Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framewor...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 5; no. 1; p. 4228
Main Authors Shekhah, Osama, Belmabkhout, Youssef, Chen, Zhijie, Guillerm, Vincent, Cairns, Amy, Adil, Karim, Eddaoudi, Mohamed
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.06.2014
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework ( SIFSIX -3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX- 3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture.
AbstractList Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework ( SIFSIX -3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX- 3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture.
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework ( SIFSIX -3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX- 3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture.
ArticleNumber 4228
Author Guillerm, Vincent
Cairns, Amy
Shekhah, Osama
Eddaoudi, Mohamed
Belmabkhout, Youssef
Adil, Karim
Chen, Zhijie
Author_xml – sequence: 1
  givenname: Osama
  surname: Shekhah
  fullname: Shekhah, Osama
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Youssef
  surname: Belmabkhout
  fullname: Belmabkhout, Youssef
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Zhijie
  surname: Chen
  fullname: Chen, Zhijie
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Vincent
  surname: Guillerm
  fullname: Guillerm, Vincent
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Amy
  surname: Cairns
  fullname: Cairns, Amy
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Karim
  surname: Adil
  fullname: Adil, Karim
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Mohamed
  surname: Eddaoudi
  fullname: Eddaoudi, Mohamed
  email: mohamed.eddaoudi@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24964404$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02360096$$DView record in HAL
BookMark eNptkU1vFDEMhiPUipbSCz8AReICVAPJJJmPC1JVAa20iAuIY-RkPNuUmWSbzCzw78lq27IsxIdY9uPXTvyEHPjgkZBnnL3hTDRvvQ3jmFRZNo_IcckkL3hdioMd_4icpnTD8hEtb6R8TI5K2VZSMnlMvn2CDospFCF2GOmIEwzZX4J3lvYRRvwR4vdE-xDpFMEitRBN8LRz4afrkEYcwxoGCr6j4GJOr6Y54lNy2MOQ8PTuPiFfP7z_cnFZLD5_vLo4XxRWyXIq0Jreqj5bh1ALBkIyZfuGG1MhQ2WN6pg1NeRYayvTtsaUvDESuFIMUZyQd1vd1WxG7Cz6POWgV9GNEH_pAE7_nfHuWi_DWkvWCCmqLPBqK3C9V3Z5vtCbGCtFxVhbrXlmX941i-F2xjTp0SWLwwAew5w0V5KLhktWZ_TFHnoT5ujzV2RKtLWoZCsz9Xx3-of-9_vJwOstYGNIKWL_gHCmN_vXf_afYbYHWzfB5MLm5W74f8nZtiRlXb_EuDPmv_RvPjzD8g
CitedBy_id crossref_primary_10_1039_C8CE01118D
crossref_primary_10_1016_j_joule_2021_05_023
crossref_primary_10_1038_srep33461
crossref_primary_10_1016_j_jcou_2022_102084
crossref_primary_10_1007_s42114_022_00567_3
crossref_primary_10_1021_acs_inorgchem_0c03159
crossref_primary_10_3390_ma14020310
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1021_acs_iecr_5b03277
crossref_primary_10_1039_C6QM00301J
crossref_primary_10_1002_adma_202408416
crossref_primary_10_1039_D3CP02368K
crossref_primary_10_1021_acsami_0c07800
crossref_primary_10_1021_jacs_4c05318
crossref_primary_10_1021_acs_inorgchem_2c03681
crossref_primary_10_1016_j_memsci_2017_04_033
crossref_primary_10_1021_acs_jpcc_9b11535
crossref_primary_10_3390_molecules29163885
crossref_primary_10_1016_j_coco_2023_101604
crossref_primary_10_1002_anie_202112916
crossref_primary_10_1038_s44296_024_00014_y
crossref_primary_10_1002_aic_15837
crossref_primary_10_1016_j_ccr_2022_214714
crossref_primary_10_1016_j_seppur_2019_116042
crossref_primary_10_1016_j_eng_2021_10_013
crossref_primary_10_1021_acs_iecr_8b00950
crossref_primary_10_1021_acs_chemrev_9b00828
crossref_primary_10_3389_fenrg_2023_1167043
crossref_primary_10_1007_s40726_019_00128_1
crossref_primary_10_1021_acs_inorgchem_4c00026
crossref_primary_10_1021_acs_jpclett_3c00767
crossref_primary_10_1360_TB_2023_0645
crossref_primary_10_1016_j_eti_2016_12_001
crossref_primary_10_1002_smll_202402783
crossref_primary_10_1002_anie_202106259
crossref_primary_10_1063_1674_0068_cjcp2409133
crossref_primary_10_2174_1568026622666220307124003
crossref_primary_10_1007_s40242_021_1394_x
crossref_primary_10_1002_smm2_1016
crossref_primary_10_1021_acsami_7b08117
crossref_primary_10_1038_srep11537
crossref_primary_10_1039_C6SC01385F
crossref_primary_10_3390_compounds4010007
crossref_primary_10_1039_C5CE00015G
crossref_primary_10_1021_acs_inorgchem_3c00821
crossref_primary_10_1002_cssc_201501574
crossref_primary_10_1016_j_chempr_2016_10_009
crossref_primary_10_1021_acs_inorgchem_2c01128
crossref_primary_10_1002_adma_202207088
crossref_primary_10_1002_anie_201906756
crossref_primary_10_1021_acsami_7b10795
crossref_primary_10_1021_acs_iecr_4c03265
crossref_primary_10_1002_adsr_202400170
crossref_primary_10_1016_j_ccst_2023_100128
crossref_primary_10_1002_smll_202411010
crossref_primary_10_1016_j_cej_2022_137958
crossref_primary_10_1021_acs_cgd_6b01058
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_162
crossref_primary_10_1002_sstr_202100209
crossref_primary_10_1039_D4TA08481K
crossref_primary_10_1039_C7DT02709E
crossref_primary_10_1021_acs_cgd_6b01054
crossref_primary_10_1016_j_cej_2023_141781
crossref_primary_10_1016_j_cej_2024_158380
crossref_primary_10_1021_acs_jpcc_2c05667
crossref_primary_10_1039_C8CC04824J
crossref_primary_10_1002_adsu_201800080
crossref_primary_10_1007_s12274_018_2039_3
crossref_primary_10_1016_j_chempr_2019_10_012
crossref_primary_10_1039_D0DT00793E
crossref_primary_10_1021_acs_inorgchem_9b02517
crossref_primary_10_1021_jacs_6b01207
crossref_primary_10_1002_tcr_201402062
crossref_primary_10_1016_j_micromeso_2016_06_014
crossref_primary_10_1016_j_xcrp_2024_101791
crossref_primary_10_1039_C4EE02717E
crossref_primary_10_1039_D2CE01570F
crossref_primary_10_18686_cest_v1i2_95
crossref_primary_10_1039_C9SC03916C
crossref_primary_10_1016_j_inoche_2015_06_007
crossref_primary_10_1039_C4DT02481H
crossref_primary_10_1002_ange_201506952
crossref_primary_10_1021_jacs_8b06109
crossref_primary_10_1073_pnas_2211544119
crossref_primary_10_1021_jacs_7b04132
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1016_j_mattod_2017_07_006
crossref_primary_10_1021_acs_cgd_4c00825
crossref_primary_10_1002_ange_201708769
crossref_primary_10_1021_jacs_3c03505
crossref_primary_10_1021_jacs_8b06582
crossref_primary_10_1016_j_cjsc_2023_100147
crossref_primary_10_1021_acs_inorgchem_6b00748
crossref_primary_10_1002_adsu_201700092
crossref_primary_10_1021_acs_cgd_8b01689
crossref_primary_10_1039_D0TA11340A
crossref_primary_10_1002_adfm_202307778
crossref_primary_10_1002_anie_201506952
crossref_primary_10_1016_j_ccr_2016_11_004
crossref_primary_10_1002_ange_201909046
crossref_primary_10_1016_j_ccr_2021_214273
crossref_primary_10_1016_j_chempr_2020_11_019
crossref_primary_10_2139_ssrn_4169691
crossref_primary_10_3389_fceng_2020_596555
crossref_primary_10_1021_jacs_2c05382
crossref_primary_10_1016_j_cej_2023_142731
