 21576202 – fundername: US Department of Energy funderid: DE‐AC02‐76SF00515 – fundername: Australian Research Council funderid: FL170100154; DP170104464; DP160104866 – fundername: Australian Research Council grantid: FL170100154 – fundername: Natural Science Foundation of China grantid: 51571149 – fundername: Australian Research Council grantid: DP170104464 – fundername: National Science Fund for Excellent Young Scholars grantid: 51722103 – fundername: Natural Science Foundation of China grantid: 21576202 – fundername: Australian Research Council grantid: DP160104866 – fundername: US Department of Energy grantid: DE-AC02-76SF00515 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AEUQT AFPWT AFVGU AGJLS OTOTI RWI RWM WRC |
ID | FETCH-LOGICAL-c5431-dc98f44fd83e212c9bab79bf685d61765d20ef580ac28897e90c6589d959ceb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Sep 18 05:40:18 EDT 2023 Thu Jul 10 23:38:49 EDT 2025 Fri Jul 25 07:37:40 EDT 2025 Thu Apr 03 06:54:30 EDT 2025 Tue Jul 01 00:44:50 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Jul 16 12:20:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | dual doping transition metal oxides electronic structure hydrogen evolution reaction |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5431-dc98f44fd83e212c9bab79bf685d61765d20ef580ac28897e90c6589d959ceb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE DE‐AC02‐76SF00515 |
ORCID | 0000-0002-4568-8422 0000000245688422 |
OpenAccessLink | https://www.osti.gov/biblio/1497740 |
PMID | 30828895 |
PQID | 2210058258 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1497740 proquest_miscellaneous_2187956802 proquest_journals_2210058258 pubmed_primary_30828895 crossref_primary_10_1002_adma_201807771 crossref_citationtrail_10_1002_adma_201807771 wiley_primary_10_1002_adma_201807771_ADMA201807771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 19, 2019 |
PublicationDateYYYYMMDD | 2019-04-19 |
PublicationDate_xml | – month: 04 year: 2019 text: April 19, 2019 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2011; 334 2015; 15 2017; 8 2015; 6 2013; 3 2013; 4 2004; 104 2013; 42 2015; 10 2015; 54 2014; 26 2011; 10 2008; 77 2017; 29 2011; 3 2016; 15 2014; 136 2009; 139 2010; 22 2016; 7 2014; 5 2016; 1 2007; 317 2015; 27 2012; 134 2013; 38 2018; 4 2013; 52 2010; 110 2016; 352 2018; 30 2016; 138 2009; 1 2016; 9 2012; 41 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 4 start-page: eaau6261 year: 2018 publication-title: Sci. Adv. – volume: 41 start-page: 2172 year: 2012 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 1802011 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 7261 year: 2015 publication-title: Nat. Commun. – volume: 139 start-page: 244 year: 2009 publication-title: Catal. Today – volume: 5 start-page: 4191 year: 2014 publication-title: Nat. Commun. – volume: 15 start-page: 48 year: 2016 publication-title: Nat. Mater. – volume: 54 start-page: 3917 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 2474 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 317 start-page: 355 year: 2007 publication-title: Science – volume: 27 start-page: 352 year: 2015 publication-title: Chem. Mater. – volume: 138 start-page: 16174 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 7704 year: 2015 publication-title: Nano Lett.. – volume: 15 start-page: 6015 year: 2015 publication-title: Nano Lett.. – volume: 3 start-page: 166 year: 2013 publication-title: ACS Catal.. – volume: 1 start-page: 16053 year: 2016 publication-title: Nat. Energy – volume: 104 start-page: 4245 year: 2004 publication-title: Chem. Rev. – volume: 22 start-page: 70 year: 2010 publication-title: Chem. Mater. – volume: 9 start-page: 2789 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1509 year: 2017 publication-title: Nat. Commun. – volume: 77 start-page: 245208 year: 2008 publication-title: Phys. Rev. B – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 134 start-page: 15849 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1604607 year: 2017 publication-title: Adv. Mater. – volume: 54 start-page: 52 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 4695 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 2257 year: 2016 publication-title: Energy Environ. Sci. – volume: 136 start-page: 13925 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12876 year: 2016 publication-title: Nat. Commun. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 1804653 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 12272 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 6430 year: 2015 publication-title: Nat. Commun. – volume: 42 start-page: 89 year: 2013 publication-title: Chem. Soc. Rev. – volume: 110 start-page: 6474 year: 2010 publication-title: Chem. Rev. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 9 start-page: 28 year: 2016 publication-title: Nano Res.. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 4 start-page: 2439 year: 2013 publication-title: Nat. Commun. – volume: 26 start-page: 1889 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 546 year: 2011 publication-title: Nat. Chem. – volume: 1 start-page: 37 year: 2009 publication-title: Nat. Chem. – ident: e_1_2_5_2_1 doi: 10.1021/cr1002326 – ident: e_1_2_5_6_1 doi: 10.1038/ncomms2812 – ident: e_1_2_5_36_1 doi: 10.1021/cs300691m – ident: e_1_2_5_7_1 doi: 10.1039/c1cs15228a – ident: e_1_2_5_16_1 doi: 10.1021/ja305623m – ident: e_1_2_5_42_1 doi: 10.1038/ncomms12876 – ident: e_1_2_5_45_1 doi: 10.1002/adma.201804653 – ident: e_1_2_5_46_1 doi: 10.1021/cm504076n – ident: e_1_2_5_18_1 doi: 10.1038/ncomms8261 – ident: e_1_2_5_40_1 doi: 10.1038/nmat4465 – ident: e_1_2_5_8_1 doi: 10.1021/cr020730k – ident: e_1_2_5_32_1 doi: 10.1126/science.1142593 – ident: e_1_2_5_43_1 doi: 10.1002/adma.201604607 – ident: e_1_2_5_28_1 doi: 10.1021/acs.nanolett.5b02205 – ident: e_1_2_5_4_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms5191 – ident: e_1_2_5_5_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_5_17_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_5_33_1 doi: 10.1021/cm9021563 – ident: e_1_2_5_1_1 doi: 10.1021/cr100246c – ident: e_1_2_5_12_1 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_5_3_1 doi: 10.1016/j.cattod.2008.08.039 – ident: e_1_2_5_41_1 doi: 10.1002/anie.201208582 – ident: e_1_2_5_39_1 doi: 10.1002/anie.201410697 – ident: e_1_2_5_44_1 doi: 10.1126/sciadv.aau6261 – ident: e_1_2_5_13_1 doi: 10.1021/ja5082553 – ident: e_1_2_5_29_1 doi: 10.1038/s41467-017-01872-y – ident: e_1_2_5_24_1 doi: 10.1038/ncomms7430 – ident: e_1_2_5_23_1 doi: 10.1038/ncomms12272 – ident: e_1_2_5_34_1 doi: 10.1103/PhysRevB.77.245208 – ident: e_1_2_5_21_1 doi: 10.1002/anie.201407031 – ident: e_1_2_5_14_1 doi: 10.1038/ncomms3439 – ident: e_1_2_5_26_1 doi: 10.1038/ncomms5695 – ident: e_1_2_5_38_1 doi: 10.1039/C6EE01109H – ident: e_1_2_5_30_1 doi: 10.1038/nchem.121 – ident: e_1_2_5_37_1 doi: 10.1039/C6EE01786J – ident: e_1_2_5_25_1 doi: 10.1007/s12274-015-0965-x – ident: e_1_2_5_22_1 doi: 10.1021/jacs.6b11291 – ident: e_1_2_5_35_1 doi: 10.1002/adma.201802011 – ident: e_1_2_5_10_1 doi: 10.1126/science.1212858 – ident: e_1_2_5_19_1 doi: 10.1021/cm4040903 – ident: e_1_2_5_11_1 doi: 10.1038/nchem.1069 – ident: e_1_2_5_31_1 doi: 10.1039/C2CS35241A – ident: e_1_2_5_9_1 doi: 10.1038/nmat3087 – ident: e_1_2_5_20_1 doi: 10.1126/science.1211934 – ident: e_1_2_5_27_1 doi: 10.1021/acs.nanolett.5b03709 |
SSID | ssj0009606 |
Score | 2.6715226 |
Snippet | The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a... The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a... Abstract The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is,... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1807771 |
SubjectTerms | Catalysis Catalysts Density functional theory Dopants Doping dual doping Electrical conduction Electronic structure Energy technology hydrogen evolution reaction Hydrogen evolution reactions Materials science Metal oxides Nanorods Nickel Phosphides Surface structure Transition metal oxides Transition metals Zinc |
Title | Well‐Dispersed Nickel‐ and Zinc‐Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807771 https://www.ncbi.nlm.nih.gov/pubmed/30828895 https://www.proquest.com/docview/2210058258 https://www.proquest.com/docview/2187956802 https://www.osti.gov/biblio/1497740 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXQrMoCyju0ICMhsUrrycSJvYzoVCOkglQGUbGJ_JRGEyVoHlXbFZ_Aig_sl3Cvk0k7CIQEOye2Jds51z43vj4m5LUbMq9T52Pu0ywGULBYwrvYGu-l9p7pVu3zfTb5lL4742e3TvG3-hD9Dze0jDBfo4ErvTy8EQ1VNugGDQXL83CIHAO2kBWd3uhHIT0PYnsjHsssFRvVRpYcblffWpUGDVjX7xjnNoENK9DxfaI2bW8DT-YH65U-MFe_yDr-T-d2yb2OntKixdMDcsfVD8ndW6KFj8iPz66qrr99P5qhyPjSWQpomjt8RVVt6ZdZbSA9VbOqWUDuuL9oh34MYrXrhaONp4qGdTKEjNETB04A_XAxs44CjaYYflJd0iLMxrSo5gr7RCeXdtEA5On4vDMZeuraoxmPyfR4PH07ibvbHWKD5-8BDVL4NPVWjBysn0ZqpXOARya4BVqVcZsw57lgyiRCyNxJZoAuSSu5NE6PnpBB3dTuGaFDmYLTpYBrWZ2aFHcuR4ozq4zmmdR5ROLNxy1Np3yOF3BUZavZnJQ43GU_3BF505f_2mp-_LHkHmKlBLaCkrsGY5PMCtwpZNUsIvsbCJXdzLAsE_CxGQe_XETkVZ8NNo0bNap2zRrKhCvgM8GSiDxtodc3BOWFYDh4RJIAoL-0sCyOTor-6fm_VNojO5AOW2hDuU8GABX3ApjYSr8M1vYTZQgtxw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVQWQAL3o8wAxgJiVVm3DRO7WXEdFRgOkhDEYhN5KdUNUpQp0UMKz6BFR_Il3Cv8xiKQEiwSxxHcpxz7XPt63MJeeKGzOvU-Zj7NIsBFCyWUBZb473U3jPdqH0eZ9M36Yt3vIsmxLMwjT5Ev-CGlhHGazRwXJDeP1cNVTYIBw0FG4_xFPlFTOsdvKqTcwUpJOhBbm_EY5mlotNtZMn-9vtb89KgBvv6HefcprBhDjq8RnTX-ib0ZLm3Wes98_kXYcf_-rzr5GrLUGneQOoGueCqm-TKT7qFt8i3t64sv3_5erBAnfFTZykAaumwiKrK0veLysD1XC3KegVPJ32uHfo66NVuVo7WnioapsoQNUZnDvwA-urTwjoKTJpiBEp5RvMwINO8XCr8KDo9s6saUE8nH1uroSeuOZ1xm8wPJ_Nn07hN8BAbPIIPgJDCp6m3YuRgCjVSKz0GhGSCW2BWGbcJc54LpkwihBw7yQwwJmkll8bp0R0yqOrK3SN0KFPwuxTQLatTk-Lm5UhxZpXRPJN6HJG4-7uFacXPMQdHWTSyzUmB3V303R2Rp339D43sxx9r7iBYCiAsqLprMDzJrMGjQmLNIrLbYahoB4fTIgE3m3FwzUVEHvePwaxxr0ZVrt5AnZAFPhMsicjdBnt9Q1BhCLqDRyQJCPpLC4v8YJb3d_f_5aVH5NJ0Pjsqjp4fv9whl6E87KgN5S4ZAGzcAyBma_0wmN4PI6wx4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQJyF44M4IG2AkJJ6yuamd2I8RbVUuG2gUMfES-SpVjZKpayfGEz-BJ34gv4RjJ81WBEKCt8QXyXa-Y38n9vmM0DPbJ05R62LmaBoDKEgsIC022jmhnCOqUfs8TCcf6Ktjdnwpir_Rh-h-uHnLCPO1N_AT4_YvREOlCbpBfU6yzAeRb9GUcI_r4dGFgJTn50Ftb8BikVK-lm0kyf5m_Y1lqVeDef2Ocm4y2LAEjW8iuW58c_Jkvrdaqj395Rddx__p3S10o-WnOG8AdRtdsdUddP2SauFd9P2jLcsfX78NZ15l_NQaDHCaW5-EZWXwp1ml4XkqZ2W9gNxRd9MOfh_UalcLi2uHJQ4LZTgzhg8seAH47eeZsRh4NPbnT8pznIfpGOflXPo-4cm5WdSAeTw6a20GH9kmNuMemo5H0xeTuL3eIdY-AB_gILij1Bk-sLCAaqGkygAfKWcGeFXKTEKsY5xInXAuMiuIBr4kjGBCWzW4j3pVXdkHCPcFBa9LAtkyimrqty4HkhEjtWKpUFmE4vXHLXQrfe5v4CiLRrQ5KfxwF91wR-h5V_6kEf34Y8kdj5UC6IrX3NX-cJJegj_laTWJ0O4aQkU7NZwWCTjZhIFjziP0tMsGo_Y7NbKy9QrKhDvgU06SCG030Osa4vWFYDhYhJIAoL-0sMiHB3n39vBfKj1BV98Nx8Wbl4evd9A1SA7baX2xi3qAGvsIWNlSPQ6G9xOHpTCa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Dispersed+Nickel%E2%80%90+and+Zinc%E2%80%90Tailored+Electronic+Structure+of+a+Transition+Metal+Oxide+for+Highly+Active+Alkaline+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ling%2C+Tao&rft.au=Zhang%2C+Tong&rft.au=Ge%2C+Binghui&rft.au=Han%2C+Lili&rft.date=2019-04-19&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201807771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201807771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |