Expanding Anti‐Stokes Shifting in Triplet–Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation

A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and th...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 46; pp. 14400 - 14404
Main Authors Huang, Ling, Zhao, Yang, Zhang, He, Huang, Kai, Yang, Jinyi, Han, Gang
Format Journal Article
LanguageEnglish
Published Germany 13.11.2017
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201704430

Cover

Abstract A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications. Seeing red: Triplet–triplet annihilation upconversion (TTA‐UC) has robust brightness and the record longest anti‐Stokes shift from far‐red to deep‐blue light. TTA core–shell‐structured nanocapsules photorelease coumarin–chlorambucil (Cou‐C) prodrug upon irradiation with low‐power density far‐red light‐emitting diode (LED) light, to achieve potent tumor growth inhibition in vivo.
AbstractList A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.
A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low-power density far-red light-emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low-power density far-red light-emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.
A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet–triplet annihilation upconversion (TTA-UC) is presented and its utility in the in vivo titration of the photorelease of an anticancer prodrug is demonstrated. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties are developed; they can operate with low-power-density far-red light-emitting diode (LED) light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emssison in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo . This work paves the way for the design of new organic TTA upconversion with regard to in vivo photocontrollable drug release and other biophotonic applications. Far Red light means go for organic upconversion prodrug activation: A strategy is presented for a new triplet-triplet annihilation upconversion that has robust brightness and the record longest
A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications. Seeing red: Triplet–triplet annihilation upconversion (TTA‐UC) has robust brightness and the record longest anti‐Stokes shift from far‐red to deep‐blue light. TTA core–shell‐structured nanocapsules photorelease coumarin–chlorambucil (Cou‐C) prodrug upon irradiation with low‐power density far‐red light‐emitting diode (LED) light, to achieve potent tumor growth inhibition in vivo.
Author Yang, Jinyi
Han, Gang
Huang, Kai
Huang, Ling
Zhao, Yang
Zhang, He
AuthorAffiliation [a] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, MA 01605 (USA)
AuthorAffiliation_xml – name: [a] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, MA 01605 (USA)
Author_xml – sequence: 1
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
  organization: University of Massachusetts Medical School
– sequence: 2
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: University of Massachusetts Medical School
– sequence: 3
  givenname: He
  surname: Zhang
  fullname: Zhang, He
  organization: University of Massachusetts Medical School
– sequence: 4
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: University of Massachusetts Medical School
– sequence: 5
  givenname: Jinyi
  surname: Yang
  fullname: Yang, Jinyi
  organization: University of Massachusetts Medical School
– sequence: 6
  givenname: Gang
  orcidid: 0000-0002-2300-5862
  surname: Han
  fullname: Han, Gang
  email: Gang.Han@umassmed.edu
  organization: University of Massachusetts Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28875533$$D View this record in MEDLINE/PubMed
BookMark eNqFUUlvEzEUtlARXeDKEc2RywR7vEx8QYqqAJEqQGrganmb1jCxB9sJVFxy4Y7EP8wvwVlaFgkhH96z_S167zsFRz54C8BjBEcIwuaZ9M6OGohaSAiG98AJog2qcdvio9ITjOt2TNExOE3pQ8GPx5A9AMeltpRifAK-Tr8M0hvnr6qJz26z_n6Zw0ebqstr1-Xts_PVPLqht3mz_nHoCta7a9fL7IKv3g06-JWNaXvpQqxmfrP-9t6twk5TS69trN7GYOKy2OjsVjviQ3C_k32yjw71DMxfTOfnr-qLNy9n55OLWtMyU62wkUgRXg5mhnLLdUt5o7VVTBnV6LFBkDOlDSISUqtapgnTiqPOSGLwGXi-lx2WamGNtj5H2YshuoWMNyJIJ_78KaOJq7ASrMEccVoEnh4EYvi0tCmLhUva9r30NiyTQByzhiFOYIE--d3rzuR24QVA9gAdQ0rRdkK7vNtGsXa9QFBscxXbXMVdroU2-ot2q_xPAt8TPrve3vwHLSavZ9Nf3J9kVrzF
CitedBy_id crossref_primary_10_1002_ange_202312600
crossref_primary_10_1016_j_ccr_2024_216117
crossref_primary_10_1016_j_tet_2024_134438
crossref_primary_10_1016_j_jphotochemrev_2023_100618
crossref_primary_10_1021_acsami_1c21080
crossref_primary_10_1021_jacs_4c00936
crossref_primary_10_1021_acsomega_8b01107
crossref_primary_10_2174_1567201818666211214112710
crossref_primary_10_1007_s11426_018_9311_0
crossref_primary_10_1021_acs_inorgchem_0c00043
crossref_primary_10_1002_adma_201901607
crossref_primary_10_1039_C9SC04034J
crossref_primary_10_1039_D1TC05332A
crossref_primary_10_1002_anie_202303093
crossref_primary_10_1063_5_0112032
crossref_primary_10_1016_j_cogsc_2023_100841
crossref_primary_10_1016_j_dyepig_2018_10_037
crossref_primary_10_1021_acs_nanolett_4c02529
crossref_primary_10_1021_acsami_3c17679
crossref_primary_10_1002_adtp_202000117
crossref_primary_10_1002_app_56526
crossref_primary_10_1021_acs_jpca_3c03214
crossref_primary_10_1007_s12274_020_2775_z
crossref_primary_10_1002_anie_202215340
crossref_primary_10_1002_smtd_201700370
crossref_primary_10_1039_D1TB02828F
crossref_primary_10_1002_anie_201907436
crossref_primary_10_1002_adma_201908175
crossref_primary_10_1039_C8CC04200D
crossref_primary_10_1002_adhm_201800296
crossref_primary_10_1007_s41061_022_00378_6
crossref_primary_10_1039_D3QM00495C
crossref_primary_10_1039_C9CP01296F
crossref_primary_10_1021_jacs_0c06976
crossref_primary_10_1016_j_ccr_2019_213042
crossref_primary_10_1007_s12274_018_2132_7
crossref_primary_10_1021_jacs_9b05824
crossref_primary_10_1039_C9NA00817A
crossref_primary_10_1039_D0NR00963F
crossref_primary_10_1039_D4NJ00526K
crossref_primary_10_1039_C8QI00477C
crossref_primary_10_1016_j_jre_2021_10_003
crossref_primary_10_1002_anie_202218341
crossref_primary_10_1021_acs_nanolett_5c00117
crossref_primary_10_1002_anie_202312600
crossref_primary_10_1021_acs_macromol_1c00133
crossref_primary_10_1021_acs_orglett_8b00520
crossref_primary_10_1063_1674_0068_cjcp2407087
crossref_primary_10_3390_molecules29102203
crossref_primary_10_1016_j_cclet_2022_05_029
crossref_primary_10_1002_anie_202001325
crossref_primary_10_1038_s41570_024_00585_3
crossref_primary_10_1021_jacs_7b12368
crossref_primary_10_1002_adhm_202201474
crossref_primary_10_1021_acs_jpcc_1c03733
crossref_primary_10_1002_ange_202303093
crossref_primary_10_1038_s41570_018_0057_z
crossref_primary_10_1007_s41664_023_00264_0
crossref_primary_10_1016_j_carbpol_2019_115498
crossref_primary_10_1016_j_ccr_2024_215868
crossref_primary_10_1186_s12951_020_00668_5
crossref_primary_10_1002_ange_202218341
crossref_primary_10_1039_C8ME00041G
crossref_primary_10_1039_D0MH01590C
crossref_primary_10_1002_wnan_1627
crossref_primary_10_1021_acs_bioconjchem_8b00576
crossref_primary_10_1002_adma_202405509
crossref_primary_10_1021_acs_analchem_8b02603
crossref_primary_10_1021_acs_bioconjchem_8b00333
crossref_primary_10_1016_j_cej_2018_02_109
crossref_primary_10_1002_ange_202107155
crossref_primary_10_1038_s41467_024_46541_z
crossref_primary_10_1002_ange_202215340
crossref_primary_10_1016_j_apcatb_2019_117762
crossref_primary_10_1016_j_apmt_2022_101597
crossref_primary_10_1021_acs_accounts_9b00569
crossref_primary_10_1002_ange_202001325
crossref_primary_10_1039_D1TC00296A
crossref_primary_10_1039_D0SC03368E
crossref_primary_10_1039_D2TC04430G
crossref_primary_10_3390_jnt1010007
crossref_primary_10_1002_adhm_202001118
crossref_primary_10_1038_s41427_018_0065_y
crossref_primary_10_1039_D2TC03593F
crossref_primary_10_1038_s41467_019_09001_7
crossref_primary_10_1038_s41570_021_00265_6
crossref_primary_10_1002_cptc_201800147
crossref_primary_10_1021_acs_accounts_2c00307
crossref_primary_10_1016_j_biomaterials_2019_02_008
crossref_primary_10_1039_D1TC03551G
crossref_primary_10_1002_ange_201907436
crossref_primary_10_1021_acsami_9b06620
crossref_primary_10_1021_acs_bioconjchem_8b00068
crossref_primary_10_1039_D0CS01087A
crossref_primary_10_1021_jacs_9b09034
crossref_primary_10_1039_C7NR08811F
crossref_primary_10_1021_acsami_2c16354
crossref_primary_10_1021_acs_analchem_1c00096
crossref_primary_10_1038_s41467_021_22282_1
crossref_primary_10_1021_acsnano_2c05379
crossref_primary_10_1002_adhm_202400354
crossref_primary_10_1002_adfm_202104044
crossref_primary_10_1002_adma_202002661
crossref_primary_10_1002_anie_202107155
crossref_primary_10_1021_acs_jpcb_4c02774
crossref_primary_10_1039_D1TC04834A
crossref_primary_10_1080_10408347_2020_1753163
crossref_primary_10_1021_acsnano_8b04787
crossref_primary_10_1002_adhm_202000321
crossref_primary_10_1002_cctc_202301194
crossref_primary_10_1016_j_ccr_2021_214309
crossref_primary_10_1007_s12274_018_2138_1
crossref_primary_10_1016_j_cej_2021_132858
crossref_primary_10_1063_5_0185259
crossref_primary_10_1007_s10847_021_01071_9
crossref_primary_10_1002_adom_201902157
crossref_primary_10_1021_acs_orglett_3c04312
crossref_primary_10_1016_j_dyepig_2019_107821
crossref_primary_10_1016_j_talanta_2024_127334
crossref_primary_10_1021_acs_bioconjchem_3c00197
crossref_primary_10_1016_j_dyepig_2020_108676
Cites_doi 10.1021/ja807056a
10.1002/ange.201501615
10.7554/eLife.10024
10.1039/c1ra00469g
10.1021/acsphotonics.5b00042
10.1021/cr400478f
10.1002/ange.201309389
10.1021/nn501073x
10.1039/C5CS00364D
10.1002/anie.201203339
10.1021/acsnano.5b07873
10.1039/C6CC00089D
10.1002/anie.201204203
10.1002/anie.201501615
10.1021/jacs.5b01297
10.1002/anie.201308647
10.1002/adfm.201302133
10.1039/C4CS00175C
10.1002/ange.201204203
10.1146/annurev-neuro-061010-113817
10.1039/C4CS00155A
10.1002/ange.201203339
10.1021/cr300177k
10.1021/nn502496a
10.1039/c3py21121e
10.1021/ja103415t
10.1002/ange.201308647
10.1016/j.jconrel.2008.06.008
10.1021/cr030037c
10.1002/adfm.201200794
10.1002/anie.200501244
10.1039/C4CS00177J
10.1002/chem.201101102
10.1002/smll.200700903
10.1021/nn3018365
10.1103/PhysRevB.78.195112
10.1021/bc5003967
10.1016/j.ccr.2010.01.003
10.1002/ange.201202134
10.1039/C4CS00178H
10.1021/ja3104268
10.1021/nn302972r
10.1002/ange.200501244
10.1021/jacs.5b12357
10.1021/acsnano.5b07075
10.1002/anie.201202134
10.1002/anie.201309389
10.1021/acs.jpcb.5b09880
10.1039/c3cs35531d
10.1073/pnas.1405469111
10.1021/acs.nanolett.5b01325
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/anie.201704430
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
EndPage 14404
ExternalDocumentID PMC6239195
28875533
10_1002_anie_201704430
ANIE201704430
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Human Frontier Science Program
  funderid: RGY-0090/2014
– fundername: National Institute of Mental Health
  funderid: R01MH103133
– fundername: NIMH NIH HHS
  grantid: R01 MH103133
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
5PM
ID FETCH-LOGICAL-c5430-b3da1b4949436d59e9c7592cceb6bdb2c8d1096bcd14a05eb76c46cb91fda4d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 14:02:15 EDT 2025
Fri Jul 11 11:32:21 EDT 2025
Wed Feb 19 02:32:27 EST 2025
Tue Jul 01 02:26:10 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Jan 22 07:26:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords anti-Stokes shifts
triplet-triplet annihilation upconversion
BODIPY
prodrug activation
anticancer
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5430-b3da1b4949436d59e9c7592cceb6bdb2c8d1096bcd14a05eb76c46cb91fda4d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2300-5862
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6239195
PMID 28875533
PQID 1936261940
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6239195
proquest_miscellaneous_1936261940
pubmed_primary_28875533
crossref_citationtrail_10_1002_anie_201704430
crossref_primary_10_1002_anie_201704430
wiley_primary_10_1002_anie_201704430_ANIE201704430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 13, 2017
PublicationDateYYYYMMDD 2017-11-13
PublicationDate_xml – month: 11
  year: 2017
  text: November 13, 2017
  day: 13
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
References 2015; 2
2014 2014; 53 126
2015; 15
2013; 4
2004; 104
2015; 4
2011; 1
2013; 42
2016; 10
2016; 52
2008; 78
2014; 24
2011; 34
2008; 4
2011; 17
2014; 111
2016; 120
2013 2013; 52 125
2015; 26
2015; 137
2015; 115
2012 2012; 51 124
2015; 44
2010; 132
2010; 254
2015 2015; 54 127
2013; 113
2005 2005; 44 117
2013; 135
2016; 138
2012; 6
2014; 8
2012; 22
2008; 130
e_1_2_2_2_3
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_4_3
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_23_3
e_1_2_2_25_1
e_1_2_2_46_3
e_1_2_2_3_3
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_3
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_31_2
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 34
  start-page: 389
  year: 2011
  end-page: 412
  publication-title: Annu. Rev. Neurosci.
– volume: 52
  start-page: 5354
  year: 2016
  end-page: 5370
  publication-title: Chem. Commun.
– volume: 24
  start-page: 363
  year: 2014
  end-page: 371
  publication-title: Adv. Funct. Mater.
– volume: 111
  start-page: 9762
  year: 2014
  end-page: 9767
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 1416
  year: 2015
  end-page: 1448
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 16164
  year: 2008
  end-page: 16165
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 8446 8572
  year: 2012 2012
  end-page: 8476 8604
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 8904
  year: 2015
  end-page: 8939
  publication-title: Chem. Soc. Rev.
– volume: 115
  start-page: 395
  year: 2015
  end-page: 465
  publication-title: Chem. Rev.
– volume: 6
  start-page: 6337
  year: 2012
  end-page: 6344
  publication-title: ACS Nano
– volume: 52 125
  start-page: 4526 4622
  year: 2013 2013
  end-page: 4537 4634
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 3059
  year: 2004
  end-page: 3077
  publication-title: Chem. Rev.
– volume: 135
  start-page: 5029
  year: 2013
  end-page: 5037
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 1029 1047
  year: 2014 2014
  end-page: 1033 1051
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 633
  year: 2015
  end-page: 638
  publication-title: ACS Photonics
– volume: 78
  start-page: 195112
  year: 2008
  publication-title: Phys. Rev. B.
– volume: 113
  start-page: 119
  year: 2013
  end-page: 191
  publication-title: Chem. Rev.
– volume: 4
  start-page: 421
  year: 2008
  end-page: 426
  publication-title: Small
– volume: 22
  start-page: 4360
  year: 2012
  end-page: 4368
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 3783
  year: 2015
  end-page: 3786
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2766
  year: 2016
  end-page: 2773
  publication-title: ACS Nano
– volume: 120
  start-page: 748
  year: 2016
  end-page: 755
  publication-title: J. Phys. Chem. B
– volume: 15
  start-page: 6332
  year: 2015
  end-page: 6338
  publication-title: Nano Lett.
– volume: 132
  start-page: 10645
  year: 2010
  end-page: 10647
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 8806 8936
  year: 2012 2012
  end-page: 8810 8940
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44 117
  start-page: 5713 5859
  year: 2005 2005
  end-page: 5717 5863
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 937
  year: 2011
  end-page: 950
  publication-title: RSC Adv.
– volume: 54 127
  start-page: 6804 6908
  year: 2015 2015
  end-page: 6808 6912
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 1561
  year: 2015
  end-page: 1584
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 5323
  year: 2013
  end-page: 5351
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 8198
  year: 2014
  end-page: 8207
  publication-title: ACS Nano
– volume: 26
  start-page: 166
  year: 2015
  end-page: 175
  publication-title: Bioconjugate Chem.
– volume: 138
  start-page: 1078
  year: 2016
  end-page: 1083
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 9560
  year: 2011
  end-page: 9564
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 1512
  year: 2016
  end-page: 1521
  publication-title: ACS Nano
– volume: 52 125
  start-page: 13813 14058
  year: 2013 2013
  end-page: 13817 14062
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 10024
  year: 2015
  publication-title: eLife
– volume: 130
  start-page: 246
  year: 2008
  end-page: 251
  publication-title: J. Controlled Release
– volume: 254
  start-page: 2560
  year: 2010
  end-page: 2573
  publication-title: Coord. Chem. Rev.
– volume: 44
  start-page: 1509
  year: 2015
  end-page: 1525
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 8280
  year: 2012
  end-page: 8287
  publication-title: ACS Nano
– volume: 8
  start-page: 5939
  year: 2014
  end-page: 5952
  publication-title: ACS Nano
– volume: 44
  start-page: 1379
  year: 2015
  end-page: 1415
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 3431
  year: 2013
  end-page: 3443
  publication-title: Polym. Chem.
– ident: e_1_2_2_47_2
  doi: 10.1021/ja807056a
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201501615
– ident: e_1_2_2_42_2
  doi: 10.7554/eLife.10024
– ident: e_1_2_2_31_2
  doi: 10.1039/c1ra00469g
– ident: e_1_2_2_36_2
  doi: 10.1021/acsphotonics.5b00042
– ident: e_1_2_2_34_2
  doi: 10.1021/cr400478f
– ident: e_1_2_2_46_3
  doi: 10.1002/ange.201309389
– ident: e_1_2_2_45_1
– ident: e_1_2_2_20_2
  doi: 10.1021/nn501073x
– ident: e_1_2_2_29_1
– ident: e_1_2_2_33_2
  doi: 10.1039/C5CS00364D
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.201203339
– ident: e_1_2_2_53_1
  doi: 10.1021/acsnano.5b07873
– ident: e_1_2_2_38_2
  doi: 10.1039/C6CC00089D
– ident: e_1_2_2_3_2
  doi: 10.1002/anie.201204203
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201501615
– ident: e_1_2_2_19_2
  doi: 10.1021/jacs.5b01297
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201308647
– ident: e_1_2_2_52_1
  doi: 10.1002/adfm.201302133
– ident: e_1_2_2_28_2
  doi: 10.1039/C4CS00175C
– ident: e_1_2_2_41_1
– ident: e_1_2_2_3_3
  doi: 10.1002/ange.201204203
– ident: e_1_2_2_10_2
  doi: 10.1146/annurev-neuro-061010-113817
– ident: e_1_2_2_49_1
– ident: e_1_2_2_16_2
  doi: 10.1039/C4CS00155A
– ident: e_1_2_2_1_1
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.201203339
– ident: e_1_2_2_21_2
  doi: 10.1021/cr300177k
– ident: e_1_2_2_35_2
  doi: 10.1021/nn502496a
– ident: e_1_2_2_22_2
  doi: 10.1039/c3py21121e
– ident: e_1_2_2_43_2
  doi: 10.1021/ja103415t
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201308647
– ident: e_1_2_2_12_2
  doi: 10.1016/j.jconrel.2008.06.008
– ident: e_1_2_2_24_2
  doi: 10.1021/cr030037c
– ident: e_1_2_2_39_2
  doi: 10.1002/adfm.201200794
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.200501244
– ident: e_1_2_2_27_2
  doi: 10.1039/C4CS00177J
– ident: e_1_2_2_37_2
  doi: 10.1002/chem.201101102
– ident: e_1_2_2_6_2
  doi: 10.1002/smll.200700903
– ident: e_1_2_2_7_2
  doi: 10.1021/nn3018365
– ident: e_1_2_2_51_2
  doi: 10.1103/PhysRevB.78.195112
– ident: e_1_2_2_15_2
  doi: 10.1021/bc5003967
– ident: e_1_2_2_18_1
– ident: e_1_2_2_26_1
– ident: e_1_2_2_30_2
  doi: 10.1016/j.ccr.2010.01.003
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201202134
– ident: e_1_2_2_17_2
  doi: 10.1039/C4CS00178H
– ident: e_1_2_2_48_2
  doi: 10.1021/ja3104268
– ident: e_1_2_2_14_2
  doi: 10.1021/nn302972r
– ident: e_1_2_2_8_1
– ident: e_1_2_2_13_1
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.200501244
– ident: e_1_2_2_25_1
  doi: 10.1021/jacs.5b12357
– ident: e_1_2_2_44_2
  doi: 10.1021/acsnano.5b07075
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201202134
– ident: e_1_2_2_46_2
  doi: 10.1002/anie.201309389
– ident: e_1_2_2_50_2
  doi: 10.1021/acs.jpcb.5b09880
– ident: e_1_2_2_32_2
  doi: 10.1039/c3cs35531d
– ident: e_1_2_2_11_2
  doi: 10.1073/pnas.1405469111
– ident: e_1_2_2_40_1
  doi: 10.1021/acs.nanolett.5b01325
SSID ssj0028806
Score 2.5847027
Snippet A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented....
A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented....
A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet–triplet annihilation upconversion (TTA-UC) is presented...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14400
SubjectTerms Activation, Metabolic
Animals
anti-Stokes shifts
anticancer
Antineoplastic Agents - administration & dosage
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
BODIPY
Cell Line, Tumor
Chlorambucil - administration & dosage
Chlorambucil - chemistry
Chlorambucil - pharmacokinetics
Drug Delivery Systems
Heterografts
Humans
Light
Mice
Microscopy, Electron, Transmission
Nanoparticles
Polymers - chemistry
prodrug activation
Prodrugs - administration & dosage
Prodrugs - chemistry
Prodrugs - pharmacokinetics
Spectrometry, Fluorescence
triplet–triplet annihilation upconversion
Title Expanding Anti‐Stokes Shifting in Triplet–Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201704430
https://www.ncbi.nlm.nih.gov/pubmed/28875533
https://www.proquest.com/docview/1936261940
https://pubmed.ncbi.nlm.nih.gov/PMC6239195
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQL3Dh_QgvGQmJk9usX5s9RiVVi0SFaIp6W3nGjroq2kTJBiG45MIdiX-YX4If2aWhQkhw82rHXj_G9mfvzDeEvLQ5KAt5wTCzyKThghUexjOAiV_9lOEqhul8e6wPT-WbM3V2yYs_8UN0F25hZsT1OkxwA4u9X6ShwQM7mGblfSlFOLRnQgfy_NfvO_4o7pUzuRcJwUIU-pa1sc_3trNv70pXoOZVi8nLSDZuRQe3iGkbkSxQLnaXDezil9_4Hf-nlbfJzQ1OpcOkWHfINVffJdf32_Bw98jX0edZcomhw7qp1qvvJ830wi3oyXk1CbbUtKrpeB7u8Zv16scm5WXr6rxKBnj0dBaN3uONHfXomR7V69W3D9WnaSwTg0bO6Tu_xs-X_jPYhmK7T8YHo_H-IdtEcmCofLUZCGsyCEQ4UmirCldgrgqO6ECDBY4Dm_mzFKDNpOkrB7lGqRGKbGKNtOIB2amntXtEKMeJy5DbgT8VSAMDcHKglUEtEKBvsEdYO5AlbljOQ7CNj2XiZ-Zl6NGy69EeedXJzxK_xx8lX7R6UfquDv9VTO2my0XpMbAOB1HpZR4mPenK8iqYKw-peyTf0qBOINB7b7_xwxBpvj0wLbJC9QiPCvKX6pXD46NR9_T4XzI9ITdCOnhaZuIp2WnmS_fMQ64Gnsdp9RPGCiqJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcigX3tBQKIuExMltvN6142NUUiXQRoimiJvlmd2oVpETpQ6q2ksu3JH4h_klzNixS6gQEtz8GNvr9ezuN-OZb4R4bSMwFqLYQ9-ip1MVeDHBeA9gTLOfSZUpy3QeDcP-iX732dTRhJwLU_FDNA43HhnlfM0DnB3Se9esoZyCzbFZUVvrgKz225rQBttfbz82DFKK1LNKMAoCj-vQ17yNbbW3fv36unQDbN6MmfwVy5aL0cE9AfVrVDEoZ7vzAnbx8jeGx_96z_vi7gqqym6lWw_ELZc_FJv7dYW4R-KqdzGtsmJkNy-y5eL7cTE5c-fy-DQbczi1zHI5mrErv1gufqy2SDbPTrMqBk-eTMu499JpJwlAy0G-XHz7lH2dlPdEVsqZ_EDT_GxOj8G6GttjMTrojfb73qqYg4eGmu1BYFMfmAtHB6E1sYsxMrFCdBCCBYUd65M5BWh9nbaNgyhEHSLE_tim2gZPxEY-yd2WkArHzkdlO2QY6BQ64HQnNCmGAQK0U2wJr_6SCa6IzrnexpekomhWCfdo0vRoS7xp5KcVxccfJV_VipFQV_OvlTR3k_l5QjA4ZFtUk8zTSlGae5EORoZQdUtEayrUCDDD9_oZ-gwl0zdh09iPTUuoUkP-0rykOxz0mr1n_3LRS7HZHx0dJoeD4fttcYePc-KlHzwXG8Vs7l4QAitgpxxjPwFN7C6o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFLZQkYAL-5KyGQmJ07QZb5M5RiVRwxJVNEW9jexnjzoqmkTppEJwyYU7Ev8wv4TncWZoqBAS3GZ59nh5tj973vseIS9tYqQ1SRpBbCESmvEoRRgfGZPj7Cc1k3WYzvdjtX8k3hzL4wte_IEfoj1w8yOjnq_9AJ_ZfPcXaaj3wPamWUlXCI6b9qtCIZzwsOhDSyDFUDuDfxHnkQ9D39A2dtnuZvrNZekS1rxsMnkRytZr0fAW0U0tggnK6c6iMjvw5TeCx_-p5m1ycw1UaT9o1h1yxZV3yfW9Jj7cPfJ18HkWfGJov6yK1fL7YTU9dWf08KTIvTE1LUo6mfuD_Gq1_LG-QtmyOCmCBR49mtVW7_WRHUX4TEflavntY3E-rfMEr5JzeoCT_HyBn4EmFtt9MhkOJnv70TqUQwQSix0ZbnVsPBOO4MrK1KWQyJQBOKOMNQx6NsbNlAEbC92VziQKhAKTxrnVwvIHZKuclu4RoQxyFwOzPdwWCG16xomekhoUB2O6GjokajoygzXNuY-28SkLBM0s8y2atS3aIa9a-Vkg-Pij5ItGLzJsav9jRZduujjLEAQrvxMVKPMw6EmbF6pgIhFTd0iyoUGtgOf33nyD3VDzfCMyTeNUdgirFeQvxcv649Ggvdv-l0TPybWD18Ps3Wj89jG54R97r8uYPyFb1XzhniL8qsyzeoT9BK1tLVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+Anti-Stokes+Shifting+in+Triplet%E2%80%93Triplet+Annihilation+Upconversion+for+In+Vivo+Anticancer-Prodrug+Activation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Ling&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+He&rft.au=Huang%2C+Kai&rft.date=2017-11-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=46&rft.spage=14400&rft.epage=14404&rft_id=info:doi/10.1002%2Fanie.201704430&rft_id=info%3Apmid%2F28875533&rft.externalDocID=PMC6239195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon