Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pre...
Saved in:
Published in | Fuel processing technology Vol. 92; no. 3; pp. 678 - 691 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO2/CH4 ratio being 1 at which about 4mol of syngas (H2/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO2:CH4:O2=1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated. |
---|---|
AbstractList | A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO sub(2)/CH sub(4) ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO sub(2)/CH sub(4) ratio being 1 at which about 4 mol of syngas (H sub(2)/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO sub(2)/CH sub(4) ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H sub(2) moles and gradual increment of CO sub(2) conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO sub(2) reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H sub(2) production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO sub(2) reforming of methane with equal amount of CH sub(4) and CO sub(2) revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO sub(2):CH sub(4):O sub(2) = 1:1:0.1, respectively. The H sub(2)/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated. A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO₂/CH₄ ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO₂/CH₄ ratio being 1 at which about 4mol of syngas (H₂/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO₂/CH₄ ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H₂ moles and gradual increment of CO₂ conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO₂ reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H₂ production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO₂ reforming of methane with equal amount of CH₄ and CO₂ revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO₂:CH₄:O₂=1:1:0.1, respectively. The H₂/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated. A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5–3), reaction temperature (573–1473K) and pressure (1–25atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer–Tropsch synthesis were at temperatures higher than 1173K for CO2/CH4 ratio being 1 at which about 4mol of syngas (H2/CO=1) could be produced from 2mol of reactants with negligible amount of carbon formation. Although temperatures above 973K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073K and CO2:CH4:O2=1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated. |
Author | Amin, N.A.S. Nikoo, M. Khoshtinat |
Author_xml | – sequence: 1 givenname: M. Khoshtinat surname: Nikoo fullname: Nikoo, M. Khoshtinat email: m_k_nikoo@yahoo.com organization: Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia – sequence: 2 givenname: N.A.S. surname: Amin fullname: Amin, N.A.S. email: noraishah@fkkksa.utm.my organization: Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23822565$$DView record in Pascal Francis |
BookMark | eNp9kU1rHSEUhiWk0Ju0_6CQ2ZR2Mzfq-LkplNAvCGTRZC1ePSZeZjTVuWnvv6_DpF0GF8LxeY-H55yh05QTIPSO4C3BRFzut-HwWLLbUryUyBZTeYI2RMmhl0SpU7TBg1T9oCh-jc5q3WOMOddyg8ztA5Qp-2OyU3SdTXY81li7HDpnyy6nzsf8J3roCoRcppjul7cJ5geboIupe4rweynVPEb_L7Sgdo45vUGvgh0rvH2-z9Hd1y-3V9_765tvP64-X_eOMzr34Im0FAjsBkZ0oFaFIWjqBUjOrHaEardzWgfeDljPmWDKN5Yo7gYrh3P0Ye3bPPw6QJ3NFKuDcWxT5kM1ShDOmNKskR9fJImQhFLGNW8oW1FXcq1NgHkscbLlaAg2i3mzN6t5s5g3hJhmvsXeP_9gq7NjKDa5WP9naVsD5WJpf7FywWZj70tj7n62RqJtRwiqSCM-rQQ0dU10MdVFSA58LOBm43N8eZS_51SnQQ |
CODEN | FPTEDY |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_118252 crossref_primary_10_1021_acscatal_2c06412 crossref_primary_10_1016_j_jcou_2021_101707 crossref_primary_10_1007_s11696_021_01566_2 crossref_primary_10_1088_1755_1315_100_1_012078 crossref_primary_10_35848_1347_4065_acdad9 crossref_primary_10_1016_j_apcatb_2015_04_039 crossref_primary_10_1016_j_ijhydene_2015_10_049 crossref_primary_10_1016_j_ijhydene_2018_08_074 crossref_primary_10_1021_ie403981j crossref_primary_10_3389_fenvs_2017_00066 crossref_primary_10_1016_j_mtcomm_2022_105226 crossref_primary_10_1016_j_jclepro_2023_138638 crossref_primary_10_1016_j_ijhydene_2020_04_233 crossref_primary_10_1016_j_cattod_2019_06_047 crossref_primary_10_1039_D1CY01039E crossref_primary_10_1016_j_jcou_2020_101411 crossref_primary_10_1039_c2ra00632d crossref_primary_10_1016_j_fuproc_2021_107069 crossref_primary_10_1016_j_jngse_2014_06_021 crossref_primary_10_1016_j_jssc_2022_123267 crossref_primary_10_1016_j_ijhydene_2024_05_285 crossref_primary_10_1016_j_jiec_2019_12_030 crossref_primary_10_3390_methane3020016 crossref_primary_10_1016_j_enconman_2020_112950 crossref_primary_10_1007_s10971_013_3120_8 crossref_primary_10_1021_cs500918c crossref_primary_10_1016_j_apcatb_2014_09_007 crossref_primary_10_1007_s11270_013_1569_2 crossref_primary_10_1016_j_fuel_2014_09_024 crossref_primary_10_3390_catal13111420 crossref_primary_10_1016_j_fuproc_2023_107895 crossref_primary_10_1016_j_fuel_2018_08_105 crossref_primary_10_1016_j_fuproc_2023_107655 crossref_primary_10_3390_molecules28020752 crossref_primary_10_1016_j_materresbull_2014_07_027 crossref_primary_10_1016_j_jiec_2013_08_016 crossref_primary_10_1016_j_jngse_2015_09_049 crossref_primary_10_3390_chemistry1010003 crossref_primary_10_1016_j_jclepro_2018_07_228 crossref_primary_10_1016_j_ijhydene_2019_08_209 crossref_primary_10_1007_s10562_020_03420_8 crossref_primary_10_1016_j_mcat_2021_111623 crossref_primary_10_1016_j_ijhydene_2019_09_014 crossref_primary_10_1016_j_ultsonch_2016_06_021 crossref_primary_10_1016_j_ijhydene_2019_01_027 crossref_primary_10_1016_j_ijhydene_2020_04_130 crossref_primary_10_1016_j_fuel_2023_127409 crossref_primary_10_3390_methane3020019 crossref_primary_10_1016_j_jcou_2022_102063 crossref_primary_10_1016_j_apsusc_2018_05_177 crossref_primary_10_1134_S0965544120050059 crossref_primary_10_1515_gps_2015_0061 crossref_primary_10_1016_j_ijhydene_2022_08_276 crossref_primary_10_1016_j_apcata_2022_118704 crossref_primary_10_1016_j_cej_2017_03_029 crossref_primary_10_1016_j_cattod_2021_03_004 crossref_primary_10_1016_j_cej_2019_01_085 crossref_primary_10_1016_j_matpr_2021_08_310 crossref_primary_10_1039_C3CY01079A crossref_primary_10_3390_app7121213 crossref_primary_10_3390_su142215276 crossref_primary_10_1016_j_apcata_2013_08_053 crossref_primary_10_1016_j_ijhydene_2017_12_008 crossref_primary_10_1016_j_ijhydene_2018_07_104 crossref_primary_10_3390_catal11020159 crossref_primary_10_1021_ie404425e crossref_primary_10_1016_j_fuel_2015_05_063 crossref_primary_10_1016_j_fuel_2019_115770 crossref_primary_10_1016_j_surfcoat_2022_128563 crossref_primary_10_3390_c4040060 crossref_primary_10_1088_1757_899X_736_4_042032 crossref_primary_10_1016_j_ijhydene_2022_01_100 crossref_primary_10_1016_j_ijhydene_2023_04_273 crossref_primary_10_1016_j_apenergy_2014_04_064 crossref_primary_10_3390_pr11082296 crossref_primary_10_1016_j_jcou_2023_102448 crossref_primary_10_1039_D1CY00271F crossref_primary_10_1016_j_jcou_2018_08_004 crossref_primary_10_1002_ente_201900493 crossref_primary_10_1134_S0036024412050305 crossref_primary_10_1016_j_apcatb_2020_119056 crossref_primary_10_1016_j_jcou_2016_11_008 crossref_primary_10_3390_catal10121450 crossref_primary_10_1016_j_jcou_2022_102050 crossref_primary_10_1016_j_egypro_2017_03_546 crossref_primary_10_1016_j_jiec_2023_12_003 crossref_primary_10_1016_j_jechem_2017_10_002 crossref_primary_10_1016_j_psep_2023_10_011 crossref_primary_10_1016_j_apsusc_2021_152310 crossref_primary_10_1016_j_apcatb_2021_120210 crossref_primary_10_1021_acscatal_6b00673 crossref_primary_10_1007_s11244_019_01216_8 crossref_primary_10_1007_s10971_024_06336_6 crossref_primary_10_1016_j_cattod_2013_02_010 crossref_primary_10_1016_j_jclepro_2024_141395 crossref_primary_10_1016_S1872_2067_16_62455_5 crossref_primary_10_1016_j_jpowsour_2013_01_003 crossref_primary_10_1016_j_jngse_2015_07_001 crossref_primary_10_1016_j_ijhydene_2015_10_025 crossref_primary_10_1016_j_fuel_2022_125106 crossref_primary_10_1016_j_jcou_2017_06_004 crossref_primary_10_1039_C7CY01011G crossref_primary_10_1016_j_ijhydene_2021_01_049 crossref_primary_10_1002_admi_202300509 crossref_primary_10_1007_s10562_014_1192_x crossref_primary_10_1016_j_enconman_2015_06_046 crossref_primary_10_1016_j_apcata_2013_08_016 crossref_primary_10_3390_catal9040313 crossref_primary_10_1007_s10311_020_01055_0 crossref_primary_10_1016_j_apcata_2019_05_021 crossref_primary_10_1016_j_catcom_2023_106674 crossref_primary_10_1002_er_8570 crossref_primary_10_1007_s11164_017_3098_x crossref_primary_10_1016_j_ijhydene_2019_01_113 crossref_primary_10_1016_S1003_9953_11_60421_0 crossref_primary_10_1088_0022_3727_49_7_075602 crossref_primary_10_1016_j_jcou_2017_12_002 crossref_primary_10_1016_j_apcatb_2014_03_018 crossref_primary_10_1016_j_apsusc_2013_05_082 crossref_primary_10_3390_en13020297 crossref_primary_10_1016_j_jes_2021_05_043 crossref_primary_10_1016_j_renene_2022_10_046 crossref_primary_10_1021_acs_iecr_7b01688 crossref_primary_10_1016_j_cej_2016_01_068 crossref_primary_10_3390_catal13020379 crossref_primary_10_1016_j_joei_2022_10_004 crossref_primary_10_1016_j_fuel_2015_05_021 crossref_primary_10_3390_membranes11070497 crossref_primary_10_1016_j_fuel_2021_123097 crossref_primary_10_1016_j_jechem_2021_11_041 crossref_primary_10_1016_j_apcatb_2022_122141 crossref_primary_10_1039_C9RA09418K crossref_primary_10_1021_acs_energyfuels_9b00692 crossref_primary_10_1016_j_fuel_2024_131687 crossref_primary_10_1016_j_ijhydene_2019_08_194 crossref_primary_10_1016_j_ijhydene_2022_04_195 crossref_primary_10_1002_cssc_201601379 crossref_primary_10_1016_j_matpr_2018_09_081 crossref_primary_10_1016_j_fuel_2024_131561 crossref_primary_10_3390_ma16247701 crossref_primary_10_1007_s12649_016_9627_9 crossref_primary_10_1016_j_cattod_2023_114414 crossref_primary_10_1016_j_fuproc_2017_10_007 crossref_primary_10_3390_chemengineering7030057 crossref_primary_10_1021_acs_iecr_2c00633 crossref_primary_10_1016_j_fuel_2019_05_019 crossref_primary_10_3389_fenvc_2020_00005 crossref_primary_10_1021_acs_langmuir_4c00834 crossref_primary_10_1016_j_cattod_2015_12_026 crossref_primary_10_1021_acs_iecr_0c00542 crossref_primary_10_1016_j_ijhydene_2017_04_286 crossref_primary_10_1016_j_jtice_2019_04_047 crossref_primary_10_1016_j_cattod_2020_04_045 crossref_primary_10_1021_acs_energyfuels_2c00523 crossref_primary_10_1021_acsami_1c02180 crossref_primary_10_1016_j_ijhydene_2017_05_199 crossref_primary_10_3390_nano11112880 crossref_primary_10_1002_cctc_201400059 crossref_primary_10_1016_j_apcatb_2018_05_051 crossref_primary_10_1039_D2DT03026H crossref_primary_10_1007_s11144_020_01770_3 crossref_primary_10_1016_j_energy_2021_121479 crossref_primary_10_1016_S1004_9541_14_60029_X crossref_primary_10_1016_j_energy_2022_123815 crossref_primary_10_1016_j_fuel_2014_05_093 crossref_primary_10_1007_s10853_018_2642_4 crossref_primary_10_1016_j_ijhydene_2018_06_164 crossref_primary_10_1016_j_ijhydene_2021_11_194 crossref_primary_10_3390_catal10010027 crossref_primary_10_1016_j_rser_2016_04_007 crossref_primary_10_1134_S1070427220060014 crossref_primary_10_1016_j_apcatb_2015_09_049 crossref_primary_10_1021_acs_jpcc_2c07401 crossref_primary_10_3934_energy_2021044 crossref_primary_10_1093_ijlct_ctaa074 crossref_primary_10_1002_cjce_23780 crossref_primary_10_1038_s41598_023_38436_8 crossref_primary_10_3390_catal11070777 crossref_primary_10_1016_j_ijhydene_2018_12_130 crossref_primary_10_1016_j_jiec_2023_08_013 crossref_primary_10_1134_S0023158422010025 crossref_primary_10_1016_j_ijhydene_2015_09_113 crossref_primary_10_1021_acsengineeringau_2c00019 crossref_primary_10_1016_j_apcata_2017_08_002 crossref_primary_10_3762_bjnano_9_108 crossref_primary_10_1016_j_enconman_2018_09_038 crossref_primary_10_1016_j_ces_2024_119906 crossref_primary_10_3390_pr11082334 crossref_primary_10_1016_j_jngse_2014_10_030 crossref_primary_10_1016_j_jcou_2022_102206 crossref_primary_10_2174_2405520413666200313130420 crossref_primary_10_1515_ijcre_2024_0061 crossref_primary_10_1016_j_enconman_2017_08_056 crossref_primary_10_1016_j_fuel_2014_11_068 crossref_primary_10_1016_j_psep_2023_06_048 crossref_primary_10_1007_s11356_021_12794_0 crossref_primary_10_1002_ceat_201400157 crossref_primary_10_1016_j_apcata_2020_117439 crossref_primary_10_1016_j_cjche_2021_08_027 crossref_primary_10_1016_j_coche_2012_03_001 crossref_primary_10_1016_j_ijhydene_2022_05_081 crossref_primary_10_1002_ese3_278 crossref_primary_10_1016_j_fuproc_2018_11_017 crossref_primary_10_1016_j_jece_2021_105052 crossref_primary_10_1007_s11356_020_10269_2 crossref_primary_10_1038_s41598_018_27381_6 crossref_primary_10_1016_j_jece_2021_105298 crossref_primary_10_1016_j_scitotenv_2022_156663 crossref_primary_10_1002_cjce_22332 crossref_primary_10_1080_15567036_2018_1548518 crossref_primary_10_1016_j_ijhydene_2018_06_134 crossref_primary_10_1016_j_apcata_2018_01_007 crossref_primary_10_1016_j_apcatb_2018_10_048 crossref_primary_10_1016_j_ijhydene_2022_05_297 crossref_primary_10_1016_j_ijhydene_2019_09_050 crossref_primary_10_1016_j_ijhydene_2016_11_067 crossref_primary_10_1016_j_jcou_2016_06_005 crossref_primary_10_1007_s11244_015_0490_x crossref_primary_10_1016_j_ijhydene_2019_07_200 crossref_primary_10_1002_er_3295 crossref_primary_10_3390_en17010184 crossref_primary_10_1016_j_apcata_2015_04_006 crossref_primary_10_1016_j_petrol_2015_07_015 crossref_primary_10_1016_j_jcou_2018_01_027 crossref_primary_10_1016_j_ces_2022_118315 crossref_primary_10_1021_acsomega_3c02999 crossref_primary_10_1002_aic_17126 crossref_primary_10_1002_ente_201900521 crossref_primary_10_1016_j_ijhydene_2022_05_065 crossref_primary_10_1016_j_apcata_2020_117455 crossref_primary_10_1016_j_biortech_2013_04_023 crossref_primary_10_1039_D1CY02044G crossref_primary_10_31857_S2218117223060044 crossref_primary_10_1021_acscatal_8b00584 crossref_primary_10_1016_j_ceramint_2022_10_217 crossref_primary_10_1016_j_compchemeng_2023_108273 crossref_primary_10_1016_j_ijhydene_2018_08_181 crossref_primary_10_1007_s11705_020_1975_0 crossref_primary_10_1016_j_ijhydene_2016_11_196 crossref_primary_10_1016_j_enconman_2015_04_053 crossref_primary_10_1016_j_matpr_2023_08_155 crossref_primary_10_1016_j_fuel_2023_130166 crossref_primary_10_1080_15567036_2021_1994669 crossref_primary_10_1016_j_apcata_2020_117620 crossref_primary_10_1016_j_ijhydene_2017_09_151 crossref_primary_10_1016_j_jenvman_2022_116463 crossref_primary_10_1007_s11090_020_10074_2 crossref_primary_10_1021_acs_iecr_9b03090 crossref_primary_10_1016_j_ijhydene_2017_09_037 crossref_primary_10_1016_j_rser_2023_113635 crossref_primary_10_31763_ijrcs_v2i1_584 crossref_primary_10_3390_catal11050563 crossref_primary_10_1007_s10562_020_03296_8 crossref_primary_10_1002_cphc_201700752 crossref_primary_10_1016_j_ijhydene_2016_08_194 crossref_primary_10_1039_C6CY00202A crossref_primary_10_1016_j_ecmx_2023_100451 crossref_primary_10_1021_acsami_9b02572 crossref_primary_10_1134_S0965544124030034 crossref_primary_10_1016_j_ijhydene_2015_05_129 crossref_primary_10_1016_j_mcat_2023_112945 crossref_primary_10_1016_j_rser_2017_09_076 crossref_primary_10_1016_j_catcom_2015_12_014 crossref_primary_10_1016_j_ijhydene_2021_03_150 crossref_primary_10_3390_polym13152462 crossref_primary_10_1016_j_apcatb_2012_02_039 crossref_primary_10_1016_j_crcon_2022_09_002 crossref_primary_10_1016_j_ijhydene_2018_09_200 crossref_primary_10_1002_er_4470 crossref_primary_10_1016_j_jcou_2017_09_014 crossref_primary_10_1080_09593330_2019_1639828 crossref_primary_10_3390_catal13091296 crossref_primary_10_1016_j_jiec_2015_08_021 crossref_primary_10_1016_j_jcat_2019_05_024 crossref_primary_10_1016_j_ijhydene_2021_03_246 crossref_primary_10_1016_j_fuproc_2015_04_022 crossref_primary_10_1002_apj_2188 crossref_primary_10_3390_nano12203676 crossref_primary_10_1016_j_ijhydene_2015_05_030 crossref_primary_10_1016_j_fuproc_2014_02_017 crossref_primary_10_1016_j_ijhydene_2016_06_246 crossref_primary_10_1016_j_apenergy_2016_04_006 crossref_primary_10_1016_j_ijhydene_2020_02_042 crossref_primary_10_1016_j_jiec_2023_10_002 crossref_primary_10_1039_C8SE00638E crossref_primary_10_1016_j_rser_2021_110949 crossref_primary_10_1002_er_8702 crossref_primary_10_1155_2023_3684046 crossref_primary_10_1016_j_ijhydene_2015_05_147 crossref_primary_10_1016_j_apcatb_2020_119711 crossref_primary_10_3390_atmos14050770 crossref_primary_10_1016_j_ijhydene_2018_05_083 crossref_primary_10_1155_2019_9189525 crossref_primary_10_1016_j_fuproc_2014_02_021 crossref_primary_10_1016_j_ijggc_2019_102791 crossref_primary_10_1016_j_renene_2020_08_069 crossref_primary_10_1021_acs_iecr_1c02193 crossref_primary_10_1016_j_ijhydene_2016_07_184 crossref_primary_10_1039_C6RA20450C crossref_primary_10_1016_j_jclepro_2018_03_108 crossref_primary_10_1016_j_apcatb_2012_09_052 crossref_primary_10_1002_advs_202203221 crossref_primary_10_1016_j_rser_2022_112343 crossref_primary_10_1016_j_mencom_2019_11_022 crossref_primary_10_3390_en13236472 crossref_primary_10_1016_j_ces_2020_116072 crossref_primary_10_1021_acs_langmuir_7b02753 crossref_primary_10_1002_cctc_201901098 crossref_primary_10_1016_j_jcou_2017_01_003 crossref_primary_10_1515_revce_2014_0042 crossref_primary_10_1016_j_jcou_2021_101474 crossref_primary_10_1007_s10562_019_02889_2 crossref_primary_10_1016_j_jngse_2015_03_006 crossref_primary_10_1002_aic_17304 crossref_primary_10_1016_j_ijhydene_2021_10_025 crossref_primary_10_1021_acs_iecr_3c00064 crossref_primary_10_1016_j_ijhydene_2019_12_020 crossref_primary_10_1016_j_ijhydene_2021_11_172 crossref_primary_10_1007_s11244_022_01709_z crossref_primary_10_1051_e3sconf_20172200151 crossref_primary_10_1088_2515_7655_acc4e8 crossref_primary_10_1016_j_envpol_2018_07_127 crossref_primary_10_1016_j_recm_2022_08_003 crossref_primary_10_1002_ceat_201800456 crossref_primary_10_1002_ceat_202200115 crossref_primary_10_1016_j_pecs_2021_100970 crossref_primary_10_1007_s11144_017_1277_9 crossref_primary_10_1016_j_apenergy_2016_04_119 crossref_primary_10_1016_j_fuel_2022_123877 crossref_primary_10_1016_j_ces_2016_04_019 crossref_primary_10_1016_j_jcou_2021_101462 crossref_primary_10_3390_catal9080676 crossref_primary_10_1007_s11144_017_1167_1 crossref_primary_10_1016_j_jcou_2021_101447 crossref_primary_10_1002_2050_7038_12756 crossref_primary_10_1016_j_jechem_2022_04_022 crossref_primary_10_1016_j_ijhydene_2019_05_113 crossref_primary_10_1016_j_ijhydene_2017_03_146 crossref_primary_10_1021_acs_energyfuels_0c04269 crossref_primary_10_3390_pr9050759 crossref_primary_10_3390_catal11121433 crossref_primary_10_3390_catal12030274 crossref_primary_10_1016_j_crcon_2024_100249 crossref_primary_10_1016_j_jcou_2020_101156 crossref_primary_10_1016_S1872_2067_12_60554_3 crossref_primary_10_1016_j_catcom_2016_12_019 crossref_primary_10_1016_j_fuel_2020_117702 crossref_primary_10_1016_j_ijhydene_2020_06_203 crossref_primary_10_1002_advs_202205890 crossref_primary_10_1007_s11244_019_01157_2 crossref_primary_10_1115_1_4040074 crossref_primary_10_3390_en15197159 crossref_primary_10_1016_j_energy_2019_05_083 crossref_primary_10_1002_ceat_202000150 crossref_primary_10_1016_j_cattod_2018_07_032 crossref_primary_10_1016_j_ijhydene_2014_12_103 crossref_primary_10_1016_j_cep_2014_03_004 crossref_primary_10_1021_sc300098e crossref_primary_10_1016_j_cattod_2020_07_030 crossref_primary_10_1515_revce_2020_0038 crossref_primary_10_1007_s11144_024_02658_2 crossref_primary_10_1039_C8TA08343F crossref_primary_10_1016_j_fuel_2021_122449 crossref_primary_10_1515_ijcre_2020_0111 crossref_primary_10_1016_j_apcata_2015_02_022 crossref_primary_10_1016_j_enconman_2020_112664 crossref_primary_10_1016_j_biortech_2014_10_069 crossref_primary_10_1016_j_fuel_2018_07_157 crossref_primary_10_1016_j_jiec_2023_04_038 crossref_primary_10_1016_j_cjche_2017_11_006 crossref_primary_10_1016_j_ijhydene_2023_09_167 crossref_primary_10_1051_e3sconf_202128704015 crossref_primary_10_4028_www_scientific_net_MSF_756_182 crossref_primary_10_1016_j_cattod_2011_04_031 crossref_primary_10_1021_acsomega_1c03174 crossref_primary_10_1016_j_desal_2024_117526 crossref_primary_10_1016_j_ceramint_2018_11_147 crossref_primary_10_1016_j_apcata_2014_07_013 crossref_primary_10_3390_inorganics6020039 crossref_primary_10_1016_j_biombioe_2014_02_032 crossref_primary_10_1016_j_apsusc_2024_160388 crossref_primary_10_1021_acsomega_9b01784 crossref_primary_10_1016_j_ceramint_2022_09_062 crossref_primary_10_1007_s10562_024_04577_2 crossref_primary_10_1016_S2095_4956_15_60284_4 crossref_primary_10_1016_j_fuel_2023_128429 crossref_primary_10_1134_S2517751623060045 crossref_primary_10_1016_j_matpr_2023_04_390 crossref_primary_10_1016_j_ijhydene_2014_11_095 crossref_primary_10_1016_j_renene_2016_08_069 crossref_primary_10_1016_j_ijhydene_2012_02_031 crossref_primary_10_1016_j_fuproc_2013_02_016 crossref_primary_10_3390_catal13040647 crossref_primary_10_1039_C5RA19748A crossref_primary_10_1016_j_jclepro_2017_05_176 crossref_primary_10_1155_2014_929676 crossref_primary_10_1007_s11164_016_2485_z crossref_primary_10_1016_j_ijhydene_2018_02_063 crossref_primary_10_1007_s10098_015_0965_2 crossref_primary_10_1021_acsenergylett_7b00392 crossref_primary_10_1016_j_ijhydene_2020_08_073 crossref_primary_10_1016_j_apcatb_2024_124102 crossref_primary_10_1021_acs_chemrev_7b00435 crossref_primary_10_1016_j_fuel_2023_127592 crossref_primary_10_3390_catal13030606 crossref_primary_10_1016_j_jiec_2024_06_017 crossref_primary_10_1016_j_ijhydene_2019_03_022 crossref_primary_10_1016_j_enconman_2018_10_067 crossref_primary_10_1016_j_jes_2023_01_022 crossref_primary_10_1002_cite_201400092 crossref_primary_10_1016_j_ijhydene_2021_08_021 crossref_primary_10_2139_ssrn_3947558 crossref_primary_10_1016_j_enconman_2019_112056 crossref_primary_10_1016_j_apcatb_2022_121806 crossref_primary_10_1038_s41598_019_42814_6 crossref_primary_10_1016_j_jcou_2015_01_002 crossref_primary_10_3390_nano12193400 crossref_primary_10_1016_j_jcou_2021_101629 crossref_primary_10_1016_j_matchemphys_2015_07_048 crossref_primary_10_1016_j_cattod_2014_07_054 crossref_primary_10_3390_catal13081171 crossref_primary_10_1038_s41598_023_43782_8 crossref_primary_10_3390_catal8030110 crossref_primary_10_1016_j_ijhydene_2024_02_267 crossref_primary_10_1016_j_enconman_2017_11_089 crossref_primary_10_1039_D3GC05136F crossref_primary_10_1016_j_jcou_2017_11_015 crossref_primary_10_3389_fchem_2019_00119 crossref_primary_10_1016_j_ijhydene_2017_01_049 crossref_primary_10_1016_j_ijhydene_2022_01_066 crossref_primary_10_1016_j_apenergy_2017_08_007 crossref_primary_10_1002_apj_1759 crossref_primary_10_3390_catal12050465 crossref_primary_10_3390_catal10111345 crossref_primary_10_1039_D3CY01612A crossref_primary_10_1016_j_ceja_2020_100080 crossref_primary_10_1016_j_enconman_2018_05_083 crossref_primary_10_1021_ie402382w crossref_primary_10_1016_j_cattod_2017_03_049 crossref_primary_10_1016_j_ijhydene_2023_09_113 crossref_primary_10_1016_j_fuproc_2023_108024 crossref_primary_10_1016_j_apcata_2015_01_029 crossref_primary_10_1016_j_ijhydene_2020_12_026 crossref_primary_10_1515_cppm_2015_0027 crossref_primary_10_1016_j_jcou_2020_101201 crossref_primary_10_1016_j_jcou_2021_101728 crossref_primary_10_1016_j_cattod_2020_07_016 crossref_primary_10_1016_j_cherd_2014_07_013 crossref_primary_10_1016_j_apenergy_2019_05_064 crossref_primary_10_1016_j_apcata_2021_118174 crossref_primary_10_1016_j_ijhydene_2011_08_117 crossref_primary_10_3389_fchem_2014_00081 crossref_primary_10_1016_j_cej_2023_147458 crossref_primary_10_1039_D1RE00136A crossref_primary_10_1016_j_jechem_2019_12_017 crossref_primary_10_1134_S0023158421060069 crossref_primary_10_1016_j_susmat_2019_e00122 crossref_primary_10_1016_j_ijhydene_2023_03_094 crossref_primary_10_1080_00986445_2015_1017638 crossref_primary_10_1038_s41929_019_0416_2 crossref_primary_10_1080_01614940_2021_2006891 crossref_primary_10_3389_fchem_2019_00028 crossref_primary_10_1016_j_jechem_2024_05_024 crossref_primary_10_1016_j_jngse_2016_02_021 crossref_primary_10_3390_e19120650 crossref_primary_10_1016_j_cattod_2019_06_018 crossref_primary_10_1016_j_energy_2020_117394 crossref_primary_10_1007_s11783_019_1096_5 crossref_primary_10_1016_j_jcou_2017_10_014 |
Cites_doi | 10.1021/ie990804r 10.1023/A:1022607800345 10.1002/anie.200701237 10.1016/j.jcat.2004.02.032 10.1021/ie100460g 10.1016/j.jpowsour.2005.01.056 10.1016/S1872-2067(08)60079-0 10.1016/S1381-1169(00)00407-6 10.1016/j.fuproc.2005.11.004 10.1007/BF01982701 10.1016/0360-3199(95)00030-H 10.1021/ef0340716 10.1016/j.apcatb.2009.10.029 10.1023/A:1016600223749 10.1016/j.ijhydene.2008.06.058 10.1007/s11814-007-0027-5 10.1016/S0378-3820(03)00063-8 10.1016/j.cattod.2004.09.014 10.1016/S0920-5861(03)00296-7 10.1109/TPS.2003.808888 10.1252/jcej.27.727 10.1016/S0016-2361(00)00165-4 10.1016/j.jcat.2008.08.008 10.1016/S0926-860X(00)00460-9 10.1016/j.ijhydene.2006.12.004 10.1006/jcat.2000.2820 10.1016/j.jngse.2009.12.003 10.1016/S0167-2991(98)80284-X 10.1016/S0167-2991(06)81571-5 10.1006/jcat.1997.1910 10.1021/ie00008a004 10.1016/j.cej.2010.04.022 10.1016/S1386-1425(98)00163-2 10.1016/0360-3199(91)90166-G 10.1016/j.jpowsour.2006.04.091 10.1021/ie970246l 10.1016/S0167-2991(98)80533-8 10.1016/j.fuel.2009.01.015 10.1016/j.jpowsour.2006.09.072 10.1021/ie9709401 10.1016/j.catcom.2005.05.008 10.1016/S0360-3199(99)00013-0 10.1007/s10562-006-0076-0 10.1016/0920-5861(93)80059-A 10.1080/02533839.2008.9671444 10.1016/S0378-7753(98)00003-2 10.1007/s10562-004-3467-0 10.1088/0022-3727/34/18/313 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ IQODW AAYXX CITATION 7TB 8FD FR3 H8D L7M 7ST C1K SOI |
DOI | 10.1016/j.fuproc.2010.11.027 |
DatabaseName | AGRIS Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7188 |
EndPage | 691 |
ExternalDocumentID | 10_1016_j_fuproc_2010_11_027 23822565 US201600066281 S0378382010003905 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- ABPIF ABPTK FBQ IQODW AAHBH AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION GROUPED_DOAJ 7TB 8FD FR3 H8D L7M 7ST C1K SOI |
ID | FETCH-LOGICAL-c542t-ed17a2e1eb3419f2a8f3f92d6e754a9c129cbc99f5f5fead54648d341185c3a73 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Fri Oct 25 06:18:18 EDT 2024 Sat Oct 26 00:09:51 EDT 2024 Thu Sep 26 17:48:46 EDT 2024 Tue Feb 27 08:52:00 EST 2024 Wed Dec 27 19:19:03 EST 2023 Fri Feb 23 02:30:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Methane Gibbs free energy Reforming Thermodynamic equilibrium Carbon formation Carbon dioxide Disproportionation Ethylene Fischer Tropsch synthesis Temperature effect Methyl ether Decomposition Synthesis gas Free energy Ethane Numerical analysis Pressure effect Thermodynamic analysis Catalyst Methanol |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-ed17a2e1eb3419f2a8f3f92d6e754a9c129cbc99f5f5fead54648d341185c3a73 |
Notes | http://dx.doi.org/10.1016/j.fuproc.2010.11.027 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671224595 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_861544894 proquest_miscellaneous_1671224595 crossref_primary_10_1016_j_fuproc_2010_11_027 pascalfrancis_primary_23822565 fao_agris_US201600066281 elsevier_sciencedirect_doi_10_1016_j_fuproc_2010_11_027 |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wang, Zhu (bb0285) 2004; 18 Khalesi, Arandiyan, Parvari (bb0190) 2008; 29 O'Connor, Ross, Meunier (bb0035) 1998; 119 Jankhah, Abatzoglou, gitzhofer (bb0105) 2008; 33 Eliasson, Kogelschatz, Xue, Zhou (bb0280) 1998; 37 Seshan, Bitter, Lecher (bb0085) 1998; 113 Comier, Rusi (bb0040) 2001; 34 He, Yang, Cheng (bb0270) 2004; 98 Wang, Ohtsuka (bb0265) 2000; 192 Maestri, Vlachos, Beretta, Groppi, Tronconi (bb0250) 2008; 259 Mattos, Rodino, Resasco, Passos, Noronha (bb0240) 2003; 83 Kohn, Castaldi, Farrauto (bb0255) 2010; 94 Semelsberger, Borup (bb0145) 2005; 152 Hong, S-M, Park, Kim (bb0200) 2001; 7 vila-Neto, Dantas, Silva, Franco, Romanielo, Hori, Assis (bb0300) 2009; 1 Istadi, Amin (bb0070) 2005; 14 Takano, Tagawa, Goto (bb0215) 1994; 27 Gronchi, Fumagalli, Del Rosso, Centola (bb0120) 1996; 47 Múnera, Carrara, Cornaglia, Lombardo (bb0295) 2010; 161 Wei, Iglesia (bb0245) 2004; 224 Tsai, Wang (bb0210) 2008; 31 Froment (bb0185) 2000; 163 Smith, Van Ness, Abbort (bb0180) 2005 E.M. Galimov, A.M. Rabbani, Geochemical characteristics and origin of natural gas in southern Iran, Geochem. Int. 39 (2001) 780–792. Qian, Yang (bb0095) 2003; 14 Liu, Xiong, Dong, Yang (bb0290) 2004; 202 Choudhary, Choudhary (bb0045) 2008; 47 Lwin, Daud, Mohamad, Yaakob (bb0100) 2000; 25 S.Y. Foo, C.K. Cheng, T.H. Nguyen, A.A. Adesina, Oxidative CO Michael, Bradford, Vannice (bb0110) 1998; 173 W-Ch. Fong, R.F. Wilson, inventor; Texaco Inc., assignee. Gasification process combined with steam methane reforming to produce syngas suitable for methanol production, United States Patent US No 5, 496, 859, March 5, 1996. Eliasson, Liu, Kogelschatz (bb0015) 2000; 39 Bhumkar, Lobban (bb0025) 1992; 31 Zhu, Zhang, King (bb0055) 2001; 80 Garcia, Laborde (bb0130) 1991; 16 Faungnawakij, Kikuchi, Eguchi (bb0165) 2006; 161 Oberreuther, Wolff, Behr (bb0020) 2003; 31 Jablonski, Schmidhalter, de Miguel, Scelza, Castro (bb0195) 2005 Moradi, Depecker, Barbillat (bb0030) 1999; 55 Olsbye, Wurzel, Mleczko (bb0075) 1997; 36 Cai, Chou, Zhang, Zhao (bb0220) 2003; 86 Rostrup-Neilsen (bb0235) 1993; 18 reforming of methane on Alumina-supported Co-Ni catalyst, Ind. Eng. Chem. Res. 49 (2010) 10450–10458. Kajornsak, Ryuji, Koichi (bb0150) 2007; 164 Suhartanto, York, Hanif (bb0005) 2001; 71 Wisniewski, Boreave, Gelin (bb0205) 2005; 6 Shamsi, Johnson (bb0225) 2003; 84 Liu, Roh, Jun (bb0065) 2003; 9 Asami (bb0090) 2003 Choudhary, Mondal, Mamman, Joshi (bb0125) 2005; 100 Amin, Yaw (bb0160) 2007; 32 G.A. Olah, G.K. Surya Prakash, inventor; WINSTON & STRAWN LLP., assignee. Conversion of carbon dioxide to dimethyl ether using bi-reforming of methane or natural gas, Patent Application Publication US No 2008/0319093A1 Dec 25, 2008. Amin, Istadi (bb0275) 2006; 159 Yaws (bb0175) 2006 Wang, Wang Li, Wang, Li, Wang, Ma (bb0155) 2009; 88 Yanbing, Baosheng, Rui (bb0060) 2007; 24 Maggio, Freni, Cavallar (bb0140) 1998; 74 Sandler (bb0170) 1999 Istadi, Amin (bb0260) 2006; 87 Shamsi (bb0115) 2006; 109 Vasudeva, Mitra, Umasankar, Dhingra (bb0135) 1996; 21 Shamsi (10.1016/j.fuproc.2010.11.027_bb0115) 2006; 109 Zhu (10.1016/j.fuproc.2010.11.027_bb0055) 2001; 80 10.1016/j.fuproc.2010.11.027_bb0080 Hong (10.1016/j.fuproc.2010.11.027_bb0200) 2001; 7 Vasudeva (10.1016/j.fuproc.2010.11.027_bb0135) 1996; 21 Kajornsak (10.1016/j.fuproc.2010.11.027_bb0150) 2007; 164 Jablonski (10.1016/j.fuproc.2010.11.027_bb0195) 2005 Maestri (10.1016/j.fuproc.2010.11.027_bb0250) 2008; 259 Tsai (10.1016/j.fuproc.2010.11.027_bb0210) 2008; 31 Amin (10.1016/j.fuproc.2010.11.027_bb0275) 2006; 159 Yaws (10.1016/j.fuproc.2010.11.027_bb0175) 2006 Choudhary (10.1016/j.fuproc.2010.11.027_bb0045) 2008; 47 Mattos (10.1016/j.fuproc.2010.11.027_bb0240) 2003; 83 10.1016/j.fuproc.2010.11.027_bb0010 Qian (10.1016/j.fuproc.2010.11.027_bb0095) 2003; 14 Garcia (10.1016/j.fuproc.2010.11.027_bb0130) 1991; 16 10.1016/j.fuproc.2010.11.027_bb0050 Eliasson (10.1016/j.fuproc.2010.11.027_bb0280) 1998; 37 Olsbye (10.1016/j.fuproc.2010.11.027_bb0075) 1997; 36 Lwin (10.1016/j.fuproc.2010.11.027_bb0100) 2000; 25 He (10.1016/j.fuproc.2010.11.027_bb0270) 2004; 98 Froment (10.1016/j.fuproc.2010.11.027_bb0185) 2000; 163 vila-Neto (10.1016/j.fuproc.2010.11.027_bb0300) 2009; 1 Jankhah (10.1016/j.fuproc.2010.11.027_bb0105) 2008; 33 Semelsberger (10.1016/j.fuproc.2010.11.027_bb0145) 2005; 152 Liu (10.1016/j.fuproc.2010.11.027_bb0065) 2003; 9 Wang (10.1016/j.fuproc.2010.11.027_bb0265) 2000; 192 Choudhary (10.1016/j.fuproc.2010.11.027_bb0125) 2005; 100 Wang (10.1016/j.fuproc.2010.11.027_bb0155) 2009; 88 Múnera (10.1016/j.fuproc.2010.11.027_bb0295) 2010; 161 Wei (10.1016/j.fuproc.2010.11.027_bb0245) 2004; 224 Comier (10.1016/j.fuproc.2010.11.027_bb0040) 2001; 34 Wang (10.1016/j.fuproc.2010.11.027_bb0285) 2004; 18 Istadi (10.1016/j.fuproc.2010.11.027_bb0070) 2005; 14 Suhartanto (10.1016/j.fuproc.2010.11.027_bb0005) 2001; 71 Asami (10.1016/j.fuproc.2010.11.027_bb0090) 2003 Khalesi (10.1016/j.fuproc.2010.11.027_bb0190) 2008; 29 Maggio (10.1016/j.fuproc.2010.11.027_bb0140) 1998; 74 O'Connor (10.1016/j.fuproc.2010.11.027_bb0035) 1998; 119 Gronchi (10.1016/j.fuproc.2010.11.027_bb0120) 1996; 47 Amin (10.1016/j.fuproc.2010.11.027_bb0160) 2007; 32 Cai (10.1016/j.fuproc.2010.11.027_bb0220) 2003; 86 Bhumkar (10.1016/j.fuproc.2010.11.027_bb0025) 1992; 31 10.1016/j.fuproc.2010.11.027_bb0230 Smith (10.1016/j.fuproc.2010.11.027_bb0180) 2005 Sandler (10.1016/j.fuproc.2010.11.027_bb0170) 1999 Yanbing (10.1016/j.fuproc.2010.11.027_bb0060) 2007; 24 Takano (10.1016/j.fuproc.2010.11.027_bb0215) 1994; 27 Liu (10.1016/j.fuproc.2010.11.027_bb0290) 2004; 202 Seshan (10.1016/j.fuproc.2010.11.027_bb0085) 1998; 113 Michael (10.1016/j.fuproc.2010.11.027_bb0110) 1998; 173 Rostrup-Neilsen (10.1016/j.fuproc.2010.11.027_bb0235) 1993; 18 Moradi (10.1016/j.fuproc.2010.11.027_bb0030) 1999; 55 Istadi (10.1016/j.fuproc.2010.11.027_bb0260) 2006; 87 Eliasson (10.1016/j.fuproc.2010.11.027_bb0015) 2000; 39 Wisniewski (10.1016/j.fuproc.2010.11.027_bb0205) 2005; 6 Faungnawakij (10.1016/j.fuproc.2010.11.027_bb0165) 2006; 161 Shamsi (10.1016/j.fuproc.2010.11.027_bb0225) 2003; 84 Oberreuther (10.1016/j.fuproc.2010.11.027_bb0020) 2003; 31 Kohn (10.1016/j.fuproc.2010.11.027_bb0255) 2010; 94 |
References_xml | – volume: 47 start-page: 1828 year: 2008 end-page: 1847 ident: bb0045 article-title: Energy-efficient syngas production through catalytic oxy-methane reforming reactions publication-title: Angew. Chem. Int. Ed. contributor: fullname: Choudhary – start-page: 1 year: 2005 end-page: 13 ident: bb0195 article-title: Dry reforming of methane on Pt/Al publication-title: 2nd Mercosur Congress on Chemical Engineering, Rio de Janeiro contributor: fullname: Castro – volume: 173 start-page: 157 year: 1998 end-page: 171 ident: bb0110 article-title: CO publication-title: J. Catal. Today contributor: fullname: Vannice – volume: 6 start-page: 596 year: 2005 end-page: 600 ident: bb0205 article-title: Catalytic CO publication-title: Catal. Commun. contributor: fullname: Gelin – volume: 16 start-page: 307 year: 1991 end-page: 312 ident: bb0130 article-title: Hydrogen production by steam reforming of ethanol: thermodynamic analysis publication-title: Int. J. Hydrogen Energy contributor: fullname: Laborde – volume: 83 start-page: 147 year: 2003 end-page: 161 ident: bb0240 article-title: Partial oxidation and CO publication-title: Fuel Process. Technol. contributor: fullname: Noronha – volume: 152 start-page: 87 year: 2005 end-page: 96 ident: bb0145 article-title: Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis publication-title: J. Power Sources contributor: fullname: Borup – year: 2005 ident: bb0180 article-title: Introduction to Chemical Engineering Thermodynamics contributor: fullname: Abbort – volume: 80 start-page: 899 year: 2001 end-page: 905 ident: bb0055 article-title: Reforming of CH publication-title: Fuel contributor: fullname: King – volume: 33 start-page: 4769 year: 2008 end-page: 4779 ident: bb0105 article-title: Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nano-filaments' production publication-title: Int. J. Hydrogen Energy contributor: fullname: gitzhofer – volume: 31 start-page: 1856 year: 1992 end-page: 1864 ident: bb0025 article-title: Diffuse reflectance infrared and transient studies of oxidative coupling of methane over Li/MgO catalyst publication-title: Ind. Eng. Chem. Res. contributor: fullname: Lobban – volume: 24 start-page: 688 year: 2007 end-page: 692 ident: bb0060 article-title: Carbon dioxide reforming of methane with a free energy minimization approach publication-title: Korean J. Chem. Eng. contributor: fullname: Rui – volume: 161 start-page: 204 year: 2010 end-page: 211 ident: bb0295 article-title: Combined oxidation and reforming of methane to produce pure H publication-title: Chem. Eng. J. contributor: fullname: Lombardo – volume: 29 start-page: 960 year: 2008 end-page: 968 ident: bb0190 article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane publication-title: Chin. J. Catal. contributor: fullname: Parvari – volume: 25 start-page: 47 year: 2000 end-page: 53 ident: bb0100 article-title: Hydrogen production from steam–methanol reforming: thermodynamic analysis publication-title: Int. J. Hydrogen Energy contributor: fullname: Yaakob – volume: 31 start-page: 74 year: 2003 end-page: 78 ident: bb0020 article-title: Volumetric plasma chemistry with carbon dioxide in an atmospheric pressure plasma using a technical scale reactor publication-title: IEEE Trans. Plasma Sci. contributor: fullname: Behr – volume: 7 start-page: 410 year: 2001 end-page: 416 ident: bb0200 article-title: The methane reforming with carbon dioxide on Ni-catalyst activated by a DC-pulsed corona discharge publication-title: J. Ind. Eng. Chem. contributor: fullname: Kim – volume: 36 start-page: 5180 year: 1997 end-page: 5188 ident: bb0075 article-title: Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al publication-title: Ind. Eng. Chem. Res. contributor: fullname: Mleczko – volume: 84 start-page: 17 year: 2003 end-page: 25 ident: bb0225 article-title: Effect of pressure on the carbon deposition route in CO publication-title: Catal. Today contributor: fullname: Johnson – start-page: 144 year: 2003 end-page: 152 ident: bb0090 article-title: Dry reforming of methane over ceria supported metal catalysts publication-title: Proceeding of the 13th Saudi-Japanese Catalyst Symposium, Dhahran, Saudi Arabia; Dec, 2003 contributor: fullname: Asami – volume: 71 start-page: 49 year: 2001 end-page: 54 ident: bb0005 article-title: Potential utilisation of Indonesia's Natuna natural gas field via methane dry reforming to synthesis gas publication-title: Catal. Lett. contributor: fullname: Hanif – volume: 9 start-page: 267 year: 2003 end-page: 274 ident: bb0065 article-title: Carbon dioxide reforming of methane over Ni/La publication-title: J. Ind. Eng. Chem. contributor: fullname: Jun – volume: 34 start-page: 2798 year: 2001 end-page: 2803 ident: bb0040 article-title: Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors: the future of technological plasmas publication-title: J. Phys. D Appl. Phys. contributor: fullname: Rusi – volume: 159 start-page: 213 year: 2006 end-page: 216 ident: bb0275 article-title: Selective conversion of methane to C publication-title: Stud. Surf. Sci. Catal. contributor: fullname: Istadi – volume: 163 start-page: 147 year: 2000 end-page: 156 ident: bb0185 article-title: Production of synthesis gas by steam- and CO publication-title: J. Mol. Catal. A Chem. contributor: fullname: Froment – volume: 14 start-page: 140 year: 2005 end-page: 150 ident: bb0070 article-title: Co-generation of C publication-title: J. Nat. Gas Chem. contributor: fullname: Amin – volume: 109 start-page: 189 year: 2006 end-page: 193 ident: bb0115 article-title: Partial oxidation and dry reforming of methane over Ca/Ni/K(Na) catalysts publication-title: Catal. Lett. contributor: fullname: Shamsi – volume: 55 start-page: 43 year: 1999 end-page: 64 ident: bb0030 article-title: Diffuse reflectance infrared spectroscopy: an experimental measure and interpretation of the sample volume size involved in the light scattering process publication-title: Spectrochim Acta A contributor: fullname: Barbillat – volume: 100 start-page: 271 year: 2005 end-page: 276 ident: bb0125 article-title: Carbon free dry reforming of methane to syngas over NdCoO publication-title: Catal. Lett. contributor: fullname: Joshi – volume: 37 start-page: 3350 year: 1998 end-page: 3357 ident: bb0280 article-title: Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst publication-title: Ind. Eng. Chem. Res. contributor: fullname: Zhou – volume: 86 start-page: 191 year: 2003 end-page: 195 ident: bb0220 article-title: Selective conversion of methane to C publication-title: Catal. Lett. contributor: fullname: Zhao – volume: 21 start-page: 13 year: 1996 end-page: 18 ident: bb0135 article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis publication-title: Int. J. Hydrogen Energy contributor: fullname: Dhingra – volume: 39 start-page: 1221 year: 2000 end-page: 1227 ident: bb0015 article-title: Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites publication-title: Ind. Eng. Chem. Res. contributor: fullname: Kogelschatz – volume: 1 start-page: 205 year: 2009 end-page: 215 ident: bb0300 article-title: Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design publication-title: J. Nat. Gas Sci. Eng. contributor: fullname: Assis – volume: 98 start-page: 595 year: 2004 end-page: 600 ident: bb0270 article-title: On the oxidative coupling of methane with carbon dioxide over CeO publication-title: Catal. Today contributor: fullname: Cheng – volume: 27 start-page: 727 year: 1994 end-page: 731 ident: bb0215 article-title: Carbon dioxide reforming of methane on supported nickel catalysts publication-title: J. Chem. Eng. Jpn contributor: fullname: Goto – volume: 31 start-page: 891 year: 2008 end-page: 896 ident: bb0210 article-title: Thermodynamic equilibrium prediction for natural gas dry reforming in thermal plasma reformer publication-title: J. Chin. Inst. Chem. Eng. contributor: fullname: Wang – volume: 87 start-page: 449 year: 2006 end-page: 459 ident: bb0260 article-title: Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO–MnO/CeO publication-title: Fuel Process. Technol. contributor: fullname: Amin – volume: 259 start-page: 211 year: 2008 end-page: 222 ident: bb0250 article-title: Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models publication-title: J. Catal. contributor: fullname: Tronconi – volume: 192 start-page: 252 year: 2000 end-page: 255 ident: bb0265 article-title: CaO–ZnO catalyst for selective conversion of methane to C2 hydrocarbons using carbon dioxide as the oxidant publication-title: J. Catal. contributor: fullname: Ohtsuka – volume: 32 start-page: 1789 year: 2007 end-page: 1798 ident: bb0160 article-title: Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas publication-title: Int. J. Hydrogen Energy contributor: fullname: Yaw – volume: 164 start-page: 73 year: 2007 end-page: 79 ident: bb0150 article-title: Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether publication-title: J. Power Sources contributor: fullname: Koichi – year: 1999 ident: bb0170 article-title: Chemical and Engineering Thermodynamics contributor: fullname: Sandler – volume: 47 start-page: 227 year: 1996 end-page: 234 ident: bb0120 article-title: Carbon deposition in methane reforming with carbon dioxide publication-title: J. Therm. Anal. contributor: fullname: Centola – year: 2006 ident: bb0175 article-title: Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals contributor: fullname: Yaws – volume: 202 start-page: 141 year: 2004 end-page: 146 ident: bb0290 article-title: Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/ publication-title: Appl. Catal. A contributor: fullname: Yang – volume: 18 start-page: 305 year: 1993 end-page: 324 ident: bb0235 article-title: Production of synthesis gas publication-title: Catal. Today contributor: fullname: Rostrup-Neilsen – volume: 18 start-page: 1126 year: 2004 end-page: 1139 ident: bb0285 article-title: Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review publication-title: Energy Fuels contributor: fullname: Zhu – volume: 14 start-page: 1081 year: 2003 end-page: 1084 ident: bb0095 article-title: Study on the reaction mechanism for carbon dioxide reforming of methane over supported nickel catalysts publication-title: Chin. Chem. Lett. contributor: fullname: Yang – volume: 94 start-page: 125 year: 2010 end-page: 133 ident: bb0255 article-title: Auto-thermal and dry reforming of landfill gas over a Rh/ν-Al publication-title: Appl. Catal. B contributor: fullname: Farrauto – volume: 224 start-page: 370 year: 2004 end-page: 383 ident: bb0245 article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH publication-title: J. Catal. contributor: fullname: Iglesia – volume: 119 start-page: 819 year: 1998 end-page: 824 ident: bb0035 article-title: An in-situ DRIFTS study of the mechanism of the CO publication-title: Stud. Surf. Sci. Catal. contributor: fullname: Meunier – volume: 113 start-page: 187 year: 1998 end-page: 191 ident: bb0085 article-title: Design of stable catalysts for methane carbon dioxide reforming publication-title: Stud. Surf. Sci. Catal. contributor: fullname: Lecher – volume: 88 start-page: 2148 year: 2009 end-page: 2153 ident: bb0155 article-title: Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production publication-title: Fuel contributor: fullname: Ma – volume: 161 start-page: 87 year: 2006 end-page: 94 ident: bb0165 article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production publication-title: J. Power Sources contributor: fullname: Eguchi – volume: 74 start-page: 17 year: 1998 end-page: 21 ident: bb0140 article-title: Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study publication-title: J. Power Sources contributor: fullname: Cavallar – volume: 39 start-page: 1221 year: 2000 ident: 10.1016/j.fuproc.2010.11.027_bb0015 article-title: Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990804r contributor: fullname: Eliasson – volume: 86 start-page: 191 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0220 article-title: Selective conversion of methane to C2 hydrocarbon using carbon dioxide over Mn–SrCO3 catalysts publication-title: Catal. Lett. doi: 10.1023/A:1022607800345 contributor: fullname: Cai – year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0180 contributor: fullname: Smith – volume: 47 start-page: 1828 year: 2008 ident: 10.1016/j.fuproc.2010.11.027_bb0045 article-title: Energy-efficient syngas production through catalytic oxy-methane reforming reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701237 contributor: fullname: Choudhary – volume: 224 start-page: 370 year: 2004 ident: 10.1016/j.fuproc.2010.11.027_bb0245 article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon or nickel catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2004.02.032 contributor: fullname: Wei – ident: 10.1016/j.fuproc.2010.11.027_bb0230 doi: 10.1021/ie100460g – volume: 152 start-page: 87 year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0145 article-title: Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.01.056 contributor: fullname: Semelsberger – volume: 29 start-page: 960 year: 2008 ident: 10.1016/j.fuproc.2010.11.027_bb0190 article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(08)60079-0 contributor: fullname: Khalesi – volume: 163 start-page: 147 year: 2000 ident: 10.1016/j.fuproc.2010.11.027_bb0185 article-title: Production of synthesis gas by steam- and CO2-reforming of natural gas publication-title: J. Mol. Catal. A Chem. doi: 10.1016/S1381-1169(00)00407-6 contributor: fullname: Froment – start-page: 1 year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0195 article-title: Dry reforming of methane on Pt/Al2O3–alkaline metal catalysts contributor: fullname: Jablonski – ident: 10.1016/j.fuproc.2010.11.027_bb0080 – volume: 87 start-page: 449 year: 2006 ident: 10.1016/j.fuproc.2010.11.027_bb0260 article-title: Optimization of process parameters and catalyst compositions in carbon dioxide oxidative coupling of methane over CaO–MnO/CeO2 catalyst using response surface methodology publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2005.11.004 contributor: fullname: Istadi – volume: 47 start-page: 227 year: 1996 ident: 10.1016/j.fuproc.2010.11.027_bb0120 article-title: Carbon deposition in methane reforming with carbon dioxide publication-title: J. Therm. Anal. doi: 10.1007/BF01982701 contributor: fullname: Gronchi – volume: 21 start-page: 13 year: 1996 ident: 10.1016/j.fuproc.2010.11.027_bb0135 article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(95)00030-H contributor: fullname: Vasudeva – volume: 18 start-page: 1126 year: 2004 ident: 10.1016/j.fuproc.2010.11.027_bb0285 article-title: Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation: a review publication-title: Energy Fuels doi: 10.1021/ef0340716 contributor: fullname: Wang – volume: 94 start-page: 125 year: 2010 ident: 10.1016/j.fuproc.2010.11.027_bb0255 article-title: Auto-thermal and dry reforming of landfill gas over a Rh/ν-Al2O3 monolith catalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.10.029 contributor: fullname: Kohn – volume: 71 start-page: 49 year: 2001 ident: 10.1016/j.fuproc.2010.11.027_bb0005 article-title: Potential utilisation of Indonesia's Natuna natural gas field via methane dry reforming to synthesis gas publication-title: Catal. Lett. doi: 10.1023/A:1016600223749 contributor: fullname: Suhartanto – ident: 10.1016/j.fuproc.2010.11.027_bb0010 – volume: 14 start-page: 1081 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0095 article-title: Study on the reaction mechanism for carbon dioxide reforming of methane over supported nickel catalysts publication-title: Chin. Chem. Lett. contributor: fullname: Qian – volume: 33 start-page: 4769 year: 2008 ident: 10.1016/j.fuproc.2010.11.027_bb0105 article-title: Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nano-filaments' production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.06.058 contributor: fullname: Jankhah – volume: 24 start-page: 688 year: 2007 ident: 10.1016/j.fuproc.2010.11.027_bb0060 article-title: Carbon dioxide reforming of methane with a free energy minimization approach publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-007-0027-5 contributor: fullname: Yanbing – volume: 83 start-page: 147 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0240 article-title: Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce–ZrO2 catalysts publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(03)00063-8 contributor: fullname: Mattos – volume: 98 start-page: 595 year: 2004 ident: 10.1016/j.fuproc.2010.11.027_bb0270 article-title: On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2004.09.014 contributor: fullname: He – volume: 84 start-page: 17 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0225 article-title: Effect of pressure on the carbon deposition route in CO2 reforming of CH4 publication-title: Catal. Today doi: 10.1016/S0920-5861(03)00296-7 contributor: fullname: Shamsi – volume: 31 start-page: 74 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0020 article-title: Volumetric plasma chemistry with carbon dioxide in an atmospheric pressure plasma using a technical scale reactor publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2003.808888 contributor: fullname: Oberreuther – volume: 27 start-page: 727 year: 1994 ident: 10.1016/j.fuproc.2010.11.027_bb0215 article-title: Carbon dioxide reforming of methane on supported nickel catalysts publication-title: J. Chem. Eng. Jpn doi: 10.1252/jcej.27.727 contributor: fullname: Takano – volume: 80 start-page: 899 year: 2001 ident: 10.1016/j.fuproc.2010.11.027_bb0055 article-title: Reforming of CH4 by partial oxidation thermodynamic and kinetic analyses publication-title: Fuel doi: 10.1016/S0016-2361(00)00165-4 contributor: fullname: Zhu – volume: 259 start-page: 211 year: 2008 ident: 10.1016/j.fuproc.2010.11.027_bb0250 article-title: Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models publication-title: J. Catal. doi: 10.1016/j.jcat.2008.08.008 contributor: fullname: Maestri – volume: 9 start-page: 267 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0065 article-title: Carbon dioxide reforming of methane over Ni/La2O3/Al2O3 publication-title: J. Ind. Eng. Chem. contributor: fullname: Liu – year: 1999 ident: 10.1016/j.fuproc.2010.11.027_bb0170 contributor: fullname: Sandler – volume: 202 start-page: 141 year: 2004 ident: 10.1016/j.fuproc.2010.11.027_bb0290 article-title: Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/ν-Al2O3 catalyst publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(00)00460-9 contributor: fullname: Liu – volume: 32 start-page: 1789 year: 2007 ident: 10.1016/j.fuproc.2010.11.027_bb0160 article-title: Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.12.004 contributor: fullname: Amin – volume: 192 start-page: 252 year: 2000 ident: 10.1016/j.fuproc.2010.11.027_bb0265 article-title: CaO–ZnO catalyst for selective conversion of methane to C2 hydrocarbons using carbon dioxide as the oxidant publication-title: J. Catal. doi: 10.1006/jcat.2000.2820 contributor: fullname: Wang – volume: 1 start-page: 205 year: 2009 ident: 10.1016/j.fuproc.2010.11.027_bb0300 article-title: Hydrogen production from methane reforming: thermodynamic assessment and autothermal reactor design publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2009.12.003 contributor: fullname: vila-Neto – volume: 14 start-page: 140 year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0070 article-title: Co-generation of C2 hydrocarbons and synthesis gases from methane and carbon dioxide: a thermodynamic analysis publication-title: J. Nat. Gas Chem. contributor: fullname: Istadi – volume: 113 start-page: 187 year: 1998 ident: 10.1016/j.fuproc.2010.11.027_bb0085 article-title: Design of stable catalysts for methane carbon dioxide reforming publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(98)80284-X contributor: fullname: Seshan – volume: 159 start-page: 213 year: 2006 ident: 10.1016/j.fuproc.2010.11.027_bb0275 article-title: Selective conversion of methane to C2 hydrocarbons using carbon dioxide as an oxidant over CaO–MnO/CeO2 catalyst publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(06)81571-5 contributor: fullname: Amin – volume: 173 start-page: 157 year: 1998 ident: 10.1016/j.fuproc.2010.11.027_bb0110 article-title: CO2 reforming of CH4 over supported Pt catalysts publication-title: J. Catal. Today doi: 10.1006/jcat.1997.1910 contributor: fullname: Michael – volume: 7 start-page: 410 year: 2001 ident: 10.1016/j.fuproc.2010.11.027_bb0200 article-title: The methane reforming with carbon dioxide on Ni-catalyst activated by a DC-pulsed corona discharge publication-title: J. Ind. Eng. Chem. contributor: fullname: Hong – volume: 31 start-page: 1856 year: 1992 ident: 10.1016/j.fuproc.2010.11.027_bb0025 article-title: Diffuse reflectance infrared and transient studies of oxidative coupling of methane over Li/MgO catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00008a004 contributor: fullname: Bhumkar – volume: 161 start-page: 204 year: 2010 ident: 10.1016/j.fuproc.2010.11.027_bb0295 article-title: Combined oxidation and reforming of methane to produce pure H2 in a membrane reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.04.022 contributor: fullname: Múnera – volume: 55 start-page: 43 year: 1999 ident: 10.1016/j.fuproc.2010.11.027_bb0030 article-title: Diffuse reflectance infrared spectroscopy: an experimental measure and interpretation of the sample volume size involved in the light scattering process publication-title: Spectrochim Acta A doi: 10.1016/S1386-1425(98)00163-2 contributor: fullname: Moradi – year: 2006 ident: 10.1016/j.fuproc.2010.11.027_bb0175 contributor: fullname: Yaws – volume: 16 start-page: 307 year: 1991 ident: 10.1016/j.fuproc.2010.11.027_bb0130 article-title: Hydrogen production by steam reforming of ethanol: thermodynamic analysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(91)90166-G contributor: fullname: Garcia – volume: 161 start-page: 87 year: 2006 ident: 10.1016/j.fuproc.2010.11.027_bb0165 article-title: Thermodynamic evaluation of methanol steam reforming for hydrogen production publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.04.091 contributor: fullname: Faungnawakij – volume: 36 start-page: 5180 year: 1997 ident: 10.1016/j.fuproc.2010.11.027_bb0075 article-title: Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970246l contributor: fullname: Olsbye – volume: 119 start-page: 819 year: 1998 ident: 10.1016/j.fuproc.2010.11.027_bb0035 article-title: An in-situ DRIFTS study of the mechanism of the CO2 reforming of CH4 over a Pt/ZrO2 catalyst publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(98)80533-8 contributor: fullname: O'Connor – volume: 88 start-page: 2148 year: 2009 ident: 10.1016/j.fuproc.2010.11.027_bb0155 article-title: Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production publication-title: Fuel doi: 10.1016/j.fuel.2009.01.015 contributor: fullname: Wang – ident: 10.1016/j.fuproc.2010.11.027_bb0050 – volume: 164 start-page: 73 year: 2007 ident: 10.1016/j.fuproc.2010.11.027_bb0150 article-title: Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.072 contributor: fullname: Kajornsak – volume: 37 start-page: 3350 year: 1998 ident: 10.1016/j.fuproc.2010.11.027_bb0280 article-title: Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9709401 contributor: fullname: Eliasson – start-page: 144 year: 2003 ident: 10.1016/j.fuproc.2010.11.027_bb0090 article-title: Dry reforming of methane over ceria supported metal catalysts contributor: fullname: Asami – volume: 6 start-page: 596 year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0205 article-title: Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2−x publication-title: Catal. Commun. doi: 10.1016/j.catcom.2005.05.008 contributor: fullname: Wisniewski – volume: 25 start-page: 47 year: 2000 ident: 10.1016/j.fuproc.2010.11.027_bb0100 article-title: Hydrogen production from steam–methanol reforming: thermodynamic analysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(99)00013-0 contributor: fullname: Lwin – volume: 109 start-page: 189 year: 2006 ident: 10.1016/j.fuproc.2010.11.027_bb0115 article-title: Partial oxidation and dry reforming of methane over Ca/Ni/K(Na) catalysts publication-title: Catal. Lett. doi: 10.1007/s10562-006-0076-0 contributor: fullname: Shamsi – volume: 18 start-page: 305 year: 1993 ident: 10.1016/j.fuproc.2010.11.027_bb0235 article-title: Production of synthesis gas publication-title: Catal. Today doi: 10.1016/0920-5861(93)80059-A contributor: fullname: Rostrup-Neilsen – volume: 31 start-page: 891 year: 2008 ident: 10.1016/j.fuproc.2010.11.027_bb0210 article-title: Thermodynamic equilibrium prediction for natural gas dry reforming in thermal plasma reformer publication-title: J. Chin. Inst. Chem. Eng. doi: 10.1080/02533839.2008.9671444 contributor: fullname: Tsai – volume: 74 start-page: 17 year: 1998 ident: 10.1016/j.fuproc.2010.11.027_bb0140 article-title: Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study publication-title: J. Power Sources doi: 10.1016/S0378-7753(98)00003-2 contributor: fullname: Maggio – volume: 100 start-page: 271 year: 2005 ident: 10.1016/j.fuproc.2010.11.027_bb0125 article-title: Carbon free dry reforming of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst publication-title: Catal. Lett. doi: 10.1007/s10562-004-3467-0 contributor: fullname: Choudhary – volume: 34 start-page: 2798 year: 2001 ident: 10.1016/j.fuproc.2010.11.027_bb0040 article-title: Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors: the future of technological plasmas publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/34/18/313 contributor: fullname: Comier |
SSID | ssj0005597 |
Score | 2.5580869 |
Snippet | A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen... |
SourceID | proquest crossref pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 678 |
SubjectTerms | Applied sciences Carbon Carbon dioxide Carbon formation Carbon monoxide catalysts Conversion Energy Energy. Thermal use of fuels ethane ethylene Exact sciences and technology Fuels Gibbs free energy hydrogen hydrogen production Methane methanol Moles Optimization Reforming synthesis gas temperature Thermodynamic equilibrium working conditions yields |
Title | Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation |
URI | https://dx.doi.org/10.1016/j.fuproc.2010.11.027 https://search.proquest.com/docview/1671224595 https://search.proquest.com/docview/861544894 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaU9lDZtybbNokKu7q5lyZKOITRsG5JLspCbkPUILtQOm13oqb-9M36kCW0oFN9kCcTMeGZkffMNwBGvtPILL7LCYPomdCiySomUOYPm5EMsnKf_HecX5XIlvl7L6x04GWthCFY5-P7ep3feehiZD9Kc39b1_HJRKF1QAOsKTInHdA_DEdcT2Dv-cra8-I30kF2PFZqf0YKxgq6DeaUtRYoe40V0ntRe5u8Raje5lqCT7g6ll_q2F3948C4snb6EF0M-yY77Lb-Cndjsw_MHLIOvwaIprL-3oe89z9xAQ8LaxLxbV23DQt3-qENkuJeWsDE39I56S7smsrphdH1AQ2indRgX3Zc9voHV6eerk2U29FXIvBR8k8WQK8djjudokZvEnU5FMjyUUUnhjMcUwFfemCTxQUuToiQlCjyLSF84VbyFSdM28QBYFVXQuQieBy_MIlSh0tyIiIpOmCn4KWSjLO1tT59hR1zZN9vL3pLs8SRiUfZTUKPA7SMzsOjh_7HyAPVj3Q36Rru65MSc19Hb63wKs0dKu98Jpivozko5hY-jFi1-XXRlgvJtt3c2LxVdPUqDc9gTc3RJjEbaiHf_vfn38Kz_V03Ytg8w2ay38RCTnU01g91PP_PZYNK_AOi2_l4 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sPtg-iNWKV62N0NflbneTTfIoUjmr3ose-Bay-ZAV3JXzDvrnd2Y_bKWWguxbNoFhZjIzSX4zA_AtK5V0E8eTXGP4xpXPk1LymFiN6uR8yK2j-46rWTGd8x-34nYNTodcGIJV9ra_s-mtte5Hxj03x49VNb6e5FLl5MDaBFOqY7qB0YDG3blxcn4xnf1Geoi2xwrNT2jBkEHXwrziijxFh_Gicp7UXuZ1D_Uu2oagk_YJuRe7thd_WfDWLZ1tw1YfT7KTjuSPsBbqHfjwR5XBXTCoCouHxne955nty5CwJjJnF2VTM181PysfGNLSEDbmjv5Rb2lbB1bVjJ4PaAj1tPLDoue0x08wP_t-czpN-r4KiRM8WybBp9JmIcVzNE91zKyKedSZL4IU3GqHIYArndZR4IeaJnhBQuR4FhEutzLfg_W6qcM-sDJIr1LuXeYd1xNf-lJlmgcUdMRIwY0gGXhpHrvyGWbAld2bjveGeI8nEYO8H4EcGG5eqIFBC_-flfsoH2Pv0Daa-XVGlfPa8vYqHcHRC6E9U4LhCpqzQozgeJCiwd1FTybI32b1ZNJC0tOj0DiH_WOOKqiikdL885uJ_wqb05urS3N5Prs4gPfdvTXh3A5hfblYhS8Y-CzLo16xfwEPsgBh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+analysis+of+carbon+dioxide+reforming+of+methane+in+view+of+solid+carbon+formation&rft.jtitle=Fuel+processing+technology&rft.au=Nikoo%2C+MKhoshtinat&rft.au=Amin%2C+NAS&rft.date=2011-03-01&rft.issn=0378-3820&rft.volume=92&rft.issue=3&rft.spage=678&rft.epage=691&rft_id=info:doi/10.1016%2Fj.fuproc.2010.11.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |