Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation

A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pre...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 92; no. 3; pp. 678 - 691
Main Authors Nikoo, M. Khoshtinat, Amin, N.A.S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO2/CH4 ratio being 1 at which about 4mol of syngas (H2/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO2:CH4:O2=1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.
AbstractList A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO sub(2)/CH sub(4) ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO sub(2)/CH sub(4) ratio being 1 at which about 4 mol of syngas (H sub(2)/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO sub(2)/CH sub(4) ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H sub(2) moles and gradual increment of CO sub(2) conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO sub(2) reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H sub(2) production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO sub(2) reforming of methane with equal amount of CH sub(4) and CO sub(2) revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO sub(2):CH sub(4):O sub(2) = 1:1:0.1, respectively. The H sub(2)/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO₂/CH₄ ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO₂/CH₄ ratio being 1 at which about 4mol of syngas (H₂/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO₂/CH₄ ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H₂ moles and gradual increment of CO₂ conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO₂ reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H₂ production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO₂ reforming of methane with equal amount of CH₄ and CO₂ revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO₂:CH₄:O₂=1:1:0.1, respectively. The H₂/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO2/CH4 ratio being 1 at which about 4mol of syngas (H2/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO2:CH4:O2=1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.
Author Amin, N.A.S.
Nikoo, M. Khoshtinat
Author_xml – sequence: 1
  givenname: M. Khoshtinat
  surname: Nikoo
  fullname: Nikoo, M. Khoshtinat
  email: m_k_nikoo@yahoo.com
  organization: Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia
– sequence: 2
  givenname: N.A.S.
  surname: Amin
  fullname: Amin, N.A.S.
  email: noraishah@fkkksa.utm.my
  organization: Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23822565$$DView record in Pascal Francis
BookMark eNp9kU1rHSEUhiWk0Ju0_6CQ2ZR2Mzfq-LkplNAvCGTRZC1ePSZeZjTVuWnvv6_DpF0GF8LxeY-H55yh05QTIPSO4C3BRFzut-HwWLLbUryUyBZTeYI2RMmhl0SpU7TBg1T9oCh-jc5q3WOMOddyg8ztA5Qp-2OyU3SdTXY81li7HDpnyy6nzsf8J3roCoRcppjul7cJ5geboIupe4rweynVPEb_L7Sgdo45vUGvgh0rvH2-z9Hd1y-3V9_765tvP64-X_eOMzr34Im0FAjsBkZ0oFaFIWjqBUjOrHaEardzWgfeDljPmWDKN5Yo7gYrh3P0Ye3bPPw6QJ3NFKuDcWxT5kM1ShDOmNKskR9fJImQhFLGNW8oW1FXcq1NgHkscbLlaAg2i3mzN6t5s5g3hJhmvsXeP_9gq7NjKDa5WP9naVsD5WJpf7FywWZj70tj7n62RqJtRwiqSCM-rQQ0dU10MdVFSA58LOBm43N8eZS_51SnQQ
CODEN FPTEDY
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118252
crossref_primary_10_1021_acscatal_2c06412
crossref_primary_10_1016_j_jcou_2021_101707
crossref_primary_10_1007_s11696_021_01566_2
crossref_primary_10_1088_1755_1315_100_1_012078
crossref_primary_10_35848_1347_4065_acdad9
crossref_primary_10_1016_j_apcatb_2015_04_039
crossref_primary_10_1016_j_ijhydene_2015_10_049
crossref_primary_10_1016_j_ijhydene_2018_08_074
crossref_primary_10_1021_ie403981j
crossref_primary_10_3389_fenvs_2017_00066
crossref_primary_10_1016_j_mtcomm_2022_105226
crossref_primary_10_1016_j_jclepro_2023_138638
crossref_primary_10_1016_j_ijhydene_2020_04_233
crossref_primary_10_1016_j_cattod_2019_06_047
crossref_primary_10_1039_D1CY01039E
crossref_primary_10_1016_j_jcou_2020_101411
crossref_primary_10_1039_c2ra00632d
crossref_primary_10_1016_j_fuproc_2021_107069
crossref_primary_10_1016_j_jngse_2014_06_021
crossref_primary_10_1016_j_jssc_2022_123267
crossref_primary_10_1016_j_ijhydene_2024_05_285
crossref_primary_10_1016_j_jiec_2019_12_030
crossref_primary_10_3390_methane3020016
crossref_primary_10_1016_j_enconman_2020_112950
crossref_primary_10_1007_s10971_013_3120_8
crossref_primary_10_1021_cs500918c
crossref_primary_10_1016_j_apcatb_2014_09_007
crossref_primary_10_1007_s11270_013_1569_2
crossref_primary_10_1016_j_fuel_2014_09_024
crossref_primary_10_3390_catal13111420
crossref_primary_10_1016_j_fuproc_2023_107895
crossref_primary_10_1016_j_fuel_2018_08_105
crossref_primary_10_1016_j_fuproc_2023_107655
crossref_primary_10_3390_molecules28020752
crossref_primary_10_1016_j_materresbull_2014_07_027
crossref_primary_10_1016_j_jiec_2013_08_016
crossref_primary_10_1016_j_jngse_2015_09_049
crossref_primary_10_3390_chemistry1010003
crossref_primary_10_1016_j_jclepro_2018_07_228
crossref_primary_10_1016_j_ijhydene_2019_08_209
crossref_primary_10_1007_s10562_020_03420_8
crossref_primary_10_1016_j_mcat_2021_111623
crossref_primary_10_1016_j_ijhydene_2019_09_014
crossref_primary_10_1016_j_ultsonch_2016_06_021
crossref_primary_10_1016_j_ijhydene_2019_01_027
crossref_primary_10_1016_j_ijhydene_2020_04_130
crossref_primary_10_1016_j_fuel_2023_127409
crossref_primary_10_3390_methane3020019
crossref_primary_10_1016_j_jcou_2022_102063
crossref_primary_10_1016_j_apsusc_2018_05_177
crossref_primary_10_1134_S0965544120050059
crossref_primary_10_1515_gps_2015_0061
crossref_primary_10_1016_j_ijhydene_2022_08_276
crossref_primary_10_1016_j_apcata_2022_118704
crossref_primary_10_1016_j_cej_2017_03_029
crossref_primary_10_1016_j_cattod_2021_03_004
crossref_primary_10_1016_j_cej_2019_01_085
crossref_primary_10_1016_j_matpr_2021_08_310
crossref_primary_10_1039_C3CY01079A
crossref_primary_10_3390_app7121213
crossref_primary_10_3390_su142215276
crossref_primary_10_1016_j_apcata_2013_08_053
crossref_primary_10_1016_j_ijhydene_2017_12_008
crossref_primary_10_1016_j_ijhydene_2018_07_104
crossref_primary_10_3390_catal11020159
crossref_primary_10_1021_ie404425e
crossref_primary_10_1016_j_fuel_2015_05_063
crossref_primary_10_1016_j_fuel_2019_115770
crossref_primary_10_1016_j_surfcoat_2022_128563
crossref_primary_10_3390_c4040060
crossref_primary_10_1088_1757_899X_736_4_042032
crossref_primary_10_1016_j_ijhydene_2022_01_100
crossref_primary_10_1016_j_ijhydene_2023_04_273
crossref_primary_10_1016_j_apenergy_2014_04_064
crossref_primary_10_3390_pr11082296
crossref_primary_10_1016_j_jcou_2023_102448
crossref_primary_10_1039_D1CY00271F
crossref_primary_10_1016_j_jcou_2018_08_004
crossref_primary_10_1002_ente_201900493
crossref_primary_10_1134_S0036024412050305
crossref_primary_10_1016_j_apcatb_2020_119056
crossref_primary_10_1016_j_jcou_2016_11_008
crossref_primary_10_3390_catal10121450
crossref_primary_10_1016_j_jcou_2022_102050
crossref_primary_10_1016_j_egypro_2017_03_546
crossref_primary_10_1016_j_jiec_2023_12_003
crossref_primary_10_1016_j_jechem_2017_10_002
crossref_primary_10_1016_j_psep_2023_10_011
crossref_primary_10_1016_j_apsusc_2021_152310
crossref_primary_10_1016_j_apcatb_2021_120210
crossref_primary_10_1021_acscatal_6b00673
crossref_primary_10_1007_s11244_019_01216_8
crossref_primary_10_1007_s10971_024_06336_6
crossref_primary_10_1016_j_cattod_2013_02_010
crossref_primary_10_1016_j_jclepro_2024_141395
crossref_primary_10_1016_S1872_2067_16_62455_5
crossref_primary_10_1016_j_jpowsour_2013_01_003
crossref_primary_10_1016_j_jngse_2015_07_001
crossref_primary_10_1016_j_ijhydene_2015_10_025
crossref_primary_10_1016_j_fuel_2022_125106
crossref_primary_10_1016_j_jcou_2017_06_004
crossref_primary_10_1039_C7CY01011G
crossref_primary_10_1016_j_ijhydene_2021_01_049
crossref_primary_10_1002_admi_202300509
crossref_primary_10_1007_s10562_014_1192_x
crossref_primary_10_1016_j_enconman_2015_06_046
crossref_primary_10_1016_j_apcata_2013_08_016
crossref_primary_10_3390_catal9040313
crossref_primary_10_1007_s10311_020_01055_0
crossref_primary_10_1016_j_apcata_2019_05_021
crossref_primary_10_1016_j_catcom_2023_106674
crossref_primary_10_1002_er_8570
crossref_primary_10_1007_s11164_017_3098_x
crossref_primary_10_1016_j_ijhydene_2019_01_113
crossref_primary_10_1016_S1003_9953_11_60421_0
crossref_primary_10_1088_0022_3727_49_7_075602
crossref_primary_10_1016_j_jcou_2017_12_002
crossref_primary_10_1016_j_apcatb_2014_03_018
crossref_primary_10_1016_j_apsusc_2013_05_082
crossref_primary_10_3390_en13020297
crossref_primary_10_1016_j_jes_2021_05_043
crossref_primary_10_1016_j_renene_2022_10_046
crossref_primary_10_1021_acs_iecr_7b01688
crossref_primary_10_1016_j_cej_2016_01_068
crossref_primary_10_3390_catal13020379
crossref_primary_10_1016_j_joei_2022_10_004
crossref_primary_10_1016_j_fuel_2015_05_021
crossref_primary_10_3390_membranes11070497
crossref_primary_10_1016_j_fuel_2021_123097
crossref_primary_10_1016_j_jechem_2021_11_041
crossref_primary_10_1016_j_apcatb_2022_122141
crossref_primary_10_1039_C9RA09418K
crossref_primary_10_1021_acs_energyfuels_9b00692
crossref_primary_10_1016_j_fuel_2024_131687
crossref_primary_10_1016_j_ijhydene_2019_08_194
crossref_primary_10_1016_j_ijhydene_2022_04_195
crossref_primary_10_1002_cssc_201601379
crossref_primary_10_1016_j_matpr_2018_09_081
crossref_primary_10_1016_j_fuel_2024_131561
crossref_primary_10_3390_ma16247701
crossref_primary_10_1007_s12649_016_9627_9
crossref_primary_10_1016_j_cattod_2023_114414
crossref_primary_10_1016_j_fuproc_2017_10_007
crossref_primary_10_3390_chemengineering7030057
crossref_primary_10_1021_acs_iecr_2c00633
crossref_primary_10_1016_j_fuel_2019_05_019
crossref_primary_10_3389_fenvc_2020_00005
crossref_primary_10_1021_acs_langmuir_4c00834
crossref_primary_10_1016_j_cattod_2015_12_026
crossref_primary_10_1021_acs_iecr_0c00542
crossref_primary_10_1016_j_ijhydene_2017_04_286
crossref_primary_10_1016_j_jtice_2019_04_047
crossref_primary_10_1016_j_cattod_2020_04_045
crossref_primary_10_1021_acs_energyfuels_2c00523
crossref_primary_10_1021_acsami_1c02180
crossref_primary_10_1016_j_ijhydene_2017_05_199
crossref_primary_10_3390_nano11112880
crossref_primary_10_1002_cctc_201400059
crossref_primary_10_1016_j_apcatb_2018_05_051
crossref_primary_10_1039_D2DT03026H
crossref_primary_10_1007_s11144_020_01770_3
crossref_primary_10_1016_j_energy_2021_121479
crossref_primary_10_1016_S1004_9541_14_60029_X
crossref_primary_10_1016_j_energy_2022_123815
crossref_primary_10_1016_j_fuel_2014_05_093
crossref_primary_10_1007_s10853_018_2642_4
crossref_primary_10_1016_j_ijhydene_2018_06_164
crossref_primary_10_1016_j_ijhydene_2021_11_194
crossref_primary_10_3390_catal10010027
crossref_primary_10_1016_j_rser_2016_04_007
crossref_primary_10_1134_S1070427220060014
crossref_primary_10_1016_j_apcatb_2015_09_049
crossref_primary_10_1021_acs_jpcc_2c07401
crossref_primary_10_3934_energy_2021044
crossref_primary_10_1093_ijlct_ctaa074
crossref_primary_10_1002_cjce_23780
crossref_primary_10_1038_s41598_023_38436_8
crossref_primary_10_3390_catal11070777
crossref_primary_10_1016_j_ijhydene_2018_12_130
crossref_primary_10_1016_j_jiec_2023_08_013
crossref_primary_10_1134_S0023158422010025
crossref_primary_10_1016_j_ijhydene_2015_09_113
crossref_primary_10_1021_acsengineeringau_2c00019
crossref_primary_10_1016_j_apcata_2017_08_002
crossref_primary_10_3762_bjnano_9_108
crossref_primary_10_1016_j_enconman_2018_09_038
crossref_primary_10_1016_j_ces_2024_119906
crossref_primary_10_3390_pr11082334
crossref_primary_10_1016_j_jngse_2014_10_030
crossref_primary_10_1016_j_jcou_2022_102206
crossref_primary_10_2174_2405520413666200313130420
crossref_primary_10_1515_ijcre_2024_0061
crossref_primary_10_1016_j_enconman_2017_08_056
crossref_primary_10_1016_j_fuel_2014_11_068
crossref_primary_10_1016_j_psep_2023_06_048
crossref_primary_10_1007_s11356_021_12794_0
crossref_primary_10_1002_ceat_201400157
crossref_primary_10_1016_j_apcata_2020_117439
crossref_primary_10_1016_j_cjche_2021_08_027
crossref_primary_10_1016_j_coche_2012_03_001
crossref_primary_10_1016_j_ijhydene_2022_05_081
crossref_primary_10_1002_ese3_278
crossref_primary_10_1016_j_fuproc_2018_11_017
crossref_primary_10_1016_j_jece_2021_105052
crossref_primary_10_1007_s11356_020_10269_2
crossref_primary_10_1038_s41598_018_27381_6
crossref_primary_10_1016_j_jece_2021_105298
crossref_primary_10_1016_j_scitotenv_2022_156663
crossref_primary_10_1002_cjce_22332
crossref_primary_10_1080_15567036_2018_1548518
crossref_primary_10_1016_j_ijhydene_2018_06_134
crossref_primary_10_1016_j_apcata_2018_01_007
crossref_primary_10_1016_j_apcatb_2018_10_048
crossref_primary_10_1016_j_ijhydene_2022_05_297
crossref_primary_10_1016_j_ijhydene_2019_09_050
crossref_primary_10_1016_j_ijhydene_2016_11_067
crossref_primary_10_1016_j_jcou_2016_06_005
crossref_primary_10_1007_s11244_015_0490_x
crossref_primary_10_1016_j_ijhydene_2019_07_200
crossref_primary_10_1002_er_3295
crossref_primary_10_3390_en17010184
crossref_primary_10_1016_j_apcata_2015_04_006
crossref_primary_10_1016_j_petrol_2015_07_015
crossref_primary_10_1016_j_jcou_2018_01_027
crossref_primary_10_1016_j_ces_2022_118315
crossref_primary_10_1021_acsomega_3c02999
crossref_primary_10_1002_aic_17126
crossref_primary_10_1002_ente_201900521
crossref_primary_10_1016_j_ijhydene_2022_05_065
crossref_primary_10_1016_j_apcata_2020_117455
crossref_primary_10_1016_j_biortech_2013_04_023
crossref_primary_10_1039_D1CY02044G
crossref_primary_10_31857_S2218117223060044
crossref_primary_10_1021_acscatal_8b00584
crossref_primary_10_1016_j_ceramint_2022_10_217
crossref_primary_10_1016_j_compchemeng_2023_108273
crossref_primary_10_1016_j_ijhydene_2018_08_181
crossref_primary_10_1007_s11705_020_1975_0
crossref_primary_10_1016_j_ijhydene_2016_11_196
crossref_primary_10_1016_j_enconman_2015_04_053
crossref_primary_10_1016_j_matpr_2023_08_155
crossref_primary_10_1016_j_fuel_2023_130166
crossref_primary_10_1080_15567036_2021_1994669
crossref_primary_10_1016_j_apcata_2020_117620
crossref_primary_10_1016_j_ijhydene_2017_09_151
crossref_primary_10_1016_j_jenvman_2022_116463
crossref_primary_10_1007_s11090_020_10074_2
crossref_primary_10_1021_acs_iecr_9b03090
crossref_primary_10_1016_j_ijhydene_2017_09_037
crossref_primary_10_1016_j_rser_2023_113635
crossref_primary_10_31763_ijrcs_v2i1_584
crossref_primary_10_3390_catal11050563
crossref_primary_10_1007_s10562_020_03296_8
crossref_primary_10_1002_cphc_201700752
crossref_primary_10_1016_j_ijhydene_2016_08_194
crossref_primary_10_1039_C6CY00202A
crossref_primary_10_1016_j_ecmx_2023_100451
crossref_primary_10_1021_acsami_9b02572
crossref_primary_10_1134_S0965544124030034
crossref_primary_10_1016_j_ijhydene_2015_05_129
crossref_primary_10_1016_j_mcat_2023_112945
crossref_primary_10_1016_j_rser_2017_09_076
crossref_primary_10_1016_j_catcom_2015_12_014
crossref_primary_10_1016_j_ijhydene_2021_03_150
crossref_primary_10_3390_polym13152462
crossref_primary_10_1016_j_apcatb_2012_02_039
crossref_primary_10_1016_j_crcon_2022_09_002
crossref_primary_10_1016_j_ijhydene_2018_09_200
crossref_primary_10_1002_er_4470
crossref_primary_10_1016_j_jcou_2017_09_014
crossref_primary_10_1080_09593330_2019_1639828
crossref_primary_10_3390_catal13091296
crossref_primary_10_1016_j_jiec_2015_08_021
crossref_primary_10_1016_j_jcat_2019_05_024
crossref_primary_10_1016_j_ijhydene_2021_03_246
crossref_primary_10_1016_j_fuproc_2015_04_022
crossref_primary_10_1002_apj_2188
crossref_primary_10_3390_nano12203676
crossref_primary_10_1016_j_ijhydene_2015_05_030
crossref_primary_10_1016_j_fuproc_2014_02_017
crossref_primary_10_1016_j_ijhydene_2016_06_246
crossref_primary_10_1016_j_apenergy_2016_04_006
crossref_primary_10_1016_j_ijhydene_2020_02_042
crossref_primary_10_1016_j_jiec_2023_10_002
crossref_primary_10_1039_C8SE00638E
crossref_primary_10_1016_j_rser_2021_110949
crossref_primary_10_1002_er_8702
crossref_primary_10_1155_2023_3684046
crossref_primary_10_1016_j_ijhydene_2015_05_147
crossref_primary_10_1016_j_apcatb_2020_119711
crossref_primary_10_3390_atmos14050770
crossref_primary_10_1016_j_ijhydene_2018_05_083
crossref_primary_10_1155_2019_9189525
crossref_primary_10_1016_j_fuproc_2014_02_021
crossref_primary_10_1016_j_ijggc_2019_102791
crossref_primary_10_1016_j_renene_2020_08_069
crossref_primary_10_1021_acs_iecr_1c02193
crossref_primary_10_1016_j_ijhydene_2016_07_184
crossref_primary_10_1039_C6RA20450C
crossref_primary_10_1016_j_jclepro_2018_03_108
crossref_primary_10_1016_j_apcatb_2012_09_052
crossref_primary_10_1002_advs_202203221
crossref_primary_10_1016_j_rser_2022_112343
crossref_primary_10_1016_j_mencom_2019_11_022
crossref_primary_10_3390_en13236472
crossref_primary_10_1016_j_ces_2020_116072
crossref_primary_10_1021_acs_langmuir_7b02753
crossref_primary_10_1002_cctc_201901098
crossref_primary_10_1016_j_jcou_2017_01_003
crossref_primary_10_1515_revce_2014_0042
crossref_primary_10_1016_j_jcou_2021_101474
crossref_primary_10_1007_s10562_019_02889_2
crossref_primary_10_1016_j_jngse_2015_03_006
crossref_primary_10_1002_aic_17304
crossref_primary_10_1016_j_ijhydene_2021_10_025
crossref_primary_10_1021_acs_iecr_3c00064
crossref_primary_10_1016_j_ijhydene_2019_12_020
crossref_primary_10_1016_j_ijhydene_2021_11_172
crossref_primary_10_1007_s11244_022_01709_z
crossref_primary_10_1051_e3sconf_20172200151
crossref_primary_10_1088_2515_7655_acc4e8
crossref_primary_10_1016_j_envpol_2018_07_127
crossref_primary_10_1016_j_recm_2022_08_003
crossref_primary_10_1002_ceat_201800456
crossref_primary_10_1002_ceat_202200115
crossref_primary_10_1016_j_pecs_2021_100970
crossref_primary_10_1007_s11144_017_1277_9
crossref_primary_10_1016_j_apenergy_2016_04_119
crossref_primary_10_1016_j_fuel_2022_123877
crossref_primary_10_1016_j_ces_2016_04_019
crossref_primary_10_1016_j_jcou_2021_101462
crossref_primary_10_3390_catal9080676
crossref_primary_10_1007_s11144_017_1167_1
crossref_primary_10_1016_j_jcou_2021_101447
crossref_primary_10_1002_2050_7038_12756
crossref_primary_10_1016_j_jechem_2022_04_022
crossref_primary_10_1016_j_ijhydene_2019_05_113
crossref_primary_10_1016_j_ijhydene_2017_03_146
crossref_primary_10_1021_acs_energyfuels_0c04269
crossref_primary_10_3390_pr9050759
crossref_primary_10_3390_catal11121433
crossref_primary_10_3390_catal12030274
crossref_primary_10_1016_j_crcon_2024_100249
crossref_primary_10_1016_j_jcou_2020_101156
crossref_primary_10_1016_S1872_2067_12_60554_3
crossref_primary_10_1016_j_catcom_2016_12_019
crossref_primary_10_1016_j_fuel_2020_117702
crossref_primary_10_1016_j_ijhydene_2020_06_203
crossref_primary_10_1002_advs_202205890
crossref_primary_10_1007_s11244_019_01157_2
crossref_primary_10_1115_1_4040074
crossref_primary_10_3390_en15197159
crossref_primary_10_1016_j_energy_2019_05_083
crossref_primary_10_1002_ceat_202000150
crossref_primary_10_1016_j_cattod_2018_07_032
crossref_primary_10_1016_j_ijhydene_2014_12_103
crossref_primary_10_1016_j_cep_2014_03_004
crossref_primary_10_1021_sc300098e
crossref_primary_10_1016_j_cattod_2020_07_030
crossref_primary_10_1515_revce_2020_0038
crossref_primary_10_1007_s11144_024_02658_2
crossref_primary_10_1039_C8TA08343F
crossref_primary_10_1016_j_fuel_2021_122449
crossref_primary_10_1515_ijcre_2020_0111
crossref_primary_10_1016_j_apcata_2015_02_022
crossref_primary_10_1016_j_enconman_2020_112664
crossref_primary_10_1016_j_biortech_2014_10_069
crossref_primary_10_1016_j_fuel_2018_07_157
crossref_primary_10_1016_j_jiec_2023_04_038
crossref_primary_10_1016_j_cjche_2017_11_006
crossref_primary_10_1016_j_ijhydene_2023_09_167
crossref_primary_10_1051_e3sconf_202128704015
crossref_primary_10_4028_www_scientific_net_MSF_756_182
crossref_primary_10_1016_j_cattod_2011_04_031
crossref_primary_10_1021_acsomega_1c03174
crossref_primary_10_1016_j_desal_2024_117526
crossref_primary_10_1016_j_ceramint_2018_11_147
crossref_primary_10_1016_j_apcata_2014_07_013
crossref_primary_10_3390_inorganics6020039
crossref_primary_10_1016_j_biombioe_2014_02_032
crossref_primary_10_1016_j_apsusc_2024_160388
crossref_primary_10_1021_acsomega_9b01784
crossref_primary_10_1016_j_ceramint_2022_09_062
crossref_primary_10_1007_s10562_024_04577_2
crossref_primary_10_1016_S2095_4956_15_60284_4
crossref_primary_10_1016_j_fuel_2023_128429
crossref_primary_10_1134_S2517751623060045
crossref_primary_10_1016_j_matpr_2023_04_390
crossref_primary_10_1016_j_ijhydene_2014_11_095
crossref_primary_10_1016_j_renene_2016_08_069
crossref_primary_10_1016_j_ijhydene_2012_02_031
crossref_primary_10_1016_j_fuproc_2013_02_016
crossref_primary_10_3390_catal13040647
crossref_primary_10_1039_C5RA19748A
crossref_primary_10_1016_j_jclepro_2017_05_176
crossref_primary_10_1155_2014_929676
crossref_primary_10_1007_s11164_016_2485_z
crossref_primary_10_1016_j_ijhydene_2018_02_063
crossref_primary_10_1007_s10098_015_0965_2
crossref_primary_10_1021_acsenergylett_7b00392
crossref_primary_10_1016_j_ijhydene_2020_08_073
crossref_primary_10_1016_j_apcatb_2024_124102
crossref_primary_10_1021_acs_chemrev_7b00435
crossref_primary_10_1016_j_fuel_2023_127592
crossref_primary_10_3390_catal13030606
crossref_primary_10_1016_j_jiec_2024_06_017
crossref_primary_10_1016_j_ijhydene_2019_03_022
crossref_primary_10_1016_j_enconman_2018_10_067
crossref_primary_10_1016_j_jes_2023_01_022
crossref_primary_10_1002_cite_201400092
crossref_primary_10_1016_j_ijhydene_2021_08_021
crossref_primary_10_2139_ssrn_3947558
crossref_primary_10_1016_j_enconman_2019_112056
crossref_primary_10_1016_j_apcatb_2022_121806
crossref_primary_10_1038_s41598_019_42814_6
crossref_primary_10_1016_j_jcou_2015_01_002
crossref_primary_10_3390_nano12193400
crossref_primary_10_1016_j_jcou_2021_101629
crossref_primary_10_1016_j_matchemphys_2015_07_048
crossref_primary_10_1016_j_cattod_2014_07_054
crossref_primary_10_3390_catal13081171
crossref_primary_10_1038_s41598_023_43782_8
crossref_primary_10_3390_catal8030110
crossref_primary_10_1016_j_ijhydene_2024_02_267
crossref_primary_10_1016_j_enconman_2017_11_089
crossref_primary_10_1039_D3GC05136F
crossref_primary_10_1016_j_jcou_2017_11_015
crossref_primary_10_3389_fchem_2019_00119
crossref_primary_10_1016_j_ijhydene_2017_01_049
crossref_primary_10_1016_j_ijhydene_2022_01_066
crossref_primary_10_1016_j_apenergy_2017_08_007
crossref_primary_10_1002_apj_1759
crossref_primary_10_3390_catal12050465
crossref_primary_10_3390_catal10111345
crossref_primary_10_1039_D3CY01612A
crossref_primary_10_1016_j_ceja_2020_100080
crossref_primary_10_1016_j_enconman_2018_05_083
crossref_primary_10_1021_ie402382w
crossref_primary_10_1016_j_cattod_2017_03_049
crossref_primary_10_1016_j_ijhydene_2023_09_113
crossref_primary_10_1016_j_fuproc_2023_108024
crossref_primary_10_1016_j_apcata_2015_01_029
crossref_primary_10_1016_j_ijhydene_2020_12_026
crossref_primary_10_1515_cppm_2015_0027
crossref_primary_10_1016_j_jcou_2020_101201
crossref_primary_10_1016_j_jcou_2021_101728
crossref_primary_10_1016_j_cattod_2020_07_016
crossref_primary_10_1016_j_cherd_2014_07_013
crossref_primary_10_1016_j_apenergy_2019_05_064
crossref_primary_10_1016_j_apcata_2021_118174
crossref_primary_10_1016_j_ijhydene_2011_08_117
crossref_primary_10_3389_fchem_2014_00081
crossref_primary_10_1016_j_cej_2023_147458
crossref_primary_10_1039_D1RE00136A
crossref_primary_10_1016_j_jechem_2019_12_017
crossref_primary_10_1134_S0023158421060069
crossref_primary_10_1016_j_susmat_2019_e00122
crossref_primary_10_1016_j_ijhydene_2023_03_094
crossref_primary_10_1080_00986445_2015_1017638
crossref_primary_10_1038_s41929_019_0416_2
crossref_primary_10_1080_01614940_2021_2006891
crossref_primary_10_3389_fchem_2019_00028
crossref_primary_10_1016_j_jechem_2024_05_024
crossref_primary_10_1016_j_jngse_2016_02_021
crossref_primary_10_3390_e19120650
crossref_primary_10_1016_j_cattod_2019_06_018
crossref_primary_10_1016_j_energy_2020_117394
crossref_primary_10_1007_s11783_019_1096_5
crossref_primary_10_1016_j_jcou_2017_10_014
Cites_doi 10.1021/ie990804r
10.1023/A:1022607800345
10.1002/anie.200701237
10.1016/j.jcat.2004.02.032
10.1021/ie100460g
10.1016/j.jpowsour.2005.01.056
10.1016/S1872-2067(08)60079-0
10.1016/S1381-1169(00)00407-6
10.1016/j.fuproc.2005.11.004
10.1007/BF01982701
10.1016/0360-3199(95)00030-H
10.1021/ef0340716
10.1016/j.apcatb.2009.10.029
10.1023/A:1016600223749
10.1016/j.ijhydene.2008.06.058
10.1007/s11814-007-0027-5
10.1016/S0378-3820(03)00063-8
10.1016/j.cattod.2004.09.014
10.1016/S0920-5861(03)00296-7
10.1109/TPS.2003.808888
10.1252/jcej.27.727
10.1016/S0016-2361(00)00165-4
10.1016/j.jcat.2008.08.008
10.1016/S0926-860X(00)00460-9
10.1016/j.ijhydene.2006.12.004
10.1006/jcat.2000.2820
10.1016/j.jngse.2009.12.003
10.1016/S0167-2991(98)80284-X
10.1016/S0167-2991(06)81571-5
10.1006/jcat.1997.1910
10.1021/ie00008a004
10.1016/j.cej.2010.04.022
10.1016/S1386-1425(98)00163-2
10.1016/0360-3199(91)90166-G
10.1016/j.jpowsour.2006.04.091
10.1021/ie970246l
10.1016/S0167-2991(98)80533-8
10.1016/j.fuel.2009.01.015
10.1016/j.jpowsour.2006.09.072
10.1021/ie9709401
10.1016/j.catcom.2005.05.008
10.1016/S0360-3199(99)00013-0
10.1007/s10562-006-0076-0
10.1016/0920-5861(93)80059-A
10.1080/02533839.2008.9671444
10.1016/S0378-7753(98)00003-2
10.1007/s10562-004-3467-0
10.1088/0022-3727/34/18/313
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
7ST
C1K
SOI
DOI 10.1016/j.fuproc.2010.11.027
DatabaseName AGRIS
Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
Environment Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7188
EndPage 691
ExternalDocumentID 10_1016_j_fuproc_2010_11_027
23822565
US201600066281
S0378382010003905
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
IQODW
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
GROUPED_DOAJ
7TB
8FD
FR3
H8D
L7M
7ST
C1K
SOI
ID FETCH-LOGICAL-c542t-ed17a2e1eb3419f2a8f3f92d6e754a9c129cbc99f5f5fead54648d341185c3a73
IEDL.DBID AIKHN
ISSN 0378-3820
IngestDate Fri Oct 25 06:18:18 EDT 2024
Sat Oct 26 00:09:51 EDT 2024
Thu Sep 26 17:48:46 EDT 2024
Tue Feb 27 08:52:00 EST 2024
Wed Dec 27 19:19:03 EST 2023
Fri Feb 23 02:30:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Methane
Gibbs free energy
Reforming
Thermodynamic equilibrium
Carbon formation
Carbon dioxide
Disproportionation
Ethylene
Fischer Tropsch synthesis
Temperature effect
Methyl ether
Decomposition
Synthesis gas
Free energy
Ethane
Numerical analysis
Pressure effect
Thermodynamic analysis
Catalyst
Methanol
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-ed17a2e1eb3419f2a8f3f92d6e754a9c129cbc99f5f5fead54648d341185c3a73
Notes http://dx.doi.org/10.1016/j.fuproc.2010.11.027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671224595
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_861544894
proquest_miscellaneous_1671224595
crossref_primary_10_1016_j_fuproc_2010_11_027
pascalfrancis_primary_23822565
fao_agris_US201600066281
elsevier_sciencedirect_doi_10_1016_j_fuproc_2010_11_027
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuel processing technology
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Zhu (bb0285) 2004; 18
Khalesi, Arandiyan, Parvari (bb0190) 2008; 29
O'Connor, Ross, Meunier (bb0035) 1998; 119
Jankhah, Abatzoglou, gitzhofer (bb0105) 2008; 33
Eliasson, Kogelschatz, Xue, Zhou (bb0280) 1998; 37
Seshan, Bitter, Lecher (bb0085) 1998; 113
Comier, Rusi (bb0040) 2001; 34
He, Yang, Cheng (bb0270) 2004; 98
Wang, Ohtsuka (bb0265) 2000; 192
Maestri, Vlachos, Beretta, Groppi, Tronconi (bb0250) 2008; 259
Mattos, Rodino, Resasco, Passos, Noronha (bb0240) 2003; 83
Kohn, Castaldi, Farrauto (bb0255) 2010; 94
Semelsberger, Borup (bb0145) 2005; 152
Hong, S-M, Park, Kim (bb0200) 2001; 7
vila-Neto, Dantas, Silva, Franco, Romanielo, Hori, Assis (bb0300) 2009; 1
Istadi, Amin (bb0070) 2005; 14
Takano, Tagawa, Goto (bb0215) 1994; 27
Gronchi, Fumagalli, Del Rosso, Centola (bb0120) 1996; 47
Múnera, Carrara, Cornaglia, Lombardo (bb0295) 2010; 161
Wei, Iglesia (bb0245) 2004; 224
Tsai, Wang (bb0210) 2008; 31
Froment (bb0185) 2000; 163
Smith, Van Ness, Abbort (bb0180) 2005
E.M. Galimov, A.M. Rabbani, Geochemical characteristics and origin of natural gas in southern Iran, Geochem. Int. 39 (2001) 780–792.
Qian, Yang (bb0095) 2003; 14
Liu, Xiong, Dong, Yang (bb0290) 2004; 202
Choudhary, Choudhary (bb0045) 2008; 47
Lwin, Daud, Mohamad, Yaakob (bb0100) 2000; 25
S.Y. Foo, C.K. Cheng, T.H. Nguyen, A.A. Adesina, Oxidative CO
Michael, Bradford, Vannice (bb0110) 1998; 173
W-Ch. Fong, R.F. Wilson, inventor; Texaco Inc., assignee. Gasification process combined with steam methane reforming to produce syngas suitable for methanol production, United States Patent US No 5, 496, 859, March 5, 1996.
Eliasson, Liu, Kogelschatz (bb0015) 2000; 39
Bhumkar, Lobban (bb0025) 1992; 31
Zhu, Zhang, King (bb0055) 2001; 80
Garcia, Laborde (bb0130) 1991; 16
Faungnawakij, Kikuchi, Eguchi (bb0165) 2006; 161
Oberreuther, Wolff, Behr (bb0020) 2003; 31
Jablonski, Schmidhalter, de Miguel, Scelza, Castro (bb0195) 2005
Moradi, Depecker, Barbillat (bb0030) 1999; 55
Olsbye, Wurzel, Mleczko (bb0075) 1997; 36
Cai, Chou, Zhang, Zhao (bb0220) 2003; 86
Rostrup-Neilsen (bb0235) 1993; 18
reforming of methane on Alumina-supported Co-Ni catalyst, Ind. Eng. Chem. Res. 49 (2010) 10450–10458.
Kajornsak, Ryuji, Koichi (bb0150) 2007; 164
Suhartanto, York, Hanif (bb0005) 2001; 71
Wisniewski, Boreave, Gelin (bb0205) 2005; 6
Shamsi, Johnson (bb0225) 2003; 84
Liu, Roh, Jun (bb0065) 2003; 9
Asami (bb0090) 2003
Choudhary, Mondal, Mamman, Joshi (bb0125) 2005; 100
Amin, Yaw (bb0160) 2007; 32
G.A. Olah, G.K. Surya Prakash, inventor; WINSTON & STRAWN LLP., assignee. Conversion of carbon dioxide to dimethyl ether using bi-reforming of methane or natural gas, Patent Application Publication US No 2008/0319093A1 Dec 25, 2008.
Amin, Istadi (bb0275) 2006; 159
Yaws (bb0175) 2006
Wang, Wang Li, Wang, Li, Wang, Ma (bb0155) 2009; 88
Yanbing, Baosheng, Rui (bb0060) 2007; 24
Maggio, Freni, Cavallar (bb0140) 1998; 74
Sandler (bb0170) 1999
Istadi, Amin (bb0260) 2006; 87
Shamsi (bb0115) 2006; 109
Vasudeva, Mitra, Umasankar, Dhingra (bb0135) 1996; 21
Shamsi (10.1016/j.fuproc.2010.11.027_bb0115) 2006; 109
Zhu (10.1016/j.fuproc.2010.11.027_bb0055) 2001; 80
10.1016/j.fuproc.2010.11.027_bb0080
Hong (10.1016/j.fuproc.2010.11.027_bb0200) 2001; 7
Vasudeva (10.1016/j.fuproc.2010.11.027_bb0135) 1996; 21
Kajornsak (10.1016/j.fuproc.2010.11.027_bb0150) 2007; 164
Jablonski (10.1016/j.fuproc.2010.11.027_bb0195) 2005
Maestri (10.1016/j.fuproc.2010.11.027_bb0250) 2008; 259
Tsai (10.1016/j.fuproc.2010.11.027_bb0210) 2008; 31
Amin (10.1016/j.fuproc.2010.11.027_bb0275) 2006; 159
Yaws (10.1016/j.fuproc.2010.11.027_bb0175) 2006
Choudhary (10.1016/j.fuproc.2010.11.027_bb0045) 2008; 47
Mattos (10.1016/j.fuproc.2010.11.027_bb0240) 2003; 83
10.1016/j.fuproc.2010.11.027_bb0010
Qian (10.1016/j.fuproc.2010.11.027_bb0095) 2003; 14
Garcia (10.1016/j.fuproc.2010.11.027_bb0130) 1991; 16
10.1016/j.fuproc.2010.11.027_bb0050
Eliasson (10.1016/j.fuproc.2010.11.027_bb0280) 1998; 37
Olsbye (10.1016/j.fuproc.2010.11.027_bb0075) 1997; 36
Lwin (10.1016/j.fuproc.2010.11.027_bb0100) 2000; 25
He (10.1016/j.fuproc.2010.11.027_bb0270) 2004; 98
Froment (10.1016/j.fuproc.2010.11.027_bb0185) 2000; 163
vila-Neto (10.1016/j.fuproc.2010.11.027_bb0300) 2009; 1
Jankhah (10.1016/j.fuproc.2010.11.027_bb0105) 2008; 33
Semelsberger (10.1016/j.fuproc.2010.11.027_bb0145) 2005; 152
Liu (10.1016/j.fuproc.2010.11.027_bb0065) 2003; 9
Wang (10.1016/j.fuproc.2010.11.027_bb0265) 2000; 192
Choudhary (10.1016/j.fuproc.2010.11.027_bb0125) 2005; 100
Wang (10.1016/j.fuproc.2010.11.027_bb0155) 2009; 88
Múnera (10.1016/j.fuproc.2010.11.027_bb0295) 2010; 161
Wei (10.1016/j.fuproc.2010.11.027_bb0245) 2004; 224
Comier (10.1016/j.fuproc.2010.11.027_bb0040) 2001; 34
Wang (10.1016/j.fuproc.2010.11.027_bb0285) 2004; 18
Istadi (10.1016/j.fuproc.2010.11.027_bb0070) 2005; 14
Suhartanto (10.1016/j.fuproc.2010.11.027_bb0005) 2001; 71
Asami (10.1016/j.fuproc.2010.11.027_bb0090) 2003
Khalesi (10.1016/j.fuproc.2010.11.027_bb0190) 2008; 29
Maggio (10.1016/j.fuproc.2010.11.027_bb0140) 1998; 74
O'Connor (10.1016/j.fuproc.2010.11.027_bb0035) 1998; 119
Gronchi (10.1016/j.fuproc.2010.11.027_bb0120) 1996; 47
Amin (10.1016/j.fuproc.2010.11.027_bb0160) 2007; 32
Cai (10.1016/j.fuproc.2010.11.027_bb0220) 2003; 86
Bhumkar (10.1016/j.fuproc.2010.11.027_bb0025) 1992; 31
10.1016/j.fuproc.2010.11.027_bb0230
Smith (10.1016/j.fuproc.2010.11.027_bb0180) 2005
Sandler (10.1016/j.fuproc.2010.11.027_bb0170) 1999
Yanbing (10.1016/j.fuproc.2010.11.027_bb0060) 2007; 24
Takano (10.1016/j.fuproc.2010.11.027_bb0215) 1994; 27
Liu (10.1016/j.fuproc.2010.11.027_bb0290) 2004; 202
Seshan (10.1016/j.fuproc.2010.11.027_bb0085) 1998; 113
Michael (10.1016/j.fuproc.2010.11.027_bb0110) 1998; 173
Rostrup-Neilsen (10.1016/j.fuproc.2010.11.027_bb0235) 1993; 18
Moradi (10.1016/j.fuproc.2010.11.027_bb0030) 1999; 55
Istadi (10.1016/j.fuproc.2010.11.027_bb0260) 2006; 87
Eliasson (10.1016/j.fuproc.2010.11.027_bb0015) 2000; 39
Wisniewski (10.1016/j.fuproc.2010.11.027_bb0205) 2005; 6
Faungnawakij (10.1016/j.fuproc.2010.11.027_bb0165) 2006; 161
Shamsi (10.1016/j.fuproc.2010.11.027_bb0225) 2003; 84
Oberreuther (10.1016/j.fuproc.2010.11.027_bb0020) 2003; 31
Kohn (10.1016/j.fuproc.2010.11.027_bb0255) 2010; 94
References_xml – volume: 47
  start-page: 1828
  year: 2008
  end-page: 1847
  ident: bb0045
  article-title: Energy-efficient syngas production through catalytic oxy-methane reforming reactions
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Choudhary
– start-page: 1
  year: 2005
  end-page: 13
  ident: bb0195
  article-title: Dry reforming of methane on Pt/Al
  publication-title: 2nd Mercosur Congress on Chemical Engineering, Rio de Janeiro
  contributor:
    fullname: Castro
– volume: 173
  start-page: 157
  year: 1998
  end-page: 171
  ident: bb0110
  article-title: CO
  publication-title: J. Catal. Today
  contributor:
    fullname: Vannice
– volume: 6
  start-page: 596
  year: 2005
  end-page: 600
  ident: bb0205
  article-title: Catalytic CO
  publication-title: Catal. Commun.
  contributor:
    fullname: Gelin
– volume: 16
  start-page: 307
  year: 1991
  end-page: 312
  ident: bb0130
  article-title: Hydrogen production by steam reforming of ethanol: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Laborde
– volume: 83
  start-page: 147
  year: 2003
  end-page: 161
  ident: bb0240
  article-title: Partial oxidation and CO
  publication-title: Fuel Process. Technol.
  contributor:
    fullname: Noronha
– volume: 152
  start-page: 87
  year: 2005
  end-page: 96
  ident: bb0145
  article-title: Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis
  publication-title: J. Power Sources
  contributor:
    fullname: Borup
– year: 2005
  ident: bb0180
  article-title: Introduction to Chemical Engineering Thermodynamics
  contributor:
    fullname: Abbort
– volume: 80
  start-page: 899
  year: 2001
  end-page: 905
  ident: bb0055
  article-title: Reforming of CH
  publication-title: Fuel
  contributor:
    fullname: King
– volume: 33
  start-page: 4769
  year: 2008
  end-page: 4779
  ident: bb0105
  article-title: Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nano-filaments' production
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: gitzhofer
– volume: 31
  start-page: 1856
  year: 1992
  end-page: 1864
  ident: bb0025
  article-title: Diffuse reflectance infrared and transient studies of oxidative coupling of methane over Li/MgO catalyst
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Lobban
– volume: 24
  start-page: 688
  year: 2007
  end-page: 692
  ident: bb0060
  article-title: Carbon dioxide reforming of methane with a free energy minimization approach
  publication-title: Korean J. Chem. Eng.
  contributor:
    fullname: Rui
– volume: 161
  start-page: 204
  year: 2010
  end-page: 211
  ident: bb0295
  article-title: Combined oxidation and reforming of methane to produce pure H
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Lombardo
– volume: 29
  start-page: 960
  year: 2008
  end-page: 968
  ident: bb0190
  article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane
  publication-title: Chin. J. Catal.
  contributor:
    fullname: Parvari
– volume: 25
  start-page: 47
  year: 2000
  end-page: 53
  ident: bb0100
  article-title: Hydrogen production from steam–methanol reforming: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Yaakob
– volume: 31
  start-page: 74
  year: 2003
  end-page: 78
  ident: bb0020
  article-title: Volumetric plasma chemistry with carbon dioxide in an atmospheric pressure plasma using a technical scale reactor
  publication-title: IEEE Trans. Plasma Sci.
  contributor:
    fullname: Behr
– volume: 7
  start-page: 410
  year: 2001
  end-page: 416
  ident: bb0200
  article-title: The methane reforming with carbon dioxide on Ni-catalyst activated by a DC-pulsed corona discharge
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Kim
– volume: 36
  start-page: 5180
  year: 1997
  end-page: 5188
  ident: bb0075
  article-title: Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Mleczko
– volume: 84
  start-page: 17
  year: 2003
  end-page: 25
  ident: bb0225
  article-title: Effect of pressure on the carbon deposition route in CO
  publication-title: Catal. Today
  contributor:
    fullname: Johnson
– start-page: 144
  year: 2003
  end-page: 152
  ident: bb0090
  article-title: Dry reforming of methane over ceria supported metal catalysts
  publication-title: Proceeding of the 13th Saudi-Japanese Catalyst Symposium, Dhahran, Saudi Arabia; Dec, 2003
  contributor:
    fullname: Asami
– volume: 71
  start-page: 49
  year: 2001
  end-page: 54
  ident: bb0005
  article-title: Potential utilisation of Indonesia's Natuna natural gas field via methane dry reforming to synthesis gas
  publication-title: Catal. Lett.
  contributor:
    fullname: Hanif
– volume: 9
  start-page: 267
  year: 2003
  end-page: 274
  ident: bb0065
  article-title: Carbon dioxide reforming of methane over Ni/La
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Jun
– volume: 34
  start-page: 2798
  year: 2001
  end-page: 2803
  ident: bb0040
  article-title: Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors: the future of technological plasmas
  publication-title: J. Phys. D Appl. Phys.
  contributor:
    fullname: Rusi
– volume: 159
  start-page: 213
  year: 2006
  end-page: 216
  ident: bb0275
  article-title: Selective conversion of methane to C
  publication-title: Stud. Surf. Sci. Catal.
  contributor:
    fullname: Istadi
– volume: 163
  start-page: 147
  year: 2000
  end-page: 156
  ident: bb0185
  article-title: Production of synthesis gas by steam- and CO
  publication-title: J. Mol. Catal. A Chem.
  contributor:
    fullname: Froment
– volume: 14
  start-page: 140
  year: 2005
  end-page: 150
  ident: bb0070
  article-title: Co-generation of C
  publication-title: J. Nat. Gas Chem.
  contributor:
    fullname: Amin
– volume: 109
  start-page: 189
  year: 2006
  end-page: 193
  ident: bb0115
  article-title: Partial oxidation and dry reforming of methane over Ca/Ni/K(Na) catalysts
  publication-title: Catal. Lett.
  contributor:
    fullname: Shamsi
– volume: 55
  start-page: 43
  year: 1999
  end-page: 64
  ident: bb0030
  article-title: Diffuse reflectance infrared spectroscopy: an experimental measure and interpretation of the sample volume size involved in the light scattering process
  publication-title: Spectrochim Acta A
  contributor:
    fullname: Barbillat
– volume: 100
  start-page: 271
  year: 2005
  end-page: 276
  ident: bb0125
  article-title: Carbon free dry reforming of methane to syngas over NdCoO
  publication-title: Catal. Lett.
  contributor:
    fullname: Joshi
– volume: 37
  start-page: 3350
  year: 1998
  end-page: 3357
  ident: bb0280
  article-title: Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Zhou
– volume: 86
  start-page: 191
  year: 2003
  end-page: 195
  ident: bb0220
  article-title: Selective conversion of methane to C
  publication-title: Catal. Lett.
  contributor:
    fullname: Zhao
– volume: 21
  start-page: 13
  year: 1996
  end-page: 18
  ident: bb0135
  article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Dhingra
– volume: 39
  start-page: 1221
  year: 2000
  end-page: 1227
  ident: bb0015
  article-title: Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Kogelschatz
– volume: 1
  start-page: 205
  year: 2009
  end-page: 215
  ident: bb0300
  article-title: Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design
  publication-title: J. Nat. Gas Sci. Eng.
  contributor:
    fullname: Assis
– volume: 98
  start-page: 595
  year: 2004
  end-page: 600
  ident: bb0270
  article-title: On the oxidative coupling of methane with carbon dioxide over CeO
  publication-title: Catal. Today
  contributor:
    fullname: Cheng
– volume: 27
  start-page: 727
  year: 1994
  end-page: 731
  ident: bb0215
  article-title: Carbon dioxide reforming of methane on supported nickel catalysts
  publication-title: J. Chem. Eng. Jpn
  contributor:
    fullname: Goto
– volume: 31
  start-page: 891
  year: 2008
  end-page: 896
  ident: bb0210
  article-title: Thermodynamic equilibrium prediction for natural gas dry reforming in thermal plasma reformer
  publication-title: J. Chin. Inst. Chem. Eng.
  contributor:
    fullname: Wang
– volume: 87
  start-page: 449
  year: 2006
  end-page: 459
  ident: bb0260
  article-title: Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO–MnO/CeO
  publication-title: Fuel Process. Technol.
  contributor:
    fullname: Amin
– volume: 259
  start-page: 211
  year: 2008
  end-page: 222
  ident: bb0250
  article-title: Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models
  publication-title: J. Catal.
  contributor:
    fullname: Tronconi
– volume: 192
  start-page: 252
  year: 2000
  end-page: 255
  ident: bb0265
  article-title: CaO–ZnO catalyst for selective conversion of methane to C2 hydrocarbons using carbon dioxide as the oxidant
  publication-title: J. Catal.
  contributor:
    fullname: Ohtsuka
– volume: 32
  start-page: 1789
  year: 2007
  end-page: 1798
  ident: bb0160
  article-title: Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Yaw
– volume: 164
  start-page: 73
  year: 2007
  end-page: 79
  ident: bb0150
  article-title: Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether
  publication-title: J. Power Sources
  contributor:
    fullname: Koichi
– year: 1999
  ident: bb0170
  article-title: Chemical and Engineering Thermodynamics
  contributor:
    fullname: Sandler
– volume: 47
  start-page: 227
  year: 1996
  end-page: 234
  ident: bb0120
  article-title: Carbon deposition in methane reforming with carbon dioxide
  publication-title: J. Therm. Anal.
  contributor:
    fullname: Centola
– year: 2006
  ident: bb0175
  article-title: Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals
  contributor:
    fullname: Yaws
– volume: 202
  start-page: 141
  year: 2004
  end-page: 146
  ident: bb0290
  article-title: Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/
  publication-title: Appl. Catal. A
  contributor:
    fullname: Yang
– volume: 18
  start-page: 305
  year: 1993
  end-page: 324
  ident: bb0235
  article-title: Production of synthesis gas
  publication-title: Catal. Today
  contributor:
    fullname: Rostrup-Neilsen
– volume: 18
  start-page: 1126
  year: 2004
  end-page: 1139
  ident: bb0285
  article-title: Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review
  publication-title: Energy Fuels
  contributor:
    fullname: Zhu
– volume: 14
  start-page: 1081
  year: 2003
  end-page: 1084
  ident: bb0095
  article-title: Study on the reaction mechanism for carbon dioxide reforming of methane over supported nickel catalysts
  publication-title: Chin. Chem. Lett.
  contributor:
    fullname: Yang
– volume: 94
  start-page: 125
  year: 2010
  end-page: 133
  ident: bb0255
  article-title: Auto-thermal and dry reforming of landfill gas over a Rh/ν-Al
  publication-title: Appl. Catal. B
  contributor:
    fullname: Farrauto
– volume: 224
  start-page: 370
  year: 2004
  end-page: 383
  ident: bb0245
  article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH
  publication-title: J. Catal.
  contributor:
    fullname: Iglesia
– volume: 119
  start-page: 819
  year: 1998
  end-page: 824
  ident: bb0035
  article-title: An in-situ DRIFTS study of the mechanism of the CO
  publication-title: Stud. Surf. Sci. Catal.
  contributor:
    fullname: Meunier
– volume: 113
  start-page: 187
  year: 1998
  end-page: 191
  ident: bb0085
  article-title: Design of stable catalysts for methane carbon dioxide reforming
  publication-title: Stud. Surf. Sci. Catal.
  contributor:
    fullname: Lecher
– volume: 88
  start-page: 2148
  year: 2009
  end-page: 2153
  ident: bb0155
  article-title: Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production
  publication-title: Fuel
  contributor:
    fullname: Ma
– volume: 161
  start-page: 87
  year: 2006
  end-page: 94
  ident: bb0165
  article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production
  publication-title: J. Power Sources
  contributor:
    fullname: Eguchi
– volume: 74
  start-page: 17
  year: 1998
  end-page: 21
  ident: bb0140
  article-title: Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study
  publication-title: J. Power Sources
  contributor:
    fullname: Cavallar
– volume: 39
  start-page: 1221
  year: 2000
  ident: 10.1016/j.fuproc.2010.11.027_bb0015
  article-title: Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990804r
  contributor:
    fullname: Eliasson
– volume: 86
  start-page: 191
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0220
  article-title: Selective conversion of methane to C2 hydrocarbon using carbon dioxide over Mn–SrCO3 catalysts
  publication-title: Catal. Lett.
  doi: 10.1023/A:1022607800345
  contributor:
    fullname: Cai
– year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0180
  contributor:
    fullname: Smith
– volume: 47
  start-page: 1828
  year: 2008
  ident: 10.1016/j.fuproc.2010.11.027_bb0045
  article-title: Energy-efficient syngas production through catalytic oxy-methane reforming reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200701237
  contributor:
    fullname: Choudhary
– volume: 224
  start-page: 370
  year: 2004
  ident: 10.1016/j.fuproc.2010.11.027_bb0245
  article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon or nickel catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.02.032
  contributor:
    fullname: Wei
– ident: 10.1016/j.fuproc.2010.11.027_bb0230
  doi: 10.1021/ie100460g
– volume: 152
  start-page: 87
  year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0145
  article-title: Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.01.056
  contributor:
    fullname: Semelsberger
– volume: 29
  start-page: 960
  year: 2008
  ident: 10.1016/j.fuproc.2010.11.027_bb0190
  article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(08)60079-0
  contributor:
    fullname: Khalesi
– volume: 163
  start-page: 147
  year: 2000
  ident: 10.1016/j.fuproc.2010.11.027_bb0185
  article-title: Production of synthesis gas by steam- and CO2-reforming of natural gas
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/S1381-1169(00)00407-6
  contributor:
    fullname: Froment
– start-page: 1
  year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0195
  article-title: Dry reforming of methane on Pt/Al2O3–alkaline metal catalysts
  contributor:
    fullname: Jablonski
– ident: 10.1016/j.fuproc.2010.11.027_bb0080
– volume: 87
  start-page: 449
  year: 2006
  ident: 10.1016/j.fuproc.2010.11.027_bb0260
  article-title: Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO–MnO/CeO2 catalyst using response surface methodology
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2005.11.004
  contributor:
    fullname: Istadi
– volume: 47
  start-page: 227
  year: 1996
  ident: 10.1016/j.fuproc.2010.11.027_bb0120
  article-title: Carbon deposition in methane reforming with carbon dioxide
  publication-title: J. Therm. Anal.
  doi: 10.1007/BF01982701
  contributor:
    fullname: Gronchi
– volume: 21
  start-page: 13
  year: 1996
  ident: 10.1016/j.fuproc.2010.11.027_bb0135
  article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(95)00030-H
  contributor:
    fullname: Vasudeva
– volume: 18
  start-page: 1126
  year: 2004
  ident: 10.1016/j.fuproc.2010.11.027_bb0285
  article-title: Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review
  publication-title: Energy Fuels
  doi: 10.1021/ef0340716
  contributor:
    fullname: Wang
– volume: 94
  start-page: 125
  year: 2010
  ident: 10.1016/j.fuproc.2010.11.027_bb0255
  article-title: Auto-thermal and dry reforming of landfill gas over a Rh/ν-Al2O3 monolith catalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.10.029
  contributor:
    fullname: Kohn
– volume: 71
  start-page: 49
  year: 2001
  ident: 10.1016/j.fuproc.2010.11.027_bb0005
  article-title: Potential utilisation of Indonesia's Natuna natural gas field via methane dry reforming to synthesis gas
  publication-title: Catal. Lett.
  doi: 10.1023/A:1016600223749
  contributor:
    fullname: Suhartanto
– ident: 10.1016/j.fuproc.2010.11.027_bb0010
– volume: 14
  start-page: 1081
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0095
  article-title: Study on the reaction mechanism for carbon dioxide reforming of methane over supported nickel catalysts
  publication-title: Chin. Chem. Lett.
  contributor:
    fullname: Qian
– volume: 33
  start-page: 4769
  year: 2008
  ident: 10.1016/j.fuproc.2010.11.027_bb0105
  article-title: Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nano-filaments' production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.06.058
  contributor:
    fullname: Jankhah
– volume: 24
  start-page: 688
  year: 2007
  ident: 10.1016/j.fuproc.2010.11.027_bb0060
  article-title: Carbon dioxide reforming of methane with a free energy minimization approach
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-007-0027-5
  contributor:
    fullname: Yanbing
– volume: 83
  start-page: 147
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0240
  article-title: Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce–ZrO2 catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(03)00063-8
  contributor:
    fullname: Mattos
– volume: 98
  start-page: 595
  year: 2004
  ident: 10.1016/j.fuproc.2010.11.027_bb0270
  article-title: On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2004.09.014
  contributor:
    fullname: He
– volume: 84
  start-page: 17
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0225
  article-title: Effect of pressure on the carbon deposition route in CO2 reforming of CH4
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(03)00296-7
  contributor:
    fullname: Shamsi
– volume: 31
  start-page: 74
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0020
  article-title: Volumetric plasma chemistry with carbon dioxide in an atmospheric pressure plasma using a technical scale reactor
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2003.808888
  contributor:
    fullname: Oberreuther
– volume: 27
  start-page: 727
  year: 1994
  ident: 10.1016/j.fuproc.2010.11.027_bb0215
  article-title: Carbon dioxide reforming of methane on supported nickel catalysts
  publication-title: J. Chem. Eng. Jpn
  doi: 10.1252/jcej.27.727
  contributor:
    fullname: Takano
– volume: 80
  start-page: 899
  year: 2001
  ident: 10.1016/j.fuproc.2010.11.027_bb0055
  article-title: Reforming of CH4 by partial oxidation thermodynamic and kinetic analyses
  publication-title: Fuel
  doi: 10.1016/S0016-2361(00)00165-4
  contributor:
    fullname: Zhu
– volume: 259
  start-page: 211
  year: 2008
  ident: 10.1016/j.fuproc.2010.11.027_bb0250
  article-title: Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.08.008
  contributor:
    fullname: Maestri
– volume: 9
  start-page: 267
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0065
  article-title: Carbon dioxide reforming of methane over Ni/La2O3/Al2O3
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Liu
– year: 1999
  ident: 10.1016/j.fuproc.2010.11.027_bb0170
  contributor:
    fullname: Sandler
– volume: 202
  start-page: 141
  year: 2004
  ident: 10.1016/j.fuproc.2010.11.027_bb0290
  article-title: Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/ν-Al2O3 catalyst
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(00)00460-9
  contributor:
    fullname: Liu
– volume: 32
  start-page: 1789
  year: 2007
  ident: 10.1016/j.fuproc.2010.11.027_bb0160
  article-title: Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.12.004
  contributor:
    fullname: Amin
– volume: 192
  start-page: 252
  year: 2000
  ident: 10.1016/j.fuproc.2010.11.027_bb0265
  article-title: CaO–ZnO catalyst for selective conversion of methane to C2 hydrocarbons using carbon dioxide as the oxidant
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2820
  contributor:
    fullname: Wang
– volume: 1
  start-page: 205
  year: 2009
  ident: 10.1016/j.fuproc.2010.11.027_bb0300
  article-title: Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2009.12.003
  contributor:
    fullname: vila-Neto
– volume: 14
  start-page: 140
  year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0070
  article-title: Co-generation of C2 hydrocarbons and synthesis gases from methane and carbon dioxide: a thermodynamic analysis
  publication-title: J. Nat. Gas Chem.
  contributor:
    fullname: Istadi
– volume: 113
  start-page: 187
  year: 1998
  ident: 10.1016/j.fuproc.2010.11.027_bb0085
  article-title: Design of stable catalysts for methane carbon dioxide reforming
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(98)80284-X
  contributor:
    fullname: Seshan
– volume: 159
  start-page: 213
  year: 2006
  ident: 10.1016/j.fuproc.2010.11.027_bb0275
  article-title: Selective conversion of methane to C2 hydrocarbons using carbon dioxide as an oxidant over CaO–MnO/CeO2 catalyst
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(06)81571-5
  contributor:
    fullname: Amin
– volume: 173
  start-page: 157
  year: 1998
  ident: 10.1016/j.fuproc.2010.11.027_bb0110
  article-title: CO2 reforming of CH4 over supported Pt catalysts
  publication-title: J. Catal. Today
  doi: 10.1006/jcat.1997.1910
  contributor:
    fullname: Michael
– volume: 7
  start-page: 410
  year: 2001
  ident: 10.1016/j.fuproc.2010.11.027_bb0200
  article-title: The methane reforming with carbon dioxide on Ni-catalyst activated by a DC-pulsed corona discharge
  publication-title: J. Ind. Eng. Chem.
  contributor:
    fullname: Hong
– volume: 31
  start-page: 1856
  year: 1992
  ident: 10.1016/j.fuproc.2010.11.027_bb0025
  article-title: Diffuse reflectance infrared and transient studies of oxidative coupling of methane over Li/MgO catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00008a004
  contributor:
    fullname: Bhumkar
– volume: 161
  start-page: 204
  year: 2010
  ident: 10.1016/j.fuproc.2010.11.027_bb0295
  article-title: Combined oxidation and reforming of methane to produce pure H2 in a membrane reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.04.022
  contributor:
    fullname: Múnera
– volume: 55
  start-page: 43
  year: 1999
  ident: 10.1016/j.fuproc.2010.11.027_bb0030
  article-title: Diffuse reflectance infrared spectroscopy: an experimental measure and interpretation of the sample volume size involved in the light scattering process
  publication-title: Spectrochim Acta A
  doi: 10.1016/S1386-1425(98)00163-2
  contributor:
    fullname: Moradi
– year: 2006
  ident: 10.1016/j.fuproc.2010.11.027_bb0175
  contributor:
    fullname: Yaws
– volume: 16
  start-page: 307
  year: 1991
  ident: 10.1016/j.fuproc.2010.11.027_bb0130
  article-title: Hydrogen production by steam reforming of ethanol: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(91)90166-G
  contributor:
    fullname: Garcia
– volume: 161
  start-page: 87
  year: 2006
  ident: 10.1016/j.fuproc.2010.11.027_bb0165
  article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.04.091
  contributor:
    fullname: Faungnawakij
– volume: 36
  start-page: 5180
  year: 1997
  ident: 10.1016/j.fuproc.2010.11.027_bb0075
  article-title: Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970246l
  contributor:
    fullname: Olsbye
– volume: 119
  start-page: 819
  year: 1998
  ident: 10.1016/j.fuproc.2010.11.027_bb0035
  article-title: An in-situ DRIFTS study of the mechanism of the CO2 reforming of CH4 over a Pt/ZrO2 catalyst
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(98)80533-8
  contributor:
    fullname: O'Connor
– volume: 88
  start-page: 2148
  year: 2009
  ident: 10.1016/j.fuproc.2010.11.027_bb0155
  article-title: Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.01.015
  contributor:
    fullname: Wang
– ident: 10.1016/j.fuproc.2010.11.027_bb0050
– volume: 164
  start-page: 73
  year: 2007
  ident: 10.1016/j.fuproc.2010.11.027_bb0150
  article-title: Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.072
  contributor:
    fullname: Kajornsak
– volume: 37
  start-page: 3350
  year: 1998
  ident: 10.1016/j.fuproc.2010.11.027_bb0280
  article-title: Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9709401
  contributor:
    fullname: Eliasson
– start-page: 144
  year: 2003
  ident: 10.1016/j.fuproc.2010.11.027_bb0090
  article-title: Dry reforming of methane over ceria supported metal catalysts
  contributor:
    fullname: Asami
– volume: 6
  start-page: 596
  year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0205
  article-title: Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2005.05.008
  contributor:
    fullname: Wisniewski
– volume: 25
  start-page: 47
  year: 2000
  ident: 10.1016/j.fuproc.2010.11.027_bb0100
  article-title: Hydrogen production from steam–methanol reforming: thermodynamic analysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(99)00013-0
  contributor:
    fullname: Lwin
– volume: 109
  start-page: 189
  year: 2006
  ident: 10.1016/j.fuproc.2010.11.027_bb0115
  article-title: Partial oxidation and dry reforming of methane over Ca/Ni/K(Na) catalysts
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-006-0076-0
  contributor:
    fullname: Shamsi
– volume: 18
  start-page: 305
  year: 1993
  ident: 10.1016/j.fuproc.2010.11.027_bb0235
  article-title: Production of synthesis gas
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(93)80059-A
  contributor:
    fullname: Rostrup-Neilsen
– volume: 31
  start-page: 891
  year: 2008
  ident: 10.1016/j.fuproc.2010.11.027_bb0210
  article-title: Thermodynamic equilibrium prediction for natural gas dry reforming in thermal plasma reformer
  publication-title: J. Chin. Inst. Chem. Eng.
  doi: 10.1080/02533839.2008.9671444
  contributor:
    fullname: Tsai
– volume: 74
  start-page: 17
  year: 1998
  ident: 10.1016/j.fuproc.2010.11.027_bb0140
  article-title: Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(98)00003-2
  contributor:
    fullname: Maggio
– volume: 100
  start-page: 271
  year: 2005
  ident: 10.1016/j.fuproc.2010.11.027_bb0125
  article-title: Carbon free dry reforming of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-004-3467-0
  contributor:
    fullname: Choudhary
– volume: 34
  start-page: 2798
  year: 2001
  ident: 10.1016/j.fuproc.2010.11.027_bb0040
  article-title: Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors: the future of technological plasmas
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/34/18/313
  contributor:
    fullname: Comier
SSID ssj0005597
Score 2.5580869
Snippet A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen...
SourceID proquest
crossref
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 678
SubjectTerms Applied sciences
Carbon
Carbon dioxide
Carbon formation
Carbon monoxide
catalysts
Conversion
Energy
Energy. Thermal use of fuels
ethane
ethylene
Exact sciences and technology
Fuels
Gibbs free energy
hydrogen
hydrogen production
Methane
methanol
Moles
Optimization
Reforming
synthesis gas
temperature
Thermodynamic equilibrium
working conditions
yields
Title Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation
URI https://dx.doi.org/10.1016/j.fuproc.2010.11.027
https://search.proquest.com/docview/1671224595
https://search.proquest.com/docview/861544894
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaU9lDZtybbNokKu7q5lyZKOITRsG5JLspCbkPUILtQOm13oqb-9M36kCW0oFN9kCcTMeGZkffMNwBGvtPILL7LCYPomdCiySomUOYPm5EMsnKf_HecX5XIlvl7L6x04GWthCFY5-P7ep3feehiZD9Kc39b1_HJRKF1QAOsKTInHdA_DEdcT2Dv-cra8-I30kF2PFZqf0YKxgq6DeaUtRYoe40V0ntRe5u8Raje5lqCT7g6ll_q2F3948C4snb6EF0M-yY77Lb-Cndjsw_MHLIOvwaIprL-3oe89z9xAQ8LaxLxbV23DQt3-qENkuJeWsDE39I56S7smsrphdH1AQ2indRgX3Zc9voHV6eerk2U29FXIvBR8k8WQK8djjudokZvEnU5FMjyUUUnhjMcUwFfemCTxQUuToiQlCjyLSF84VbyFSdM28QBYFVXQuQieBy_MIlSh0tyIiIpOmCn4KWSjLO1tT59hR1zZN9vL3pLs8SRiUfZTUKPA7SMzsOjh_7HyAPVj3Q36Rru65MSc19Hb63wKs0dKu98Jpivozko5hY-jFi1-XXRlgvJtt3c2LxVdPUqDc9gTc3RJjEbaiHf_vfn38Kz_V03Ytg8w2ay38RCTnU01g91PP_PZYNK_AOi2_l4
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sPtg-iNWKV62N0NflbneTTfIoUjmr3ose-Bay-ZAV3JXzDvrnd2Y_bKWWguxbNoFhZjIzSX4zA_AtK5V0E8eTXGP4xpXPk1LymFiN6uR8yK2j-46rWTGd8x-34nYNTodcGIJV9ra_s-mtte5Hxj03x49VNb6e5FLl5MDaBFOqY7qB0YDG3blxcn4xnf1Geoi2xwrNT2jBkEHXwrziijxFh_Gicp7UXuZ1D_Uu2oagk_YJuRe7thd_WfDWLZ1tw1YfT7KTjuSPsBbqHfjwR5XBXTCoCouHxne955nty5CwJjJnF2VTM181PysfGNLSEDbmjv5Rb2lbB1bVjJ4PaAj1tPLDoue0x08wP_t-czpN-r4KiRM8WybBp9JmIcVzNE91zKyKedSZL4IU3GqHIYArndZR4IeaJnhBQuR4FhEutzLfg_W6qcM-sDJIr1LuXeYd1xNf-lJlmgcUdMRIwY0gGXhpHrvyGWbAld2bjveGeI8nEYO8H4EcGG5eqIFBC_-flfsoH2Pv0Daa-XVGlfPa8vYqHcHRC6E9U4LhCpqzQozgeJCiwd1FTybI32b1ZNJC0tOj0DiH_WOOKqiikdL885uJ_wqb05urS3N5Prs4gPfdvTXh3A5hfblYhS8Y-CzLo16xfwEPsgBh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+analysis+of+carbon+dioxide+reforming+of+methane+in+view+of+solid+carbon+formation&rft.jtitle=Fuel+processing+technology&rft.au=Nikoo%2C+MKhoshtinat&rft.au=Amin%2C+NAS&rft.date=2011-03-01&rft.issn=0378-3820&rft.volume=92&rft.issue=3&rft.spage=678&rft.epage=691&rft_id=info:doi/10.1016%2Fj.fuproc.2010.11.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon