Well‐Dispersed Nickel‐ and Zinc‐Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction

The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 16; pp. e1807771 - n/a
Main Authors Ling, Tao, Zhang, Tong, Ge, Binghui, Han, Lili, Zheng, Lirong, Lin, Feng, Xu, Zhengrui, Hu, Wen‐Bin, Du, Xi‐Wen, Davey, Kenneth, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.04.2019
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. A controlled tailoring of electronic structure of an oxide for the hydrogen evolution reaction (HER) is reported. Dual Ni and Zn doping is shown to be responsible for a significant increase in the HER activity of the host oxide, which was previously considered as catalytically inactive. The engineered oxide nanorods exhibit significantly high HER activity and are amongst the most active reported.
AbstractList The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts. A controlled tailoring of electronic structure of an oxide for the hydrogen evolution reaction (HER) is reported. Dual Ni and Zn doping is shown to be responsible for a significant increase in the HER activity of the host oxide, which was previously considered as catalytically inactive. The engineered oxide nanorods exhibit significantly high HER activity and are amongst the most active reported.
The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm −2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm−2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm-2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm-2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
Abstract The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm −2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting-edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual-doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state-of-the-art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.
Author Ling, Tao
Zheng, Lirong
Hu, Wen‐Bin
Davey, Kenneth
Han, Lili
Zhang, Tong
Xu, Zhengrui
Qiao, Shi‐Zhang
Ge, Binghui
Du, Xi‐Wen
Lin, Feng
Author_xml – sequence: 1
  givenname: Tao
  surname: Ling
  fullname: Ling, Tao
  email: lingt04@tju.edu.cn
  organization: The University of Adelaide
– sequence: 2
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: Tianjin University
– sequence: 3
  givenname: Binghui
  surname: Ge
  fullname: Ge, Binghui
  organization: Anhui University
– sequence: 4
  givenname: Lili
  surname: Han
  fullname: Han, Lili
  organization: Tianjin University
– sequence: 5
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Feng
  surname: Lin
  fullname: Lin, Feng
  organization: Virginia Tech
– sequence: 7
  givenname: Zhengrui
  surname: Xu
  fullname: Xu, Zhengrui
  organization: Virginia Tech
– sequence: 8
  givenname: Wen‐Bin
  surname: Hu
  fullname: Hu, Wen‐Bin
  organization: Tianjin University
– sequence: 9
  givenname: Xi‐Wen
  surname: Du
  fullname: Du, Xi‐Wen
  organization: Tianjin University
– sequence: 10
  givenname: Kenneth
  surname: Davey
  fullname: Davey, Kenneth
  organization: The University of Adelaide
– sequence: 11
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30828895$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1497740$$D View this record in Osti.gov
BookMark eNqFkUFvFCEYhompsdvWq0dD9OJlV2CHGThu2tU1aW2im5h4ISx809KysMJMdW_-BE_-QH-JjFtr0sT0xBd4HsjLe4D2QgyA0DNKJpQQ9lrbtZ4wQgVpmoY-QiPKGR1XRPI9NCJyyseyrsQ-Osj5ihAia1I_QftTIpgQko_Qz0_g_a_vP05c3kDKYPF7Z65h2MI6WPzZBVPmpXY-pnI692C6FIMz-GOXetP1CXBsscbLpEN2nYsBn0GnPT7_5izgNia8cBeXfotnpnM3gGf-WnsXAC-2NsULCHh-E33_x_wA2gzDEXrcap_h6e16iJZv5svjxfj0_O2749np2PBqSsfWSNFWVWvFFBhlRq70qpGrthbc1rSpuWUEWi6INkPeBiQxNRfSSi4NrKaH6MXu2pg7p7JxHZhLE0MoIRWtZNNUpECvdtAmxS895E6tXTbl23SA2GfFqGgkrwVhBX15D72KfQolgWKs9MUF46JQz2-pfrUGqzbJrXXaqr-tFGCyA0yKOSdo7xBK1FC7GmpXd7UXobonlCh6-Mguleb-r8md9tV52D7wiJqdnM3-ub8BtQPFKA
CitedBy_id crossref_primary_10_1002_ente_201901310
crossref_primary_10_1002_ijch_202100053
crossref_primary_10_1021_acssuschemeng_1c01490
crossref_primary_10_1016_j_cej_2023_142314
crossref_primary_10_1039_D1NA00043H
crossref_primary_10_35848_1882_0786_acb893
crossref_primary_10_1038_s41467_021_26256_1
crossref_primary_10_1016_j_ccr_2022_214970
crossref_primary_10_1002_cssc_202300479
crossref_primary_10_1021_acs_iecr_1c03517
crossref_primary_10_1039_D2NJ05485J
crossref_primary_10_1021_acs_jpclett_0c00703
crossref_primary_10_1080_15567036_2022_2069884
crossref_primary_10_1021_acsami_2c21054
crossref_primary_10_1021_acsami_0c22767
crossref_primary_10_1021_acsmaterialslett_0c00549
crossref_primary_10_1039_D3SU00179B
crossref_primary_10_1016_j_cej_2023_143996
crossref_primary_10_1007_s10311_023_01616_z
crossref_primary_10_1002_aenm_202402424
crossref_primary_10_1002_advs_201902034
crossref_primary_10_1002_aenm_202102141
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1021_jacs_9b12005
crossref_primary_10_1007_s12274_020_2819_4
crossref_primary_10_1007_s12598_021_01772_7
crossref_primary_10_1007_s40843_020_1292_6
crossref_primary_10_1002_smtd_202000988
crossref_primary_10_1007_s40843_021_1926_9
crossref_primary_10_1016_j_gee_2020_10_013
crossref_primary_10_1021_acs_chemmater_4c02686
crossref_primary_10_3389_fchem_2020_00426
crossref_primary_10_1007_s12274_019_2582_6
crossref_primary_10_1021_jacs_9b12113
crossref_primary_10_1002_celc_202000919
crossref_primary_10_3390_en14248535
crossref_primary_10_1002_adma_202401448
crossref_primary_10_1021_acsaem_1c02877
crossref_primary_10_1016_j_ijhydene_2021_07_059
crossref_primary_10_1021_acsaem_1c00212
crossref_primary_10_1016_j_memsci_2021_119782
crossref_primary_10_1039_C9TA12099H
crossref_primary_10_1016_j_ccr_2023_215639
crossref_primary_10_1039_D4QI02986K
crossref_primary_10_3390_ma14154073
crossref_primary_10_1002_adfm_202202068
crossref_primary_10_1039_D0QI00146E
crossref_primary_10_1002_aenm_202300177
crossref_primary_10_1002_eem2_12198
crossref_primary_10_1039_D0NR02161J
crossref_primary_10_1039_C9SE01128E
crossref_primary_10_1039_D2RA07648A
crossref_primary_10_1039_D4NR03572K
crossref_primary_10_1002_smll_201901545
crossref_primary_10_1016_j_mattod_2019_05_021
crossref_primary_10_1002_cssc_201902599
crossref_primary_10_1016_j_jcat_2022_04_009
crossref_primary_10_1039_D1NR06125A
crossref_primary_10_1021_acsnano_0c08808
crossref_primary_10_1088_2515_7639_abc40c
crossref_primary_10_1021_acsaem_9b01563
crossref_primary_10_1039_C9TA09283H
crossref_primary_10_1016_j_cej_2023_143045
crossref_primary_10_3390_nano12224072
crossref_primary_10_1002_anie_202005745
crossref_primary_10_1002_adfm_202417880
crossref_primary_10_1039_D3QI00138E
crossref_primary_10_1016_j_jcis_2021_06_166
crossref_primary_10_1039_D0NJ00192A
crossref_primary_10_1039_D1CS00330E
crossref_primary_10_1016_j_cej_2021_130240
crossref_primary_10_1007_s40843_020_1566_6
crossref_primary_10_1002_chem_201903508
crossref_primary_10_3390_catal13050798
crossref_primary_10_1002_anie_202319010
crossref_primary_10_1039_D3QI01349A
crossref_primary_10_1002_cey2_555
crossref_primary_10_1039_D4RA02063D
crossref_primary_10_1002_inf2_12251
crossref_primary_10_1186_s11671_021_03596_x
crossref_primary_10_1002_slct_202404254
crossref_primary_10_1039_D4RA05868B
crossref_primary_10_1002_adfm_202100233
crossref_primary_10_1007_s40843_022_2234_5
crossref_primary_10_1016_j_gee_2020_07_009
crossref_primary_10_1016_j_cej_2023_144922
crossref_primary_10_1021_acscatal_2c02081
crossref_primary_10_1021_acscentsci_9b01110
crossref_primary_10_1002_adfm_202310826
crossref_primary_10_1002_adma_202001866
crossref_primary_10_1039_D0TA05038E
crossref_primary_10_1088_1361_6528_ab3cba
crossref_primary_10_1016_j_mtchem_2022_100914
crossref_primary_10_1002_smll_202303928
crossref_primary_10_1002_ange_202313172
crossref_primary_10_1002_cctc_202401936
crossref_primary_10_1016_S1872_2040_19_61211_9
crossref_primary_10_12677_japc_2024_134068
crossref_primary_10_1007_s11144_021_01956_3
crossref_primary_10_1039_C9NR08812A
crossref_primary_10_1016_j_cej_2022_138157
crossref_primary_10_1002_celc_202100044
crossref_primary_10_1002_smll_202108034
crossref_primary_10_1002_anie_202313172
crossref_primary_10_1007_s12598_024_02845_z
crossref_primary_10_1021_acsami_2c20863
crossref_primary_10_1021_acssuschemeng_9b04996
crossref_primary_10_1039_C9CY02189B
crossref_primary_10_1002_ange_202005745
crossref_primary_10_1016_j_ijoes_2023_100187
crossref_primary_10_1021_acssuschemeng_9b02216
crossref_primary_10_1002_advs_202102859
crossref_primary_10_1016_j_ceramint_2021_03_301
crossref_primary_10_1038_s41467_022_34976_1
crossref_primary_10_1063_5_0018309
crossref_primary_10_1016_j_apsusc_2021_149280
crossref_primary_10_1039_C9NR06976C
crossref_primary_10_1021_acscatal_3c03821
crossref_primary_10_1016_j_jelechem_2022_116628
crossref_primary_10_1039_D1TA00908G
crossref_primary_10_1002_aenm_202402521
crossref_primary_10_1002_ange_202315003
crossref_primary_10_1002_adma_202204624
crossref_primary_10_1002_admi_202100545
crossref_primary_10_1002_smll_202104241
crossref_primary_10_1007_s42765_022_00146_7
crossref_primary_10_1016_j_electacta_2020_136051
crossref_primary_10_3390_cryst12050666
crossref_primary_10_3390_catal12030261
crossref_primary_10_1039_C9TA03686E
crossref_primary_10_1002_aenm_202000067
crossref_primary_10_1016_j_cej_2020_127159
crossref_primary_10_1039_D4YA00272E
crossref_primary_10_1002_smll_202100203
crossref_primary_10_1002_anie_202315003
crossref_primary_10_1021_acsaem_0c02168
crossref_primary_10_1039_D1TA00039J
crossref_primary_10_1039_D2CC03371B
crossref_primary_10_1021_acssuschemeng_9b03166
crossref_primary_10_1039_C9TA08633A
crossref_primary_10_20964_2022_12_49
crossref_primary_10_1039_D1NR01726H
crossref_primary_10_1021_acsami_4c06365
crossref_primary_10_1039_D1EE01487K
crossref_primary_10_1002_aenm_202301222
crossref_primary_10_1016_j_jcis_2022_02_119
crossref_primary_10_1002_smll_202006153
crossref_primary_10_1039_D4NR00377B
crossref_primary_10_1039_D2TA04789F
crossref_primary_10_1002_aenm_202202394
crossref_primary_10_1021_acscatal_0c01733
crossref_primary_10_1021_acsnano_3c12049
crossref_primary_10_1002_aesr_202100034
crossref_primary_10_1007_s11581_023_05363_7
crossref_primary_10_1039_D2SC06298D
crossref_primary_10_1039_D4QI03353A
crossref_primary_10_1039_D1TA06548C
crossref_primary_10_1002_anie_201914647
crossref_primary_10_1016_j_matdes_2023_112606
crossref_primary_10_1007_s12678_024_00864_z
crossref_primary_10_1039_D3TA04848A
crossref_primary_10_1002_adfm_202010718
crossref_primary_10_1016_j_microc_2020_105282
crossref_primary_10_1016_j_cogsc_2020_04_003
crossref_primary_10_1039_D1NR00169H
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1007_s40820_022_00793_w
crossref_primary_10_1039_D0TA02549F
crossref_primary_10_1016_j_jallcom_2022_167828
crossref_primary_10_1002_ange_201914647
crossref_primary_10_1039_D1TA06897K
crossref_primary_10_1002_ange_202319010
crossref_primary_10_1021_jacs_0c05139
crossref_primary_10_1016_j_mtnano_2021_100150
crossref_primary_10_1021_acsenergylett_9b02316
crossref_primary_10_1021_acsaem_1c02921
crossref_primary_10_1007_s11581_022_04774_2
crossref_primary_10_1016_j_jelechem_2023_117785
crossref_primary_10_1007_s12598_024_02649_1
crossref_primary_10_1002_admi_201901364
crossref_primary_10_1002_ente_201901079
crossref_primary_10_1002_adma_202301133
crossref_primary_10_1021_acscatal_9b01637
crossref_primary_10_1016_j_ccr_2023_215109
crossref_primary_10_1080_17518253_2021_1910735
crossref_primary_10_1016_j_jelechem_2023_117191
crossref_primary_10_1016_j_pmatsci_2023_101069
crossref_primary_10_1016_j_jechem_2021_03_007
crossref_primary_10_1039_D0TA06565J
crossref_primary_10_1063_5_0160416
crossref_primary_10_1002_cey2_79
crossref_primary_10_1002_cssc_202102049
crossref_primary_10_1016_j_jelechem_2022_117116
crossref_primary_10_1021_acs_inorgchem_4c04811
crossref_primary_10_1039_D0EE02485F
crossref_primary_10_1016_j_cej_2021_132955
crossref_primary_10_1021_acscatal_4c00267
crossref_primary_10_1039_D4CC04767B
crossref_primary_10_1016_j_jpowsour_2021_229551
crossref_primary_10_1016_j_coelec_2020_01_018
crossref_primary_10_1039_C9CY01645G
crossref_primary_10_1039_C9TA06589J
crossref_primary_10_1021_acsami_1c05648
crossref_primary_10_1021_acsanm_0c02222
crossref_primary_10_1021_acs_inorgchem_1c03976
crossref_primary_10_1002_adma_202404787
crossref_primary_10_1002_chem_202003979
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1016_j_rinp_2024_107611
crossref_primary_10_1039_D4DT00615A
crossref_primary_10_1021_acsami_2c06990
crossref_primary_10_1002_anie_202013985
crossref_primary_10_1002_adma_201907168
crossref_primary_10_15541_jim20240102
crossref_primary_10_1002_celc_202200775
crossref_primary_10_1016_j_esci_2022_08_002
crossref_primary_10_1039_D4NR00827H
crossref_primary_10_1016_j_jechem_2022_06_031
crossref_primary_10_1016_j_jallcom_2024_175847
crossref_primary_10_1002_cssc_202301862
crossref_primary_10_1021_acs_accounts_0c00127
crossref_primary_10_1039_D1TA08457G
crossref_primary_10_1039_D1CC05375B
crossref_primary_10_1016_j_jechem_2021_11_025
crossref_primary_10_1016_j_seppur_2022_122947
crossref_primary_10_3390_ma17246134
crossref_primary_10_12677_AAC_2023_134052
crossref_primary_10_1002_ange_202013985
crossref_primary_10_1021_acs_jpclett_1c02490
crossref_primary_10_1007_s40843_020_1452_9
crossref_primary_10_1002_adma_202405970
crossref_primary_10_1007_s12274_020_2983_6
crossref_primary_10_1039_D0CS00575D
crossref_primary_10_1039_D1CE00286D
crossref_primary_10_1002_adma_201907399
crossref_primary_10_1039_C9TA13632K
crossref_primary_10_1039_D0TA09749G
crossref_primary_10_1007_s11581_021_04037_6
crossref_primary_10_1016_j_jechem_2023_10_044
crossref_primary_10_1021_acssuschemeng_1c05722
crossref_primary_10_1039_D2TA02957J
crossref_primary_10_1073_pnas_2209760120
crossref_primary_10_1016_j_apsusc_2020_148742
crossref_primary_10_1016_j_ijhydene_2023_10_311
crossref_primary_10_1016_j_nanoen_2020_104761
Cites_doi 10.1021/cr1002326
10.1038/ncomms2812
10.1021/cs300691m
10.1039/c1cs15228a
10.1021/ja305623m
10.1038/ncomms12876
10.1002/adma.201804653
10.1021/cm504076n
10.1038/ncomms8261
10.1038/nmat4465
10.1021/cr020730k
10.1126/science.1142593
10.1002/adma.201604607
10.1021/acs.nanolett.5b02205
10.1016/j.ijhydene.2013.01.151
10.1038/ncomms5191
10.1038/nnano.2015.48
10.1126/science.aaf1525
10.1021/cm9021563
10.1021/cr100246c
10.1038/nenergy.2016.53
10.1016/j.cattod.2008.08.039
10.1002/anie.201208582
10.1002/anie.201410697
10.1126/sciadv.aau6261
10.1021/ja5082553
10.1038/s41467-017-01872-y
10.1038/ncomms7430
10.1038/ncomms12272
10.1103/PhysRevB.77.245208
10.1002/anie.201407031
10.1038/ncomms3439
10.1038/ncomms5695
10.1039/C6EE01109H
10.1038/nchem.121
10.1039/C6EE01786J
10.1007/s12274-015-0965-x
10.1021/jacs.6b11291
10.1002/adma.201802011
10.1126/science.1212858
10.1021/cm4040903
10.1038/nchem.1069
10.1039/C2CS35241A
10.1038/nmat3087
10.1126/science.1211934
10.1021/acs.nanolett.5b03709
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201807771
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1497740
30828895
10_1002_adma_201807771
ADMA201807771
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Fund for Excellent Young Scholars
  funderid: 51722103
– fundername: Natural Science Foundation of China
  funderid: 51571149; 21576202
– fundername: US Department of Energy
  funderid: DE‐AC02‐76SF00515
– fundername: Australian Research Council
  funderid: FL170100154; DP170104464; DP160104866
– fundername: Australian Research Council
  grantid: FL170100154
– fundername: Natural Science Foundation of China
  grantid: 51571149
– fundername: Australian Research Council
  grantid: DP170104464
– fundername: National Science Fund for Excellent Young Scholars
  grantid: 51722103
– fundername: Natural Science Foundation of China
  grantid: 21576202
– fundername: Australian Research Council
  grantid: DP160104866
– fundername: US Department of Energy
  grantid: DE-AC02-76SF00515
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AEUQT
AFPWT
AFVGU
AGJLS
OTOTI
RWI
RWM
WRC
ID FETCH-LOGICAL-c5431-dc98f44fd83e212c9bab79bf685d61765d20ef580ac28897e90c6589d959ceb3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Sep 18 05:40:18 EDT 2023
Thu Jul 10 23:38:49 EDT 2025
Fri Jul 25 07:37:40 EDT 2025
Thu Apr 03 06:54:30 EDT 2025
Tue Jul 01 00:44:50 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Jul 16 12:20:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords dual doping
transition metal oxides
electronic structure
hydrogen evolution reaction
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5431-dc98f44fd83e212c9bab79bf685d61765d20ef580ac28897e90c6589d959ceb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
DE‐AC02‐76SF00515
ORCID 0000-0002-4568-8422
0000000245688422
OpenAccessLink https://www.osti.gov/biblio/1497740
PMID 30828895
PQID 2210058258
PQPubID 2045203
PageCount 7
ParticipantIDs osti_scitechconnect_1497740
proquest_miscellaneous_2187956802
proquest_journals_2210058258
pubmed_primary_30828895
crossref_primary_10_1002_adma_201807771
crossref_citationtrail_10_1002_adma_201807771
wiley_primary_10_1002_adma_201807771_ADMA201807771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 19, 2019
PublicationDateYYYYMMDD 2019-04-19
PublicationDate_xml – month: 04
  year: 2019
  text: April 19, 2019
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2011; 334
2015; 15
2017; 8
2015; 6
2013; 3
2013; 4
2004; 104
2013; 42
2015; 10
2015; 54
2014; 26
2011; 10
2008; 77
2017; 29
2011; 3
2016; 15
2014; 136
2009; 139
2010; 22
2016; 7
2014; 5
2016; 1
2007; 317
2015; 27
2012; 134
2013; 38
2018; 4
2013; 52
2010; 110
2016; 352
2018; 30
2016; 138
2009; 1
2016; 9
2012; 41
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 4
  start-page: eaau6261
  year: 2018
  publication-title: Sci. Adv.
– volume: 41
  start-page: 2172
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 1802011
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7261
  year: 2015
  publication-title: Nat. Commun.
– volume: 139
  start-page: 244
  year: 2009
  publication-title: Catal. Today
– volume: 5
  start-page: 4191
  year: 2014
  publication-title: Nat. Commun.
– volume: 15
  start-page: 48
  year: 2016
  publication-title: Nat. Mater.
– volume: 54
  start-page: 3917
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 2474
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 317
  start-page: 355
  year: 2007
  publication-title: Science
– volume: 27
  start-page: 352
  year: 2015
  publication-title: Chem. Mater.
– volume: 138
  start-page: 16174
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 7704
  year: 2015
  publication-title: Nano Lett..
– volume: 15
  start-page: 6015
  year: 2015
  publication-title: Nano Lett..
– volume: 3
  start-page: 166
  year: 2013
  publication-title: ACS Catal..
– volume: 1
  start-page: 16053
  year: 2016
  publication-title: Nat. Energy
– volume: 104
  start-page: 4245
  year: 2004
  publication-title: Chem. Rev.
– volume: 22
  start-page: 70
  year: 2010
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2789
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1509
  year: 2017
  publication-title: Nat. Commun.
– volume: 77
  start-page: 245208
  year: 2008
  publication-title: Phys. Rev. B
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 134
  start-page: 15849
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1604607
  year: 2017
  publication-title: Adv. Mater.
– volume: 54
  start-page: 52
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 4695
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2257
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 13925
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12876
  year: 2016
  publication-title: Nat. Commun.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 1804653
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 12272
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6430
  year: 2015
  publication-title: Nat. Commun.
– volume: 42
  start-page: 89
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 110
  start-page: 6474
  year: 2010
  publication-title: Chem. Rev.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 9
  start-page: 28
  year: 2016
  publication-title: Nano Res..
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 4
  start-page: 2439
  year: 2013
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1889
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 546
  year: 2011
  publication-title: Nat. Chem.
– volume: 1
  start-page: 37
  year: 2009
  publication-title: Nat. Chem.
– ident: e_1_2_5_2_1
  doi: 10.1021/cr1002326
– ident: e_1_2_5_6_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_5_36_1
  doi: 10.1021/cs300691m
– ident: e_1_2_5_7_1
  doi: 10.1039/c1cs15228a
– ident: e_1_2_5_16_1
  doi: 10.1021/ja305623m
– ident: e_1_2_5_42_1
  doi: 10.1038/ncomms12876
– ident: e_1_2_5_45_1
  doi: 10.1002/adma.201804653
– ident: e_1_2_5_46_1
  doi: 10.1021/cm504076n
– ident: e_1_2_5_18_1
  doi: 10.1038/ncomms8261
– ident: e_1_2_5_40_1
  doi: 10.1038/nmat4465
– ident: e_1_2_5_8_1
  doi: 10.1021/cr020730k
– ident: e_1_2_5_32_1
  doi: 10.1126/science.1142593
– ident: e_1_2_5_43_1
  doi: 10.1002/adma.201604607
– ident: e_1_2_5_28_1
  doi: 10.1021/acs.nanolett.5b02205
– ident: e_1_2_5_4_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms5191
– ident: e_1_2_5_5_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_5_17_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_5_33_1
  doi: 10.1021/cm9021563
– ident: e_1_2_5_1_1
  doi: 10.1021/cr100246c
– ident: e_1_2_5_12_1
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_5_3_1
  doi: 10.1016/j.cattod.2008.08.039
– ident: e_1_2_5_41_1
  doi: 10.1002/anie.201208582
– ident: e_1_2_5_39_1
  doi: 10.1002/anie.201410697
– ident: e_1_2_5_44_1
  doi: 10.1126/sciadv.aau6261
– ident: e_1_2_5_13_1
  doi: 10.1021/ja5082553
– ident: e_1_2_5_29_1
  doi: 10.1038/s41467-017-01872-y
– ident: e_1_2_5_24_1
  doi: 10.1038/ncomms7430
– ident: e_1_2_5_23_1
  doi: 10.1038/ncomms12272
– ident: e_1_2_5_34_1
  doi: 10.1103/PhysRevB.77.245208
– ident: e_1_2_5_21_1
  doi: 10.1002/anie.201407031
– ident: e_1_2_5_14_1
  doi: 10.1038/ncomms3439
– ident: e_1_2_5_26_1
  doi: 10.1038/ncomms5695
– ident: e_1_2_5_38_1
  doi: 10.1039/C6EE01109H
– ident: e_1_2_5_30_1
  doi: 10.1038/nchem.121
– ident: e_1_2_5_37_1
  doi: 10.1039/C6EE01786J
– ident: e_1_2_5_25_1
  doi: 10.1007/s12274-015-0965-x
– ident: e_1_2_5_22_1
  doi: 10.1021/jacs.6b11291
– ident: e_1_2_5_35_1
  doi: 10.1002/adma.201802011
– ident: e_1_2_5_10_1
  doi: 10.1126/science.1212858
– ident: e_1_2_5_19_1
  doi: 10.1021/cm4040903
– ident: e_1_2_5_11_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_5_31_1
  doi: 10.1039/C2CS35241A
– ident: e_1_2_5_9_1
  doi: 10.1038/nmat3087
– ident: e_1_2_5_20_1
  doi: 10.1126/science.1211934
– ident: e_1_2_5_27_1
  doi: 10.1021/acs.nanolett.5b03709
SSID ssj0009606
Score 2.6715226
Snippet The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a...
The practical scale-up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a...
Abstract The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is,...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1807771
SubjectTerms Catalysis
Catalysts
Density functional theory
Dopants
Doping
dual doping
Electrical conduction
Electronic structure
Energy technology
hydrogen evolution reaction
Hydrogen evolution reactions
Materials science
Metal oxides
Nanorods
Nickel
Phosphides
Surface structure
Transition metal oxides
Transition metals
Zinc
Title Well‐Dispersed Nickel‐ and Zinc‐Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807771
https://www.ncbi.nlm.nih.gov/pubmed/30828895
https://www.proquest.com/docview/2210058258
https://www.proquest.com/docview/2187956802
https://www.osti.gov/biblio/1497740
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXQrMoCyju0ICMhsUrrycSJvYzoVCOkglQGUbGJ_JRGEyVoHlXbFZ_Aig_sl3Cvk0k7CIQEOye2Jds51z43vj4m5LUbMq9T52Pu0ywGULBYwrvYGu-l9p7pVu3zfTb5lL4742e3TvG3-hD9Dze0jDBfo4ErvTy8EQ1VNugGDQXL83CIHAO2kBWd3uhHIT0PYnsjHsssFRvVRpYcblffWpUGDVjX7xjnNoENK9DxfaI2bW8DT-YH65U-MFe_yDr-T-d2yb2OntKixdMDcsfVD8ndW6KFj8iPz66qrr99P5qhyPjSWQpomjt8RVVt6ZdZbSA9VbOqWUDuuL9oh34MYrXrhaONp4qGdTKEjNETB04A_XAxs44CjaYYflJd0iLMxrSo5gr7RCeXdtEA5On4vDMZeuraoxmPyfR4PH07ibvbHWKD5-8BDVL4NPVWjBysn0ZqpXOARya4BVqVcZsw57lgyiRCyNxJZoAuSSu5NE6PnpBB3dTuGaFDmYLTpYBrWZ2aFHcuR4ozq4zmmdR5ROLNxy1Np3yOF3BUZavZnJQ43GU_3BF505f_2mp-_LHkHmKlBLaCkrsGY5PMCtwpZNUsIvsbCJXdzLAsE_CxGQe_XETkVZ8NNo0bNap2zRrKhCvgM8GSiDxtodc3BOWFYDh4RJIAoL-0sCyOTor-6fm_VNojO5AOW2hDuU8GABX3ApjYSr8M1vYTZQgtxw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVQWQAL3o8wAxgJiVVm3DRO7WXEdFRgOkhDEYhN5KdUNUpQp0UMKz6BFR_Il3Cv8xiKQEiwSxxHcpxz7XPt63MJeeKGzOvU-Zj7NIsBFCyWUBZb473U3jPdqH0eZ9M36Yt3vIsmxLMwjT5Ev-CGlhHGazRwXJDeP1cNVTYIBw0FG4_xFPlFTOsdvKqTcwUpJOhBbm_EY5mlotNtZMn-9vtb89KgBvv6HefcprBhDjq8RnTX-ib0ZLm3Wes98_kXYcf_-rzr5GrLUGneQOoGueCqm-TKT7qFt8i3t64sv3_5erBAnfFTZykAaumwiKrK0veLysD1XC3KegVPJ32uHfo66NVuVo7WnioapsoQNUZnDvwA-urTwjoKTJpiBEp5RvMwINO8XCr8KDo9s6saUE8nH1uroSeuOZ1xm8wPJ_Nn07hN8BAbPIIPgJDCp6m3YuRgCjVSKz0GhGSCW2BWGbcJc54LpkwihBw7yQwwJmkll8bp0R0yqOrK3SN0KFPwuxTQLatTk-Lm5UhxZpXRPJN6HJG4-7uFacXPMQdHWTSyzUmB3V303R2Rp339D43sxx9r7iBYCiAsqLprMDzJrMGjQmLNIrLbYahoB4fTIgE3m3FwzUVEHvePwaxxr0ZVrt5AnZAFPhMsicjdBnt9Q1BhCLqDRyQJCPpLC4v8YJb3d_f_5aVH5NJ0Pjsqjp4fv9whl6E87KgN5S4ZAGzcAyBma_0wmN4PI6wx4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQJyF44M4IG2AkJJ6yuamd2I8RbVUuG2gUMfES-SpVjZKpayfGEz-BJ34gv4RjJ81WBEKCt8QXyXa-Y38n9vmM0DPbJ05R62LmaBoDKEgsIC022jmhnCOqUfs8TCcf6Ktjdnwpir_Rh-h-uHnLCPO1N_AT4_YvREOlCbpBfU6yzAeRb9GUcI_r4dGFgJTn50Ftb8BikVK-lm0kyf5m_Y1lqVeDef2Ocm4y2LAEjW8iuW58c_Jkvrdaqj395Rddx__p3S10o-WnOG8AdRtdsdUddP2SauFd9P2jLcsfX78NZ15l_NQaDHCaW5-EZWXwp1ml4XkqZ2W9gNxRd9MOfh_UalcLi2uHJQ4LZTgzhg8seAH47eeZsRh4NPbnT8pznIfpGOflXPo-4cm5WdSAeTw6a20GH9kmNuMemo5H0xeTuL3eIdY-AB_gILij1Bk-sLCAaqGkygAfKWcGeFXKTEKsY5xInXAuMiuIBr4kjGBCWzW4j3pVXdkHCPcFBa9LAtkyimrqty4HkhEjtWKpUFmE4vXHLXQrfe5v4CiLRrQ5KfxwF91wR-h5V_6kEf34Y8kdj5UC6IrX3NX-cJJegj_laTWJ0O4aQkU7NZwWCTjZhIFjziP0tMsGo_Y7NbKy9QrKhDvgU06SCG030Osa4vWFYDhYhJIAoL-0sMiHB3n39vBfKj1BV98Nx8Wbl4evd9A1SA7baX2xi3qAGvsIWNlSPQ6G9xOHpTCa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Dispersed+Nickel%E2%80%90+and+Zinc%E2%80%90Tailored+Electronic+Structure+of+a+Transition+Metal+Oxide+for+Highly+Active+Alkaline+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ling%2C+Tao&rft.au=Zhang%2C+Tong&rft.au=Ge%2C+Binghui&rft.au=Han%2C+Lili&rft.date=2019-04-19&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201807771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201807771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon