Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art
Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpret...
Saved in:
Published in | Seminars in cancer biology Vol. 72; pp. 214 - 225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000′s. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image.
In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology.
The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed. |
---|---|
AbstractList | Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed. Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed. Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000′s. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed. |
Author | Teuwen, Jonas Sechopoulos, Ioannis Mann, Ritse |
Author_xml | – sequence: 1 givenname: Ioannis surname: Sechopoulos fullname: Sechopoulos, Ioannis email: ioannis.sechopoulos@radboudumc.nl organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands – sequence: 2 givenname: Jonas surname: Teuwen fullname: Teuwen, Jonas email: jonas.teuwen@radboudumc.nl organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands – sequence: 3 givenname: Ritse surname: Mann fullname: Mann, Ritse email: ritse.mann@radboudumc.nl organization: Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32531273$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1qGzEUhUVJaBK3r9Bq2c1MJY1GMy6UYkKSBgJdtIXuhH6uHLkzI1eSA377aLCbRVZe6aJ7zid0zhU6m8IECH2kpKaEis-bOsFo1GQg1owwUhNRE8LeoEtKlqJqREvO5pnzqu2Wfy7QVUobQsiSU_4WXTSsbSjrmku0W8XsnTdeDdhPGYbBr6FgsQsR6wgqZXx4B1vIYLIPUxHiUY1jWEe1fdxjNVls_drnwjhachhD2k_5EZJPX_DPrDLg4HC5wCrmd-jcqSHB--O5QL9vb35df68eftzdX68eKtNylisAZrV1oF3fcmttxw2DXlGjO6sFZ0Q1gnSNUL1WtNOdsG3nFG16RzUVXDQL9OnA3cbwbwcpy9EnUz6pJgi7JBmnbNn3fYligT4cpTs9gpXb6EcV9_J_VEXQHQQmhpQiuBcJJXIuRW7kSylyLkUSIUspxfn1ldOUrOYkc1R-OMG_OvihRPXkyzYZP5dkfSyNSBv8CYxvrxhm8JM3avgL-5MIzy4Xxig |
CitedBy_id | crossref_primary_10_3390_life14111451 crossref_primary_10_3390_app14145968 crossref_primary_10_1007_s10278_023_00943_5 crossref_primary_10_46268_jsu_2023_10_1_8 crossref_primary_10_1016_j_csbj_2023_08_012 crossref_primary_10_32604_csse_2023_028808 crossref_primary_10_1002_path_5966 crossref_primary_10_3389_fonc_2023_1110657 crossref_primary_10_3390_molecules25204864 crossref_primary_10_1016_j_jmir_2023_04_001 crossref_primary_10_1016_j_dsx_2024_103003 crossref_primary_10_1038_s41746_024_01032_9 crossref_primary_10_1007_s11042_020_10131_0 crossref_primary_10_3389_fonc_2021_600557 crossref_primary_10_1007_s00330_024_10681_z crossref_primary_10_1007_s10462_023_10543_y crossref_primary_10_1177_08465371241301957 crossref_primary_10_1177_21925682221098672 crossref_primary_10_1093_bjr_tqae022 crossref_primary_10_3390_jimaging8090231 crossref_primary_10_1007_s12553_022_00693_4 crossref_primary_10_7759_cureus_57619 crossref_primary_10_3389_fdata_2025_1529848 crossref_primary_10_59786_bmtj_211 crossref_primary_10_3389_fonc_2022_854927 crossref_primary_10_1016_j_semcancer_2023_03_006 crossref_primary_10_3389_fmed_2023_1341259 crossref_primary_10_1007_s10544_025_00734_5 crossref_primary_10_1016_j_imed_2022_04_002 crossref_primary_10_1109_ACCESS_2024_3443520 crossref_primary_10_1109_TMI_2021_3129068 crossref_primary_10_1007_s11604_024_01702_4 crossref_primary_10_31083_j_ceog4911237 crossref_primary_10_3390_tomography10050055 crossref_primary_10_1007_s11517_022_02582_4 crossref_primary_10_1093_jbi_wbac012 crossref_primary_10_3390_diagnostics13010117 crossref_primary_10_1007_s40495_023_00335_x crossref_primary_10_1177_02841851231176272 crossref_primary_10_1186_s13058_022_01509_z crossref_primary_10_1007_s00129_022_04997_4 crossref_primary_10_1016_j_eswa_2023_120282 crossref_primary_10_3390_app14072680 crossref_primary_10_1109_JSEN_2024_3520358 crossref_primary_10_1016_j_ejrad_2023_110913 crossref_primary_10_12677_acm_2025_152503 crossref_primary_10_1088_1361_6560_ad092b crossref_primary_10_53065_kaznmu_2024_71_4_004 crossref_primary_10_1016_j_cmpb_2024_108101 crossref_primary_10_3390_diagnostics13132175 crossref_primary_10_1007_s00330_023_10181_6 crossref_primary_10_7717_peerj_cs_2226 crossref_primary_10_1615_CritRevOncog_v29_i2_30 crossref_primary_10_3390_app12073273 crossref_primary_10_1007_s11831_023_10052_9 crossref_primary_10_2478_raon_2021_0040 crossref_primary_10_1016_j_xcrm_2023_101131 crossref_primary_10_1053_j_sult_2022_12_002 crossref_primary_10_3390_cancers17020197 crossref_primary_10_1007_s12020_024_03808_1 crossref_primary_10_1002_jmri_28731 crossref_primary_10_1186_s12880_024_01241_4 crossref_primary_10_1016_j_bspc_2024_107410 crossref_primary_10_1016_j_jacr_2022_06_019 crossref_primary_10_3390_cancers15123069 crossref_primary_10_3389_fsens_2024_1399441 crossref_primary_10_1016_j_asej_2024_102734 crossref_primary_10_1016_j_ejrad_2022_110631 crossref_primary_10_1148_ryai_220159 crossref_primary_10_1186_s12911_023_02404_z crossref_primary_10_48175_IJARSCT_1880 crossref_primary_10_3390_diagnostics14222568 crossref_primary_10_1108_TECHS_12_2021_0029 crossref_primary_10_61186_ijrr_22_1_49 crossref_primary_10_1177_02841851231200785 crossref_primary_10_1016_S1470_2045_23_00298_X crossref_primary_10_1088_1361_6560_acfade crossref_primary_10_1038_s41598_024_62324_4 crossref_primary_10_3390_cancers14194803 crossref_primary_10_1016_j_tjog_2024_01_037 crossref_primary_10_3390_jimaging7090190 crossref_primary_10_1016_j_eclinm_2023_102041 crossref_primary_10_1016_j_glmedi_2024_100120 crossref_primary_10_5812_iranjradiol_120758 crossref_primary_10_1016_j_cbi_2023_110780 crossref_primary_10_1093_jbi_wbae062 crossref_primary_10_1016_j_compbiomed_2024_109285 crossref_primary_10_1016_j_tranon_2021_101241 crossref_primary_10_3389_fonc_2023_1213045 crossref_primary_10_31083_j_fbl2708224 crossref_primary_10_1371_journal_pone_0282350 crossref_primary_10_1177_0969141321998718 crossref_primary_10_1186_s43055_023_01129_3 crossref_primary_10_1186_s43055_024_01353_5 crossref_primary_10_1148_rg_220060 crossref_primary_10_3389_fcvm_2024_1354517 crossref_primary_10_1016_j_semcancer_2023_02_006 crossref_primary_10_1016_j_semcancer_2023_02_009 crossref_primary_10_61634_2782_3024_2023_12_26_35 crossref_primary_10_1016_j_engappai_2025_110318 crossref_primary_10_1016_j_femme_2023_12_002 crossref_primary_10_1109_RBME_2024_3357877 crossref_primary_10_1007_s00261_024_04641_w crossref_primary_10_31590_ejosat_1312965 crossref_primary_10_1186_s43055_022_00734_y crossref_primary_10_3390_cancers14194704 crossref_primary_10_1186_s13058_023_01687_4 crossref_primary_10_1007_s12194_024_00842_6 crossref_primary_10_3390_jimaging8040088 crossref_primary_10_3390_diagnostics15010083 crossref_primary_10_3390_app13127183 crossref_primary_10_1186_s41747_023_00384_3 crossref_primary_10_1016_j_trac_2023_117033 crossref_primary_10_1016_j_bj_2023_100662 crossref_primary_10_1016_j_drup_2022_100811 crossref_primary_10_1080_08839514_2021_2001177 crossref_primary_10_1088_1361_6560_ad02d7 crossref_primary_10_3389_fonc_2023_1152622 crossref_primary_10_1016_j_acra_2024_07_027 crossref_primary_10_1002_tox_24165 crossref_primary_10_1016_j_senol_2024_100594 crossref_primary_10_1259_bjro_20220018 crossref_primary_10_1016_j_health_2023_100298 crossref_primary_10_1093_bjrai_ubae016 crossref_primary_10_18137_cardiometry_2022_21_5054 crossref_primary_10_1021_acsbiomaterials_2c00607 crossref_primary_10_12660_cgpc_v29_90669 crossref_primary_10_2217_fon_2023_0365 crossref_primary_10_1186_s40537_024_00936_3 crossref_primary_10_1007_s12652_024_04835_6 crossref_primary_10_1089_omi_2024_0175 crossref_primary_10_1016_j_clbc_2023_07_002 crossref_primary_10_31436_iiumej_v23i1_1825 crossref_primary_10_3390_biomedinformatics4010012 crossref_primary_10_1002_cpe_6629 crossref_primary_10_1080_14737140_2021_1951240 |
Cites_doi | 10.1158/1055-9965.EPI-13-0320 10.1118/1.2436974 10.1148/radiol.2443061478 10.1148/radiol.2015142566 10.1016/S1470-2045(18)30521-7 10.1148/radiol.2019182716 10.1148/radiol.15142009 10.1016/S1470-2045(16)30101-2 10.1109/ICASSP.2016.7471811 10.1258/rsmacta.41.1.52 10.1148/radiol.2018171361 10.1118/1.4967345 10.1016/j.cmpb.2018.01.017 10.1148/radiol.2293021171 10.1148/radiol.2018181371 10.1016/j.media.2018.03.006 10.1007/s00330-013-2876-0 10.1007/s00330-018-5886-0 10.1016/S1470-2045(13)70134-7 10.1016/S2589-7500(20)30003-0 10.1148/radiol.2303030254 10.1148/radiology.219.1.r01ap16192 10.1148/radiol.2019182908 10.1148/radiol.2019190872 10.1148/radiol.12121373 10.2214/AJR.12.10419 10.1080/02841850802563269 10.1016/j.ejrad.2017.09.013 10.1117/12.2077516 10.1148/radiology.205.2.9356620 10.1038/nature14539 10.1148/radiol.2421050684 10.1117/12.708327 10.1093/jnci/djy222 10.1088/1361-6560/aabb5b 10.1038/s41586-019-1799-6 10.1056/NEJMoa066099 10.1097/RLI.0000000000000358 10.1158/1078-0432.CCR-18-1115 10.1056/NEJMoa052911 10.1148/radiology.215.2.r00ma15554 10.2214/AJR.17.18185 10.1016/j.diii.2019.08.005 10.1001/jamainternmed.2015.5231 10.1117/12.2217045 10.1109/RBME.2012.2232289 10.1088/1361-6560/aa93d4 10.1118/1.4791643 10.1016/j.artmed.2019.101722 10.1148/radiol.2203001282 10.1016/j.acra.2018.06.019 10.1109/TNB.2018.2845103 10.1007/BF02614935 10.1109/TMI.2016.2528162 10.1007/s00330-015-3803-3 10.2214/AJR.18.20391 10.1088/0031-9155/61/19/7092 10.1016/j.media.2017.07.005 10.1148/radiol.2491072025 10.1148/radiol.2321031624 10.1097/00004424-199002000-00006 10.1148/radiol.2322030034 10.1016/j.acra.2011.10.026 10.1016/j.media.2016.07.007 10.3322/caac.21492 10.2214/ajr.180.2.1800343 10.1016/j.ejrad.2005.04.007 10.1102/1470-7330.2005.0018 10.1016/j.clinimag.2018.08.014 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.semcancer.2020.06.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1096-3650 |
EndPage | 225 |
ExternalDocumentID | 32531273 10_1016_j_semcancer_2020_06_002 S1044579X20301358 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IH2 IHE J1W KOM LG5 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UDS UNMZH XPP Z5R ZMT ZU3 ~G- 0SF 6I. AACTN AAFTH AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG NCXOZ RIG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c542t-ee2dbdfebf854ddd74c2e8a1cb7db6420a360736a8ba17b76d57fa138f1b16463 |
IEDL.DBID | .~1 |
ISSN | 1044-579X 1096-3650 |
IngestDate | Fri Jul 11 12:09:10 EDT 2025 Thu Apr 03 06:56:43 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Tue Jul 01 02:43:44 EDT 2025 Fri Feb 23 02:46:29 EST 2024 Tue Aug 26 20:26:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CADe CC CNN Tomosynthesis ROC AI DM Mammography Breast cancer CADx AUC PoM LoS MLO Screening DBT Artificial intelligence |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-ee2dbdfebf854ddd74c2e8a1cb7db6420a360736a8ba17b76d57fa138f1b16463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1044579X20301358 |
PMID | 32531273 |
PQID | 2412988827 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2412988827 pubmed_primary_32531273 crossref_primary_10_1016_j_semcancer_2020_06_002 crossref_citationtrail_10_1016_j_semcancer_2020_06_002 elsevier_sciencedirect_doi_10_1016_j_semcancer_2020_06_002 elsevier_clinicalkey_doi_10_1016_j_semcancer_2020_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Seminars in cancer biology |
PublicationTitleAlternate | Semin Cancer Biol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hofvind, Hovda, Holen (bib0145) 2018; 287 Tahmoush, Samet (bib0165) 2007; 6514 van Schie, Wallis, Leifland, Danielsson, Karssemeijer (bib0330) 2013; 40 Yala, Schuster, Miles, Barzilay, Lehman (bib0410) 2019; 293 (bib0105) 2011 Rodriguez-Ruiz, Lång, Gubern-Merida (bib0350) 2019; 111 (bib0050) 2019 (bib0060) 2017 Gur, Bandos, Cohen (bib0355) 2008; 249 Sumkin, Holbert, Herrmann (bib0015) 2003; 180 (bib0395) 2019 Skaane, Hofvind, Skjennald (bib0095) 2007; 244 Ciatto, Houssami, Bernardi (bib0120) 2013; 14 Zhang, Zhang, Han (bib0320) 2018; 17 Cleland, Mainprize, Alonzo-Proulx (bib0445) 2019; 10950 (bib0210) 2015 Kooi, Karssemeijer (bib0305) 2017; 10134 Kooi, Litjens, van Ginneken (bib0255) 2017; 35 Niklason, Christian, Niklason (bib0115) 1997; 205 Hamidinekoo, Denton, Rampun, Honnor, Zwiggelaar (bib0315) 2018; 47 Ganesan, Acharya, Chua, Min, Abraham, Ng (bib0150) 2013; 6 Benedikt, Boatsman, Swann, Kirkpatrick, Toledano (bib0385) 2017; 210 Yala, Lehman, Schuster, Portnoi, Barzilay (bib0430) 2019; 292 Thomassin-Naggara, Balleyguier, Ceugnart (bib0075) 2019; 100 Thurfjell, Vitak, Azavedo, Svane, Thurfjell (bib0020) 2000; 41 Al-masni, Al-antari, Park (bib0265) 2018; 157 Buelow, Heese, Grewer, Kutra, Wiemker (bib0270) 2015; 9416 Litjens, Kooi, Bejnordi (bib0240) 2017; 42 Healy, O’Brien, Knox (bib0045) 2020 Gilbert, Tucker, Gillan (bib0135) 2015; 277 Ikeda, Birdwell, O’Shaughnessy, Sickles, Brenner (bib0215) 2004; 230 Qu, Yue, Shang, Yang, Zwiggelaar, Shen (bib0440) 2019; 100 Skaane, Young, Skjennald (bib0085) 2003; 229 Aboutalib, Mohamed, Berg, Zuley, Sumkin, Wu (bib0290) 2018; 24 Wang, Li, Xu, Liu, Lederman, Zheng (bib0170) 2012; 19 Katzen, Dodelzon (bib0225) 2018; 52 Rodríguez-Ruiz, Krupinski, Mordang (bib0380) 2018; 290 Freer, Ulissey (bib0185) 2001; 220 Skaane (bib0100) 2009; 50 Warren Burhenne, Wood, D’Orsi (bib0180) 2000; 215 McKinney, Sieniek, Godbole (bib0370) 2020; 577 Skaane, Skjennald (bib0090) 2004; 232 Roelofs, Karssemeijer, Wedekind (bib0025) 2007; 242 Zackrisson, Lång, Rosso (bib0055) 2018; 19 Skaane, Bandos, Gullien (bib0140) 2013; 267 LeCun, Bengio, Hinton (bib0230) 2015; 521 Schaffter, Buist, Lee (bib0365) 2020; 3 Séradour, Heid, Estève (bib0070) 2013; 202 Destounis, DiNitto, Logan-Young, Bonaccio, Zuley, Willison (bib0190) 2004; 232 Becker, Marcon, Ghafoor, Wurnig, Frauenfelder, Boss (bib0345) 2017; 52 Lehman, Wellman, Buist, Kerlikowske, Tosteson, Miglioretti (bib0200) 2015; 175 Huynh, Li, Giger (bib0285) 2016; 3 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (bib0005) 2018; 68 Castellino (bib0175) 2005; 5 (bib0205) 2019 Samala, Chan, Hadjiiski, Helvie, Richter, Cha (bib0295) 2018; 63 Fotin, Yin, Haldankar, Hoffmeister, Periaswamy (bib0340) 2016; 9785 Mendel, Li, Sheth, Giger (bib0335) 2019; 26 Lotter, Sorensen, Cox (bib0245) 2017 (bib0235) 2012 Berbaum, Franken, Dorfman (bib0415) 1990; 25 Chae, Kim, Jeong, Chae, Lee, Choi (bib0390) 2019; 29 Lång, Dustler, Dahlblom, Andersson, Zackrisson (bib0405) 2019 Berbaum, El-Khoury, Franken (bib0420) 1994; 1 Kooi, Karssemeijer (bib0310) 2017; 4 Rodriguez-Ruiz, Lång, Gubern-Merida (bib0400) 2019; 29 Pisano, Gatsonis, Hendrick (bib0080) 2005; 353 Conant, Toledano, Periaswamy (bib0360) 2019; 1 Bosmans, De Hauwere, Lemmens (bib0065) 2013; 23 van Engeland, Karssemeijer (bib0155) 2007; 34 Kim, Kim, Han (bib0250) 2018; 8 Shin, Roth, Gao (bib0275) 2016; 35 Samala, Chan, Hadjiiski, Helvie (bib0220) 2016; 61 Samala, Chan, Hadjiiski, Cha, Helvie (bib0260) 2016; 9785 Kim, Kim, Han (bib0375) 2020; 2 Bernardi, Macaskill, Pellegrini (bib0125) 2016; 17 Fenton, Taplin, Carney (bib0195) 2007; 356 Samala, Chan, Hadjiiski, Helvie, Cha, Richter (bib0280) 2017; 62 Arieno, Chan, Destounis (bib0425) 2018; 212 Lång, Andersson, Rosso, Tingberg, Timberg, Zackrisson (bib0130) 2016; 26 Posso, Puig, Carles, Rué, Canelo-Aybar, Bonfill (bib0040) 2017; 96 Samala, Chan, Hadjiiski, Helvie, Wei, Cha (bib0325) 2016; 43 Varela, Karssemeijer, Hendriks, Holland (bib0030) 2005; 56 Hakim, Catullo, Chough (bib0035) 2015; 276 Birdwell, Ikeda, O’Shaughnessy, Sickles (bib0110) 2001; 219 Tahmoush, Samet (bib0160) 2006 Kim, Kim, Ro (bib0300) 2016 Paci, Broeders, Hofvind, Puliti, Duffy (bib0010) 2014; 23 Dembrower, Liu, Azizpour (bib0435) 2019; 294 Hakim (10.1016/j.semcancer.2020.06.002_bib0035) 2015; 276 Litjens (10.1016/j.semcancer.2020.06.002_bib0240) 2017; 42 Samala (10.1016/j.semcancer.2020.06.002_bib0325) 2016; 43 Skaane (10.1016/j.semcancer.2020.06.002_bib0090) 2004; 232 Kim (10.1016/j.semcancer.2020.06.002_bib0300) 2016 Gur (10.1016/j.semcancer.2020.06.002_bib0355) 2008; 249 Al-masni (10.1016/j.semcancer.2020.06.002_bib0265) 2018; 157 Lång (10.1016/j.semcancer.2020.06.002_bib0405) 2019 Tahmoush (10.1016/j.semcancer.2020.06.002_bib0160) 2006 van Engeland (10.1016/j.semcancer.2020.06.002_bib0155) 2007; 34 Schaffter (10.1016/j.semcancer.2020.06.002_bib0365) 2020; 3 Thurfjell (10.1016/j.semcancer.2020.06.002_bib0020) 2000; 41 Samala (10.1016/j.semcancer.2020.06.002_bib0220) 2016; 61 Posso (10.1016/j.semcancer.2020.06.002_bib0040) 2017; 96 Lång (10.1016/j.semcancer.2020.06.002_bib0130) 2016; 26 LeCun (10.1016/j.semcancer.2020.06.002_bib0230) 2015; 521 Samala (10.1016/j.semcancer.2020.06.002_bib0260) 2016; 9785 Kooi (10.1016/j.semcancer.2020.06.002_bib0255) 2017; 35 Conant (10.1016/j.semcancer.2020.06.002_bib0360) 2019; 1 Rodríguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0380) 2018; 290 Aboutalib (10.1016/j.semcancer.2020.06.002_bib0290) 2018; 24 Kooi (10.1016/j.semcancer.2020.06.002_bib0305) 2017; 10134 Hamidinekoo (10.1016/j.semcancer.2020.06.002_bib0315) 2018; 47 Benedikt (10.1016/j.semcancer.2020.06.002_bib0385) 2017; 210 Samala (10.1016/j.semcancer.2020.06.002_bib0295) 2018; 63 Qu (10.1016/j.semcancer.2020.06.002_bib0440) 2019; 100 (10.1016/j.semcancer.2020.06.002_bib0235) 2012 (10.1016/j.semcancer.2020.06.002_bib0060) 2017 Huynh (10.1016/j.semcancer.2020.06.002_bib0285) 2016; 3 Wang (10.1016/j.semcancer.2020.06.002_bib0170) 2012; 19 Pisano (10.1016/j.semcancer.2020.06.002_bib0080) 2005; 353 Fotin (10.1016/j.semcancer.2020.06.002_bib0340) 2016; 9785 Shin (10.1016/j.semcancer.2020.06.002_bib0275) 2016; 35 Arieno (10.1016/j.semcancer.2020.06.002_bib0425) 2018; 212 Lehman (10.1016/j.semcancer.2020.06.002_bib0200) 2015; 175 Zhang (10.1016/j.semcancer.2020.06.002_bib0320) 2018; 17 Kooi (10.1016/j.semcancer.2020.06.002_bib0310) 2017; 4 Ganesan (10.1016/j.semcancer.2020.06.002_bib0150) 2013; 6 Cleland (10.1016/j.semcancer.2020.06.002_bib0445) 2019; 10950 van Schie (10.1016/j.semcancer.2020.06.002_bib0330) 2013; 40 Rodriguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0400) 2019; 29 Buelow (10.1016/j.semcancer.2020.06.002_bib0270) 2015; 9416 (10.1016/j.semcancer.2020.06.002_bib0105) 2011 Zackrisson (10.1016/j.semcancer.2020.06.002_bib0055) 2018; 19 Thomassin-Naggara (10.1016/j.semcancer.2020.06.002_bib0075) 2019; 100 Bernardi (10.1016/j.semcancer.2020.06.002_bib0125) 2016; 17 Samala (10.1016/j.semcancer.2020.06.002_bib0280) 2017; 62 Ikeda (10.1016/j.semcancer.2020.06.002_bib0215) 2004; 230 Castellino (10.1016/j.semcancer.2020.06.002_bib0175) 2005; 5 Skaane (10.1016/j.semcancer.2020.06.002_bib0085) 2003; 229 Warren Burhenne (10.1016/j.semcancer.2020.06.002_bib0180) 2000; 215 Skaane (10.1016/j.semcancer.2020.06.002_bib0095) 2007; 244 Berbaum (10.1016/j.semcancer.2020.06.002_bib0415) 1990; 25 Kim (10.1016/j.semcancer.2020.06.002_bib0250) 2018; 8 Roelofs (10.1016/j.semcancer.2020.06.002_bib0025) 2007; 242 Becker (10.1016/j.semcancer.2020.06.002_bib0345) 2017; 52 Mendel (10.1016/j.semcancer.2020.06.002_bib0335) 2019; 26 Freer (10.1016/j.semcancer.2020.06.002_bib0185) 2001; 220 Sumkin (10.1016/j.semcancer.2020.06.002_bib0015) 2003; 180 Hofvind (10.1016/j.semcancer.2020.06.002_bib0145) 2018; 287 Ciatto (10.1016/j.semcancer.2020.06.002_bib0120) 2013; 14 Dembrower (10.1016/j.semcancer.2020.06.002_bib0435) 2019; 294 Bosmans (10.1016/j.semcancer.2020.06.002_bib0065) 2013; 23 (10.1016/j.semcancer.2020.06.002_bib0205) 2019 Katzen (10.1016/j.semcancer.2020.06.002_bib0225) 2018; 52 (10.1016/j.semcancer.2020.06.002_bib0395) 2019 Séradour (10.1016/j.semcancer.2020.06.002_bib0070) 2013; 202 Healy (10.1016/j.semcancer.2020.06.002_bib0045) 2020 Birdwell (10.1016/j.semcancer.2020.06.002_bib0110) 2001; 219 Varela (10.1016/j.semcancer.2020.06.002_bib0030) 2005; 56 Skaane (10.1016/j.semcancer.2020.06.002_bib0140) 2013; 267 (10.1016/j.semcancer.2020.06.002_bib0210) 2015 (10.1016/j.semcancer.2020.06.002_bib0050) 2019 Yala (10.1016/j.semcancer.2020.06.002_bib0430) 2019; 292 Bray (10.1016/j.semcancer.2020.06.002_bib0005) 2018; 68 Niklason (10.1016/j.semcancer.2020.06.002_bib0115) 1997; 205 Lotter (10.1016/j.semcancer.2020.06.002_bib0245) 2017 McKinney (10.1016/j.semcancer.2020.06.002_bib0370) 2020; 577 Destounis (10.1016/j.semcancer.2020.06.002_bib0190) 2004; 232 Paci (10.1016/j.semcancer.2020.06.002_bib0010) 2014; 23 Yala (10.1016/j.semcancer.2020.06.002_bib0410) 2019; 293 Gilbert (10.1016/j.semcancer.2020.06.002_bib0135) 2015; 277 Skaane (10.1016/j.semcancer.2020.06.002_bib0100) 2009; 50 Fenton (10.1016/j.semcancer.2020.06.002_bib0195) 2007; 356 Kim (10.1016/j.semcancer.2020.06.002_bib0375) 2020; 2 Tahmoush (10.1016/j.semcancer.2020.06.002_bib0165) 2007; 6514 Rodriguez-Ruiz (10.1016/j.semcancer.2020.06.002_bib0350) 2019; 111 Berbaum (10.1016/j.semcancer.2020.06.002_bib0420) 1994; 1 Chae (10.1016/j.semcancer.2020.06.002_bib0390) 2019; 29 |
References_xml | – volume: 17 start-page: 237 year: 2018 end-page: 242 ident: bib0320 article-title: Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks publication-title: IEEE Trans. Nanobioscience – start-page: 169 year: 2017 end-page: 177 ident: bib0245 article-title: A multi-scale CNN and curriculum learning strategy for mammogram classification publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0275 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – volume: 353 start-page: 1 year: 2005 end-page: 11 ident: bib0080 article-title: Diagnostic performance of digital versus film mammography for breast-cancer screening publication-title: N. Engl. J. Med. – volume: 3 year: 2020 ident: bib0365 article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms publication-title: JAMA Netw Open. American Medical Association – year: 2012 ident: bib0235 article-title: ImageNet Large Scale Visual Recognition Competition – volume: 6514 start-page: 65141Q year: 2007 ident: bib0165 article-title: An improved asymmetry measure to detect breast cancer. Medical imaging 2007: computer-aided diagnosis publication-title: Proceedings of SPIE – volume: 215 start-page: 554 year: 2000 end-page: 562 ident: bib0180 article-title: Potential contribution of computer-aided detection to the sensitivity of screening mammography publication-title: Radiology. – volume: 202 start-page: 229 year: 2013 end-page: 236 ident: bib0070 article-title: Comparison of direct digital mammography, computed radiography, and film-screen in the french national breast Cancer Screening program publication-title: Am. J. Roentgenol. – volume: 267 start-page: 47 year: 2013 end-page: 56 ident: bib0140 article-title: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program publication-title: Radiology. – volume: 63 start-page: 095005 year: 2018 ident: bib0295 article-title: Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis publication-title: Phys. Med. Biol. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0230 article-title: Deep learning publication-title: Nature – start-page: 221 year: 2006 end-page: 228 ident: bib0160 article-title: Image similarity and asymmetry to improve computer-aided detection of breast cancer publication-title: Proceedings of International Workshop of Digital Mammography – volume: 24 start-page: 5902 year: 2018 end-page: 5909 ident: bib0290 article-title: Deep learning to distinguish recalled but benign mammography images in breast Cancer screening publication-title: Clin. Cancer Res. – volume: 220 start-page: 781 year: 2001 end-page: 786 ident: bib0185 article-title: Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center publication-title: Radiology – volume: 276 start-page: 65 year: 2015 end-page: 72 ident: bib0035 article-title: Effect of the availability of prior full-field digital mammography and digital breast tomosynthesis images on the interpretation of mammograms publication-title: Radiology – volume: 50 start-page: 3 year: 2009 end-page: 14 ident: bib0100 article-title: Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review publication-title: Acta radiol. – volume: 2 start-page: e138 year: 2020 end-page: e148 ident: bib0375 article-title: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study publication-title: The Lancet Digital Health. – volume: 41 start-page: 52 year: 2000 end-page: 56 ident: bib0020 article-title: Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms publication-title: Acta radiol. – volume: 277 start-page: 697 year: 2015 end-page: 706 ident: bib0135 article-title: Accuracy of digital breast tomosynthesis for depicting breast Cancer subgroups in a UK retrospective reading study (TOMMY trial) publication-title: Radiology. – year: 2019 ident: bib0395 article-title: The Breast Imaging and Diagnostic Workforce in the United Kingdom | the Royal College of Radiologists – volume: 242 start-page: 70 year: 2007 end-page: 77 ident: bib0025 article-title: Importance of comparison of current and prior mammograms in breast Cancer screening publication-title: Radiology – volume: 356 start-page: 1399 year: 2007 end-page: 1409 ident: bib0195 article-title: Influence of computer-aided detection on performance of screening mammography publication-title: N. Engl. J. Med. – volume: 157 start-page: 85 year: 2018 end-page: 94 ident: bib0265 article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system publication-title: Comput. Methods Programs Biomed. – start-page: 181454 year: 2020 ident: bib0045 article-title: Consensus review of discordant imaging findings after the introduction of digital screening mammography: irish national breast Cancer Screening program experience publication-title: Radiology. – volume: 100 start-page: 553 year: 2019 end-page: 566 ident: bib0075 article-title: Artificial intelligence and breast screening: French Radiology Community position paper publication-title: Diagn. Interv. Imaging – volume: 26 start-page: 184 year: 2016 end-page: 190 ident: bib0130 article-title: Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study publication-title: Eur. Radiol. – volume: 3 start-page: 034501 year: 2016 ident: bib0285 article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks publication-title: JMI. – volume: 52 start-page: 305 year: 2018 end-page: 309 ident: bib0225 article-title: A review of computer aided detection in mammography publication-title: Clin. Imaging – volume: 43 start-page: 6654 year: 2016 end-page: 6666 ident: bib0325 article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography publication-title: Med. Phys. – volume: 230 start-page: 811 year: 2004 end-page: 819 ident: bib0215 article-title: Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography publication-title: Radiology. – volume: 26 start-page: 735 year: 2019 end-page: 743 ident: bib0335 article-title: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography publication-title: Acad. Radiol. – volume: 23 start-page: 2891 year: 2013 end-page: 2898 ident: bib0065 article-title: Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography publication-title: Eur. Radiol. – volume: 229 start-page: 877 year: 2003 end-page: 884 ident: bib0085 article-title: Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study publication-title: Radiology – volume: 29 start-page: 4825 year: 2019 end-page: 4832 ident: bib0400 article-title: Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? publication-title: A feasibility study. Eur Radiol. – year: 2019 ident: bib0405 article-title: Can Artificial Intelligence Identify Normal Mammograms in Screening? – volume: 244 start-page: 708 year: 2007 end-page: 717 ident: bib0095 article-title: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study publication-title: Radiology – volume: 219 start-page: 192 year: 2001 end-page: 202 ident: bib0110 article-title: Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection publication-title: Radiology. – volume: 249 start-page: 47 year: 2008 end-page: 53 ident: bib0355 article-title: The “Laboratory” effect: comparing radiologists’ performance and variability during prospective clinical and laboratory mammography interpretations publication-title: Radiology – volume: 100 start-page: 101722 year: 2019 ident: bib0440 article-title: Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection publication-title: Artif. Intell. Med. – volume: 9785 start-page: 97850X year: 2016 ident: bib0340 article-title: Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches publication-title: Proceedings of SPIE – volume: 111 start-page: 916 year: 2019 end-page: 922 ident: bib0350 article-title: Stand-alone artificial intelligence for breast Cancer detection in mammography: comparison with 101 radiologists publication-title: J. Natl. Cancer Inst. – volume: 19 start-page: 1493 year: 2018 end-page: 1503 ident: bib0055 article-title: One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study publication-title: Lancet Oncol. – volume: 4 start-page: 044501 year: 2017 ident: bib0310 article-title: Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks publication-title: JMI. – volume: 40 start-page: 041902 year: 2013 ident: bib0330 article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms publication-title: Med. Phys. – volume: 10950 start-page: 109501X year: 2019 ident: bib0445 article-title: Use of convolutional neural networks to predict risk of masking by mammographic density publication-title: Proceedings of SPIE – volume: 17 start-page: 1105 year: 2016 end-page: 1113 ident: bib0125 article-title: Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study publication-title: Lancet Oncol. – volume: 34 start-page: 898 year: 2007 end-page: 905 ident: bib0155 article-title: Combining two mammographic projections in a computer aided mass detection method publication-title: Med. Phys. – volume: 232 start-page: 197 year: 2004 end-page: 204 ident: bib0090 article-title: Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program—the Oslo II study publication-title: Radiology – volume: 62 start-page: 8894 year: 2017 end-page: 8908 ident: bib0280 article-title: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms publication-title: Phys. Med. Biol. – volume: 293 start-page: 38 year: 2019 end-page: 46 ident: bib0410 article-title: A deep learning model to triage screening mammograms: a simulation study publication-title: Radiology. – volume: 23 start-page: 1159 year: 2014 end-page: 1163 ident: bib0010 article-title: European breast Cancer service screening outcomes: a first balance sheet of the benefits and harms publication-title: Cancer Epidemiol. Biomark. Prev. – volume: 210 start-page: 685 year: 2017 end-page: 694 ident: bib0385 article-title: Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study publication-title: Am. J. Roentgenol. – volume: 8 start-page: 1 year: 2018 end-page: 8 ident: bib0250 article-title: Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study publication-title: Sci. Rep. – volume: 9785 start-page: 97850 year: 2016 ident: bib0260 article-title: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis publication-title: Proceedings of SPIE – start-page: 927 year: 2016 end-page: 931 ident: bib0300 article-title: Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 61 start-page: 7092 year: 2016 end-page: 7112 ident: bib0220 article-title: Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis publication-title: Phys. Med. Biol. – volume: 287 start-page: 787 year: 2018 end-page: 794 ident: bib0145 article-title: Digital breast tomosynthesis and synthetic 2D mammography versus digital mammography: evaluation in a population-based screening program publication-title: Radiology – volume: 292 start-page: 60 year: 2019 end-page: 66 ident: bib0430 article-title: A deep learning mammography-based model for improved breast Cancer risk prediction publication-title: Radiology. – volume: 56 start-page: 248 year: 2005 end-page: 255 ident: bib0030 article-title: Use of prior mammograms in the classification of benign and malignant masses publication-title: Eur. J. Radiol. – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib0005 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. – volume: 14 start-page: 583 year: 2013 end-page: 589 ident: bib0120 article-title: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study publication-title: Lancet Oncol. – volume: 175 start-page: 1828 year: 2015 end-page: 1837 ident: bib0200 article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection publication-title: JAMA Intern. Med. – volume: 10134 start-page: 101341J year: 2017 ident: bib0305 article-title: Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses publication-title: Proceedings of SPIE – year: 2017 ident: bib0060 article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement (U01CA63740). Benchmarks for Abnormal Screening Mammography Interpretations, Based on Bcsc Data, 2007 – 2013. Benchmarks for Abnormal Screening Mammography Interpretations, Based on BCSC Data, 2007 – 2013 – volume: 294 start-page: 265 year: 2019 end-page: 272 ident: bib0435 article-title: Comparison of a deep learning risk score and standard mammographic density score for breast Cancer risk prediction publication-title: Radiology. – volume: 212 start-page: 259 year: 2018 end-page: 270 ident: bib0425 article-title: A review of the role of augmented intelligence in breast imaging: from automated breast density assessment to risk stratification publication-title: Am. J. Roentgenol. – year: 2019 ident: bib0205 article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement (U01CA63740 U. Screening Mammography Sensitivity, Specificity, & False Negative Rate – volume: 29 start-page: 2518 year: 2019 end-page: 2525 ident: bib0390 article-title: Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis publication-title: Eur. Radiol. – volume: 180 start-page: 343 year: 2003 end-page: 346 ident: bib0015 article-title: Optimal reference mammography: a comparison of mammograms obtained 1 and 2 years before the present examination publication-title: Am. J. Roentgenol. – year: 2019 ident: bib0050 article-title: National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). NETB Monitor 2014 - Nation-wide Breast Cancer Screening in the Netherlands, Results 2004 -2014 – volume: 205 start-page: 399 year: 1997 end-page: 406 ident: bib0115 article-title: Digital tomosynthesis in breast imaging publication-title: Radiology – volume: 232 start-page: 578 year: 2004 end-page: 584 ident: bib0190 article-title: Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience publication-title: Radiology. – volume: 1 start-page: 242 year: 1994 end-page: 249 ident: bib0420 article-title: Missed fractures resulting from satisfaction of search effect publication-title: Emerg. Radiol. – volume: 9416 start-page: 941605 year: 2015 ident: bib0270 article-title: Inter- and intra-observer variations in the delineation of lesions in mammograms publication-title: Proceedings of SPIE – volume: 47 start-page: 45 year: 2018 end-page: 67 ident: bib0315 article-title: Deep learning in mammography and breast histology, an overview and future trends publication-title: Med. Image Anal. – volume: 25 start-page: 133 year: 1990 ident: bib0415 article-title: Satisfaction of search in diagnostic radiology publication-title: Invest. Radiol. – year: 2011 ident: bib0105 article-title: NCI-funded Breast Cancer Surveillance Consortium Co-operative Agreement. Performance Measures for 1,960,150 Screening Mammography Examinations From 2002 to 2006 by Age --- Based on BCSC Data As of 2009 – volume: 1 start-page: e180096 year: 2019 ident: bib0360 article-title: Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis publication-title: Radiology: Artificial Intelligence. – volume: 6 start-page: 77 year: 2013 end-page: 98 ident: bib0150 article-title: Computer-aided breast Cancer detection using mammograms: a review publication-title: IEEE Rev. Biomed. Eng. – volume: 577 start-page: 89 year: 2020 end-page: 94 ident: bib0370 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature. – volume: 290 start-page: 305 year: 2018 end-page: 314 ident: bib0380 article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support publication-title: Radiology. – year: 2015 ident: bib0210 article-title: National Evaluation Team for Breast Cancer Screening in the Netherlands (NETB). NETB Monitor 2013 - Nation-wide Breast Cancer Screening in the Netherlands, Results 1990-2013 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0240 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 96 start-page: 40 year: 2017 end-page: 49 ident: bib0040 article-title: Effectiveness and cost-effectiveness of double reading in digital mammography screening: a systematic review and meta-analysis publication-title: Eur. J. Radiol. – volume: 19 start-page: 303 year: 2012 end-page: 310 ident: bib0170 article-title: Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment publication-title: Acad. Radiol. – volume: 35 start-page: 303 year: 2017 end-page: 312 ident: bib0255 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. – volume: 52 start-page: 434 year: 2017 end-page: 440 ident: bib0345 article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast Cancer publication-title: Invest. Radiol. – volume: 5 start-page: 17 year: 2005 end-page: 19 ident: bib0175 article-title: Computer aided detection (CAD): an overview publication-title: Cancer Imaging – volume: 23 start-page: 1159 issue: 7 year: 2014 ident: 10.1016/j.semcancer.2020.06.002_bib0010 article-title: European breast Cancer service screening outcomes: a first balance sheet of the benefits and harms publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-13-0320 – volume: 34 start-page: 898 issue: 3 year: 2007 ident: 10.1016/j.semcancer.2020.06.002_bib0155 article-title: Combining two mammographic projections in a computer aided mass detection method publication-title: Med. Phys. doi: 10.1118/1.2436974 – volume: 10950 start-page: 109501X year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0445 article-title: Use of convolutional neural networks to predict risk of masking by mammographic density publication-title: Proceedings of SPIE – volume: 244 start-page: 708 issue: 3 year: 2007 ident: 10.1016/j.semcancer.2020.06.002_bib0095 article-title: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study publication-title: Radiology doi: 10.1148/radiol.2443061478 – volume: 277 start-page: 697 issue: 3 year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0135 article-title: Accuracy of digital breast tomosynthesis for depicting breast Cancer subgroups in a UK retrospective reading study (TOMMY trial) publication-title: Radiology. doi: 10.1148/radiol.2015142566 – volume: 19 start-page: 1493 issue: 11 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0055 article-title: One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(18)30521-7 – volume: 292 start-page: 60 issue: 1 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0430 article-title: A deep learning mammography-based model for improved breast Cancer risk prediction publication-title: Radiology. doi: 10.1148/radiol.2019182716 – volume: 276 start-page: 65 issue: 1 year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0035 article-title: Effect of the availability of prior full-field digital mammography and digital breast tomosynthesis images on the interpretation of mammograms publication-title: Radiology doi: 10.1148/radiol.15142009 – volume: 17 start-page: 1105 issue: 8 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0125 article-title: Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30101-2 – start-page: 169 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0245 article-title: A multi-scale CNN and curriculum learning strategy for mammogram classification – start-page: 927 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0300 article-title: Latent feature representation with 3-D multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP.2016.7471811 – volume: 41 start-page: 52 issue: 1 year: 2000 ident: 10.1016/j.semcancer.2020.06.002_bib0020 article-title: Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms publication-title: Acta radiol. doi: 10.1258/rsmacta.41.1.52 – volume: 287 start-page: 787 issue: 3 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0145 article-title: Digital breast tomosynthesis and synthetic 2D mammography versus digital mammography: evaluation in a population-based screening program publication-title: Radiology doi: 10.1148/radiol.2018171361 – volume: 43 start-page: 6654 issue: 12 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0325 article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography publication-title: Med. Phys. doi: 10.1118/1.4967345 – volume: 157 start-page: 85 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0265 article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.017 – volume: 229 start-page: 877 issue: 3 year: 2003 ident: 10.1016/j.semcancer.2020.06.002_bib0085 article-title: Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study publication-title: Radiology doi: 10.1148/radiol.2293021171 – volume: 290 start-page: 305 issue: 2 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0380 article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support publication-title: Radiology. doi: 10.1148/radiol.2018181371 – volume: 47 start-page: 45 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0315 article-title: Deep learning in mammography and breast histology, an overview and future trends publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.03.006 – volume: 23 start-page: 2891 issue: 10 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0065 article-title: Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography publication-title: Eur. Radiol. doi: 10.1007/s00330-013-2876-0 – volume: 10134 start-page: 101341J year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0305 article-title: Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses publication-title: Proceedings of SPIE – volume: 29 start-page: 2518 issue: 5 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0390 article-title: Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5886-0 – volume: 4 start-page: 044501 issue: 4 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0310 article-title: Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks publication-title: JMI. – volume: 14 start-page: 583 issue: 7 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0120 article-title: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70134-7 – volume: 2 start-page: e138 issue: 3 year: 2020 ident: 10.1016/j.semcancer.2020.06.002_bib0375 article-title: Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study publication-title: The Lancet Digital Health. doi: 10.1016/S2589-7500(20)30003-0 – volume: 230 start-page: 811 issue: 3 year: 2004 ident: 10.1016/j.semcancer.2020.06.002_bib0215 article-title: Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography publication-title: Radiology. doi: 10.1148/radiol.2303030254 – year: 2012 ident: 10.1016/j.semcancer.2020.06.002_bib0235 – year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0405 – volume: 219 start-page: 192 issue: 1 year: 2001 ident: 10.1016/j.semcancer.2020.06.002_bib0110 article-title: Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection publication-title: Radiology. doi: 10.1148/radiology.219.1.r01ap16192 – volume: 293 start-page: 38 issue: 1 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0410 article-title: A deep learning model to triage screening mammograms: a simulation study publication-title: Radiology. doi: 10.1148/radiol.2019182908 – start-page: 221 year: 2006 ident: 10.1016/j.semcancer.2020.06.002_bib0160 article-title: Image similarity and asymmetry to improve computer-aided detection of breast cancer – volume: 294 start-page: 265 issue: 2 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0435 article-title: Comparison of a deep learning risk score and standard mammographic density score for breast Cancer risk prediction publication-title: Radiology. doi: 10.1148/radiol.2019190872 – volume: 267 start-page: 47 issue: 1 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0140 article-title: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program publication-title: Radiology. doi: 10.1148/radiol.12121373 – year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0210 – volume: 202 start-page: 229 issue: 1 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0070 article-title: Comparison of direct digital mammography, computed radiography, and film-screen in the french national breast Cancer Screening program publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.12.10419 – volume: 50 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.semcancer.2020.06.002_bib0100 article-title: Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review publication-title: Acta radiol. doi: 10.1080/02841850802563269 – volume: 3 start-page: 034501 issue: 3 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0285 article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks publication-title: JMI. – volume: 3 issue: 3 year: 2020 ident: 10.1016/j.semcancer.2020.06.002_bib0365 article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms publication-title: JAMA Netw Open. American Medical Association – volume: 96 start-page: 40 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0040 article-title: Effectiveness and cost-effectiveness of double reading in digital mammography screening: a systematic review and meta-analysis publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2017.09.013 – volume: 9416 start-page: 941605 year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0270 article-title: Inter- and intra-observer variations in the delineation of lesions in mammograms publication-title: Proceedings of SPIE doi: 10.1117/12.2077516 – volume: 205 start-page: 399 issue: 2 year: 1997 ident: 10.1016/j.semcancer.2020.06.002_bib0115 article-title: Digital tomosynthesis in breast imaging publication-title: Radiology doi: 10.1148/radiology.205.2.9356620 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0230 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 242 start-page: 70 issue: 1 year: 2007 ident: 10.1016/j.semcancer.2020.06.002_bib0025 article-title: Importance of comparison of current and prior mammograms in breast Cancer screening publication-title: Radiology doi: 10.1148/radiol.2421050684 – volume: 6514 start-page: 65141Q year: 2007 ident: 10.1016/j.semcancer.2020.06.002_bib0165 article-title: An improved asymmetry measure to detect breast cancer. Medical imaging 2007: computer-aided diagnosis publication-title: Proceedings of SPIE doi: 10.1117/12.708327 – volume: 111 start-page: 916 issue: 9 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0350 article-title: Stand-alone artificial intelligence for breast Cancer detection in mammography: comparison with 101 radiologists publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy222 – volume: 63 start-page: 095005 issue: 9 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0295 article-title: Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aabb5b – volume: 9785 start-page: 97850 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0260 article-title: Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis publication-title: Proceedings of SPIE – volume: 577 start-page: 89 issue: 7788 year: 2020 ident: 10.1016/j.semcancer.2020.06.002_bib0370 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature. doi: 10.1038/s41586-019-1799-6 – start-page: 181454 year: 2020 ident: 10.1016/j.semcancer.2020.06.002_bib0045 article-title: Consensus review of discordant imaging findings after the introduction of digital screening mammography: irish national breast Cancer Screening program experience publication-title: Radiology. – volume: 356 start-page: 1399 issue: 14 year: 2007 ident: 10.1016/j.semcancer.2020.06.002_bib0195 article-title: Influence of computer-aided detection on performance of screening mammography publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa066099 – volume: 52 start-page: 434 issue: 7 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0345 article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast Cancer publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000358 – volume: 29 start-page: 4825 issue: 9 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0400 article-title: Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? publication-title: A feasibility study. Eur Radiol. – volume: 24 start-page: 5902 issue: 23 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0290 article-title: Deep learning to distinguish recalled but benign mammography images in breast Cancer screening publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1115 – volume: 353 start-page: 1 year: 2005 ident: 10.1016/j.semcancer.2020.06.002_bib0080 article-title: Diagnostic performance of digital versus film mammography for breast-cancer screening publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa052911 – year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0050 – volume: 215 start-page: 554 issue: 2 year: 2000 ident: 10.1016/j.semcancer.2020.06.002_bib0180 article-title: Potential contribution of computer-aided detection to the sensitivity of screening mammography publication-title: Radiology. doi: 10.1148/radiology.215.2.r00ma15554 – year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0205 – volume: 210 start-page: 685 issue: 3 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0385 article-title: Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.17.18185 – volume: 100 start-page: 553 issue: 10 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0075 article-title: Artificial intelligence and breast screening: French Radiology Community position paper publication-title: Diagn. Interv. Imaging doi: 10.1016/j.diii.2019.08.005 – volume: 175 start-page: 1828 issue: 11 year: 2015 ident: 10.1016/j.semcancer.2020.06.002_bib0200 article-title: Diagnostic accuracy of digital screening mammography with and without computer-aided detection publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2015.5231 – volume: 9785 start-page: 97850X year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0340 article-title: Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches publication-title: Proceedings of SPIE doi: 10.1117/12.2217045 – volume: 6 start-page: 77 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0150 article-title: Computer-aided breast Cancer detection using mammograms: a review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2232289 – volume: 62 start-page: 8894 issue: 23 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0280 article-title: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d4 – volume: 40 start-page: 041902 issue: 4 year: 2013 ident: 10.1016/j.semcancer.2020.06.002_bib0330 article-title: Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms publication-title: Med. Phys. doi: 10.1118/1.4791643 – volume: 100 start-page: 101722 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0440 article-title: Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101722 – volume: 220 start-page: 781 issue: 3 year: 2001 ident: 10.1016/j.semcancer.2020.06.002_bib0185 article-title: Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center publication-title: Radiology doi: 10.1148/radiol.2203001282 – volume: 26 start-page: 735 issue: 6 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0335 article-title: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography publication-title: Acad. Radiol. doi: 10.1016/j.acra.2018.06.019 – volume: 17 start-page: 237 issue: 3 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0320 article-title: Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks publication-title: IEEE Trans. Nanobioscience doi: 10.1109/TNB.2018.2845103 – year: 2011 ident: 10.1016/j.semcancer.2020.06.002_bib0105 – volume: 1 start-page: 242 issue: 5 year: 1994 ident: 10.1016/j.semcancer.2020.06.002_bib0420 article-title: Missed fractures resulting from satisfaction of search effect publication-title: Emerg. Radiol. doi: 10.1007/BF02614935 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0275 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 26 start-page: 184 issue: 1 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0130 article-title: Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study publication-title: Eur. Radiol. doi: 10.1007/s00330-015-3803-3 – volume: 212 start-page: 259 issue: 2 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0425 article-title: A review of the role of augmented intelligence in breast imaging: from automated breast density assessment to risk stratification publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.18.20391 – volume: 61 start-page: 7092 issue: 19 year: 2016 ident: 10.1016/j.semcancer.2020.06.002_bib0220 article-title: Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/19/7092 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0240 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 249 start-page: 47 issue: 1 year: 2008 ident: 10.1016/j.semcancer.2020.06.002_bib0355 article-title: The “Laboratory” effect: comparing radiologists’ performance and variability during prospective clinical and laboratory mammography interpretations publication-title: Radiology doi: 10.1148/radiol.2491072025 – volume: 232 start-page: 197 issue: 1 year: 2004 ident: 10.1016/j.semcancer.2020.06.002_bib0090 article-title: Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program—the Oslo II study publication-title: Radiology doi: 10.1148/radiol.2321031624 – volume: 25 start-page: 133 issue: 2 year: 1990 ident: 10.1016/j.semcancer.2020.06.002_bib0415 article-title: Satisfaction of search in diagnostic radiology publication-title: Invest. Radiol. doi: 10.1097/00004424-199002000-00006 – volume: 232 start-page: 578 issue: 2 year: 2004 ident: 10.1016/j.semcancer.2020.06.002_bib0190 article-title: Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience publication-title: Radiology. doi: 10.1148/radiol.2322030034 – volume: 19 start-page: 303 issue: 3 year: 2012 ident: 10.1016/j.semcancer.2020.06.002_bib0170 article-title: Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment publication-title: Acad. Radiol. doi: 10.1016/j.acra.2011.10.026 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0250 article-title: Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study publication-title: Sci. Rep. – volume: 35 start-page: 303 year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0255 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.007 – year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0395 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0005 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 180 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.semcancer.2020.06.002_bib0015 article-title: Optimal reference mammography: a comparison of mammograms obtained 1 and 2 years before the present examination publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.180.2.1800343 – volume: 56 start-page: 248 issue: 2 year: 2005 ident: 10.1016/j.semcancer.2020.06.002_bib0030 article-title: Use of prior mammograms in the classification of benign and malignant masses publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2005.04.007 – volume: 5 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.semcancer.2020.06.002_bib0175 article-title: Computer aided detection (CAD): an overview publication-title: Cancer Imaging doi: 10.1102/1470-7330.2005.0018 – year: 2017 ident: 10.1016/j.semcancer.2020.06.002_bib0060 – volume: 52 start-page: 305 year: 2018 ident: 10.1016/j.semcancer.2020.06.002_bib0225 article-title: A review of computer aided detection in mammography publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2018.08.014 – volume: 1 start-page: e180096 issue: 4 year: 2019 ident: 10.1016/j.semcancer.2020.06.002_bib0360 article-title: Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis publication-title: Radiology: Artificial Intelligence. |
SSID | ssj0009414 |
Score | 2.649549 |
SecondaryResourceType | review_article |
Snippet | Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | Animals Artificial Intelligence Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Early Detection of Cancer Female Humans Mammography Mammography - methods Screening Tomosynthesis |
Title | Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1044579X20301358 https://dx.doi.org/10.1016/j.semcancer.2020.06.002 https://www.ncbi.nlm.nih.gov/pubmed/32531273 https://www.proquest.com/docview/2412988827 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUJcELQ8lkdlJMQtbOLYidPbqqJaQO0FKu3N8isoiM1WJHvopb-9M06yUAlUJK6RR3bs8fiz_c1ngLdOckPqkomXlJJjnU2sUTZJhedBepcZRQnOZ-fF8kJ8WsnVHpxMuTBEqxxj_xDTY7Qev8zH3pxfNs38C24khCyrFSdUn0tK-BWiJC9_f_2L5lGJqO9NhRMqfYvj1YW1o84lYVCeRiHP8XzlDyvU3xBoXIlOH8HDEUKyxdDKx7AX2gM4XLS4fV5fsXcskjrjafkB3D8b784PYUsGg14Ea34T4mQIW5klbnrPhmYyH_rI0GqxIFsbdNVB15qZ1jPffKOHRiYTrHTTXbWII7umO2YRvLJNzfADw458AhenH76eLJPx0YXEScH7JATura-DrZUU3vtSOB6UyZwtvcXNSmryAsNCgQNqstKWhZdlbbJc1ZklrbL8Key3mzY8B2Z9pkwVXHDoD5mpTGpVJSrLvS8cusEMiqmjtRsVyelhjB96op5917sR0jRCOpLw-AzSneHlIMpxt4maRlJPOacYJTUuHHebHu9Mb7nmvxm_mdxG48Sl2xjThs220wideKVwg1PO4NngT7ufyTmGRgSWL_6n6pfwgBMBJ3KLX8F-_3MbXiOC6u1RnCJHcG_x8fPy_AZ7PR97 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2PpTyMhLiFTRwncXqrqlYLdHuhlfZm-ZUqiM1WJHvohd_OjJNsWwlUJK6RR3Y84_Fn-_NngA8245rUJSOX0ZUcY01ktDRRLBz3mbOJlnTBeX6az87Fl0W22ILD8S4M0SqH3N_n9JCthy_ToTenl3U9_YYLCZEV5YITqk8zeQ_uCxy-9IzBp1_XPI9SBIFvKh1R8Vskr9YvLfUuKYPyOCh5Dhssf5ii_gZBw1R0_AQeDxiSHfTNfApbvtmB3YMG18_LK_aRBVZn2C7fgQfz4fB8F9Zk0AtGsPqGEidD3MoMkdM71jeTOd8FilaDBdlSY6z2wtZMN465-oJeGhlNsNJVe9UgkGzrdp8F9MpWFcMPDHvyGZwfH50dzqLh1YXIZoJ3kffcGVd5U8lMOOcKYbmXOrGmcAZXK7FOc8wLOXpUJ4UpcpcVlU5SWSWGxMrS57DdrBr_EphxidSlt95iQCS61LGRpSgNdy63GAcTyMeOVnaQJKeXMX6okXv2XW08pMhDKrDw-ATijeFlr8pxt4kcPanGS6eYJhXOHHeb7m9Mb8Xmvxm_H8NG4cil4xjd-NW6VYideClxhVNM4EUfT5ufSTnmRkSWr_6n6nfwcHY2P1Enn0-_7sEjTmycQDR-Ddvdz7V_g3CqM2_DcPkN0-chCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+for+breast+cancer+detection+in+mammography+and+digital+breast+tomosynthesis%3A+State+of+the+art&rft.jtitle=Seminars+in+cancer+biology&rft.au=Sechopoulos%2C+Ioannis&rft.au=Teuwen%2C+Jonas&rft.au=Mann%2C+Ritse&rft.date=2021-07-01&rft.issn=1096-3650&rft.eissn=1096-3650&rft.volume=72&rft.spage=214&rft_id=info:doi/10.1016%2Fj.semcancer.2020.06.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-579X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-579X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-579X&client=summon |