crossref_primary_10_1039_C7RA03608F
crossref_primary_10_1515_pac_2023_0103
crossref_primary_10_1016_j_ccr_2019_01_015
crossref_primary_10_1016_j_ccr_2019_01_017
crossref_primary_10_1016_j_chempr_2017_11_005
crossref_primary_10_1016_j_jece_2022_108930
crossref_primary_10_2139_ssrn_4076661
crossref_primary_10_1039_C6TA00261G
crossref_primary_10_3390_su162210132
crossref_primary_10_1002_adma_202414153
crossref_primary_10_1016_j_enbuild_2021_111666
crossref_primary_10_1021_accountsmr_4c00316
crossref_primary_10_1021_acs_jpclett_1c03740
crossref_primary_10_1039_D3TA02737F
crossref_primary_10_1021_jacs_4c16131
crossref_primary_10_1002_ange_202112916
crossref_primary_10_1007_s40843_024_3091_9
crossref_primary_10_1016_j_micromeso_2018_10_001
crossref_primary_10_1016_j_molliq_2024_124554
crossref_primary_10_1016_j_jcis_2024_06_125
crossref_primary_10_1002_adfm_202414933
crossref_primary_10_1016_j_seppur_2022_121448
crossref_primary_10_1016_j_rser_2023_113473
crossref_primary_10_1016_j_cej_2023_147605
crossref_primary_10_1016_j_gee_2020_04_006
crossref_primary_10_1039_D3SC03213B
crossref_primary_10_1021_acsanm_0c00909
crossref_primary_10_1002_adma_201704303
crossref_primary_10_1016_j_ccr_2022_214576
crossref_primary_10_1016_j_ccr_2020_213485
crossref_primary_10_1021_acs_langmuir_5b01171
crossref_primary_10_1002_adsu_201600028
crossref_primary_10_1016_j_rineng_2022_100609
crossref_primary_10_1039_D0CC03196H
crossref_primary_10_1021_acs_chemmater_4c03231
crossref_primary_10_1039_C5TA01738F
crossref_primary_10_1021_acsami_7b09989
crossref_primary_10_1016_j_coche_2018_04_004
crossref_primary_10_1002_anie_201506345
crossref_primary_10_1039_D5TA01243K
crossref_primary_10_1016_j_ica_2020_119801
crossref_primary_10_1016_j_cej_2018_05_072
crossref_primary_10_1016_j_chempr_2021_12_013
crossref_primary_10_1016_j_scitotenv_2024_170085
crossref_primary_10_1039_C8CE01002A
crossref_primary_10_1021_acsami_3c10086
crossref_primary_10_1002_cssc_202301951
crossref_primary_10_1039_C5CC02043C
crossref_primary_10_1039_C4CC09999K
crossref_primary_10_1002_chem_201700139
crossref_primary_10_1039_C7CE00594F
crossref_primary_10_2139_ssrn_4152716
crossref_primary_10_1039_C7CC02289A
crossref_primary_10_1016_j_ccr_2020_213388
crossref_primary_10_1038_ncomms6851
crossref_primary_10_1002_pola_29228
crossref_primary_10_1021_jacs_6b06959
crossref_primary_10_1126_sciadv_ade1473
crossref_primary_10_1039_C5CC04487A
crossref_primary_10_1039_C8CC03841D
crossref_primary_10_1039_C7CS00885F
crossref_primary_10_1021_acsami_2c15476
crossref_primary_10_1007_s11426_022_1497_6
crossref_primary_10_1016_j_jcou_2023_102422
crossref_primary_10_1039_C4TA07115H
crossref_primary_10_1002_cplu_201600156
crossref_primary_10_1016_j_chempr_2019_02_007
crossref_primary_10_1021_acs_nanolett_3c02157
crossref_primary_10_1016_j_seppur_2023_124489
crossref_primary_10_1002_aic_18139
crossref_primary_10_1039_D3TA01927F
crossref_primary_10_2139_ssrn_4019015
crossref_primary_10_1021_jacs_3c11503
crossref_primary_10_1002_chem_202004845
crossref_primary_10_1016_j_inoche_2023_111252
crossref_primary_10_1126_science_aaf6323
crossref_primary_10_3390_app12052618
crossref_primary_10_1002_adma_201704210
crossref_primary_10_1021_acs_iecr_6b04877
crossref_primary_10_1002_rem_21592
crossref_primary_10_1016_j_rser_2022_112079
crossref_primary_10_1016_j_jssc_2021_122257
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_1021_acsami_7b16029
crossref_primary_10_1016_j_matchemphys_2016_11_006
crossref_primary_10_1039_C9CP00845D
crossref_primary_10_1016_j_jssc_2018_10_039
crossref_primary_10_1016_j_jcis_2019_11_041
crossref_primary_10_1021_cbe_3c00115
crossref_primary_10_3390_membranes13050480
crossref_primary_10_1021_acs_cgd_7b00111
crossref_primary_10_1021_acs_cgd_7b00595
crossref_primary_10_1016_j_seppur_2022_121804
crossref_primary_10_1039_D3TA05413F
crossref_primary_10_1021_acsabm_9b01189
crossref_primary_10_1021_acs_inorgchem_7b00519
crossref_primary_10_2139_ssrn_4127760
crossref_primary_10_1039_C6CC06457D
crossref_primary_10_1016_j_seppur_2017_11_056
crossref_primary_10_1021_acs_chemrev_6b00173
crossref_primary_10_1038_s41560_018_0267_0
crossref_primary_10_1016_j_xcrp_2020_100210
crossref_primary_10_1002_cssc_201800896
crossref_primary_10_1039_C6CC09923H
crossref_primary_10_1021_acs_inorgchem_5b02312
crossref_primary_10_1021_acs_inorgchem_6b02883
crossref_primary_10_1016_j_memsci_2023_122323
crossref_primary_10_1016_j_cej_2021_132033
crossref_primary_10_1016_j_scitotenv_2019_04_004
crossref_primary_10_1021_acssuschemeng_8b02173
crossref_primary_10_1039_D4CS00555D
crossref_primary_10_1039_D3QM00705G
crossref_primary_10_1021_acs_langmuir_4c00748
crossref_primary_10_1039_C5CE01725D
crossref_primary_10_1016_j_micromeso_2023_112658
crossref_primary_10_1039_D3CC02683C
crossref_primary_10_1021_acs_cgd_6b00453
crossref_primary_10_1002_anie_201904312
crossref_primary_10_1002_anie_202206613
crossref_primary_10_1039_C6TA09406F
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1002_anie_201603934
crossref_primary_10_1016_j_jechem_2024_09_020
crossref_primary_10_1002_anie_202309985
crossref_primary_10_1002_smll_202302677
crossref_primary_10_1021_acs_chemmater_6b02817
crossref_primary_10_1021_acs_chemmater_3c02233
crossref_primary_10_1016_j_micromeso_2016_08_036
crossref_primary_10_1021_acs_jpcc_7b02623
crossref_primary_10_1021_acs_iecr_4c03299
crossref_primary_10_1002_cssc_201802978
crossref_primary_10_1016_j_enchem_2019_100006
crossref_primary_10_1021_jacs_0c01314
crossref_primary_10_1002_advs_202401070
crossref_primary_10_1021_acsanm_4c04055
crossref_primary_10_1039_D2CC02939A
crossref_primary_10_1021_acs_langmuir_4c01500
crossref_primary_10_1021_acs_chemmater_9b05048
crossref_primary_10_1039_C5CC06577A
crossref_primary_10_1039_C7TA06658A
crossref_primary_10_1039_C7DT04622G
crossref_primary_10_1016_j_seppur_2022_121979
crossref_primary_10_1021_acs_inorgchem_0c01912
crossref_primary_10_1002_sus2_154
crossref_primary_10_1021_jacs_8b07816
crossref_primary_10_3390_polym17020130
crossref_primary_10_1016_j_ccr_2020_213295
crossref_primary_10_1007_s10853_024_10058_z
crossref_primary_10_3390_ma16010129
crossref_primary_10_1021_acs_inorgchem_9b01732
crossref_primary_10_1016_j_enchem_2019_100016
crossref_primary_10_1021_acs_iecr_9b04803
crossref_primary_10_1038_s41467_020_19207_9
crossref_primary_10_1021_jacs_7b01049
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1002_adfm_202307478
crossref_primary_10_1007_s40843_020_1304_3
crossref_primary_10_1039_C9CE00213H
crossref_primary_10_1039_D0TA08498K
crossref_primary_10_1039_C6SC00836D
crossref_primary_10_1002_ange_201706090
crossref_primary_10_1021_acsami_7b15095
crossref_primary_10_1021_acssuschemeng_8b05590
crossref_primary_10_1039_C6FD00031B
crossref_primary_10_1016_j_cej_2016_07_092
crossref_primary_10_1107_S2052252516019060
crossref_primary_10_1016_j_enchem_2022_100080
crossref_primary_10_1002_adma_202204277
crossref_primary_10_1039_C5NJ02312B
crossref_primary_10_1002_ange_201603934
crossref_primary_10_1002_asia_201900735
crossref_primary_10_1021_acs_cgd_7b00188
crossref_primary_10_1364_OE_23_008134
crossref_primary_10_1039_C5CC02573G
crossref_primary_10_1126_science_aam7232
crossref_primary_10_1038_s41467_020_16647_1
crossref_primary_10_1039_C7EE02342A
crossref_primary_10_1002_asia_202101305
crossref_primary_10_1002_ange_201808716
crossref_primary_10_1039_C9DT02694K
crossref_primary_10_1039_D1TA08862A
crossref_primary_10_1002_chem_201504907
crossref_primary_10_1016_j_seppur_2022_121186
crossref_primary_10_1021_acs_inorgchem_6b00035
crossref_primary_10_1016_j_memsci_2023_122258
crossref_primary_10_1021_acs_inorgchem_2c00608
crossref_primary_10_1016_j_seppur_2024_129588
crossref_primary_10_1021_acs_iecr_5b00555
crossref_primary_10_1021_jacsau_4c00923
crossref_primary_10_1039_C5CC10598F
crossref_primary_10_1021_acsmaterialslett_4c01434
crossref_primary_10_1016_j_jece_2025_115450
crossref_primary_10_1021_acsami_1c01242
crossref_primary_10_1002_app_52840
crossref_primary_10_1016_j_rser_2018_04_073
crossref_primary_10_1021_acsami_1c03661
crossref_primary_10_1021_acsami_1c00152
crossref_primary_10_1021_acsami_1c21077
crossref_primary_10_1039_C6TA06251B
crossref_primary_10_1002_adma_201705374
crossref_primary_10_1021_acs_jpcc_6b01484
crossref_primary_10_1021_jacs_6b05345
crossref_primary_10_1039_C7EE02110K
crossref_primary_10_1016_j_cej_2018_08_119
crossref_primary_10_1039_D1TA09974D
crossref_primary_10_1002_gch2_202300244
crossref_primary_10_1039_C7CC03828C
crossref_primary_10_1021_acs_energyfuels_8b02287
crossref_primary_10_1039_C9SE00486F
crossref_primary_10_1021_acs_inorgchem_4c05364
crossref_primary_10_1002_adfm_202311029
crossref_primary_10_1039_C5QI00077G
crossref_primary_10_1016_j_fuel_2024_130898
crossref_primary_10_1039_C7RA10369G
crossref_primary_10_1002_anie_202424747
crossref_primary_10_1039_C5TA07068F
crossref_primary_10_1021_acs_accounts_5b00530
crossref_primary_10_1002_aic_16236
crossref_primary_10_3390_app12168321
crossref_primary_10_1039_C7CP00199A
crossref_primary_10_1039_C8TA03213K
crossref_primary_10_1016_j_seppur_2022_122054
crossref_primary_10_1002_adma_201601133
crossref_primary_10_3390_app10020569
crossref_primary_10_1039_D2CS00442A
crossref_primary_10_1088_1755_1315_170_3_032073
crossref_primary_10_1039_D1ME00085C
crossref_primary_10_1039_D1RE00090J
crossref_primary_10_1039_C6CC08008A
crossref_primary_10_1002_smll_202303540
crossref_primary_10_1021_acs_jpcc_9b03221
crossref_primary_10_1021_acs_energyfuels_2c03971
crossref_primary_10_1021_jacs_5b11034
crossref_primary_10_1039_C4CS00230J
crossref_primary_10_1016_j_chempr_2017_09_002
crossref_primary_10_1002_smll_202501924
crossref_primary_10_1016_j_ccr_2019_213023
crossref_primary_10_1016_j_chempr_2017_10_014
crossref_primary_10_1016_j_synthmet_2024_117622
crossref_primary_10_1021_acs_jpcc_7b06133
crossref_primary_10_1007_s40843_020_1471_0
crossref_primary_10_1021_jacs_4c12200
crossref_primary_10_1021_jacs_9b07422
crossref_primary_10_1038_s41467_018_03650_w
crossref_primary_10_1007_s11814_018_0078_9
crossref_primary_10_1021_acs_inorgchem_0c00883
crossref_primary_10_1021_jacs_9b08754
crossref_primary_10_1126_science_aab1680
crossref_primary_10_1002_ange_202100240
crossref_primary_10_1002_cssc_201600768
crossref_primary_10_1039_C8CC03233E
crossref_primary_10_1039_C5CC08210B
crossref_primary_10_1039_D4CP00394B
crossref_primary_10_1016_j_mtener_2024_101749
crossref_primary_10_1002_ange_202424747
crossref_primary_10_1039_C6SC05012C
crossref_primary_10_1002_ange_201808991
crossref_primary_10_1016_j_cej_2020_126937
crossref_primary_10_1021_acs_energyfuels_0c03144
crossref_primary_10_1002_anie_201909046
crossref_primary_10_1039_C5QI00025D
crossref_primary_10_1021_acs_chemrev_0c00762
crossref_primary_10_1002_aenm_201601296
crossref_primary_10_1016_j_apenergy_2015_03_011
crossref_primary_10_1039_C5CC01828E
crossref_primary_10_1016_j_ccr_2021_213968
crossref_primary_10_1016_j_memsci_2025_123827
crossref_primary_10_1021_acsami_0c00803
crossref_primary_10_3390_chemosensors9080226
crossref_primary_10_1016_j_gee_2018_03_001
crossref_primary_10_1016_j_snb_2024_135874
crossref_primary_10_1016_j_xcrp_2021_100396
crossref_primary_10_1016_j_jcis_2019_10_034
crossref_primary_10_1039_D3CC05942A
crossref_primary_10_1016_j_seppur_2021_118646
crossref_primary_10_1002_cplu_201500278
crossref_primary_10_1080_08927022_2016_1250266
crossref_primary_10_1002_cphc_201700459
crossref_primary_10_1016_j_mtla_2023_101716
crossref_primary_10_1002_anie_201702453
crossref_primary_10_1016_j_mattod_2023_03_004
crossref_primary_10_1016_j_psep_2022_02_047
crossref_primary_10_1016_j_ccr_2019_05_020
crossref_primary_10_1039_C6QI00342G
crossref_primary_10_3390_cryst8010037
crossref_primary_10_1002_cssc_201601752
crossref_primary_10_1016_j_compchemeng_2022_107705
crossref_primary_10_1039_C6CE00021E
crossref_primary_10_1002_smll_202005360
crossref_primary_10_1080_00986445_2019_1570162
crossref_primary_10_1002_chem_201605507
crossref_primary_10_1002_adma_201705189
crossref_primary_10_1002_cssc_201701162
crossref_primary_10_1016_j_psep_2021_11_027
crossref_primary_10_1021_acs_chemmater_9b04228
crossref_primary_10_1002_anie_202100240
crossref_primary_10_1021_jacs_0c02594
crossref_primary_10_1002_anie_201808991
crossref_primary_10_1002_ange_201702453
crossref_primary_10_1016_j_fuel_2022_123856
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1126_science_aam8310
crossref_primary_10_1021_jacs_7b10265
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_1002_adfm_201402972
crossref_primary_10_1007_s10311_023_01589_z
crossref_primary_10_3390_pr11041075
crossref_primary_10_1002_adem_202201335
crossref_primary_10_1016_j_cej_2018_11_113
crossref_primary_10_1016_j_cej_2021_130845
crossref_primary_10_1039_D2DT04088C
crossref_primary_10_1021_acs_jpcc_7b05516
crossref_primary_10_1016_j_ccr_2024_215660
crossref_primary_10_1016_j_ccst_2023_100180
crossref_primary_10_1021_acsami_8b15946
crossref_primary_10_1098_rsta_2016_0025
crossref_primary_10_1039_D0DT03852K
crossref_primary_10_1016_j_cej_2022_137884
crossref_primary_10_1016_j_fuel_2023_130631
crossref_primary_10_1039_C8CC07865C
crossref_primary_10_1021_acsaenm_3c00622
crossref_primary_10_1126_sciadv_adh0135
crossref_primary_10_1002_apj_2920
crossref_primary_10_1002_admi_202300881
crossref_primary_10_1016_j_xcrp_2023_101698
crossref_primary_10_1039_C5GC00354G
crossref_primary_10_1002_adfm_202213915
crossref_primary_10_1016_j_jcis_2023_08_006
crossref_primary_10_1002_adfm_202420105
crossref_primary_10_1021_es504396v
crossref_primary_10_1016_j_ces_2023_119379
crossref_primary_10_1039_C7CS00153C
crossref_primary_10_1016_j_cherd_2022_11_040
crossref_primary_10_1002_ange_202106259
crossref_primary_10_1016_j_molliq_2023_123907
crossref_primary_10_1021_acsami_2c20373
crossref_primary_10_1002_cssc_201600834
crossref_primary_10_1016_j_micromeso_2020_110686
crossref_primary_10_1016_j_seppur_2023_123956
crossref_primary_10_1002_anie_201808716
crossref_primary_10_1039_D4GC00736K
crossref_primary_10_1021_acs_inorgchem_9b03667
crossref_primary_10_1021_jacs_5b00838
crossref_primary_10_1002_mame_202300225
crossref_primary_10_1021_acs_accounts_3c00367
crossref_primary_10_1039_C9CC05997K
crossref_primary_10_1021_acssuschemeng_8b03765
crossref_primary_10_1021_acsami_8b14400
crossref_primary_10_1016_j_cclet_2024_109676
crossref_primary_10_1038_s41586_024_08080_x
crossref_primary_10_1002_cssc_202001638
crossref_primary_10_1039_C8TA08782B
crossref_primary_10_1002_aic_15786
crossref_primary_10_1021_acscentsci_4c01125
crossref_primary_10_2139_ssrn_3994503
crossref_primary_10_1016_j_cej_2016_03_124
crossref_primary_10_1016_j_apsusc_2016_10_052
crossref_primary_10_1246_cl_200785
crossref_primary_10_1039_C5TA01321F
crossref_primary_10_1016_j_rser_2025_115560
crossref_primary_10_1021_acs_jpcc_0c03633
crossref_primary_10_1021_acs_energyfuels_4c01368
crossref_primary_10_1002_adma_201702953
crossref_primary_10_1016_j_chempr_2020_06_018
crossref_primary_10_1021_acsaenm_2c00208
crossref_primary_10_1016_j_isci_2022_105564
crossref_primary_10_1021_acs_chemmater_0c00746
crossref_primary_10_1016_j_micromeso_2025_113559
crossref_primary_10_1039_C7RA02122D
crossref_primary_10_1021_acs_jpcc_1c00346
crossref_primary_10_1021_acs_inorgchem_1c03310
crossref_primary_10_1016_j_mtcomm_2020_101987
crossref_primary_10_1039_C4TA06645F
crossref_primary_10_1016_j_ccst_2023_100145
crossref_primary_10_1002_adma_202002563
crossref_primary_10_1016_j_seppur_2022_121031
crossref_primary_10_1021_jacs_5b07053
crossref_primary_10_1002_ange_201906756
crossref_primary_10_1021_acsami_3c09456
crossref_primary_10_1016_j_mtnano_2018_09_003
crossref_primary_10_1016_j_seppur_2024_127099
crossref_primary_10_1039_C5CP06587A
crossref_primary_10_1007_s11814_018_0220_8
crossref_primary_10_1039_C6TA07145G
crossref_primary_10_1007_s11426_016_5582_3
crossref_primary_10_3389_fenrg_2020_00196
crossref_primary_10_1039_C7SC03067C
crossref_primary_10_1002_ange_202309985
crossref_primary_10_1021_acsanm_4c00481
crossref_primary_10_1039_C4EE02636E
crossref_primary_10_1021_acs_est_5b03149
crossref_primary_10_1016_j_polymer_2021_123988
crossref_primary_10_1016_j_apsusc_2022_155772
crossref_primary_10_1021_acsami_6b16769
crossref_primary_10_1021_acs_chemrev_6b00626
crossref_primary_10_1039_C8TA11596F
crossref_primary_10_1007_s10570_016_0886_1
crossref_primary_10_1016_j_cej_2022_139756
crossref_primary_10_1021_acs_inorgchem_8b00082
crossref_primary_10_1016_j_chroma_2020_461604
crossref_primary_10_1039_D1TA05960B
crossref_primary_10_1039_C4TA06537A
crossref_primary_10_1039_C5TA00460H
crossref_primary_10_1063_1_4961023
crossref_primary_10_1039_C7TA02746J
crossref_primary_10_1002_ange_202206613
crossref_primary_10_1039_D0FD00103A
crossref_primary_10_1126_science_aaf2458
crossref_primary_10_1002_anie_201706090
crossref_primary_10_1039_D0TA04574H
crossref_primary_10_1016_j_jece_2021_106709
crossref_primary_10_1021_acs_inorgchem_2c03751
crossref_primary_10_1093_micmic_ozad067_924
crossref_primary_10_1557_s43577_022_00320_7
crossref_primary_10_1002_ange_201904312
crossref_primary_10_1039_C5TA02357B
crossref_primary_10_1002_adsc_202401175
crossref_primary_10_1021_acs_jpcc_7b08964
crossref_primary_10_1039_D0TA09944A
crossref_primary_10_1021_acs_energyfuels_3c00381
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1038_ncomms7350
crossref_primary_10_1021_acs_cgd_9b00086
crossref_primary_10_1021_jacs_0c07870
crossref_primary_10_1002_smll_202401303
crossref_primary_10_1002_chem_201503078
crossref_primary_10_1021_acsami_5b04674
crossref_primary_10_1038_s41578_021_00287_y
crossref_primary_10_1039_D1TA07856A
crossref_primary_10_1007_s00894_020_04437_x
crossref_primary_10_1038_ncomms8328
crossref_primary_10_1021_jacs_3c14125
crossref_primary_10_1016_j_ceja_2024_100700
crossref_primary_10_1021_acs_inorgchem_1c02546
crossref_primary_10_1021_acsami_6b16757
crossref_primary_10_1039_C5TA05997F
crossref_primary_10_1016_j_pecs_2022_101069
crossref_primary_10_1039_C5RA02756J
crossref_primary_10_1021_acs_jpcc_1c06924
crossref_primary_10_1021_acs_cgd_2c00229
crossref_primary_10_1002_ange_201506345
Cites_doi 10.1049/ic:19990341
10.1016/j.ces.2010.02.044
10.1002/ejic.200900144
10.1021/jz300328j
10.1021/es702607w
10.1016/j.actaastro.2012.09.019
10.1016/S0009-2509(00)00531-5
10.1021/ja1013773
10.1016/S0009-2509(00)00122-6
10.1021/es102797w
10.1021/ie800024c
10.1039/c2ee21586a
10.1021/i260015a019
10.1038/ncomms1934
10.1016/S0022-1139(02)00046-5
10.1021/cr2003272
10.1021/ja300034j
10.1039/c3cc48228f
10.1154/1.1763152
10.1021/ja401429x
10.1016/S0378-7753(99)00429-2
10.1016/j.cej.2011.02.007
10.1039/c2ee23201d
10.1021/ja8036096
10.1016/j.cej.2008.06.005
10.1021/ef0002391
10.1038/nature11893
10.1016/0025-5408(88)90019-0
ContentType Journal Article
Copyright The Author(s) 2014
Copyright Nature Publishing Group Jun 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2014
– notice: Copyright Nature Publishing Group Jun 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOI 10.1038/ncomms5228
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID PMC4083436
oai_HAL_hal_02360096v1
3348323301
24964404
10_1038_ncomms5228
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
1XC
5VS
CAG
COF
KQ8
LGEZI
LOTEE
NADUK
NXXTH
VOOES
5PM
ID FETCH-LOGICAL-c542t-ecbfc5f5f5dea730a3405cf81bb6e0e5cb5d0cb7acf89c6b99bb218b4a1550ee3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Thu Aug 21 14:14:07 EDT 2025
Fri May 09 12:23:31 EDT 2025
Fri Jul 11 15:56:02 EDT 2025
Wed Aug 13 04:10:12 EDT 2025
Thu Apr 03 07:04:38 EDT 2025
Tue Jul 01 04:28:17 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-ecbfc5f5f5dea730a3405cf81bb6e0e5cb5d0cb7acf89c6b99bb218b4a1550ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3460-223X
0000-0003-1916-9837
0000-0002-3804-1065
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms5228
PMID 24964404
PQID 1539736494
PQPubID 546298
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083436
hal_primary_oai_HAL_hal_02360096v1
proquest_miscellaneous_1541381407
proquest_journals_1539736494
pubmed_primary_24964404
crossref_primary_10_1038_ncomms5228
crossref_citationtrail_10_1038_ncomms5228
springer_journals_10_1038_ncomms5228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140625
PublicationDateYYYYMMDD 2014-06-25
PublicationDate_xml – month: 6
  year: 2014
  text: 20140625
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Pub. Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Pub. Group
References Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm (2006).
NikulshinaVGebaldCSteinfeldACO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactorChem. Eng. J.20091462442481:CAS:528:DC%2BD1cXhsVChurzE10.1016/j.cej.2008.06.005
NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D2013Natur.495...80N10.1038/nature11893
SumidaKCarbon dioxide capture in metal-organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272
Haring, H. W. Industrial Gases Processing Wiley-VCH Verlag GmbH & Co (2008).
SantosJCMagalhaesFDMendesAContamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxideInd. Eng. Chem. Res.200847619762031:CAS:528:DC%2BD1cXns1Clt78%3D10.1021/ie800024c
Le BailAMonte Carlo indexing with McMaillePowder Diffr.2004192492541:CAS:528:DC%2BD2cXntVCqsL0%3D2004PDiff..19..249L10.1154/1.1763152
Lackner, K. S. & Wright, A. B. Removal of carbon dioxide from air. WO 2010022399 A1 (2010).
XiangSMicroporous metal-organic framework with potential for carbon dioxide capture at ambient conditionsNat. Commun.2012395696510.1038/ncomms1934
KordeschKAlkaline fuel cells applicationsJ. Power Sources2000861621651:CAS:528:DC%2BD3cXitFyqs74%3D2000JPS....86..162K10.1016/S0378-7753(99)00429-2
CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096
MajorCJSollamiBJKammermeKCarbon dioxide removal from air by adsorbents.Ind. Eng. Chem. Process Des. Dev.196543273331:CAS:528:DyaF2MXkt1Ois7s%3D10.1021/i260015a019
SayariABelmabkhoutYStabilization of amine-containing CO2 adsorbents: dramatic effect of water vaporJ. Am. Chem. Soc.2010132631263131:CAS:528:DC%2BC3cXltVylsr4%3D10.1021/ja1013773
ChoiSWatanabeTBaeT-HShollDSJonesCWModification of the Mg-DOBDC MOF with amines to enhance CO2 adsorption from ultradilute GasesJ. Phys. Chem. Lett.20123113611411:CAS:528:DC%2BC38XlsVaru7w%3D10.1021/jz300328j
RegeSUYangRTQianK YBuzanowskiM AAir-prepurification by pressure swing adsorption using single/layered bedsChem. Eng. Sci.200156274527591:CAS:528:DC%2BD3MXksFCksLg%3D10.1016/S0009-2509(00)00531-5
WilmerCEFarhaOKBaeY-SHuppJTSnurrRQStructure-property relationships of porous materials for carbon dioxide separation and captureEnerg. Environ. Sci.20125984998561:CAS:528:DC%2BC38XhvVams7rN10.1039/c2ee23201d
GoeppertACzaunMPrakashGK SOlahGAAir as the renewable carbon source of the future: An overview of CO2 capture from the atmosphereEnerg. Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a
ConleyBDYearwoodBCParkinSAtwoodDAAmmonium hexafluorosilicate saltsJ. Fluorine Chem.20021151551601:CAS:528:DC%2BD38Xktlyhs7s%3D10.1016/S0022-1139(02)00046-5
Uemura, K., Maeda, A., Maji, T. K., Kanoo, P. & Kita, H. Crystal structures and adsorption properties of ultramicroporous coordination polymers constructed ions from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2329–2337 (2009).
SayariABelmabkhoutYSerna-GuerreroRFlue gas treatment via CO2 adsorptionChem. Eng. J.20111717607741:CAS:528:DC%2BC3MXos1Krtb0%3D10.1016/j.cej.2011.02.007
BelmabkhoutYSerna-GuerreroRSayariAAmine-bearing mesoporous silica for CO2 removal from dry and humid airChem. Eng. Sci.201065369536981:CAS:528:DC%2BC3cXlt1aitbc%3D10.1016/j.ces.2010.02.044
SatyapalSFilburnTTrelaJStrangeJPerformance and properties of a solid amine sorbent for carbon dioxide removal in space life support applicationsEnerg. Fuel2001152502551:CAS:528:DC%2BD3MXht1alsrw%3D10.1021/ef0002391
GuillermVPorous organic polymers with anchored aldehydes: A new platform forpost-synthetic amine functionalization en route for enhanced CO2 adsorption propertiesChem. Commun.2013501937194010.1039/c3cc48228f
GoeppertACzaunMSurya PrakashG KOlahGAAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a
McDonaldTMCapture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)J. Am. Chem. Soc.2012134705670651:CAS:528:DC%2BC38XltVWksbk%3D10.1021/ja300034j
RegeSUYangRTBuzanowskiM ASorbents for air prepurification in air separationChem. Eng. Sci.200055482748381:CAS:528:DC%2BD3cXmvFynt7s%3D10.1016/S0009-2509(00)00122-6
MoorePMiner protectionMin. Mag.20071963541
Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm/07.htm (2012).
XueDXTunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptakeJ. Am. Chem. Soc.2013135766076671:CAS:528:DC%2BC3sXmt1ymt7k%3D10.1021/ja401429x
Ernsting, J. Breathing systems in aerospace. IEE Seminar. Low Flow Anaesthesia Breathing Systems-Technology, Safety and Economics (Ref. No.1999/060), 7/1-4 (1999).
MattoxEMKnoxJCBardotD MCarbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test resultsActa Astronaut.201386394610.1016/j.actaastro.2012.09.019
StolaroffJKKeithDWLowryGVCarbon dioxide capture from atmospheric air using sodium hydroxide sprayEnviron. Sci. Technol.200842272827351:CAS:528:DC%2BD1cXivV2gurc%3D2008EnST...42.2728S10.1021/es702607w
Le BailADuroyHFourquetJ LAb-initio structure determination of LiSbWO6 by X-ray powder diffractionMater. Res. Bull.1988234474521:CAS:528:DyaL1cXitFCgtbo%3D10.1016/0025-5408(88)90019-0
Rodriguez-Carvajal, J. Abstracts of the Satellite. Meeting on Powder Diffraction of the XV Congress of the IUCr,127, (1990).
ChoiSDreseJHEisenbergerP MJonesC WApplication of amine-tethered solid sorbents for direct CO2 capture from the ambient airEnviron. Sci. Technol.201145242024271:CAS:528:DC%2BC3MXitVSgsL8%3D2011EnST...45.2420C10.1021/es102797w
BFncomms5228_CR16
P Nugent (BFncomms5228_CR23) 2013; 495
BFncomms5228_CR35
SU Rege (BFncomms5228_CR6) 2000; 55
S Xiang (BFncomms5228_CR34) 2012; 3
BFncomms5228_CR17
S Satyapal (BFncomms5228_CR13) 2001; 15
BD Conley (BFncomms5228_CR33) 2002; 115
SU Rege (BFncomms5228_CR7) 2001; 56
A Sayari (BFncomms5228_CR19) 2010; 132
S Choi (BFncomms5228_CR28) 2012; 3
A Le Bail (BFncomms5228_CR30) 2004; 19
V Guillerm (BFncomms5228_CR29) 2013; 50
A Le Bail (BFncomms5228_CR31) 1988; 23
JC Santos (BFncomms5228_CR8) 2008; 47
SR Caskey (BFncomms5228_CR20) 2008; 130
TM McDonald (BFncomms5228_CR27) 2012; 134
BFncomms5228_CR12
BFncomms5228_CR32
V Nikulshina (BFncomms5228_CR4) 2009; 146
JK Stolaroff (BFncomms5228_CR3) 2008; 42
BFncomms5228_CR1
Y Belmabkhout (BFncomms5228_CR10) 2010; 65
K Sumida (BFncomms5228_CR21) 2012; 112
CE Wilmer (BFncomms5228_CR18) 2012; 5
BFncomms5228_CR9
A Goeppert (BFncomms5228_CR26) 2012; 5
A Goeppert (BFncomms5228_CR5) 2012; 5
A Sayari (BFncomms5228_CR22) 2011; 171
S Choi (BFncomms5228_CR25) 2011; 45
CJ Major (BFncomms5228_CR2) 1965; 4
EM Mattox (BFncomms5228_CR14) 2013; 86
K Kordesch (BFncomms5228_CR11) 2000; 86
P Moore (BFncomms5228_CR15) 2007; 196
DX Xue (BFncomms5228_CR24) 2013; 135
22805561 - Nat Commun. 2012 Jul 17;3:954
18497115 - Environ Sci Technol. 2008 Apr 15;42(8):2728-35
23446349 - Nature. 2013 Mar 7;495(7439):80-4
23607903 - J Am Chem Soc. 2013 May 22;135(20):7660-7
18661979 - J Am Chem Soc. 2008 Aug 20;130(33):10870-1
22204561 - Chem Rev. 2012 Feb 8;112(2):724-81
20405941 - J Am Chem Soc. 2010 May 12;132(18):6312-4
22475173 - J Am Chem Soc. 2012 Apr 25;134(16):7056-65
24445684 - Chem Commun (Camb). 2014 Feb 25;50(16):1937-40
26288048 - J Phys Chem Lett. 2012 May 3;3(9):1136-41
21323309 - Environ Sci Technol. 2011 Mar 15;45(6):2420-7
References_xml – reference: Uemura, K., Maeda, A., Maji, T. K., Kanoo, P. & Kita, H. Crystal structures and adsorption properties of ultramicroporous coordination polymers constructed ions from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2329–2337 (2009).
– reference: BelmabkhoutYSerna-GuerreroRSayariAAmine-bearing mesoporous silica for CO2 removal from dry and humid airChem. Eng. Sci.201065369536981:CAS:528:DC%2BC3cXlt1aitbc%3D10.1016/j.ces.2010.02.044
– reference: SayariABelmabkhoutYSerna-GuerreroRFlue gas treatment via CO2 adsorptionChem. Eng. J.20111717607741:CAS:528:DC%2BC3MXos1Krtb0%3D10.1016/j.cej.2011.02.007
– reference: Rodriguez-Carvajal, J. Abstracts of the Satellite. Meeting on Powder Diffraction of the XV Congress of the IUCr,127, (1990).
– reference: StolaroffJKKeithDWLowryGVCarbon dioxide capture from atmospheric air using sodium hydroxide sprayEnviron. Sci. Technol.200842272827351:CAS:528:DC%2BD1cXivV2gurc%3D2008EnST...42.2728S10.1021/es702607w
– reference: GoeppertACzaunMSurya PrakashG KOlahGAAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a
– reference: Lackner, K. S. & Wright, A. B. Removal of carbon dioxide from air. WO 2010022399 A1 (2010).
– reference: CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096
– reference: MattoxEMKnoxJCBardotD MCarbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test resultsActa Astronaut.201386394610.1016/j.actaastro.2012.09.019
– reference: ChoiSDreseJHEisenbergerP MJonesC WApplication of amine-tethered solid sorbents for direct CO2 capture from the ambient airEnviron. Sci. Technol.201145242024271:CAS:528:DC%2BC3MXitVSgsL8%3D2011EnST...45.2420C10.1021/es102797w
– reference: NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D2013Natur.495...80N10.1038/nature11893
– reference: Ernsting, J. Breathing systems in aerospace. IEE Seminar. Low Flow Anaesthesia Breathing Systems-Technology, Safety and Economics (Ref. No.1999/060), 7/1-4 (1999).
– reference: GuillermVPorous organic polymers with anchored aldehydes: A new platform forpost-synthetic amine functionalization en route for enhanced CO2 adsorption propertiesChem. Commun.2013501937194010.1039/c3cc48228f
– reference: KordeschKAlkaline fuel cells applicationsJ. Power Sources2000861621651:CAS:528:DC%2BD3cXitFyqs74%3D2000JPS....86..162K10.1016/S0378-7753(99)00429-2
– reference: SantosJCMagalhaesFDMendesAContamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxideInd. Eng. Chem. Res.200847619762031:CAS:528:DC%2BD1cXns1Clt78%3D10.1021/ie800024c
– reference: NikulshinaVGebaldCSteinfeldACO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactorChem. Eng. J.20091462442481:CAS:528:DC%2BD1cXhsVChurzE10.1016/j.cej.2008.06.005
– reference: WilmerCEFarhaOKBaeY-SHuppJTSnurrRQStructure-property relationships of porous materials for carbon dioxide separation and captureEnerg. Environ. Sci.20125984998561:CAS:528:DC%2BC38XhvVams7rN10.1039/c2ee23201d
– reference: GoeppertACzaunMPrakashGK SOlahGAAir as the renewable carbon source of the future: An overview of CO2 capture from the atmosphereEnerg. Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a
– reference: Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm/07.htm (2012).
– reference: RegeSUYangRTQianK YBuzanowskiM AAir-prepurification by pressure swing adsorption using single/layered bedsChem. Eng. Sci.200156274527591:CAS:528:DC%2BD3MXksFCksLg%3D10.1016/S0009-2509(00)00531-5
– reference: McDonaldTMCapture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)J. Am. Chem. Soc.2012134705670651:CAS:528:DC%2BC38XltVWksbk%3D10.1021/ja300034j
– reference: XueDXTunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptakeJ. Am. Chem. Soc.2013135766076671:CAS:528:DC%2BC3sXmt1ymt7k%3D10.1021/ja401429x
– reference: RegeSUYangRTBuzanowskiM ASorbents for air prepurification in air separationChem. Eng. Sci.200055482748381:CAS:528:DC%2BD3cXmvFynt7s%3D10.1016/S0009-2509(00)00122-6
– reference: Le BailADuroyHFourquetJ LAb-initio structure determination of LiSbWO6 by X-ray powder diffractionMater. Res. Bull.1988234474521:CAS:528:DyaL1cXitFCgtbo%3D10.1016/0025-5408(88)90019-0
– reference: ChoiSWatanabeTBaeT-HShollDSJonesCWModification of the Mg-DOBDC MOF with amines to enhance CO2 adsorption from ultradilute GasesJ. Phys. Chem. Lett.20123113611411:CAS:528:DC%2BC38XlsVaru7w%3D10.1021/jz300328j
– reference: SumidaKCarbon dioxide capture in metal-organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272
– reference: MoorePMiner protectionMin. Mag.20071963541
– reference: SayariABelmabkhoutYStabilization of amine-containing CO2 adsorbents: dramatic effect of water vaporJ. Am. Chem. Soc.2010132631263131:CAS:528:DC%2BC3cXltVylsr4%3D10.1021/ja1013773
– reference: Le BailAMonte Carlo indexing with McMaillePowder Diffr.2004192492541:CAS:528:DC%2BD2cXntVCqsL0%3D2004PDiff..19..249L10.1154/1.1763152
– reference: ConleyBDYearwoodBCParkinSAtwoodDAAmmonium hexafluorosilicate saltsJ. Fluorine Chem.20021151551601:CAS:528:DC%2BD38Xktlyhs7s%3D10.1016/S0022-1139(02)00046-5
– reference: Haring, H. W. Industrial Gases Processing Wiley-VCH Verlag GmbH & Co (2008).
– reference: SatyapalSFilburnTTrelaJStrangeJPerformance and properties of a solid amine sorbent for carbon dioxide removal in space life support applicationsEnerg. Fuel2001152502551:CAS:528:DC%2BD3MXht1alsrw%3D10.1021/ef0002391
– reference: XiangSMicroporous metal-organic framework with potential for carbon dioxide capture at ambient conditionsNat. Commun.2012395696510.1038/ncomms1934
– reference: Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm (2006).
– reference: MajorCJSollamiBJKammermeKCarbon dioxide removal from air by adsorbents.Ind. Eng. Chem. Process Des. Dev.196543273331:CAS:528:DyaF2MXkt1Ois7s%3D10.1021/i260015a019
– ident: BFncomms5228_CR12
  doi: 10.1049/ic:19990341
– volume: 65
  start-page: 3695
  year: 2010
  ident: BFncomms5228_CR10
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.02.044
– ident: BFncomms5228_CR35
  doi: 10.1002/ejic.200900144
– volume: 3
  start-page: 1136
  year: 2012
  ident: BFncomms5228_CR28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300328j
– ident: BFncomms5228_CR32
– volume: 42
  start-page: 2728
  year: 2008
  ident: BFncomms5228_CR3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702607w
– volume: 86
  start-page: 3946
  year: 2013
  ident: BFncomms5228_CR14
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2012.09.019
– volume: 56
  start-page: 2745
  year: 2001
  ident: BFncomms5228_CR7
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00531-5
– volume: 132
  start-page: 6312
  year: 2010
  ident: BFncomms5228_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1013773
– volume: 55
  start-page: 4827
  year: 2000
  ident: BFncomms5228_CR6
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00122-6
– volume: 45
  start-page: 2420
  year: 2011
  ident: BFncomms5228_CR25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102797w
– ident: BFncomms5228_CR17
– volume: 47
  start-page: 6197
  year: 2008
  ident: BFncomms5228_CR8
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800024c
– ident: BFncomms5228_CR9
– volume: 5
  start-page: 7833
  year: 2012
  ident: BFncomms5228_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21586a
– volume: 5
  start-page: 7833
  year: 2012
  ident: BFncomms5228_CR5
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c2ee21586a
– ident: BFncomms5228_CR1
– volume: 4
  start-page: 327
  year: 1965
  ident: BFncomms5228_CR2
  publication-title: Ind. Eng. Chem. Process Des. Dev.
  doi: 10.1021/i260015a019
– volume: 3
  start-page: 956
  year: 2012
  ident: BFncomms5228_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1934
– volume: 115
  start-page: 155
  year: 2002
  ident: BFncomms5228_CR33
  publication-title: J. Fluorine Chem.
  doi: 10.1016/S0022-1139(02)00046-5
– volume: 112
  start-page: 724
  year: 2012
  ident: BFncomms5228_CR21
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 134
  start-page: 7056
  year: 2012
  ident: BFncomms5228_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300034j
– volume: 50
  start-page: 1937
  year: 2013
  ident: BFncomms5228_CR29
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48228f
– volume: 19
  start-page: 249
  year: 2004
  ident: BFncomms5228_CR30
  publication-title: Powder Diffr.
  doi: 10.1154/1.1763152
– volume: 135
  start-page: 7660
  year: 2013
  ident: BFncomms5228_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401429x
– volume: 86
  start-page: 162
  year: 2000
  ident: BFncomms5228_CR11
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00429-2
– volume: 171
  start-page: 760
  year: 2011
  ident: BFncomms5228_CR22
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.007
– volume: 5
  start-page: 9849
  year: 2012
  ident: BFncomms5228_CR18
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c2ee23201d
– volume: 130
  start-page: 10870
  year: 2008
  ident: BFncomms5228_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8036096
– volume: 146
  start-page: 244
  year: 2009
  ident: BFncomms5228_CR4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.06.005
– volume: 196
  start-page: 35
  year: 2007
  ident: BFncomms5228_CR15
  publication-title: Min. Mag.
– ident: BFncomms5228_CR16
– volume: 15
  start-page: 250
  year: 2001
  ident: BFncomms5228_CR13
  publication-title: Energ. Fuel
  doi: 10.1021/ef0002391
– volume: 495
  start-page: 80
  year: 2013
  ident: BFncomms5228_CR23
  publication-title: Nature
  doi: 10.1038/nature11893
– volume: 23
  start-page: 447
  year: 1988
  ident: BFncomms5228_CR31
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(88)90019-0
– reference: 18661979 - J Am Chem Soc. 2008 Aug 20;130(33):10870-1
– reference: 26288048 - J Phys Chem Lett. 2012 May 3;3(9):1136-41
– reference: 22204561 - Chem Rev. 2012 Feb 8;112(2):724-81
– reference: 20405941 - J Am Chem Soc. 2010 May 12;132(18):6312-4
– reference: 21323309 - Environ Sci Technol. 2011 Mar 15;45(6):2420-7
– reference: 24445684 - Chem Commun (Camb). 2014 Feb 25;50(16):1937-40
– reference: 23607903 - J Am Chem Soc. 2013 May 22;135(20):7660-7
– reference: 22805561 - Nat Commun. 2012 Jul 17;3:954
– reference: 22475173 - J Am Chem Soc. 2012 Apr 25;134(16):7056-65
– reference: 23446349 - Nature. 2013 Mar 7;495(7439):80-4
– reference: 18497115 - Environ Sci Technol. 2008 Apr 15;42(8):2728-35
SSID ssj0000391844
Score 2.6121986
Snippet Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions...
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4228
SubjectTerms 140/133
639/301/299/921
639/638/263
Adsorption
Anions
Carbon dioxide emissions
Carbon dioxide removal
Chemical Sciences
Coordination chemistry
Copper
Cristallography
Humanities and Social Sciences
Inorganic chemistry
Material chemistry
multidisciplinary
Power plants
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7RIiQuCMproa0M9MLBarL2vk6oqqiiquVERW4rP8ZqJLIbkrQq_56ZfZUQVO1ltbZsr2dsf-MZfQNwlCeYu9xrGWxAqdXIS2N8Kn1I0cVjp-mFoy2-pZMrfT5Npt2F26oLq-z3xGaj9rXjO_JjWplFplJd6C-LX5KzRrF3tUuhsQOPmbqMtTqbZsMdC7Of51r3rKQqP66oyfmKMEe-cQ7tXHMU5DbE3I6U_Mdd2pxCZ8_hWQcfxUkr7xfwCKs9eNImlPz9En5cGo9yXcuGUVPMkaC1bBM3ORH6OKyVIKQqqCeHwpmlrSvhZ_XdzKNY4rwm3ROm8sLMllS8YBfDK7g6-_r9dCK71AnSJTpeS3Q2uCTQ49HQIjaKgJkLhFFtiiNMnE38yNnM0LfCpbYorKXD3mrDJguieg27VV3hWxBxwRfHYeyQsBNtCTYEpWI7ysn2odZUBJ_7iSxdxyvO6S1-lo1_W-Xl_aRH8Gmou2jZNP5b6yPJY6jABNiTk4uSvzHfPVtdt-MI9ntxld2yW5X3ShLBh6GYFgx7QUyF9Q3XoXObeb6yCN600h26Ils0ZcLECLINuW-MZbOkml03pNyasKxWaQRHvYb8NaytX3z38Ojfw1MCZppD0uJkH3bXyxs8IPCztoeNhv8BEz8Jfg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUKVeEKWvAK3clksPVndjJ5scVwi0WhUuLSq3yI-xWKmboN0Fwb9nJq-y3R6qXBJ7EjueseezPfoMcJIlmLnMaxlsQKnVwEtjfCp9SNHFQ6fphqMtLtPJlZ5eJ9ctTc6yDatsKC3rYbqLDvtW0tN8SWAh24Zdpmgnm94dj6c_pv2KCnOdZ1p3HKQqe_bSmtfZvuGYx01AuRkX-dfmaO1zzvdhrwWLYtxU7xVsYXkAL5rjIx9fw68L41GuKlnzZ4o5EpCWzTFNToQu6mopCJcKKsmhcGZhq1L4WfUw8ygWOK_I0oQpvTCzBWXfcpu8gavzs5-nE9kelCBdouOVRGeDSwJdHg11WaMIhrlAiNSmOMDE2cQPnB0ZSstdavPcWnLtVhueoCCqt7BTViW-BxHnvEwchg4JKdEAYENQKraDjGY69DUVwdeuIQvXsojzYRa_i3o3W2XFn0aP4Esve9twZ_xT6jPpoxdguuvJ-HvBacxuz3Os-2EEx526iraTLQsarPORSnWuI_jUZ1P34D0PU2J1xzLkpZnVaxTBu0a7fVE080yZHjGC0Zre1-qynlPObmoKbk3IVas0gpPOQp5Va-MXD_9P7AheEhzTHIgWJ8ews1rc4QeCPCv7sbX1J9f2Bwk
  priority: 102
  providerName: Springer Nature
Title Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture
URI https://link.springer.com/article/10.1038/ncomms5228
https://www.ncbi.nlm.nih.gov/pubmed/24964404
https://www.proquest.com/docview/1539736494
https://www.proquest.com/docview/1541381407
https://hal.science/hal-02360096
https://pubmed.ncbi.nlm.nih.gov/PMC4083436
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tm5B4QXwvMCoDe-HB0MaOkzwgVKqVqmITAir6FvlTq7QmI-3Q9t9zzkchdA8oUhLZ1ybx2b7fxZffARwnkU10Yjh1ylnK2cBQKY2gxgmrw6HmeOKjLc7EdM5ni2ixB23-zqYB17e6dj6f1Ly8eHv98-YDDvj39SfjybscdbNaI5BIenCAFin2mQxOG5hfzcgsRUeGt-yknZ907FHv3EdD7kLN3YjJf5ZNK2s0uQ_3GhhJRrXeH8CezR_CnTqx5M0j-HEqjaWbglbMmmRl8eloncBJE9fGY60JIlaCV9KWaFmqIidmWVwvjSWlXRXYB4nMDZHLEqsv_VLDY5hPTr6Pp7RJoUB1xMMNtVo5HTncjJU4mCVDgKYdYlUl7MBGWkVmoFUssSzVQqWpUmj0FZfedbGWPYH9vMjtIZAw9S-Q3VBbxFA4NSjnGAvVIEEfCP-NBfCmbchMN_ziPs3FRVatc7Mk-9PoAbzeyl7WrBq3Sr1CfWwFPBH2dPQ582We9957X7-GARy16sra3pPhNJ7GTPCUB_ByW40Dx6-GyNwWV14G7bfn-4oDeFprd3sp9EmFJ04MIO7ovXMv3Zp8eV6Rc3PEtJyJAI7bHvLXbe084rP_E3sOdxGocR-iFkZHsL8pr-wLBEMb1YdevIhxn0w-9eFgNJp9m-Hx48nZl69YOhbjfjUWfgN5aBUc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQwheEN9kDDAwHniw1sZOmjwgNAGlY92eNrG3zB8XrRJNurYD9k_xN3KXNBmliLcpL1FsObbvbP_sO_8OYDuJMHGJ1zK3OUqtOl4a42Pp8xhd2HWaXtjb4jAeHOsvJ9HJGvxq7sKwW2UzJ1YTtS8dn5Hv0MhMeyrWqX4_OZccNYqtq00IjVot9vHyB23ZZu_2PpJ834Rh_9PRh4FcRBWQLtLhXKKzuYtyejwa0m-jCLO4nOCbjbGDkbOR7zjbM_QtdbFNU2tpHbTaMJpHVFTuOtzQiurDN9P7n9szHWZbT7RuWFBVslNQE8YzwjjJ0rq3fsZel6uQdtUz8y_zbLXq9e_CnQVcFbu1ft2DNSzuw806gOXlA_h6YDzKeSkrBk8xRoLysg4U5UTe-H3NBCFjQX9yKJyZ2rIQflT-HHkUUxyXpOvCFF6Y0ZSSJ2zSeAjH19Kpj2CjKAt8AiJM-aA67zokrEZTkM1zpULbSWivRaWpAN42HZm5BY85h9P4llX2dJVkV50ewOs276Rm7_hnrlckjzYDE24PdocZf2N-fd7lfe8GsNWIK1sM81l2pZQBvGyTaYCy1cUUWF5wHsIJzCvWC-BxLd32V7T3jZmgMYDektyX6rKcUozOKhJwTdhZqziA7UZD_qjWShM3_1_7F3BrcHQwzIZ7h_tP4TaBQs3ucGG0BRvz6QU-I-A1t88rbRdwet3D6zeRsElo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qUBcEG8MBRYoBw6rJPb6dUBVoY1SWqIKUdGbu081ErFDkgL9a_y6zvhVQhC3KpfIu7LXOzO73-yMvwHYSkKb6MQI7pSzXAQ9w6U0ETcustrva4F_KNtiFA2PxceT8GQNfjffwlBaZbMmlgu1KTSdkXfRMtM4iEQquq5OizjaHWxPv3OqIEWR1qacRqUiB_biJ7pv83f7uyjrN74_2PvyYcjrCgNch8JfcKuV06HDn7ESdV0GiF-0QyinItuzoVah6WkVS7yW6kilqVK4JyohCdlbG-B912EjJq-oAxvv90ZHn9sTHuJeT4RoOFGDpJvjC03miHiSpV1w_YxyMFcB7mqe5l_B2nIPHNyB2zV4ZTuVtt2FNZvfgxtVOcuL-_D1kzSWLwpe8nmyiUVgz6uyUZq5JgtszhAnM3yStkzLmSpyZsbFr7GxbGYnBWo-k7lhcjzD5ikFOB7A8bVM60Po5EVuHwPzUzq2dn1tEbnhgqScCwJf9RL0vPBugQdvm4nMdM1qTsU1vmVldD1IsqtJ9-B123dacXn8s9crlEfbgei3hzuHGV0jtn3y-X70PdhsxJXVRj_PrlTUg5dtM5orxWBkbotz6oOogVjGYg8eVdJtH4WecER0jR7ES3JfGstySz4-KynBBSJpEUQebDUa8sewVl7xyf9H_wJuomllh_ujg6dwCxGioNw4P9yEzmJ2bp8hCluo57W6Mzi9bgu7BOHtTvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Made-to-order+metal-organic+frameworks+for+trace+carbon+dioxide+removal+and+air+capture&rft.jtitle=Nature+communications&rft.au=Shekhah%2C+Osama&rft.au=Belmabkhout%2C+Youssef&rft.au=Chen%2C+Zhijie&rft.au=Guillerm%2C+Vincent&rft.date=2014-06-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms5228&rft.externalDocID=10_1038_ncomms5228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon