Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpret...

Full description

Saved in:
Bibliographic Details
Published inSeminars in cancer biology Vol. 72; pp. 214 - 225
Main Authors Sechopoulos, Ioannis, Teuwen, Jonas, Mann, Ritse
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000′s. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
AbstractList Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000′s. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
Author Teuwen, Jonas
Sechopoulos, Ioannis
Mann, Ritse
Author_xml – sequence: 1
  givenname: Ioannis
  surname: Sechopoulos
  fullname: Sechopoulos, Ioannis
  email: ioannis.sechopoulos@radboudumc.nl
  organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands
– sequence: 2
  givenname: Jonas
  surname: Teuwen
  fullname: Teuwen, Jonas
  email: jonas.teuwen@radboudumc.nl
  organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands
– sequence: 3
  givenname: Ritse
  surname: Mann
  fullname: Mann, Ritse
  email: ritse.mann@radboudumc.nl
  organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32531273$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1qGzEUhUVJaBK3r9Bq2c1MJY1GMy6UYkKSBgJdtIXuhH6uHLkzI1eSA377aLCbRVZe6aJ7zid0zhU6m8IECH2kpKaEis-bOsFo1GQg1owwUhNRE8LeoEtKlqJqREvO5pnzqu2Wfy7QVUobQsiSU_4WXTSsbSjrmku0W8XsnTdeDdhPGYbBr6FgsQsR6wgqZXx4B1vIYLIPUxHiUY1jWEe1fdxjNVls_drnwjhachhD2k_5EZJPX_DPrDLg4HC5wCrmd-jcqSHB--O5QL9vb35df68eftzdX68eKtNylisAZrV1oF3fcmttxw2DXlGjO6sFZ0Q1gnSNUL1WtNOdsG3nFG16RzUVXDQL9OnA3cbwbwcpy9EnUz6pJgi7JBmnbNn3fYligT4cpTs9gpXb6EcV9_J_VEXQHQQmhpQiuBcJJXIuRW7kSylyLkUSIUspxfn1ldOUrOYkc1R-OMG_OvihRPXkyzYZP5dkfSyNSBv8CYxvrxhm8JM3avgL-5MIzy4Xxig
CitedBy_id crossref_primary_10_3390_life14111451
crossref_primary_10_3390_app14145968
crossref_primary_10_1007_s10278_023_00943_5
crossref_primary_10_46268_jsu_2023_10_1_8
crossref_primary_10_1016_j_csbj_2023_08_012
crossref_primary_10_32604_csse_2023_028808
crossref_primary_10_1002_path_5966
crossref_primary_10_3389_fonc_2023_1110657
crossref_primary_10_3390_molecules25204864
crossref_primary_10_1016_j_jmir_2023_04_001
crossref_primary_10_1016_j_dsx_2024_103003
crossref_primary_10_1038_s41746_024_01032_9
crossref_primary_10_1007_s11042_020_10131_0
crossref_primary_10_3389_fonc_2021_600557
crossref_primary_10_1007_s00330_024_10681_z
crossref_primary_10_1007_s10462_023_10543_y
crossref_primary_10_1177_08465371241301957
crossref_primary_10_1177_21925682221098672
crossref_primary_10_1093_bjr_tqae022
crossref_primary_10_3390_jimaging8090231
crossref_primary_10_1007_s12553_022_00693_4
crossref_primary_10_7759_cureus_57619
crossref_primary_10_3389_fdata_2025_1529848
crossref_primary_10_59786_bmtj_211
crossref_primary_10_3389_fonc_2022_854927
crossref_primary_10_1016_j_semcancer_2023_03_006
crossref_primary_10_3389_fmed_2023_1341259
crossref_primary_10_1007_s10544_025_00734_5
crossref_primary_10_1016_j_imed_2022_04_002
crossref_primary_10_1109_ACCESS_2024_3443520
crossref_primary_10_1109_TMI_2021_3129068
crossref_primary_10_1007_s11604_024_01702_4
crossref_primary_10_31083_j_ceog4911237
crossref_primary_10_3390_tomography10050055
crossref_primary_10_1007_s11517_022_02582_4
crossref_primary_10_1093_jbi_wbac012
crossref_primary_10_3390_diagnostics13010117
crossref_primary_10_1007_s40495_023_00335_x
crossref_primary_10_1177_02841851231176272
crossref_primary_10_1186_s13058_022_01509_z
crossref_primary_10_1007_s00129_022_04997_4
crossref_primary_10_1016_j_eswa_2023_120282
crossref_primary_10_3390_app14072680
crossref_primary_10_1109_JSEN_2024_3520358
crossref_primary_10_1016_j_ejrad_2023_110913
crossref_primary_10_12677_acm_2025_152503
crossref_primary_10_1088_1361_6560_ad092b
crossref_primary_10_53065_kaznmu_2024_71_4_004
crossref_primary_10_1016_j_cmpb_2024_108101
crossref_primary_10_3390_diagnostics13132175
crossref_primary_10_1007_s00330_023_10181_6
crossref_primary_10_7717_peerj_cs_2226
crossref_primary_10_1615_CritRevOncog_v29_i2_30
crossref_primary_10_3390_app12073273
crossref_primary_10_1007_s11831_023_10052_9
crossref_primary_10_2478_raon_2021_0040
crossref_primary_10_1016_j_xcrm_2023_101131
crossref_primary_10_1053_j_sult_2022_12_002
crossref_primary_10_3390_cancers17020197
crossref_primary_10_1007_s12020_024_03808_1
crossref_primary_10_1002_jmri_28731
crossref_primary_10_1186_s12880_024_01241_4
crossref_primary_10_1016_j_bspc_2024_107410
crossref_primary_10_1016_j_jacr_2022_06_019
crossref_primary_10_3390_cancers15123069
crossref_primary_10_3389_fsens_2024_1399441
crossref_primary_10_1016_j_asej_2024_102734
crossref_primary_10_1016_j_ejrad_2022_110631
crossref_primary_10_1148_ryai_220159
crossref_primary_10_1186_s12911_023_02404_z
crossref_primary_10_48175_IJARSCT_1880
crossref_primary_10_3390_diagnostics14222568
crossref_primary_10_1108_TECHS_12_2021_0029
crossref_primary_10_61186_ijrr_22_1_49
crossref_primary_10_1177_02841851231200785
crossref_primary_10_1016_S1470_2045_23_00298_X
crossref_primary_10_1088_1361_6560_acfade
crossref_primary_10_1038_s41598_024_62324_4
crossref_primary_10_3390_cancers14194803
crossref_primary_10_1016_j_tjog_2024_01_037
crossref_primary_10_3390_jimaging7090190
crossref_primary_10_1016_j_eclinm_2023_102041
crossref_primary_10_1016_j_glmedi_2024_100120
crossref_primary_10_5812_iranjradiol_120758
crossref_primary_10_1016_j_cbi_2023_110780
crossref_primary_10_1093_jbi_wbae062
crossref_primary_10_1016_j_compbiomed_2024_109285
crossref_primary_10_1016_j_tranon_2021_101241
crossref_primary_10_3389_fonc_2023_1213045
crossref_primary_10_31083_j_fbl2708224
crossref_primary_10_1371_journal_pone_0282350
crossref_primary_10_1177_0969141321998718
crossref_primary_10_1186_s43055_023_01129_3
crossref_primary_10_1186_s43055_024_01353_5
crossref_primary_10_1148_rg_220060
crossref_primary_10_3389_fcvm_2024_1354517
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_1016_j_semcancer_2023_02_009
crossref_primary_10_61634_2782_3024_2023_12_26_35
crossref_primary_10_1016_j_engappai_2025_110318
crossref_primary_10_1016_j_femme_2023_12_002
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_1007_s00261_024_04641_w
crossref_primary_10_31590_ejosat_1312965
crossref_primary_10_1186_s43055_022_00734_y
crossref_primary_10_3390_cancers14194704
crossref_primary_10_1186_s13058_023_01687_4
crossref_primary_10_1007_s12194_024_00842_6
crossref_primary_10_3390_jimaging8040088
crossref_primary_10_3390_diagnostics15010083
crossref_primary_10_3390_app13127183
crossref_primary_10_1186_s41747_023_00384_3
crossref_primary_10_1016_j_trac_2023_117033
crossref_primary_10_1016_j_bj_2023_100662
crossref_primary_10_1016_j_drup_2022_100811
crossref_primary_10_1080_08839514_2021_2001177
crossref_primary_10_1088_1361_6560_ad02d7
crossref_primary_10_3389_fonc_2023_1152622
crossref_primary_10_1016_j_acra_2024_07_027
crossref_primary_10_1002_tox_24165
crossref_primary_10_1016_j_senol_2024_100594
crossref_primary_10_1259_bjro_20220018
crossref_primary_10_1016_j_health_2023_100298
crossref_primary_10_1093_bjrai_ubae016
crossref_primary_10_18137_cardiometry_2022_21_5054
crossref_primary_10_1021_acsbiomaterials_2c00607
crossref_primary_10_12660_cgpc_v29_90669
crossref_primary_10_2217_fon_2023_0365
crossref_primary_10_1186_s40537_024_00936_3
crossref_primary_10_1007_s12652_024_04835_6
crossref_primary_10_1089_omi_2024_0175
crossref_primary_10_1016_j_clbc_2023_07_002
crossref_primary_10_31436_iiumej_v23i1_1825
crossref_primary_10_3390_biomedinformatics4010012
crossref_primary_10_1002_cpe_6629
crossref_primary_10_1080_14737140_2021_1951240
Cites_doi 10.1158/1055-9965.EPI-13-0320
10.1118/1.2436974
10.1148/radiol.2443061478
10.1148/radiol.2015142566
10.1016/S1470-2045(18)30521-7
10.1148/radiol.2019182716
10.1148/radiol.15142009
10.1016/S1470-2045(16)30101-2
10.1109/ICASSP.2016.7471811
10.1258/rsmacta.41.1.52
10.1148/radiol.2018171361
10.1118/1.4967345
10.1016/j.cmpb.2018.01.017
10.1148/radiol.2293021171
10.1148/radiol.2018181371
10.1016/j.media.2018.03.006
10.1007/s00330-013-2876-0
10.1007/s00330-018-5886-0
10.1016/S1470-2045(13)70134-7
10.1016/S2589-7500(20)30003-0
10.1148/radiol.2303030254
10.1148/radiology.219.1.r01ap16192
10.1148/radiol.2019182908
10.1148/radiol.2019190872
10.1148/radiol.12121373
10.2214/AJR.12.10419
10.1080/02841850802563269
10.1016/j.ejrad.2017.09.013
10.1117/12.2077516
10.1148/radiology.205.2.9356620
10.1038/nature14539
10.1148/radiol.2421050684
10.1117/12.708327
10.1093/jnci/djy222
10.1088/1361-6560/aabb5b
10.1038/s41586-019-1799-6
10.1056/NEJMoa066099
10.1097/RLI.0000000000000358
10.1158/1078-0432.CCR-18-1115
10.1056/NEJMoa052911
10.1148/radiology.215.2.r00ma15554
10.2214/AJR.17.18185
10.1016/j.diii.2019.08.005
10.1001/jamainternmed.2015.5231
10.1117/12.2217045
10.1109/RBME.2012.2232289
10.1088/1361-6560/aa93d4
10.1118/1.4791643
10.1016/j.artmed.2019.101722
10.1148/radiol.2203001282
10.1016/j.acra.2018.06.019
10.1109/TNB.2018.2845103
10.1007/BF02614935
10.1109/TMI.2016.2528162
10.1007/s00330-015-3803-3
10.2214/AJR.18.20391
10.1088/0031-9155/61/19/7092
10.1016/j.media.2017.07.005
10.1148/radiol.2491072025
10.1148/radiol.2321031624
10.1097/00004424-199002000-00006
10.1148/radiol.2322030034
10.1016/j.acra.2011.10.026
10.1016/j.media.2016.07.007
10.3322/caac.21492
10.2214/ajr.180.2.1800343
10.1016/j.ejrad.2005.04.007
10.1102/1470-7330.2005.0018
10.1016/j.clinimag.2018.08.014
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.semcancer.2020.06.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-3650
EndPage 225
ExternalDocumentID 32531273
10_1016_j_semcancer_2020_06_002
S1044579X20301358
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IH2
IHE
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UDS
UNMZH
XPP
Z5R
ZMT
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
NCXOZ
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c542t-ee2dbdfebf854ddd74c2e8a1cb7db6420a360736a8ba17b76d57fa138f1b16463
IEDL.DBID .~1
ISSN 1044-579X
1096-3650
IngestDate Fri Jul 11 12:09:10 EDT 2025
Thu Apr 03 06:56:43 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Tue Jul 01 02:43:44 EDT 2025
Fri Feb 23 02:46:29 EST 2024
Tue Aug 26 20:26:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CADe
CC
CNN
Tomosynthesis
ROC
AI
DM
Mammography
Breast cancer
CADx
AUC
PoM
LoS
MLO
Screening
DBT
Artificial intelligence
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-ee2dbdfebf854ddd74c2e8a1cb7db6420a360736a8ba17b76d57fa138f1b16463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1044579X20301358
PMID 32531273
PQID 2412988827
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2412988827
pubmed_primary_32531273
crossref_primary_10_1016_j_semcancer_2020_06_002
crossref_citationtrail_10_1016_j_semcancer_2020_06_002
elsevier_sciencedirect_doi_10_1016_j_semcancer_2020_06_002
elsevier_clinicalkey_doi_10_1016_j_semcancer_2020_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Seminars in cancer biology
PublicationTitleAlternate Semin Cancer Biol
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hofvind, Hovda, Holen (bib0145) 2018; 287
Tahmoush, Samet (bib0165) 2007; 6514
van Schie, Wallis, Leifland, Danielsson, Karssemeijer (bib0330) 2013; 40
Yala, Schuster, Miles, Barzilay, Lehman (bib0410) 2019; 293
(bib0105) 2011
Rodriguez-Ruiz, Lång, Gubern-Merida (bib0350) 2019; 111
(bib0050) 2019
(bib0060) 2017
Gur, Bandos, Cohen (bib0355) 2008; 249
Sumkin, Holbert, Herrmann (bib0015) 2003; 180
(bib0395) 2019
Skaane, Hofvind, Skjennald (bib0095) 2007; 244
Ciatto, Houssami, Bernardi (bib0120) 2013; 14
Zhang, Zhang, Han (bib0320) 2018; 17
Cleland, Mainprize, Alonzo-Proulx (bib0445) 2019; 10950
(bib0210) 2015
Kooi, Karssemeijer (bib0305) 2017; 10134
Kooi, Litjens, van Ginneken (bib0255) 2017; 35
Niklason, Christian, Niklason (bib0115) 1997; 205
Hamidinekoo, Denton, Rampun, Honnor, Zwiggelaar (bib0315) 2018; 47
Ganesan, Acharya, Chua, Min, Abraham, Ng (bib0150) 2013; 6
Benedikt, Boatsman, Swann, Kirkpatrick, Toledano (bib0385) 2017; 210
Yala, Lehman, Schuster, Portnoi, Barzilay (bib0430) 2019; 292
Thomassin-Naggara, Balleyguier, Ceugnart (bib0075) 2019; 100
Thurfjell, Vitak, Azavedo, Svane, Thurfjell (bib0020) 2000; 41
Al-masni, Al-antari, Park (bib0265) 2018; 157
Buelow, Heese, Grewer, Kutra, Wiemker (bib0270) 2015; 9416
Litjens, Kooi, Bejnordi (bib0240) 2017; 42
Healy, O’Brien, Knox (bib0045) 2020
Gilbert, Tucker, Gillan (bib0135) 2015; 277
Ikeda, Birdwell, O’Shaughnessy, Sickles, Brenner (bib0215) 2004; 230
Qu, Yue, Shang, Yang, Zwiggelaar, Shen (bib0440) 2019; 100
Skaane, Young, Skjennald (bib0085) 2003; 229
Aboutalib, Mohamed, Berg, Zuley, Sumkin, Wu (bib0290) 2018; 24
Wang, Li, Xu, Liu, Lederman, Zheng (bib0170) 2012; 19
Katzen, Dodelzon (bib0225) 2018; 52
Rodríguez-Ruiz, Krupinski, Mordang (bib0380) 2018; 290
Freer, Ulissey (bib0185) 2001; 220
Skaane (bib0100) 2009; 50
Warren Burhenne, Wood, D’Orsi (bib0180) 2000; 215
McKinney, Sieniek, Godbole (bib0370) 2020; 577
Skaane, Skjennald (bib0090) 2004; 232
Roelofs, Karssemeijer, Wedekind (bib0025) 2007; 242
Zackrisson, Lång, Rosso (bib0055) 2018; 19
Skaane, Bandos, Gullien (bib0140) 2013; 267
LeCun, Bengio, Hinton (bib0230) 2015; 521
Schaffter, Buist, Lee (bib0365) 2020; 3
Séradour, Heid, Estève (bib0070) 2013; 202
Destounis, DiNitto, Logan-Young, Bonaccio, Zuley, Willison (bib0190) 2004; 232
Becker, Marcon, Ghafoor, Wurnig, Frauenfelder, Boss (bib0345) 2017; 52
Lehman, Wellman, Buist, Kerlikowske, Tosteson, Miglioretti (bib0200) 2015; 175
Huynh, Li, Giger (bib0285) 2016; 3
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib0005) 2018; 68
Castellino (bib0175) 2005; 5
(bib0205) 2019
Samala, Chan, Hadjiiski, Helvie, Richter, Cha (bib0295) 2018; 63
Fotin, Yin, Haldankar, Hoffmeister, Periaswamy (bib0340) 2016; 9785
Mendel, Li, Sheth, Giger (bib0335) 2019; 26
Lotter, Sorensen, Cox (bib0245) 2017
(bib0235) 2012
Berbaum, Franken, Dorfman (bib0415) 1990; 25
Chae, Kim, Jeong, Chae, Lee, Choi (bib0390) 2019; 29
Lång, Dustler, Dahlblom, Andersson, Zackrisson (bib0405) 2019
Berbaum, El-Khoury, Franken (bib0420) 1994; 1
Kooi, Karssemeijer (bib0310) 2017; 4
Rodriguez-Ruiz, Lång, Gubern-Merida (bib0400) 2019; 29
Pisano, Gatsonis, Hendrick (bib0080) 2005; 353
Conant, Toledano, Periaswamy (bib0360) 2019; 1
Bosmans, De Hauwere, Lemmens (bib0065) 2013; 23
van Engeland, Karssemeijer (bib0155) 2007; 34
Kim, Kim, Han (bib0250) 2018; 8
Shin, Roth, Gao (bib0275) 2016; 35
Samala, Chan, Hadjiiski, Helvie (bib0220) 2016; 61
Samala, Chan, Hadjiiski, Cha, Helvie (bib0260) 2016; 9785
Kim, Kim, Han (bib0375) 2020; 2
Bernardi, Macaskill, Pellegrini (bib0125) 2016; 17
Fenton, Taplin, Carney (bib0195) 2007; 356
Samala, Chan, Hadjiiski, Helvie, Cha, Richter (bib0280) 2017; 62
Arieno, Chan, Destounis (bib0425) 2018; 212
Lång, Andersson, Rosso, Tingberg, Timberg, Zackrisson (bib0130) 2016; 26
Posso, Puig, Carles, Rué, Canelo-Aybar, Bonfill (bib0040) 2017; 96
Samala, Chan, Hadjiiski, Helvie, Wei, Cha (bib0325) 2016; 43
Varela, Karssemeijer, Hendriks, Holland (bib0030) 2005; 56
Hakim, Catullo, Chough (bib0035) 2015; 276
Birdwell, Ikeda, O’Shaughnessy, Sickles (bib0110) 2001; 219
Tahmoush, Samet (bib0160) 2006
Kim, Kim, Ro (bib0300) 2016
Paci, Broeders, Hofvind, Puliti, Duffy (bib0010) 2014; 23
Dembrower, Liu, Azizpour (bib0435) 2019; 294
Hakim (10.1016/j.semcancer.2020.06.002_bib0035) 2015; 276
Litjens (10.1016/j.semcancer.2020.06.002_bib0240) 2017; 42
Samala (10.1016/j.semcancer.2020.06.002_bib0325) 2016; 43
Skaane (10.1016/j.semcancer.2020.06.002_bib0090) 2004; 232
Kim (10.1016/j.semcancer.2020.06.002_bib0300) 2016
Gur (10.1016/j.semcancer.2020.06.002_bib0355) 2008; 249
Al-masni (10.1016/j.semcancer.2020.06.002_bib0265) 2018; 157
Lång (10.1016/j.semcancer.2020.06.002_bib0405) 2019
Tahmoush (10.1016/j.semcancer.2020.06.002_bib0160) 2006
van Engeland (10.1016/j.semcancer.2020.06.002_bib0155) 2007; 34
Schaffter (10.1016/j.semcancer.2020.06.002_bib0365) 2020; 3
Thurfjell (10.1016/j.semcancer.2020.06.002_bib0020) 2000; 41
Samala (10.1016/j.semcancer.2020.06.002_bib0220) 2016; 61
Posso (10.1016/j.semcancer.2020.06.002_bib0040) 2017; 96
Lång (10.1016/j.semcancer.2020.06.002_bib0130) 2016; 26
LeCun (10.1016/j.semcancer.2020.06.002_bib0230) 2015; 521
Samala (10.1016/j.semcancer.2020.06.002_bib0260) 2016; 9785
Kooi (10.1016/j.semcancer.2020.06.002_bib0255) 2017; 35
Conant (10.1016/j.semcancer.2020.06.002_bib0360) 2019; 1
Rodríguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0380) 2018; 290
Aboutalib (10.1016/j.semcancer.2020.06.002_bib0290) 2018; 24
Kooi (10.1016/j.semcancer.2020.06.002_bib0305) 2017; 10134
Hamidinekoo (10.1016/j.semcancer.2020.06.002_bib0315) 2018; 47
Benedikt (10.1016/j.semcancer.2020.06.002_bib0385) 2017; 210
Samala (10.1016/j.semcancer.2020.06.002_bib0295) 2018; 63
Qu (10.1016/j.semcancer.2020.06.002_bib0440) 2019; 100
(10.1016/j.semcancer.2020.06.002_bib0235) 2012
(10.1016/j.semcancer.2020.06.002_bib0060) 2017
Huynh (10.1016/j.semcancer.2020.06.002_bib0285) 2016; 3
Wang (10.1016/j.semcancer.2020.06.002_bib0170) 2012; 19
Pisano (10.1016/j.semcancer.2020.06.002_bib0080) 2005; 353
Fotin (10.1016/j.semcancer.2020.06.002_bib0340) 2016; 9785
Shin (10.1016/j.semcancer.2020.06.002_bib0275) 2016; 35
Arieno (10.1016/j.semcancer.2020.06.002_bib0425) 2018; 212
Lehman (10.1016/j.semcancer.2020.06.002_bib0200) 2015; 175
Zhang (10.1016/j.semcancer.2020.06.002_bib0320) 2018; 17
Kooi (10.1016/j.semcancer.2020.06.002_bib0310) 2017; 4
Ganesan (10.1016/j.semcancer.2020.06.002_bib0150) 2013; 6
Cleland (10.1016/j.semcancer.2020.06.002_bib0445) 2019; 10950
van Schie (10.1016/j.semcancer.2020.06.002_bib0330) 2013; 40
Rodriguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0400) 2019; 29
Buelow (10.1016/j.semcancer.2020.06.002_bib0270) 2015; 9416
(10.1016/j.semcancer.2020.06.002_bib0105) 2011
Zackrisson (10.1016/j.semcancer.2020.06.002_bib0055) 2018; 19
Thomassin-Naggara (10.1016/j.semcancer.2020.06.002_bib0075) 2019; 100
Bernardi (10.1016/j.semcancer.2020.06.002_bib0125) 2016; 17
Samala (10.1016/j.semcancer.2020.06.002_bib0280) 2017; 62
Ikeda (10.1016/j.semcancer.2020.06.002_bib0215) 2004; 230
Castellino (10.1016/j.semcancer.2020.06.002_bib0175) 2005; 5
Skaane (10.1016/j.semcancer.2020.06.002_bib0085) 2003; 229
Warren Burhenne (10.1016/j.semcancer.2020.06.002_bib0180) 2000; 215
Skaane (10.1016/j.semcancer.2020.06.002_bib0095) 2007; 244
Berbaum (10.1016/j.semcancer.2020.06.002_bib0415) 1990; 25
Kim (10.1016/j.semcancer.2020.06.002_bib0250) 2018; 8
Roelofs (10.1016/j.semcancer.2020.06.002_bib0025) 2007; 242
Becker (10.1016/j.semcancer.2020.06.002_bib0345) 2017; 52
Mendel (10.1016/j.semcancer.2020.06.002_bib0335) 2019; 26
Freer (10.1016/j.semcancer.2020.06.002_bib0185) 2001; 220
Sumkin (10.1016/j.semcancer.2020.06.002_bib0015) 2003; 180
Hofvind (10.1016/j.semcancer.2020.06.002_bib0145) 2018; 287
Ciatto (10.1016/j.semcancer.2020.06.002_bib0120) 2013; 14
Dembrower (10.1016/j.semcancer.2020.06.002_bib0435) 2019; 294
Bosmans (10.1016/j.semcancer.2020.06.002_bib0065) 2013; 23
(10.1016/j.semcancer.2020.06.002_bib0205) 2019
Katzen (10.1016/j.semcancer.2020.06.002_bib0225) 2018; 52
(10.1016/j.semcancer.2020.06.002_bib0395) 2019
Séradour (10.1016/j.semcancer.2020.06.002_bib0070) 2013; 202
Healy (10.1016/j.semcancer.2020.06.002_bib0045) 2020
Birdwell (10.1016/j.semcancer.2020.06.002_bib0110) 2001; 219
Varela (10.1016/j.semcancer.2020.06.002_bib0030) 2005; 56
Skaane (10.1016/j.semcancer.2020.06.002_bib0140) 2013; 267
(10.1016/j.semcancer.2020.06.002_bib0210) 2015
(10.1016/j.semcancer.2020.06.002_bib0050) 2019
Yala (10.1016/j.semcancer.2020.06.002_bib0430) 2019; 292
Bray (10.1016/j.semcancer.2020.06.002_bib0005) 2018; 68
Niklason (10.1016/j.semcancer.2020.06.002_bib0115) 1997; 205
Lotter (10.1016/j.semcancer.2020.06.002_bib0245) 2017
McKinney (10.1016/j.semcancer.2020.06.002_bib0370) 2020; 577
Destounis (10.1016/j.semcancer.2020.06.002_bib0190) 2004; 232
Paci (10.1016/j.semcancer.2020.06.002_bib0010) 2014; 23
Yala (10.1016/j.semcancer.2020.06.002_bib0410) 2019; 293
Gilbert (10.1016/j.semcancer.2020.06.002_bib0135) 2015; 277
Skaane (10.1016/j.semcancer.2020.06.002_bib0100) 2009; 50
Fenton (10.1016/j.semcancer.2020.06.002_bib0195) 2007; 356
Kim (10.1016/j.semcancer.2020.06.002_bib0375) 2020; 2
Tahmoush (10.1016/j.semcancer.2020.06.002_bib0165) 2007; 6514
Rodriguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0350) 2019; 111
Berbaum (10.1016/j.semcancer.2020.06.002_bib0420) 1994; 1
Chae (10.1016/j.semcancer.2020.06.002_bib0390) 2019; 29
References_xml – volume: 17
  start-page: 237
  year: 2018
  end-page: 242
  ident: bib0320
  article-title: Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks
  publication-title: IEEE Trans. Nanobioscience
– start-page: 169
  year: 2017
  end-page: 177
  ident: bib0245
  article-title: A multi-scale CNN and curriculum learning strategy for mammogram classification
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0275
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 353
  start-page: 1
  year: 2005
  end-page: 11
  ident: bib0080
  article-title: Diagnostic performance of digital versus film mammography for breast-cancer screening
  publication-title: N. Engl. J. Med.
– volume: 3
  year: 2020
  ident: bib0365
  article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms
  publication-title: JAMA Netw Open. American Medical Association
– year: 2012
  ident: bib0235
  article-title: ImageNet Large Scale Visual Recognition Competition
– volume: 6514
  start-page: 65141Q
  year: 2007
  ident: bib0165
  article-title: An improved asymmetry measure to detect breast cancer. Medical imaging 2007: computer-aided diagnosis
  publication-title: Proceedings of SPIE
– volume: 215
  start-page: 554
  year: 2000
  end-page: 562
  ident: bib0180
  article-title: Potential contribution of computer-aided detection to the sensitivity of screening mammography
  publication-title: Radiology.
– volume: 202
  start-page: 229
  year: 2013
  end-page: 236
  ident: bib0070
  article-title: Comparison of direct digital mammography, computed radiography, and film-screen in the french national breast Cancer Screening program
  publication-title: Am. J. Roentgenol.
– volume: 267
  start-page: 47
  year: 2013
  end-page: 56
  ident: bib0140
  article-title: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program
  publication-title: Radiology.
– volume: 63
  start-page: 095005
  year: 2018
  ident: bib0295
  article-title: Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0230
  article-title: Deep learning
  publication-title: Nature
– start-page: 221
  year: 2006
  end-page: 228
  ident: bib0160
  article-title: Image similarity and asymmetry to improve computer-aided detection of breast cancer
  publication-title: Proceedings of International Workshop of Digital Mammography
– volume: 24
  start-page: 5902
  year: 2018
  end-page: 5909
  ident: bib0290
  article-title: Deep learning to distinguish recalled but benign mammography images in breast Cancer screening
  publication-title: Clin. Cancer Res.
– volume: 220
  start-page: 781
  year: 2001
  end-page: 786
  ident: bib0185
  article-title: Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center
  publication-title: Radiology
– volume: 276
  start-page: 65
  year: 2015
  end-page: 72
  ident: bib0035
  article-title: Effect of the availability of prior full-field digital mammography and digital breast tomosynthesis images on the interpretation of mammograms
  publication-title: Radiology
– volume: 50
  start-page: 3
  year: 2009
  end-page: 14
  ident: bib0100
  article-title: Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review
  publication-title: Acta radiol.
– volume: 2
  start-page: e138
  year: 2020
  end-page: e148
  ident: bib0375
  article-title: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study
  publication-title: The Lancet Digital Health.
– volume: 41
  start-page: 52
  year: 2000
  end-page: 56
  ident: bib0020
  article-title: Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms
  publication-title: Acta radiol.
– volume: 277
  start-page: 697
  year: 2015
  end-page: 706
  ident: bib0135
  article-title: Accuracy of digital breast tomosynthesis for depicting breast Cancer subgroups in a UK retrospective reading study (TOMMY trial)
  publication-title: Radiology.
– year: 2019
  ident: bib0395
  article-title: The Breast Imaging and Diagnostic Workforce in the United Kingdom | the Royal College of Radiologists
– volume: 242
  start-page: 70
  year: 2007
  end-page: 77
  ident: bib0025
  article-title: Importance of comparison of current and prior mammograms in breast Cancer screening
  publication-title: Radiology
– volume: 356
  start-page: 1399
  year: 2007
  end-page: 1409
  ident: bib0195
  article-title: Influence of computer-aided detection on performance of screening mammography
  publication-title: N. Engl. J. Med.
– volume: 157
  start-page: 85
  year: 2018
  end-page: 94
  ident: bib0265
  article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
  publication-title: Comput. Methods Programs Biomed.
– start-page: 181454
  year: 2020
  ident: bib0045
  article-title: Consensus review of discordant imaging findings after the introduction of digital screening mammography: irish national breast Cancer Screening program experience
  publication-title: Radiology.
– volume: 100
  start-page: 553
  year: 2019
  end-page: 566
  ident: bib0075
  article-title: Artificial intelligence and breast screening: French Radiology Community position paper
  publication-title: Diagn. Interv. Imaging
– volume: 26
  start-page: 184
  year: 2016
  end-page: 190
  ident: bib0130
  article-title: Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study
  publication-title: Eur. Radiol.
– volume: 3
  start-page: 034501
  year: 2016
  ident: bib0285
  article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
  publication-title: JMI.
– volume: 52
  start-page: 305
  year: 2018
  end-page: 309
  ident: bib0225
  article-title: A review of computer aided detection in mammography
  publication-title: Clin. Imaging
– volume: 43
  start-page: 6654
  year: 2016
  end-page: 6666
  ident: bib0325
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
– volume: 230
  start-page: 811
  year: 2004
  end-page: 819
  ident: bib0215
  article-title: Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography
  publication-title: Radiology.
– volume: 26
  start-page: 735
  year: 2019
  end-page: 743
  ident: bib0335
  article-title: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography
  publication-title: Acad. Radiol.
– volume: 23
  start-page: 2891
  year: 2013
  end-page: 2898
  ident: bib0065
  article-title: Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography
  publication-title: Eur. Radiol.
– volume: 229
  start-page: 877
  year: 2003
  end-page: 884
  ident: bib0085
  article-title: Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study
  publication-title: Radiology
– volume: 29
  start-page: 4825
  year: 2019
  end-page: 4832
  ident: bib0400
  article-title: Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence?
  publication-title: A feasibility study. Eur Radiol.
– year: 2019
  ident: bib0405
  article-title: Can Artificial Intelligence Identify Normal Mammograms in Screening?
– volume: 244
  start-page: 708
  year: 2007
  end-page: 717
  ident: bib0095
  article-title: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study
  publication-title: Radiology
– volume: 219
  start-page: 192
  year: 2001
  end-page: 202
  ident: bib0110
  article-title: Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection
  publication-title: Radiology.
– volume: 249
  start-page: 47
  year: 2008
  end-page: 53
  ident: bib0355
  article-title: The “Laboratory” effect: comparing radiologists’ performance and variability during prospective clinical and laboratory mammography interpretations
  publication-title: Radiology
– volume: 100
  start-page: 101722
  year: 2019
  ident: bib0440
  article-title: Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection
  publication-title: Artif. Intell. Med.
– volume: 9785
  start-page: 97850X
  year: 2016
  ident: bib0340
  article-title: Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches
  publication-title: Proceedings of SPIE
– volume: 111
  start-page: 916
  year: 2019
  end-page: 922
  ident: bib0350
  article-title: Stand-alone artificial intelligence for breast Cancer detection in mammography: comparison with 101 radiologists
  publication-title: J. Natl. Cancer Inst.
– volume: 19
  start-page: 1493
  year: 2018
  end-page: 1503
  ident: bib0055
  article-title: One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study
  publication-title: Lancet Oncol.
– volume: 4
  start-page: 044501
  year: 2017
  ident: bib0310
  article-title: Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks
  publication-title: JMI.
– volume: 40
  start-page: 041902
  year: 2013
  ident: bib0330
  article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms
  publication-title: Med. Phys.
– volume: 10950
  start-page: 109501X
  year: 2019
  ident: bib0445
  article-title: Use of convolutional neural networks to predict risk of masking by mammographic density
  publication-title: Proceedings of SPIE
– volume: 17
  start-page: 1105
  year: 2016
  end-page: 1113
  ident: bib0125
  article-title: Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study
  publication-title: Lancet Oncol.
– volume: 34
  start-page: 898
  year: 2007
  end-page: 905
  ident: bib0155
  article-title: Combining two mammographic projections in a computer aided mass detection method
  publication-title: Med. Phys.
– volume: 232
  start-page: 197
  year: 2004
  end-page: 204
  ident: bib0090
  article-title: Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program—the Oslo II study
  publication-title: Radiology
– volume: 62
  start-page: 8894
  year: 2017
  end-page: 8908
  ident: bib0280
  article-title: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms
  publication-title: Phys. Med. Biol.
– volume: 293
  start-page: 38
  year: 2019
  end-page: 46
  ident: bib0410
  article-title: A deep learning model to triage screening mammograms: a simulation study
  publication-title: Radiology.
– volume: 23
  start-page: 1159
  year: 2014
  end-page: 1163
  ident: bib0010
  article-title: European breast Cancer service screening outcomes: a first balance sheet of the benefits and harms
  publication-title: Cancer Epidemiol. Biomark. Prev.
– volume: 210
  start-page: 685
  year: 2017
  end-page: 694
  ident: bib0385
  article-title: Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study
  publication-title: Am. J. Roentgenol.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0250
  article-title: Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study
  publication-title: Sci. Rep.
– volume: 9785
  start-page: 97850
  year: 2016
  ident: bib0260
  article-title: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
  publication-title: Proceedings of SPIE
– start-page: 927
  year: 2016
  end-page: 931
  ident: bib0300
  article-title: Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 61
  start-page: 7092
  year: 2016
  end-page: 7112
  ident: bib0220
  article-title: Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
– volume: 287
  start-page: 787
  year: 2018
  end-page: 794
  ident: bib0145
  article-title: Digital breast tomosynthesis and synthetic 2D mammography versus digital mammography: evaluation in a population-based screening program
  publication-title: Radiology
– volume: 292
  start-page: 60
  year: 2019
  end-page: 66
  ident: bib0430
  article-title: A deep learning mammography-based model for improved breast Cancer risk prediction
  publication-title: Radiology.
– volume: 56
  start-page: 248
  year: 2005
  end-page: 255
  ident: bib0030
  article-title: Use of prior mammograms in the classification of benign and malignant masses
  publication-title: Eur. J. Radiol.
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib0005
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
– volume: 14
  start-page: 583
  year: 2013
  end-page: 589
  ident: bib0120
  article-title: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study
  publication-title: Lancet Oncol.
– volume: 175
  start-page: 1828
  year: 2015
  end-page: 1837
  ident: bib0200
  article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection
  publication-title: JAMA Intern. Med.
– volume: 10134
  start-page: 101341J
  year: 2017
  ident: bib0305
  article-title: Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses
  publication-title: Proceedings of SPIE
– year: 2017
  ident: bib0060
  article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement (U01CA63740). Benchmarks for Abnormal Screening Mammography Interpretations, Based on Bcsc Data, 2007 – 2013. Benchmarks for Abnormal Screening Mammography Interpretations, Based on BCSC Data, 2007 – 2013
– volume: 294
  start-page: 265
  year: 2019
  end-page: 272
  ident: bib0435
  article-title: Comparison of a deep learning risk score and standard mammographic density score for breast Cancer risk prediction
  publication-title: Radiology.
– volume: 212
  start-page: 259
  year: 2018
  end-page: 270
  ident: bib0425
  article-title: A review of the role of augmented intelligence in breast imaging: from automated breast density assessment to risk stratification
  publication-title: Am. J. Roentgenol.
– year: 2019
  ident: bib0205
  article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement (U01CA63740 U. Screening Mammography Sensitivity, Specificity, & False Negative Rate
– volume: 29
  start-page: 2518
  year: 2019
  end-page: 2525
  ident: bib0390
  article-title: Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis
  publication-title: Eur. Radiol.
– volume: 180
  start-page: 343
  year: 2003
  end-page: 346
  ident: bib0015
  article-title: Optimal reference mammography: a comparison of mammograms obtained 1 and 2 years before the present examination
  publication-title: Am. J. Roentgenol.
– year: 2019
  ident: bib0050
  article-title: National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). NETB Monitor 2014 - Nation-wide Breast Cancer Screening in the Netherlands, Results 2004 -2014
– volume: 205
  start-page: 399
  year: 1997
  end-page: 406
  ident: bib0115
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
– volume: 232
  start-page: 578
  year: 2004
  end-page: 584
  ident: bib0190
  article-title: Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience
  publication-title: Radiology.
– volume: 1
  start-page: 242
  year: 1994
  end-page: 249
  ident: bib0420
  article-title: Missed fractures resulting from satisfaction of search effect
  publication-title: Emerg. Radiol.
– volume: 9416
  start-page: 941605
  year: 2015
  ident: bib0270
  article-title: Inter- and intra-observer variations in the delineation of lesions in mammograms
  publication-title: Proceedings of SPIE
– volume: 47
  start-page: 45
  year: 2018
  end-page: 67
  ident: bib0315
  article-title: Deep learning in mammography and breast histology, an overview and future trends
  publication-title: Med. Image Anal.
– volume: 25
  start-page: 133
  year: 1990
  ident: bib0415
  article-title: Satisfaction of search in diagnostic radiology
  publication-title: Invest. Radiol.
– year: 2011
  ident: bib0105
  article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement. Performance Measures for 1,960,150 Screening Mammography Examinations From 2002 to 2006 by Age --- Based on BCSC Data As of 2009
– volume: 1
  start-page: e180096
  year: 2019
  ident: bib0360
  article-title: Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis
  publication-title: Radiology: Artificial Intelligence.
– volume: 6
  start-page: 77
  year: 2013
  end-page: 98
  ident: bib0150
  article-title: Computer-aided breast Cancer detection using mammograms: a review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 577
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib0370
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature.
– volume: 290
  start-page: 305
  year: 2018
  end-page: 314
  ident: bib0380
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support
  publication-title: Radiology.
– year: 2015
  ident: bib0210
  article-title: National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). NETB Monitor 2013 - Nation-wide Breast Cancer Screening in the Netherlands, Results 1990-2013
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0240
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 96
  start-page: 40
  year: 2017
  end-page: 49
  ident: bib0040
  article-title: Effectiveness and cost-effectiveness of double reading in digital mammography screening: a systematic review and meta-analysis
  publication-title: Eur. J. Radiol.
– volume: 19
  start-page: 303
  year: 2012
  end-page: 310
  ident: bib0170
  article-title: Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment
  publication-title: Acad. Radiol.
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: bib0255
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med. Image Anal.
– volume: 52
  start-page: 434
  year: 2017
  end-page: 440
  ident: bib0345
  article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast Cancer
  publication-title: Invest. Radiol.
– volume: 5
  start-page: 17
  year: 2005
  end-page: 19
  ident: bib0175
  article-title: Computer aided detection (CAD): an overview
  publication-title: Cancer Imaging
– volume: 23
  start-page: 1159
  issue: 7
  year: 2014
  ident: 10.1016/j.semcancer.2020.06.002_bib0010
  article-title: European breast Cancer service screening outcomes: a first balance sheet of the benefits and harms
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-13-0320
– volume: 34
  start-page: 898
  issue: 3
  year: 2007
  ident: 10.1016/j.semcancer.2020.06.002_bib0155
  article-title: Combining two mammographic projections in a computer aided mass detection method
  publication-title: Med. Phys.
  doi: 10.1118/1.2436974
– volume: 10950
  start-page: 109501X
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0445
  article-title: Use of convolutional neural networks to predict risk of masking by mammographic density
  publication-title: Proceedings of SPIE
– volume: 244
  start-page: 708
  issue: 3
  year: 2007
  ident: 10.1016/j.semcancer.2020.06.002_bib0095
  article-title: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study
  publication-title: Radiology
  doi: 10.1148/radiol.2443061478
– volume: 277
  start-page: 697
  issue: 3
  year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0135
  article-title: Accuracy of digital breast tomosynthesis for depicting breast Cancer subgroups in a UK retrospective reading study (TOMMY trial)
  publication-title: Radiology.
  doi: 10.1148/radiol.2015142566
– volume: 19
  start-page: 1493
  issue: 11
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0055
  article-title: One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(18)30521-7
– volume: 292
  start-page: 60
  issue: 1
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0430
  article-title: A deep learning mammography-based model for improved breast Cancer risk prediction
  publication-title: Radiology.
  doi: 10.1148/radiol.2019182716
– volume: 276
  start-page: 65
  issue: 1
  year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0035
  article-title: Effect of the availability of prior full-field digital mammography and digital breast tomosynthesis images on the interpretation of mammograms
  publication-title: Radiology
  doi: 10.1148/radiol.15142009
– volume: 17
  start-page: 1105
  issue: 8
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0125
  article-title: Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30101-2
– start-page: 169
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0245
  article-title: A multi-scale CNN and curriculum learning strategy for mammogram classification
– start-page: 927
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0300
  article-title: Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  doi: 10.1109/ICASSP.2016.7471811
– volume: 41
  start-page: 52
  issue: 1
  year: 2000
  ident: 10.1016/j.semcancer.2020.06.002_bib0020
  article-title: Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms
  publication-title: Acta radiol.
  doi: 10.1258/rsmacta.41.1.52
– volume: 287
  start-page: 787
  issue: 3
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0145
  article-title: Digital breast tomosynthesis and synthetic 2D mammography versus digital mammography: evaluation in a population-based screening program
  publication-title: Radiology
  doi: 10.1148/radiol.2018171361
– volume: 43
  start-page: 6654
  issue: 12
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0325
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
  doi: 10.1118/1.4967345
– volume: 157
  start-page: 85
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0265
  article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.017
– volume: 229
  start-page: 877
  issue: 3
  year: 2003
  ident: 10.1016/j.semcancer.2020.06.002_bib0085
  article-title: Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study
  publication-title: Radiology
  doi: 10.1148/radiol.2293021171
– volume: 290
  start-page: 305
  issue: 2
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0380
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support
  publication-title: Radiology.
  doi: 10.1148/radiol.2018181371
– volume: 47
  start-page: 45
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0315
  article-title: Deep learning in mammography and breast histology, an overview and future trends
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.03.006
– volume: 23
  start-page: 2891
  issue: 10
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0065
  article-title: Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-013-2876-0
– volume: 10134
  start-page: 101341J
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0305
  article-title: Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses
  publication-title: Proceedings of SPIE
– volume: 29
  start-page: 2518
  issue: 5
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0390
  article-title: Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5886-0
– volume: 4
  start-page: 044501
  issue: 4
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0310
  article-title: Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks
  publication-title: JMI.
– volume: 14
  start-page: 583
  issue: 7
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0120
  article-title: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70134-7
– volume: 2
  start-page: e138
  issue: 3
  year: 2020
  ident: 10.1016/j.semcancer.2020.06.002_bib0375
  article-title: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study
  publication-title: The Lancet Digital Health.
  doi: 10.1016/S2589-7500(20)30003-0
– volume: 230
  start-page: 811
  issue: 3
  year: 2004
  ident: 10.1016/j.semcancer.2020.06.002_bib0215
  article-title: Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography
  publication-title: Radiology.
  doi: 10.1148/radiol.2303030254
– year: 2012
  ident: 10.1016/j.semcancer.2020.06.002_bib0235
– year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0405
– volume: 219
  start-page: 192
  issue: 1
  year: 2001
  ident: 10.1016/j.semcancer.2020.06.002_bib0110
  article-title: Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection
  publication-title: Radiology.
  doi: 10.1148/radiology.219.1.r01ap16192
– volume: 293
  start-page: 38
  issue: 1
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0410
  article-title: A deep learning model to triage screening mammograms: a simulation study
  publication-title: Radiology.
  doi: 10.1148/radiol.2019182908
– start-page: 221
  year: 2006
  ident: 10.1016/j.semcancer.2020.06.002_bib0160
  article-title: Image similarity and asymmetry to improve computer-aided detection of breast cancer
– volume: 294
  start-page: 265
  issue: 2
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0435
  article-title: Comparison of a deep learning risk score and standard mammographic density score for breast Cancer risk prediction
  publication-title: Radiology.
  doi: 10.1148/radiol.2019190872
– volume: 267
  start-page: 47
  issue: 1
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0140
  article-title: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program
  publication-title: Radiology.
  doi: 10.1148/radiol.12121373
– year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0210
– volume: 202
  start-page: 229
  issue: 1
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0070
  article-title: Comparison of direct digital mammography, computed radiography, and film-screen in the french national breast Cancer Screening program
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.12.10419
– volume: 50
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.semcancer.2020.06.002_bib0100
  article-title: Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review
  publication-title: Acta radiol.
  doi: 10.1080/02841850802563269
– volume: 3
  start-page: 034501
  issue: 3
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0285
  article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
  publication-title: JMI.
– volume: 3
  issue: 3
  year: 2020
  ident: 10.1016/j.semcancer.2020.06.002_bib0365
  article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms
  publication-title: JAMA Netw Open. American Medical Association
– volume: 96
  start-page: 40
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0040
  article-title: Effectiveness and cost-effectiveness of double reading in digital mammography screening: a systematic review and meta-analysis
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2017.09.013
– volume: 9416
  start-page: 941605
  year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0270
  article-title: Inter- and intra-observer variations in the delineation of lesions in mammograms
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.2077516
– volume: 205
  start-page: 399
  issue: 2
  year: 1997
  ident: 10.1016/j.semcancer.2020.06.002_bib0115
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
  doi: 10.1148/radiology.205.2.9356620
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0230
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 242
  start-page: 70
  issue: 1
  year: 2007
  ident: 10.1016/j.semcancer.2020.06.002_bib0025
  article-title: Importance of comparison of current and prior mammograms in breast Cancer screening
  publication-title: Radiology
  doi: 10.1148/radiol.2421050684
– volume: 6514
  start-page: 65141Q
  year: 2007
  ident: 10.1016/j.semcancer.2020.06.002_bib0165
  article-title: An improved asymmetry measure to detect breast cancer. Medical imaging 2007: computer-aided diagnosis
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.708327
– volume: 111
  start-page: 916
  issue: 9
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0350
  article-title: Stand-alone artificial intelligence for breast Cancer detection in mammography: comparison with 101 radiologists
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy222
– volume: 63
  start-page: 095005
  issue: 9
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0295
  article-title: Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aabb5b
– volume: 9785
  start-page: 97850
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0260
  article-title: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
  publication-title: Proceedings of SPIE
– volume: 577
  start-page: 89
  issue: 7788
  year: 2020
  ident: 10.1016/j.semcancer.2020.06.002_bib0370
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature.
  doi: 10.1038/s41586-019-1799-6
– start-page: 181454
  year: 2020
  ident: 10.1016/j.semcancer.2020.06.002_bib0045
  article-title: Consensus review of discordant imaging findings after the introduction of digital screening mammography: irish national breast Cancer Screening program experience
  publication-title: Radiology.
– volume: 356
  start-page: 1399
  issue: 14
  year: 2007
  ident: 10.1016/j.semcancer.2020.06.002_bib0195
  article-title: Influence of computer-aided detection on performance of screening mammography
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa066099
– volume: 52
  start-page: 434
  issue: 7
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0345
  article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast Cancer
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000358
– volume: 29
  start-page: 4825
  issue: 9
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0400
  article-title: Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence?
  publication-title: A feasibility study. Eur Radiol.
– volume: 24
  start-page: 5902
  issue: 23
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0290
  article-title: Deep learning to distinguish recalled but benign mammography images in breast Cancer screening
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1115
– volume: 353
  start-page: 1
  year: 2005
  ident: 10.1016/j.semcancer.2020.06.002_bib0080
  article-title: Diagnostic performance of digital versus film mammography for breast-cancer screening
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa052911
– year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0050
– volume: 215
  start-page: 554
  issue: 2
  year: 2000
  ident: 10.1016/j.semcancer.2020.06.002_bib0180
  article-title: Potential contribution of computer-aided detection to the sensitivity of screening mammography
  publication-title: Radiology.
  doi: 10.1148/radiology.215.2.r00ma15554
– year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0205
– volume: 210
  start-page: 685
  issue: 3
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0385
  article-title: Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.17.18185
– volume: 100
  start-page: 553
  issue: 10
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0075
  article-title: Artificial intelligence and breast screening: French Radiology Community position paper
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2019.08.005
– volume: 175
  start-page: 1828
  issue: 11
  year: 2015
  ident: 10.1016/j.semcancer.2020.06.002_bib0200
  article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2015.5231
– volume: 9785
  start-page: 97850X
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0340
  article-title: Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.2217045
– volume: 6
  start-page: 77
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0150
  article-title: Computer-aided breast Cancer detection using mammograms: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2232289
– volume: 62
  start-page: 8894
  issue: 23
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0280
  article-title: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d4
– volume: 40
  start-page: 041902
  issue: 4
  year: 2013
  ident: 10.1016/j.semcancer.2020.06.002_bib0330
  article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms
  publication-title: Med. Phys.
  doi: 10.1118/1.4791643
– volume: 100
  start-page: 101722
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0440
  article-title: Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101722
– volume: 220
  start-page: 781
  issue: 3
  year: 2001
  ident: 10.1016/j.semcancer.2020.06.002_bib0185
  article-title: Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center
  publication-title: Radiology
  doi: 10.1148/radiol.2203001282
– volume: 26
  start-page: 735
  issue: 6
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0335
  article-title: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2018.06.019
– volume: 17
  start-page: 237
  issue: 3
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0320
  article-title: Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks
  publication-title: IEEE Trans. Nanobioscience
  doi: 10.1109/TNB.2018.2845103
– year: 2011
  ident: 10.1016/j.semcancer.2020.06.002_bib0105
– volume: 1
  start-page: 242
  issue: 5
  year: 1994
  ident: 10.1016/j.semcancer.2020.06.002_bib0420
  article-title: Missed fractures resulting from satisfaction of search effect
  publication-title: Emerg. Radiol.
  doi: 10.1007/BF02614935
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0275
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 26
  start-page: 184
  issue: 1
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0130
  article-title: Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-3803-3
– volume: 212
  start-page: 259
  issue: 2
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0425
  article-title: A review of the role of augmented intelligence in breast imaging: from automated breast density assessment to risk stratification
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.18.20391
– volume: 61
  start-page: 7092
  issue: 19
  year: 2016
  ident: 10.1016/j.semcancer.2020.06.002_bib0220
  article-title: Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/19/7092
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0240
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 249
  start-page: 47
  issue: 1
  year: 2008
  ident: 10.1016/j.semcancer.2020.06.002_bib0355
  article-title: The “Laboratory” effect: comparing radiologists’ performance and variability during prospective clinical and laboratory mammography interpretations
  publication-title: Radiology
  doi: 10.1148/radiol.2491072025
– volume: 232
  start-page: 197
  issue: 1
  year: 2004
  ident: 10.1016/j.semcancer.2020.06.002_bib0090
  article-title: Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program—the Oslo II study
  publication-title: Radiology
  doi: 10.1148/radiol.2321031624
– volume: 25
  start-page: 133
  issue: 2
  year: 1990
  ident: 10.1016/j.semcancer.2020.06.002_bib0415
  article-title: Satisfaction of search in diagnostic radiology
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-199002000-00006
– volume: 232
  start-page: 578
  issue: 2
  year: 2004
  ident: 10.1016/j.semcancer.2020.06.002_bib0190
  article-title: Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience
  publication-title: Radiology.
  doi: 10.1148/radiol.2322030034
– volume: 19
  start-page: 303
  issue: 3
  year: 2012
  ident: 10.1016/j.semcancer.2020.06.002_bib0170
  article-title: Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2011.10.026
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0250
  article-title: Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study
  publication-title: Sci. Rep.
– volume: 35
  start-page: 303
  year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0255
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.007
– year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0395
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0005
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 180
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.semcancer.2020.06.002_bib0015
  article-title: Optimal reference mammography: a comparison of mammograms obtained 1 and 2 years before the present examination
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.180.2.1800343
– volume: 56
  start-page: 248
  issue: 2
  year: 2005
  ident: 10.1016/j.semcancer.2020.06.002_bib0030
  article-title: Use of prior mammograms in the classification of benign and malignant masses
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2005.04.007
– volume: 5
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.semcancer.2020.06.002_bib0175
  article-title: Computer aided detection (CAD): an overview
  publication-title: Cancer Imaging
  doi: 10.1102/1470-7330.2005.0018
– year: 2017
  ident: 10.1016/j.semcancer.2020.06.002_bib0060
– volume: 52
  start-page: 305
  year: 2018
  ident: 10.1016/j.semcancer.2020.06.002_bib0225
  article-title: A review of computer aided detection in mammography
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2018.08.014
– volume: 1
  start-page: e180096
  issue: 4
  year: 2019
  ident: 10.1016/j.semcancer.2020.06.002_bib0360
  article-title: Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis
  publication-title: Radiology: Artificial Intelligence.
SSID ssj0009414
Score 2.649549
SecondaryResourceType review_article
Snippet Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Animals
Artificial Intelligence
Breast cancer
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Early Detection of Cancer
Female
Humans
Mammography
Mammography - methods
Screening
Tomosynthesis
Title Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1044579X20301358
https://dx.doi.org/10.1016/j.semcancer.2020.06.002
https://www.ncbi.nlm.nih.gov/pubmed/32531273
https://www.proquest.com/docview/2412988827
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUJcELQ8lkdlJMQtbOLYidPbqqJaQO0FKu3N8isoiM1WJHvopb-9M06yUAlUJK6RR3bs8fiz_c1ngLdOckPqkomXlJJjnU2sUTZJhedBepcZRQnOZ-fF8kJ8WsnVHpxMuTBEqxxj_xDTY7Qev8zH3pxfNs38C24khCyrFSdUn0tK-BWiJC9_f_2L5lGJqO9NhRMqfYvj1YW1o84lYVCeRiHP8XzlDyvU3xBoXIlOH8HDEUKyxdDKx7AX2gM4XLS4fV5fsXcskjrjafkB3D8b784PYUsGg14Ea34T4mQIW5klbnrPhmYyH_rI0GqxIFsbdNVB15qZ1jPffKOHRiYTrHTTXbWII7umO2YRvLJNzfADw458AhenH76eLJPx0YXEScH7JATura-DrZUU3vtSOB6UyZwtvcXNSmryAsNCgQNqstKWhZdlbbJc1ZklrbL8Key3mzY8B2Z9pkwVXHDoD5mpTGpVJSrLvS8cusEMiqmjtRsVyelhjB96op5917sR0jRCOpLw-AzSneHlIMpxt4maRlJPOacYJTUuHHebHu9Mb7nmvxm_mdxG48Sl2xjThs220wideKVwg1PO4NngT7ufyTmGRgSWL_6n6pfwgBMBJ3KLX8F-_3MbXiOC6u1RnCJHcG_x8fPy_AZ7PR97
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2PpTyMhLiFTRwncXqrqlYLdHuhlfZm-ZUqiM1WJHvohd_OjJNsWwlUJK6RR3Y84_Fn-_NngA8245rUJSOX0ZUcY01ktDRRLBz3mbOJlnTBeX6az87Fl0W22ILD8S4M0SqH3N_n9JCthy_ToTenl3U9_YYLCZEV5YITqk8zeQ_uCxy-9IzBp1_XPI9SBIFvKh1R8Vskr9YvLfUuKYPyOCh5Dhssf5ii_gZBw1R0_AQeDxiSHfTNfApbvtmB3YMG18_LK_aRBVZn2C7fgQfz4fB8F9Zk0AtGsPqGEidD3MoMkdM71jeTOd8FilaDBdlSY6z2wtZMN465-oJeGhlNsNJVe9UgkGzrdp8F9MpWFcMPDHvyGZwfH50dzqLh1YXIZoJ3kffcGVd5U8lMOOcKYbmXOrGmcAZXK7FOc8wLOXpUJ4UpcpcVlU5SWSWGxMrS57DdrBr_EphxidSlt95iQCS61LGRpSgNdy63GAcTyMeOVnaQJKeXMX6okXv2XW08pMhDKrDw-ATijeFlr8pxt4kcPanGS6eYJhXOHHeb7m9Mb8Xmvxm_H8NG4cil4xjd-NW6VYideClxhVNM4EUfT5ufSTnmRkSWr_6n6nfwcHY2P1Enn0-_7sEjTmycQDR-Ddvdz7V_g3CqM2_DcPkN0-chCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+for+breast+cancer+detection+in+mammography+and+digital+breast+tomosynthesis%3A+State+of+the+art&rft.jtitle=Seminars+in+cancer+biology&rft.au=Sechopoulos%2C+Ioannis&rft.au=Teuwen%2C+Jonas&rft.au=Mann%2C+Ritse&rft.date=2021-07-01&rft.issn=1096-3650&rft.eissn=1096-3650&rft.volume=72&rft.spage=214&rft_id=info:doi/10.1016%2Fj.semcancer.2020.06.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-579X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-579X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-579X&client=summon