Expanding Anti‐Stokes Shifting in Triplet–Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation
A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and th...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 46; pp. 14400 - 14404 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
13.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201704430 |
Cover
Abstract | A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.
Seeing red: Triplet–triplet annihilation upconversion (TTA‐UC) has robust brightness and the record longest anti‐Stokes shift from far‐red to deep‐blue light. TTA core–shell‐structured nanocapsules photorelease coumarin–chlorambucil (Cou‐C) prodrug upon irradiation with low‐power density far‐red light‐emitting diode (LED) light, to achieve potent tumor growth inhibition in vivo. |
---|---|
AbstractList | A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications. A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low-power density far-red light-emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low-power density far-red light-emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications. A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet–triplet annihilation upconversion (TTA-UC) is presented and its utility in the in vivo titration of the photorelease of an anticancer prodrug is demonstrated. This new TTA system has robust brightness and the longest anti-Stokes shift of any reported TTA system. TTA core-shell-structured prodrug delivery capsules that benefit from these properties are developed; they can operate with low-power-density far-red light-emitting diode (LED) light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far-red light, the intense TTA upconversion blue emssison in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo . This work paves the way for the design of new organic TTA upconversion with regard to in vivo photocontrollable drug release and other biophotonic applications. Far Red light means go for organic upconversion prodrug activation: A strategy is presented for a new triplet-triplet annihilation upconversion that has robust brightness and the record longest A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications. Seeing red: Triplet–triplet annihilation upconversion (TTA‐UC) has robust brightness and the record longest anti‐Stokes shift from far‐red to deep‐blue light. TTA core–shell‐structured nanocapsules photorelease coumarin–chlorambucil (Cou‐C) prodrug upon irradiation with low‐power density far‐red light‐emitting diode (LED) light, to achieve potent tumor growth inhibition in vivo. |
Author | Yang, Jinyi Han, Gang Huang, Kai Huang, Ling Zhao, Yang Zhang, He |
AuthorAffiliation | [a] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, MA 01605 (USA) |
AuthorAffiliation_xml | – name: [a] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, MA 01605 (USA) |
Author_xml | – sequence: 1 givenname: Ling surname: Huang fullname: Huang, Ling organization: University of Massachusetts Medical School – sequence: 2 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: University of Massachusetts Medical School – sequence: 3 givenname: He surname: Zhang fullname: Zhang, He organization: University of Massachusetts Medical School – sequence: 4 givenname: Kai surname: Huang fullname: Huang, Kai organization: University of Massachusetts Medical School – sequence: 5 givenname: Jinyi surname: Yang fullname: Yang, Jinyi organization: University of Massachusetts Medical School – sequence: 6 givenname: Gang orcidid: 0000-0002-2300-5862 surname: Han fullname: Han, Gang email: Gang.Han@umassmed.edu organization: University of Massachusetts Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28875533$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUlvEzEUtlARXeDKEc2RywR7vEx8QYqqAJEqQGrganmb1jCxB9sJVFxy4Y7EP8wvwVlaFgkhH96z_S167zsFRz54C8BjBEcIwuaZ9M6OGohaSAiG98AJog2qcdvio9ITjOt2TNExOE3pQ8GPx5A9AMeltpRifAK-Tr8M0hvnr6qJz26z_n6Zw0ebqstr1-Xts_PVPLqht3mz_nHoCta7a9fL7IKv3g06-JWNaXvpQqxmfrP-9t6twk5TS69trN7GYOKy2OjsVjviQ3C_k32yjw71DMxfTOfnr-qLNy9n55OLWtMyU62wkUgRXg5mhnLLdUt5o7VVTBnV6LFBkDOlDSISUqtapgnTiqPOSGLwGXi-lx2WamGNtj5H2YshuoWMNyJIJ_78KaOJq7ASrMEccVoEnh4EYvi0tCmLhUva9r30NiyTQByzhiFOYIE--d3rzuR24QVA9gAdQ0rRdkK7vNtGsXa9QFBscxXbXMVdroU2-ot2q_xPAt8TPrve3vwHLSavZ9Nf3J9kVrzF |
CitedBy_id | crossref_primary_10_1002_ange_202312600 crossref_primary_10_1016_j_ccr_2024_216117 crossref_primary_10_1016_j_tet_2024_134438 crossref_primary_10_1016_j_jphotochemrev_2023_100618 crossref_primary_10_1021_acsami_1c21080 crossref_primary_10_1021_jacs_4c00936 crossref_primary_10_1021_acsomega_8b01107 crossref_primary_10_2174_1567201818666211214112710 crossref_primary_10_1007_s11426_018_9311_0 crossref_primary_10_1021_acs_inorgchem_0c00043 crossref_primary_10_1002_adma_201901607 crossref_primary_10_1039_C9SC04034J crossref_primary_10_1039_D1TC05332A crossref_primary_10_1002_anie_202303093 crossref_primary_10_1063_5_0112032 crossref_primary_10_1016_j_cogsc_2023_100841 crossref_primary_10_1016_j_dyepig_2018_10_037 crossref_primary_10_1021_acs_nanolett_4c02529 crossref_primary_10_1021_acsami_3c17679 crossref_primary_10_1002_adtp_202000117 crossref_primary_10_1002_app_56526 crossref_primary_10_1021_acs_jpca_3c03214 crossref_primary_10_1007_s12274_020_2775_z crossref_primary_10_1002_anie_202215340 crossref_primary_10_1002_smtd_201700370 crossref_primary_10_1039_D1TB02828F crossref_primary_10_1002_anie_201907436 crossref_primary_10_1002_adma_201908175 crossref_primary_10_1039_C8CC04200D crossref_primary_10_1002_adhm_201800296 crossref_primary_10_1007_s41061_022_00378_6 crossref_primary_10_1039_D3QM00495C crossref_primary_10_1039_C9CP01296F crossref_primary_10_1021_jacs_0c06976 crossref_primary_10_1016_j_ccr_2019_213042 crossref_primary_10_1007_s12274_018_2132_7 crossref_primary_10_1021_jacs_9b05824 crossref_primary_10_1039_C9NA00817A crossref_primary_10_1039_D0NR00963F crossref_primary_10_1039_D4NJ00526K crossref_primary_10_1039_C8QI00477C crossref_primary_10_1016_j_jre_2021_10_003 crossref_primary_10_1002_anie_202218341 crossref_primary_10_1021_acs_nanolett_5c00117 crossref_primary_10_1002_anie_202312600 crossref_primary_10_1021_acs_macromol_1c00133 crossref_primary_10_1021_acs_orglett_8b00520 crossref_primary_10_1063_1674_0068_cjcp2407087 crossref_primary_10_3390_molecules29102203 crossref_primary_10_1016_j_cclet_2022_05_029 crossref_primary_10_1002_anie_202001325 crossref_primary_10_1038_s41570_024_00585_3 crossref_primary_10_1021_jacs_7b12368 crossref_primary_10_1002_adhm_202201474 crossref_primary_10_1021_acs_jpcc_1c03733 crossref_primary_10_1002_ange_202303093 crossref_primary_10_1038_s41570_018_0057_z crossref_primary_10_1007_s41664_023_00264_0 crossref_primary_10_1016_j_carbpol_2019_115498 crossref_primary_10_1016_j_ccr_2024_215868 crossref_primary_10_1186_s12951_020_00668_5 crossref_primary_10_1002_ange_202218341 crossref_primary_10_1039_C8ME00041G crossref_primary_10_1039_D0MH01590C crossref_primary_10_1002_wnan_1627 crossref_primary_10_1021_acs_bioconjchem_8b00576 crossref_primary_10_1002_adma_202405509 crossref_primary_10_1021_acs_analchem_8b02603 crossref_primary_10_1021_acs_bioconjchem_8b00333 crossref_primary_10_1016_j_cej_2018_02_109 crossref_primary_10_1002_ange_202107155 crossref_primary_10_1038_s41467_024_46541_z crossref_primary_10_1002_ange_202215340 crossref_primary_10_1016_j_apcatb_2019_117762 crossref_primary_10_1016_j_apmt_2022_101597 crossref_primary_10_1021_acs_accounts_9b00569 crossref_primary_10_1002_ange_202001325 crossref_primary_10_1039_D1TC00296A crossref_primary_10_1039_D0SC03368E crossref_primary_10_1039_D2TC04430G crossref_primary_10_3390_jnt1010007 crossref_primary_10_1002_adhm_202001118 crossref_primary_10_1038_s41427_018_0065_y crossref_primary_10_1039_D2TC03593F crossref_primary_10_1038_s41467_019_09001_7 crossref_primary_10_1038_s41570_021_00265_6 crossref_primary_10_1002_cptc_201800147 crossref_primary_10_1021_acs_accounts_2c00307 crossref_primary_10_1016_j_biomaterials_2019_02_008 crossref_primary_10_1039_D1TC03551G crossref_primary_10_1002_ange_201907436 crossref_primary_10_1021_acsami_9b06620 crossref_primary_10_1021_acs_bioconjchem_8b00068 crossref_primary_10_1039_D0CS01087A crossref_primary_10_1021_jacs_9b09034 crossref_primary_10_1039_C7NR08811F crossref_primary_10_1021_acsami_2c16354 crossref_primary_10_1021_acs_analchem_1c00096 crossref_primary_10_1038_s41467_021_22282_1 crossref_primary_10_1021_acsnano_2c05379 crossref_primary_10_1002_adhm_202400354 crossref_primary_10_1002_adfm_202104044 crossref_primary_10_1002_adma_202002661 crossref_primary_10_1002_anie_202107155 crossref_primary_10_1021_acs_jpcb_4c02774 crossref_primary_10_1039_D1TC04834A crossref_primary_10_1080_10408347_2020_1753163 crossref_primary_10_1021_acsnano_8b04787 crossref_primary_10_1002_adhm_202000321 crossref_primary_10_1002_cctc_202301194 crossref_primary_10_1016_j_ccr_2021_214309 crossref_primary_10_1007_s12274_018_2138_1 crossref_primary_10_1016_j_cej_2021_132858 crossref_primary_10_1063_5_0185259 crossref_primary_10_1007_s10847_021_01071_9 crossref_primary_10_1002_adom_201902157 crossref_primary_10_1021_acs_orglett_3c04312 crossref_primary_10_1016_j_dyepig_2019_107821 crossref_primary_10_1016_j_talanta_2024_127334 crossref_primary_10_1021_acs_bioconjchem_3c00197 crossref_primary_10_1016_j_dyepig_2020_108676 |
Cites_doi | 10.1021/ja807056a 10.1002/ange.201501615 10.7554/eLife.10024 10.1039/c1ra00469g 10.1021/acsphotonics.5b00042 10.1021/cr400478f 10.1002/ange.201309389 10.1021/nn501073x 10.1039/C5CS00364D 10.1002/anie.201203339 10.1021/acsnano.5b07873 10.1039/C6CC00089D 10.1002/anie.201204203 10.1002/anie.201501615 10.1021/jacs.5b01297 10.1002/anie.201308647 10.1002/adfm.201302133 10.1039/C4CS00175C 10.1002/ange.201204203 10.1146/annurev-neuro-061010-113817 10.1039/C4CS00155A 10.1002/ange.201203339 10.1021/cr300177k 10.1021/nn502496a 10.1039/c3py21121e 10.1021/ja103415t 10.1002/ange.201308647 10.1016/j.jconrel.2008.06.008 10.1021/cr030037c 10.1002/adfm.201200794 10.1002/anie.200501244 10.1039/C4CS00177J 10.1002/chem.201101102 10.1002/smll.200700903 10.1021/nn3018365 10.1103/PhysRevB.78.195112 10.1021/bc5003967 10.1016/j.ccr.2010.01.003 10.1002/ange.201202134 10.1039/C4CS00178H 10.1021/ja3104268 10.1021/nn302972r 10.1002/ange.200501244 10.1021/jacs.5b12357 10.1021/acsnano.5b07075 10.1002/anie.201202134 10.1002/anie.201309389 10.1021/acs.jpcb.5b09880 10.1039/c3cs35531d 10.1073/pnas.1405469111 10.1021/acs.nanolett.5b01325 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/anie.201704430 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
EndPage | 14404 |
ExternalDocumentID | PMC6239195 28875533 10_1002_anie_201704430 ANIE201704430 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Human Frontier Science Program funderid: RGY-0090/2014 – fundername: National Institute of Mental Health funderid: R01MH103133 – fundername: NIMH NIH HHS grantid: R01 MH103133 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM YIN 7X8 5PM |
ID | FETCH-LOGICAL-c5430-b3da1b4949436d59e9c7592cceb6bdb2c8d1096bcd14a05eb76c46cb91fda4d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 14:02:15 EDT 2025 Fri Jul 11 11:32:21 EDT 2025 Wed Feb 19 02:32:27 EST 2025 Tue Jul 01 02:26:10 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Jan 22 07:26:22 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | anti-Stokes shifts triplet-triplet annihilation upconversion BODIPY prodrug activation anticancer |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5430-b3da1b4949436d59e9c7592cceb6bdb2c8d1096bcd14a05eb76c46cb91fda4d3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2300-5862 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6239195 |
PMID | 28875533 |
PQID | 1936261940 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6239195 proquest_miscellaneous_1936261940 pubmed_primary_28875533 crossref_citationtrail_10_1002_anie_201704430 crossref_primary_10_1002_anie_201704430 wiley_primary_10_1002_anie_201704430_ANIE201704430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 13, 2017 |
PublicationDateYYYYMMDD | 2017-11-13 |
PublicationDate_xml | – month: 11 year: 2017 text: November 13, 2017 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
References | 2015; 2 2014 2014; 53 126 2015; 15 2013; 4 2004; 104 2015; 4 2011; 1 2013; 42 2016; 10 2016; 52 2008; 78 2014; 24 2011; 34 2008; 4 2011; 17 2014; 111 2016; 120 2013 2013; 52 125 2015; 26 2015; 137 2015; 115 2012 2012; 51 124 2015; 44 2010; 132 2010; 254 2015 2015; 54 127 2013; 113 2005 2005; 44 117 2013; 135 2016; 138 2012; 6 2014; 8 2012; 22 2008; 130 e_1_2_2_2_3 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_1 e_1_2_2_4_3 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_8_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_23_3 e_1_2_2_25_1 e_1_2_2_46_3 e_1_2_2_3_3 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_5_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_3 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 34 start-page: 389 year: 2011 end-page: 412 publication-title: Annu. Rev. Neurosci. – volume: 52 start-page: 5354 year: 2016 end-page: 5370 publication-title: Chem. Commun. – volume: 24 start-page: 363 year: 2014 end-page: 371 publication-title: Adv. Funct. Mater. – volume: 111 start-page: 9762 year: 2014 end-page: 9767 publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 1416 year: 2015 end-page: 1448 publication-title: Chem. Soc. Rev. – volume: 130 start-page: 16164 year: 2008 end-page: 16165 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 8446 8572 year: 2012 2012 end-page: 8476 8604 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 8904 year: 2015 end-page: 8939 publication-title: Chem. Soc. Rev. – volume: 115 start-page: 395 year: 2015 end-page: 465 publication-title: Chem. Rev. – volume: 6 start-page: 6337 year: 2012 end-page: 6344 publication-title: ACS Nano – volume: 52 125 start-page: 4526 4622 year: 2013 2013 end-page: 4537 4634 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 3059 year: 2004 end-page: 3077 publication-title: Chem. Rev. – volume: 135 start-page: 5029 year: 2013 end-page: 5037 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 1029 1047 year: 2014 2014 end-page: 1033 1051 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 633 year: 2015 end-page: 638 publication-title: ACS Photonics – volume: 78 start-page: 195112 year: 2008 publication-title: Phys. Rev. B. – volume: 113 start-page: 119 year: 2013 end-page: 191 publication-title: Chem. Rev. – volume: 4 start-page: 421 year: 2008 end-page: 426 publication-title: Small – volume: 22 start-page: 4360 year: 2012 end-page: 4368 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 3783 year: 2015 end-page: 3786 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2766 year: 2016 end-page: 2773 publication-title: ACS Nano – volume: 120 start-page: 748 year: 2016 end-page: 755 publication-title: J. Phys. Chem. B – volume: 15 start-page: 6332 year: 2015 end-page: 6338 publication-title: Nano Lett. – volume: 132 start-page: 10645 year: 2010 end-page: 10647 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 8806 8936 year: 2012 2012 end-page: 8810 8940 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 117 start-page: 5713 5859 year: 2005 2005 end-page: 5717 5863 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 937 year: 2011 end-page: 950 publication-title: RSC Adv. – volume: 54 127 start-page: 6804 6908 year: 2015 2015 end-page: 6808 6912 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 1561 year: 2015 end-page: 1584 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 5323 year: 2013 end-page: 5351 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 8198 year: 2014 end-page: 8207 publication-title: ACS Nano – volume: 26 start-page: 166 year: 2015 end-page: 175 publication-title: Bioconjugate Chem. – volume: 138 start-page: 1078 year: 2016 end-page: 1083 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 9560 year: 2011 end-page: 9564 publication-title: Chem. Eur. J. – volume: 10 start-page: 1512 year: 2016 end-page: 1521 publication-title: ACS Nano – volume: 52 125 start-page: 13813 14058 year: 2013 2013 end-page: 13817 14062 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 10024 year: 2015 publication-title: eLife – volume: 130 start-page: 246 year: 2008 end-page: 251 publication-title: J. Controlled Release – volume: 254 start-page: 2560 year: 2010 end-page: 2573 publication-title: Coord. Chem. Rev. – volume: 44 start-page: 1509 year: 2015 end-page: 1525 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 8280 year: 2012 end-page: 8287 publication-title: ACS Nano – volume: 8 start-page: 5939 year: 2014 end-page: 5952 publication-title: ACS Nano – volume: 44 start-page: 1379 year: 2015 end-page: 1415 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 3431 year: 2013 end-page: 3443 publication-title: Polym. Chem. – ident: e_1_2_2_47_2 doi: 10.1021/ja807056a – ident: e_1_2_2_5_3 doi: 10.1002/ange.201501615 – ident: e_1_2_2_42_2 doi: 10.7554/eLife.10024 – ident: e_1_2_2_31_2 doi: 10.1039/c1ra00469g – ident: e_1_2_2_36_2 doi: 10.1021/acsphotonics.5b00042 – ident: e_1_2_2_34_2 doi: 10.1021/cr400478f – ident: e_1_2_2_46_3 doi: 10.1002/ange.201309389 – ident: e_1_2_2_45_1 – ident: e_1_2_2_20_2 doi: 10.1021/nn501073x – ident: e_1_2_2_29_1 – ident: e_1_2_2_33_2 doi: 10.1039/C5CS00364D – ident: e_1_2_2_4_2 doi: 10.1002/anie.201203339 – ident: e_1_2_2_53_1 doi: 10.1021/acsnano.5b07873 – ident: e_1_2_2_38_2 doi: 10.1039/C6CC00089D – ident: e_1_2_2_3_2 doi: 10.1002/anie.201204203 – ident: e_1_2_2_5_2 doi: 10.1002/anie.201501615 – ident: e_1_2_2_19_2 doi: 10.1021/jacs.5b01297 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201308647 – ident: e_1_2_2_52_1 doi: 10.1002/adfm.201302133 – ident: e_1_2_2_28_2 doi: 10.1039/C4CS00175C – ident: e_1_2_2_41_1 – ident: e_1_2_2_3_3 doi: 10.1002/ange.201204203 – ident: e_1_2_2_10_2 doi: 10.1146/annurev-neuro-061010-113817 – ident: e_1_2_2_49_1 – ident: e_1_2_2_16_2 doi: 10.1039/C4CS00155A – ident: e_1_2_2_1_1 – ident: e_1_2_2_4_3 doi: 10.1002/ange.201203339 – ident: e_1_2_2_21_2 doi: 10.1021/cr300177k – ident: e_1_2_2_35_2 doi: 10.1021/nn502496a – ident: e_1_2_2_22_2 doi: 10.1039/c3py21121e – ident: e_1_2_2_43_2 doi: 10.1021/ja103415t – ident: e_1_2_2_9_3 doi: 10.1002/ange.201308647 – ident: e_1_2_2_12_2 doi: 10.1016/j.jconrel.2008.06.008 – ident: e_1_2_2_24_2 doi: 10.1021/cr030037c – ident: e_1_2_2_39_2 doi: 10.1002/adfm.201200794 – ident: e_1_2_2_23_2 doi: 10.1002/anie.200501244 – ident: e_1_2_2_27_2 doi: 10.1039/C4CS00177J – ident: e_1_2_2_37_2 doi: 10.1002/chem.201101102 – ident: e_1_2_2_6_2 doi: 10.1002/smll.200700903 – ident: e_1_2_2_7_2 doi: 10.1021/nn3018365 – ident: e_1_2_2_51_2 doi: 10.1103/PhysRevB.78.195112 – ident: e_1_2_2_15_2 doi: 10.1021/bc5003967 – ident: e_1_2_2_18_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_30_2 doi: 10.1016/j.ccr.2010.01.003 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201202134 – ident: e_1_2_2_17_2 doi: 10.1039/C4CS00178H – ident: e_1_2_2_48_2 doi: 10.1021/ja3104268 – ident: e_1_2_2_14_2 doi: 10.1021/nn302972r – ident: e_1_2_2_8_1 – ident: e_1_2_2_13_1 – ident: e_1_2_2_23_3 doi: 10.1002/ange.200501244 – ident: e_1_2_2_25_1 doi: 10.1021/jacs.5b12357 – ident: e_1_2_2_44_2 doi: 10.1021/acsnano.5b07075 – ident: e_1_2_2_2_2 doi: 10.1002/anie.201202134 – ident: e_1_2_2_46_2 doi: 10.1002/anie.201309389 – ident: e_1_2_2_50_2 doi: 10.1021/acs.jpcb.5b09880 – ident: e_1_2_2_32_2 doi: 10.1039/c3cs35531d – ident: e_1_2_2_11_2 doi: 10.1073/pnas.1405469111 – ident: e_1_2_2_40_1 doi: 10.1021/acs.nanolett.5b01325 |
SSID | ssj0028806 |
Score | 2.5847027 |
Snippet | A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented.... A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet-triplet annihilation upconversion (TTA-UC) is presented.... A strategy to expand anti-Stokes shifting from the far-red to deep-blue region in metal-free triplet–triplet annihilation upconversion (TTA-UC) is presented... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14400 |
SubjectTerms | Activation, Metabolic Animals anti-Stokes shifts anticancer Antineoplastic Agents - administration & dosage Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics BODIPY Cell Line, Tumor Chlorambucil - administration & dosage Chlorambucil - chemistry Chlorambucil - pharmacokinetics Drug Delivery Systems Heterografts Humans Light Mice Microscopy, Electron, Transmission Nanoparticles Polymers - chemistry prodrug activation Prodrugs - administration & dosage Prodrugs - chemistry Prodrugs - pharmacokinetics Spectrometry, Fluorescence triplet–triplet annihilation upconversion |
Title | Expanding Anti‐Stokes Shifting in Triplet–Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201704430 https://www.ncbi.nlm.nih.gov/pubmed/28875533 https://www.proquest.com/docview/1936261940 https://pubmed.ncbi.nlm.nih.gov/PMC6239195 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQL3Dh_QgvGQmJk9usX5s9RiVVi0SFaIp6W3nGjroq2kTJBiG45MIdiX-YX4If2aWhQkhw82rHXj_G9mfvzDeEvLQ5KAt5wTCzyKThghUexjOAiV_9lOEqhul8e6wPT-WbM3V2yYs_8UN0F25hZsT1OkxwA4u9X6ShwQM7mGblfSlFOLRnQgfy_NfvO_4o7pUzuRcJwUIU-pa1sc_3trNv70pXoOZVi8nLSDZuRQe3iGkbkSxQLnaXDezil9_4Hf-nlbfJzQ1OpcOkWHfINVffJdf32_Bw98jX0edZcomhw7qp1qvvJ830wi3oyXk1CbbUtKrpeB7u8Zv16scm5WXr6rxKBnj0dBaN3uONHfXomR7V69W3D9WnaSwTg0bO6Tu_xs-X_jPYhmK7T8YHo_H-IdtEcmCofLUZCGsyCEQ4UmirCldgrgqO6ECDBY4Dm_mzFKDNpOkrB7lGqRGKbGKNtOIB2amntXtEKMeJy5DbgT8VSAMDcHKglUEtEKBvsEdYO5AlbljOQ7CNj2XiZ-Zl6NGy69EeedXJzxK_xx8lX7R6UfquDv9VTO2my0XpMbAOB1HpZR4mPenK8iqYKw-peyTf0qBOINB7b7_xwxBpvj0wLbJC9QiPCvKX6pXD46NR9_T4XzI9ITdCOnhaZuIp2WnmS_fMQ64Gnsdp9RPGCiqJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcigX3tBQKIuExMltvN6142NUUiXQRoimiJvlmd2oVpETpQ6q2ksu3JH4h_klzNixS6gQEtz8GNvr9ezuN-OZb4R4bSMwFqLYQ9-ip1MVeDHBeA9gTLOfSZUpy3QeDcP-iX732dTRhJwLU_FDNA43HhnlfM0DnB3Se9esoZyCzbFZUVvrgKz225rQBttfbz82DFKK1LNKMAoCj-vQ17yNbbW3fv36unQDbN6MmfwVy5aL0cE9AfVrVDEoZ7vzAnbx8jeGx_96z_vi7gqqym6lWw_ELZc_FJv7dYW4R-KqdzGtsmJkNy-y5eL7cTE5c-fy-DQbczi1zHI5mrErv1gufqy2SDbPTrMqBk-eTMu499JpJwlAy0G-XHz7lH2dlPdEVsqZ_EDT_GxOj8G6GttjMTrojfb73qqYg4eGmu1BYFMfmAtHB6E1sYsxMrFCdBCCBYUd65M5BWh9nbaNgyhEHSLE_tim2gZPxEY-yd2WkArHzkdlO2QY6BQ64HQnNCmGAQK0U2wJr_6SCa6IzrnexpekomhWCfdo0vRoS7xp5KcVxccfJV_VipFQV_OvlTR3k_l5QjA4ZFtUk8zTSlGae5EORoZQdUtEayrUCDDD9_oZ-gwl0zdh09iPTUuoUkP-0rykOxz0mr1n_3LRS7HZHx0dJoeD4fttcYePc-KlHzwXG8Vs7l4QAitgpxxjPwFN7C6o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFLZQkYAL-5KyGQmJ07QZb5M5RiVRwxJVNEW9jexnjzoqmkTppEJwyYU7Ev8wv4TncWZoqBAS3GZ59nh5tj973vseIS9tYqQ1SRpBbCESmvEoRRgfGZPj7Cc1k3WYzvdjtX8k3hzL4wte_IEfoj1w8yOjnq_9AJ_ZfPcXaaj3wPamWUlXCI6b9qtCIZzwsOhDSyDFUDuDfxHnkQ9D39A2dtnuZvrNZekS1rxsMnkRytZr0fAW0U0tggnK6c6iMjvw5TeCx_-p5m1ycw1UaT9o1h1yxZV3yfW9Jj7cPfJ18HkWfGJov6yK1fL7YTU9dWf08KTIvTE1LUo6mfuD_Gq1_LG-QtmyOCmCBR49mtVW7_WRHUX4TEflavntY3E-rfMEr5JzeoCT_HyBn4EmFtt9MhkOJnv70TqUQwQSix0ZbnVsPBOO4MrK1KWQyJQBOKOMNQx6NsbNlAEbC92VziQKhAKTxrnVwvIHZKuclu4RoQxyFwOzPdwWCG16xomekhoUB2O6GjokajoygzXNuY-28SkLBM0s8y2atS3aIa9a-Vkg-Pij5ItGLzJsav9jRZduujjLEAQrvxMVKPMw6EmbF6pgIhFTd0iyoUGtgOf33nyD3VDzfCMyTeNUdgirFeQvxcv649Ggvdv-l0TPybWD18Ps3Wj89jG54R97r8uYPyFb1XzhniL8qsyzeoT9BK1tLVc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+Anti-Stokes+Shifting+in+Triplet%E2%80%93Triplet+Annihilation+Upconversion+for+In+Vivo+Anticancer-Prodrug+Activation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Ling&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+He&rft.au=Huang%2C+Kai&rft.date=2017-11-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=46&rft.spage=14400&rft.epage=14404&rft_id=info:doi/10.1002%2Fanie.201704430&rft_id=info%3Apmid%2F28875533&rft.externalDocID=PMC6239195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |