Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture
Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framewor...
Saved in:
Published in | Nature communications Vol. 5; no. 1; p. 4228 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.06.2014
Nature Publishing Group Nature Pub. Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (
SIFSIX
-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4
4
square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant
SIFSIX-
3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.
The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture. |
---|---|
AbstractList | Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework ( SIFSIX -3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX- 3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture. Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials.Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4(4) square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework ( SIFSIX -3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 Å for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX- 3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture. |
ArticleNumber | 4228 |
Author | Guillerm, Vincent Cairns, Amy Shekhah, Osama Eddaoudi, Mohamed Belmabkhout, Youssef Adil, Karim Chen, Zhijie |
Author_xml | – sequence: 1 givenname: Osama surname: Shekhah fullname: Shekhah, Osama organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Youssef surname: Belmabkhout fullname: Belmabkhout, Youssef organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Zhijie surname: Chen fullname: Chen, Zhijie organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Vincent surname: Guillerm fullname: Guillerm, Vincent organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Amy surname: Cairns fullname: Cairns, Amy organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Karim surname: Adil fullname: Adil, Karim organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Mohamed surname: Eddaoudi fullname: Eddaoudi, Mohamed email: mohamed.eddaoudi@kaust.edu.sa organization: Advanced Membranes and Porous Materials (AMPM); Physical Sciences and Engineering Division, Functional Materials Design, Discovery and development (FMD3), King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24964404$$D View this record in MEDLINE/PubMed https://hal.science/hal-02360096$$DView record in HAL |
BookMark | eNptkU1vFDEMhiPUipbSCz8AReICVAPJJJmPC1JVAa20iAuIY-RkPNuUmWSbzCzw78lq27IsxIdY9uPXTvyEHPjgkZBnnL3hTDRvvQ3jmFRZNo_IcckkL3hdioMd_4icpnTD8hEtb6R8TI5K2VZSMnlMvn2CDospFCF2GOmIEwzZX4J3lvYRRvwR4vdE-xDpFMEitRBN8LRz4afrkEYcwxoGCr6j4GJOr6Y54lNy2MOQ8PTuPiFfP7z_cnFZLD5_vLo4XxRWyXIq0Jreqj5bh1ALBkIyZfuGG1MhQ2WN6pg1NeRYayvTtsaUvDESuFIMUZyQd1vd1WxG7Cz6POWgV9GNEH_pAE7_nfHuWi_DWkvWCCmqLPBqK3C9V3Z5vtCbGCtFxVhbrXlmX941i-F2xjTp0SWLwwAew5w0V5KLhktWZ_TFHnoT5ujzV2RKtLWoZCsz9Xx3-of-9_vJwOstYGNIKWL_gHCmN_vXf_afYbYHWzfB5MLm5W74f8nZtiRlXb_EuDPmv_RvPjzD8g |
CitedBy_id | crossref_primary_10_1039_C8CE01118D crossref_primary_10_1016_j_joule_2021_05_023 crossref_primary_10_1038_srep33461 crossref_primary_10_1016_j_jcou_2022_102084 crossref_primary_10_1007_s42114_022_00567_3 crossref_primary_10_1021_acs_inorgchem_0c03159 crossref_primary_10_3390_ma14020310 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1021_acs_iecr_5b03277 crossref_primary_10_1039_C6QM00301J crossref_primary_10_1002_adma_202408416 crossref_primary_10_1039_D3CP02368K crossref_primary_10_1021_acsami_0c07800 crossref_primary_10_1021_jacs_4c05318 crossref_primary_10_1021_acs_inorgchem_2c03681 crossref_primary_10_1016_j_memsci_2017_04_033 crossref_primary_10_1021_acs_jpcc_9b11535 crossref_primary_10_3390_molecules29163885 crossref_primary_10_1016_j_coco_2023_101604 crossref_primary_10_1002_anie_202112916 crossref_primary_10_1038_s44296_024_00014_y crossref_primary_10_1002_aic_15837 crossref_primary_10_1016_j_ccr_2022_214714 crossref_primary_10_1016_j_seppur_2019_116042 crossref_primary_10_1016_j_eng_2021_10_013 crossref_primary_10_1021_acs_iecr_8b00950 crossref_primary_10_1021_acs_chemrev_9b00828 crossref_primary_10_3389_fenrg_2023_1167043 crossref_primary_10_1007_s40726_019_00128_1 crossref_primary_10_1021_acs_inorgchem_4c00026 crossref_primary_10_1021_acs_jpclett_3c00767 crossref_primary_10_1360_TB_2023_0645 crossref_primary_10_1016_j_eti_2016_12_001 crossref_primary_10_1002_smll_202402783 crossref_primary_10_1002_anie_202106259 crossref_primary_10_1063_1674_0068_cjcp2409133 crossref_primary_10_2174_1568026622666220307124003 crossref_primary_10_1007_s40242_021_1394_x crossref_primary_10_1002_smm2_1016 crossref_primary_10_1021_acsami_7b08117 crossref_primary_10_1038_srep11537 crossref_primary_10_1039_C6SC01385F crossref_primary_10_3390_compounds4010007 crossref_primary_10_1039_C5CE00015G crossref_primary_10_1021_acs_inorgchem_3c00821 crossref_primary_10_1002_cssc_201501574 crossref_primary_10_1016_j_chempr_2016_10_009 crossref_primary_10_1021_acs_inorgchem_2c01128 crossref_primary_10_1002_adma_202207088 crossref_primary_10_1002_anie_201906756 crossref_primary_10_1021_acsami_7b10795 crossref_primary_10_1021_acs_iecr_4c03265 crossref_primary_10_1002_adsr_202400170 crossref_primary_10_1016_j_ccst_2023_100128 crossref_primary_10_1002_smll_202411010 crossref_primary_10_1016_j_cej_2022_137958 crossref_primary_10_1021_acs_cgd_6b01058 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_162 crossref_primary_10_1002_sstr_202100209 crossref_primary_10_1039_D4TA08481K crossref_primary_10_1039_C7DT02709E crossref_primary_10_1021_acs_cgd_6b01054 crossref_primary_10_1016_j_cej_2023_141781 crossref_primary_10_1016_j_cej_2024_158380 crossref_primary_10_1021_acs_jpcc_2c05667 crossref_primary_10_1039_C8CC04824J crossref_primary_10_1002_adsu_201800080 crossref_primary_10_1007_s12274_018_2039_3 crossref_primary_10_1016_j_chempr_2019_10_012 crossref_primary_10_1039_D0DT00793E crossref_primary_10_1021_acs_inorgchem_9b02517 crossref_primary_10_1021_jacs_6b01207 crossref_primary_10_1002_tcr_201402062 crossref_primary_10_1016_j_micromeso_2016_06_014 crossref_primary_10_1016_j_xcrp_2024_101791 crossref_primary_10_1039_C4EE02717E crossref_primary_10_1039_D2CE01570F crossref_primary_10_18686_cest_v1i2_95 crossref_primary_10_1039_C9SC03916C crossref_primary_10_1016_j_inoche_2015_06_007 crossref_primary_10_1039_C4DT02481H crossref_primary_10_1002_ange_201506952 crossref_primary_10_1021_jacs_8b06109 crossref_primary_10_1073_pnas_2211544119 crossref_primary_10_1021_jacs_7b04132 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1016_j_mattod_2017_07_006 crossref_primary_10_1021_acs_cgd_4c00825 crossref_primary_10_1002_ange_201708769 crossref_primary_10_1021_jacs_3c03505 crossref_primary_10_1021_jacs_8b06582 crossref_primary_10_1016_j_cjsc_2023_100147 crossref_primary_10_1021_acs_inorgchem_6b00748 crossref_primary_10_1002_adsu_201700092 crossref_primary_10_1021_acs_cgd_8b01689 crossref_primary_10_1039_D0TA11340A crossref_primary_10_1002_adfm_202307778 crossref_primary_10_1002_anie_201506952 crossref_primary_10_1016_j_ccr_2016_11_004 crossref_primary_10_1002_ange_201909046 crossref_primary_10_1016_j_ccr_2021_214273 crossref_primary_10_1016_j_chempr_2020_11_019 crossref_primary_10_2139_ssrn_4169691 crossref_primary_10_3389_fceng_2020_596555 crossref_primary_10_1021_jacs_2c05382 crossref_primary_10_1016_j_cej_2023_142731 crossref_primary_10_1039_C7RA03608F crossref_primary_10_1515_pac_2023_0103 crossref_primary_10_1016_j_ccr_2019_01_015 crossref_primary_10_1016_j_ccr_2019_01_017 crossref_primary_10_1016_j_chempr_2017_11_005 crossref_primary_10_1016_j_jece_2022_108930 crossref_primary_10_2139_ssrn_4076661 crossref_primary_10_1039_C6TA00261G crossref_primary_10_3390_su162210132 crossref_primary_10_1002_adma_202414153 crossref_primary_10_1016_j_enbuild_2021_111666 crossref_primary_10_1021_accountsmr_4c00316 crossref_primary_10_1021_acs_jpclett_1c03740 crossref_primary_10_1039_D3TA02737F crossref_primary_10_1021_jacs_4c16131 crossref_primary_10_1002_ange_202112916 crossref_primary_10_1007_s40843_024_3091_9 crossref_primary_10_1016_j_micromeso_2018_10_001 crossref_primary_10_1016_j_molliq_2024_124554 crossref_primary_10_1016_j_jcis_2024_06_125 crossref_primary_10_1002_adfm_202414933 crossref_primary_10_1016_j_seppur_2022_121448 crossref_primary_10_1016_j_rser_2023_113473 crossref_primary_10_1016_j_cej_2023_147605 crossref_primary_10_1016_j_gee_2020_04_006 crossref_primary_10_1039_D3SC03213B crossref_primary_10_1021_acsanm_0c00909 crossref_primary_10_1002_adma_201704303 crossref_primary_10_1016_j_ccr_2022_214576 crossref_primary_10_1016_j_ccr_2020_213485 crossref_primary_10_1021_acs_langmuir_5b01171 crossref_primary_10_1002_adsu_201600028 crossref_primary_10_1016_j_rineng_2022_100609 crossref_primary_10_1039_D0CC03196H crossref_primary_10_1021_acs_chemmater_4c03231 crossref_primary_10_1039_C5TA01738F crossref_primary_10_1021_acsami_7b09989 crossref_primary_10_1016_j_coche_2018_04_004 crossref_primary_10_1002_anie_201506345 crossref_primary_10_1039_D5TA01243K crossref_primary_10_1016_j_ica_2020_119801 crossref_primary_10_1016_j_cej_2018_05_072 crossref_primary_10_1016_j_chempr_2021_12_013 crossref_primary_10_1016_j_scitotenv_2024_170085 crossref_primary_10_1039_C8CE01002A crossref_primary_10_1021_acsami_3c10086 crossref_primary_10_1002_cssc_202301951 crossref_primary_10_1039_C5CC02043C crossref_primary_10_1039_C4CC09999K crossref_primary_10_1002_chem_201700139 crossref_primary_10_1039_C7CE00594F crossref_primary_10_2139_ssrn_4152716 crossref_primary_10_1039_C7CC02289A crossref_primary_10_1016_j_ccr_2020_213388 crossref_primary_10_1038_ncomms6851 crossref_primary_10_1002_pola_29228 crossref_primary_10_1021_jacs_6b06959 crossref_primary_10_1126_sciadv_ade1473 crossref_primary_10_1039_C5CC04487A crossref_primary_10_1039_C8CC03841D crossref_primary_10_1039_C7CS00885F crossref_primary_10_1021_acsami_2c15476 crossref_primary_10_1007_s11426_022_1497_6 crossref_primary_10_1016_j_jcou_2023_102422 crossref_primary_10_1039_C4TA07115H crossref_primary_10_1002_cplu_201600156 crossref_primary_10_1016_j_chempr_2019_02_007 crossref_primary_10_1021_acs_nanolett_3c02157 crossref_primary_10_1016_j_seppur_2023_124489 crossref_primary_10_1002_aic_18139 crossref_primary_10_1039_D3TA01927F crossref_primary_10_2139_ssrn_4019015 crossref_primary_10_1021_jacs_3c11503 crossref_primary_10_1002_chem_202004845 crossref_primary_10_1016_j_inoche_2023_111252 crossref_primary_10_1126_science_aaf6323 crossref_primary_10_3390_app12052618 crossref_primary_10_1002_adma_201704210 crossref_primary_10_1021_acs_iecr_6b04877 crossref_primary_10_1002_rem_21592 crossref_primary_10_1016_j_rser_2022_112079 crossref_primary_10_1016_j_jssc_2021_122257 crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_1021_acsami_7b16029 crossref_primary_10_1016_j_matchemphys_2016_11_006 crossref_primary_10_1039_C9CP00845D crossref_primary_10_1016_j_jssc_2018_10_039 crossref_primary_10_1016_j_jcis_2019_11_041 crossref_primary_10_1021_cbe_3c00115 crossref_primary_10_3390_membranes13050480 crossref_primary_10_1021_acs_cgd_7b00111 crossref_primary_10_1021_acs_cgd_7b00595 crossref_primary_10_1016_j_seppur_2022_121804 crossref_primary_10_1039_D3TA05413F crossref_primary_10_1021_acsabm_9b01189 crossref_primary_10_1021_acs_inorgchem_7b00519 crossref_primary_10_2139_ssrn_4127760 crossref_primary_10_1039_C6CC06457D crossref_primary_10_1016_j_seppur_2017_11_056 crossref_primary_10_1021_acs_chemrev_6b00173 crossref_primary_10_1038_s41560_018_0267_0 crossref_primary_10_1016_j_xcrp_2020_100210 crossref_primary_10_1002_cssc_201800896 crossref_primary_10_1039_C6CC09923H crossref_primary_10_1021_acs_inorgchem_5b02312 crossref_primary_10_1021_acs_inorgchem_6b02883 crossref_primary_10_1016_j_memsci_2023_122323 crossref_primary_10_1016_j_cej_2021_132033 crossref_primary_10_1016_j_scitotenv_2019_04_004 crossref_primary_10_1021_acssuschemeng_8b02173 crossref_primary_10_1039_D4CS00555D crossref_primary_10_1039_D3QM00705G crossref_primary_10_1021_acs_langmuir_4c00748 crossref_primary_10_1039_C5CE01725D crossref_primary_10_1016_j_micromeso_2023_112658 crossref_primary_10_1039_D3CC02683C crossref_primary_10_1021_acs_cgd_6b00453 crossref_primary_10_1002_anie_201904312 crossref_primary_10_1002_anie_202206613 crossref_primary_10_1039_C6TA09406F crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1002_anie_201603934 crossref_primary_10_1016_j_jechem_2024_09_020 crossref_primary_10_1002_anie_202309985 crossref_primary_10_1002_smll_202302677 crossref_primary_10_1021_acs_chemmater_6b02817 crossref_primary_10_1021_acs_chemmater_3c02233 crossref_primary_10_1016_j_micromeso_2016_08_036 crossref_primary_10_1021_acs_jpcc_7b02623 crossref_primary_10_1021_acs_iecr_4c03299 crossref_primary_10_1002_cssc_201802978 crossref_primary_10_1016_j_enchem_2019_100006 crossref_primary_10_1021_jacs_0c01314 crossref_primary_10_1002_advs_202401070 crossref_primary_10_1021_acsanm_4c04055 crossref_primary_10_1039_D2CC02939A crossref_primary_10_1021_acs_langmuir_4c01500 crossref_primary_10_1021_acs_chemmater_9b05048 crossref_primary_10_1039_C5CC06577A crossref_primary_10_1039_C7TA06658A crossref_primary_10_1039_C7DT04622G crossref_primary_10_1016_j_seppur_2022_121979 crossref_primary_10_1021_acs_inorgchem_0c01912 crossref_primary_10_1002_sus2_154 crossref_primary_10_1021_jacs_8b07816 crossref_primary_10_3390_polym17020130 crossref_primary_10_1016_j_ccr_2020_213295 crossref_primary_10_1007_s10853_024_10058_z crossref_primary_10_3390_ma16010129 crossref_primary_10_1021_acs_inorgchem_9b01732 crossref_primary_10_1016_j_enchem_2019_100016 crossref_primary_10_1021_acs_iecr_9b04803 crossref_primary_10_1038_s41467_020_19207_9 crossref_primary_10_1021_jacs_7b01049 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1002_adfm_202307478 crossref_primary_10_1007_s40843_020_1304_3 crossref_primary_10_1039_C9CE00213H crossref_primary_10_1039_D0TA08498K crossref_primary_10_1039_C6SC00836D crossref_primary_10_1002_ange_201706090 crossref_primary_10_1021_acsami_7b15095 crossref_primary_10_1021_acssuschemeng_8b05590 crossref_primary_10_1039_C6FD00031B crossref_primary_10_1016_j_cej_2016_07_092 crossref_primary_10_1107_S2052252516019060 crossref_primary_10_1016_j_enchem_2022_100080 crossref_primary_10_1002_adma_202204277 crossref_primary_10_1039_C5NJ02312B crossref_primary_10_1002_ange_201603934 crossref_primary_10_1002_asia_201900735 crossref_primary_10_1021_acs_cgd_7b00188 crossref_primary_10_1364_OE_23_008134 crossref_primary_10_1039_C5CC02573G crossref_primary_10_1126_science_aam7232 crossref_primary_10_1038_s41467_020_16647_1 crossref_primary_10_1039_C7EE02342A crossref_primary_10_1002_asia_202101305 crossref_primary_10_1002_ange_201808716 crossref_primary_10_1039_C9DT02694K crossref_primary_10_1039_D1TA08862A crossref_primary_10_1002_chem_201504907 crossref_primary_10_1016_j_seppur_2022_121186 crossref_primary_10_1021_acs_inorgchem_6b00035 crossref_primary_10_1016_j_memsci_2023_122258 crossref_primary_10_1021_acs_inorgchem_2c00608 crossref_primary_10_1016_j_seppur_2024_129588 crossref_primary_10_1021_acs_iecr_5b00555 crossref_primary_10_1021_jacsau_4c00923 crossref_primary_10_1039_C5CC10598F crossref_primary_10_1021_acsmaterialslett_4c01434 crossref_primary_10_1016_j_jece_2025_115450 crossref_primary_10_1021_acsami_1c01242 crossref_primary_10_1002_app_52840 crossref_primary_10_1016_j_rser_2018_04_073 crossref_primary_10_1021_acsami_1c03661 crossref_primary_10_1021_acsami_1c00152 crossref_primary_10_1021_acsami_1c21077 crossref_primary_10_1039_C6TA06251B crossref_primary_10_1002_adma_201705374 crossref_primary_10_1021_acs_jpcc_6b01484 crossref_primary_10_1021_jacs_6b05345 crossref_primary_10_1039_C7EE02110K crossref_primary_10_1016_j_cej_2018_08_119 crossref_primary_10_1039_D1TA09974D crossref_primary_10_1002_gch2_202300244 crossref_primary_10_1039_C7CC03828C crossref_primary_10_1021_acs_energyfuels_8b02287 crossref_primary_10_1039_C9SE00486F crossref_primary_10_1021_acs_inorgchem_4c05364 crossref_primary_10_1002_adfm_202311029 crossref_primary_10_1039_C5QI00077G crossref_primary_10_1016_j_fuel_2024_130898 crossref_primary_10_1039_C7RA10369G crossref_primary_10_1002_anie_202424747 crossref_primary_10_1039_C5TA07068F crossref_primary_10_1021_acs_accounts_5b00530 crossref_primary_10_1002_aic_16236 crossref_primary_10_3390_app12168321 crossref_primary_10_1039_C7CP00199A crossref_primary_10_1039_C8TA03213K crossref_primary_10_1016_j_seppur_2022_122054 crossref_primary_10_1002_adma_201601133 crossref_primary_10_3390_app10020569 crossref_primary_10_1039_D2CS00442A crossref_primary_10_1088_1755_1315_170_3_032073 crossref_primary_10_1039_D1ME00085C crossref_primary_10_1039_D1RE00090J crossref_primary_10_1039_C6CC08008A crossref_primary_10_1002_smll_202303540 crossref_primary_10_1021_acs_jpcc_9b03221 crossref_primary_10_1021_acs_energyfuels_2c03971 crossref_primary_10_1021_jacs_5b11034 crossref_primary_10_1039_C4CS00230J crossref_primary_10_1016_j_chempr_2017_09_002 crossref_primary_10_1002_smll_202501924 crossref_primary_10_1016_j_ccr_2019_213023 crossref_primary_10_1016_j_chempr_2017_10_014 crossref_primary_10_1016_j_synthmet_2024_117622 crossref_primary_10_1021_acs_jpcc_7b06133 crossref_primary_10_1007_s40843_020_1471_0 crossref_primary_10_1021_jacs_4c12200 crossref_primary_10_1021_jacs_9b07422 crossref_primary_10_1038_s41467_018_03650_w crossref_primary_10_1007_s11814_018_0078_9 crossref_primary_10_1021_acs_inorgchem_0c00883 crossref_primary_10_1021_jacs_9b08754 crossref_primary_10_1126_science_aab1680 crossref_primary_10_1002_ange_202100240 crossref_primary_10_1002_cssc_201600768 crossref_primary_10_1039_C8CC03233E crossref_primary_10_1039_C5CC08210B crossref_primary_10_1039_D4CP00394B crossref_primary_10_1016_j_mtener_2024_101749 crossref_primary_10_1002_ange_202424747 crossref_primary_10_1039_C6SC05012C crossref_primary_10_1002_ange_201808991 crossref_primary_10_1016_j_cej_2020_126937 crossref_primary_10_1021_acs_energyfuels_0c03144 crossref_primary_10_1002_anie_201909046 crossref_primary_10_1039_C5QI00025D crossref_primary_10_1021_acs_chemrev_0c00762 crossref_primary_10_1002_aenm_201601296 crossref_primary_10_1016_j_apenergy_2015_03_011 crossref_primary_10_1039_C5CC01828E crossref_primary_10_1016_j_ccr_2021_213968 crossref_primary_10_1016_j_memsci_2025_123827 crossref_primary_10_1021_acsami_0c00803 crossref_primary_10_3390_chemosensors9080226 crossref_primary_10_1016_j_gee_2018_03_001 crossref_primary_10_1016_j_snb_2024_135874 crossref_primary_10_1016_j_xcrp_2021_100396 crossref_primary_10_1016_j_jcis_2019_10_034 crossref_primary_10_1039_D3CC05942A crossref_primary_10_1016_j_seppur_2021_118646 crossref_primary_10_1002_cplu_201500278 crossref_primary_10_1080_08927022_2016_1250266 crossref_primary_10_1002_cphc_201700459 crossref_primary_10_1016_j_mtla_2023_101716 crossref_primary_10_1002_anie_201702453 crossref_primary_10_1016_j_mattod_2023_03_004 crossref_primary_10_1016_j_psep_2022_02_047 crossref_primary_10_1016_j_ccr_2019_05_020 crossref_primary_10_1039_C6QI00342G crossref_primary_10_3390_cryst8010037 crossref_primary_10_1002_cssc_201601752 crossref_primary_10_1016_j_compchemeng_2022_107705 crossref_primary_10_1039_C6CE00021E crossref_primary_10_1002_smll_202005360 crossref_primary_10_1080_00986445_2019_1570162 crossref_primary_10_1002_chem_201605507 crossref_primary_10_1002_adma_201705189 crossref_primary_10_1002_cssc_201701162 crossref_primary_10_1016_j_psep_2021_11_027 crossref_primary_10_1021_acs_chemmater_9b04228 crossref_primary_10_1002_anie_202100240 crossref_primary_10_1021_jacs_0c02594 crossref_primary_10_1002_anie_201808991 crossref_primary_10_1002_ange_201702453 crossref_primary_10_1016_j_fuel_2022_123856 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1126_science_aam8310 crossref_primary_10_1021_jacs_7b10265 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1002_adfm_201402972 crossref_primary_10_1007_s10311_023_01589_z crossref_primary_10_3390_pr11041075 crossref_primary_10_1002_adem_202201335 crossref_primary_10_1016_j_cej_2018_11_113 crossref_primary_10_1016_j_cej_2021_130845 crossref_primary_10_1039_D2DT04088C crossref_primary_10_1021_acs_jpcc_7b05516 crossref_primary_10_1016_j_ccr_2024_215660 crossref_primary_10_1016_j_ccst_2023_100180 crossref_primary_10_1021_acsami_8b15946 crossref_primary_10_1098_rsta_2016_0025 crossref_primary_10_1039_D0DT03852K crossref_primary_10_1016_j_cej_2022_137884 crossref_primary_10_1016_j_fuel_2023_130631 crossref_primary_10_1039_C8CC07865C crossref_primary_10_1021_acsaenm_3c00622 crossref_primary_10_1126_sciadv_adh0135 crossref_primary_10_1002_apj_2920 crossref_primary_10_1002_admi_202300881 crossref_primary_10_1016_j_xcrp_2023_101698 crossref_primary_10_1039_C5GC00354G crossref_primary_10_1002_adfm_202213915 crossref_primary_10_1016_j_jcis_2023_08_006 crossref_primary_10_1002_adfm_202420105 crossref_primary_10_1021_es504396v crossref_primary_10_1016_j_ces_2023_119379 crossref_primary_10_1039_C7CS00153C crossref_primary_10_1016_j_cherd_2022_11_040 crossref_primary_10_1002_ange_202106259 crossref_primary_10_1016_j_molliq_2023_123907 crossref_primary_10_1021_acsami_2c20373 crossref_primary_10_1002_cssc_201600834 crossref_primary_10_1016_j_micromeso_2020_110686 crossref_primary_10_1016_j_seppur_2023_123956 crossref_primary_10_1002_anie_201808716 crossref_primary_10_1039_D4GC00736K crossref_primary_10_1021_acs_inorgchem_9b03667 crossref_primary_10_1021_jacs_5b00838 crossref_primary_10_1002_mame_202300225 crossref_primary_10_1021_acs_accounts_3c00367 crossref_primary_10_1039_C9CC05997K crossref_primary_10_1021_acssuschemeng_8b03765 crossref_primary_10_1021_acsami_8b14400 crossref_primary_10_1016_j_cclet_2024_109676 crossref_primary_10_1038_s41586_024_08080_x crossref_primary_10_1002_cssc_202001638 crossref_primary_10_1039_C8TA08782B crossref_primary_10_1002_aic_15786 crossref_primary_10_1021_acscentsci_4c01125 crossref_primary_10_2139_ssrn_3994503 crossref_primary_10_1016_j_cej_2016_03_124 crossref_primary_10_1016_j_apsusc_2016_10_052 crossref_primary_10_1246_cl_200785 crossref_primary_10_1039_C5TA01321F crossref_primary_10_1016_j_rser_2025_115560 crossref_primary_10_1021_acs_jpcc_0c03633 crossref_primary_10_1021_acs_energyfuels_4c01368 crossref_primary_10_1002_adma_201702953 crossref_primary_10_1016_j_chempr_2020_06_018 crossref_primary_10_1021_acsaenm_2c00208 crossref_primary_10_1016_j_isci_2022_105564 crossref_primary_10_1021_acs_chemmater_0c00746 crossref_primary_10_1016_j_micromeso_2025_113559 crossref_primary_10_1039_C7RA02122D crossref_primary_10_1021_acs_jpcc_1c00346 crossref_primary_10_1021_acs_inorgchem_1c03310 crossref_primary_10_1016_j_mtcomm_2020_101987 crossref_primary_10_1039_C4TA06645F crossref_primary_10_1016_j_ccst_2023_100145 crossref_primary_10_1002_adma_202002563 crossref_primary_10_1016_j_seppur_2022_121031 crossref_primary_10_1021_jacs_5b07053 crossref_primary_10_1002_ange_201906756 crossref_primary_10_1021_acsami_3c09456 crossref_primary_10_1016_j_mtnano_2018_09_003 crossref_primary_10_1016_j_seppur_2024_127099 crossref_primary_10_1039_C5CP06587A crossref_primary_10_1007_s11814_018_0220_8 crossref_primary_10_1039_C6TA07145G crossref_primary_10_1007_s11426_016_5582_3 crossref_primary_10_3389_fenrg_2020_00196 crossref_primary_10_1039_C7SC03067C crossref_primary_10_1002_ange_202309985 crossref_primary_10_1021_acsanm_4c00481 crossref_primary_10_1039_C4EE02636E crossref_primary_10_1021_acs_est_5b03149 crossref_primary_10_1016_j_polymer_2021_123988 crossref_primary_10_1016_j_apsusc_2022_155772 crossref_primary_10_1021_acsami_6b16769 crossref_primary_10_1021_acs_chemrev_6b00626 crossref_primary_10_1039_C8TA11596F crossref_primary_10_1007_s10570_016_0886_1 crossref_primary_10_1016_j_cej_2022_139756 crossref_primary_10_1021_acs_inorgchem_8b00082 crossref_primary_10_1016_j_chroma_2020_461604 crossref_primary_10_1039_D1TA05960B crossref_primary_10_1039_C4TA06537A crossref_primary_10_1039_C5TA00460H crossref_primary_10_1063_1_4961023 crossref_primary_10_1039_C7TA02746J crossref_primary_10_1002_ange_202206613 crossref_primary_10_1039_D0FD00103A crossref_primary_10_1126_science_aaf2458 crossref_primary_10_1002_anie_201706090 crossref_primary_10_1039_D0TA04574H crossref_primary_10_1016_j_jece_2021_106709 crossref_primary_10_1021_acs_inorgchem_2c03751 crossref_primary_10_1093_micmic_ozad067_924 crossref_primary_10_1557_s43577_022_00320_7 crossref_primary_10_1002_ange_201904312 crossref_primary_10_1039_C5TA02357B crossref_primary_10_1002_adsc_202401175 crossref_primary_10_1021_acs_jpcc_7b08964 crossref_primary_10_1039_D0TA09944A crossref_primary_10_1021_acs_energyfuels_3c00381 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1038_ncomms7350 crossref_primary_10_1021_acs_cgd_9b00086 crossref_primary_10_1021_jacs_0c07870 crossref_primary_10_1002_smll_202401303 crossref_primary_10_1002_chem_201503078 crossref_primary_10_1021_acsami_5b04674 crossref_primary_10_1038_s41578_021_00287_y crossref_primary_10_1039_D1TA07856A crossref_primary_10_1007_s00894_020_04437_x crossref_primary_10_1038_ncomms8328 crossref_primary_10_1021_jacs_3c14125 crossref_primary_10_1016_j_ceja_2024_100700 crossref_primary_10_1021_acs_inorgchem_1c02546 crossref_primary_10_1021_acsami_6b16757 crossref_primary_10_1039_C5TA05997F crossref_primary_10_1016_j_pecs_2022_101069 crossref_primary_10_1039_C5RA02756J crossref_primary_10_1021_acs_jpcc_1c06924 crossref_primary_10_1021_acs_cgd_2c00229 crossref_primary_10_1002_ange_201506345 |
Cites_doi | 10.1049/ic:19990341 10.1016/j.ces.2010.02.044 10.1002/ejic.200900144 10.1021/jz300328j 10.1021/es702607w 10.1016/j.actaastro.2012.09.019 10.1016/S0009-2509(00)00531-5 10.1021/ja1013773 10.1016/S0009-2509(00)00122-6 10.1021/es102797w 10.1021/ie800024c 10.1039/c2ee21586a 10.1021/i260015a019 10.1038/ncomms1934 10.1016/S0022-1139(02)00046-5 10.1021/cr2003272 10.1021/ja300034j 10.1039/c3cc48228f 10.1154/1.1763152 10.1021/ja401429x 10.1016/S0378-7753(99)00429-2 10.1016/j.cej.2011.02.007 10.1039/c2ee23201d 10.1021/ja8036096 10.1016/j.cej.2008.06.005 10.1021/ef0002391 10.1038/nature11893 10.1016/0025-5408(88)90019-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 Copyright Nature Publishing Group Jun 2014 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2014 – notice: Copyright Nature Publishing Group Jun 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM |
DOI | 10.1038/ncomms5228 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC4083436 oai_HAL_hal_02360096v1 3348323301 24964404 10_1038_ncomms5228 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 1XC 5VS CAG COF KQ8 LGEZI LOTEE NADUK NXXTH VOOES 5PM |
ID | FETCH-LOGICAL-c542t-ecbfc5f5f5dea730a3405cf81bb6e0e5cb5d0cb7acf89c6b99bb218b4a1550ee3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 14:14:07 EDT 2025 Fri May 09 12:23:31 EDT 2025 Fri Jul 11 15:56:02 EDT 2025 Wed Aug 13 04:10:12 EDT 2025 Thu Apr 03 07:04:38 EDT 2025 Tue Jul 01 04:28:17 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-ecbfc5f5f5dea730a3405cf81bb6e0e5cb5d0cb7acf89c6b99bb218b4a1550ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3460-223X 0000-0003-1916-9837 0000-0002-3804-1065 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms5228 |
PMID | 24964404 |
PQID | 1539736494 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083436 hal_primary_oai_HAL_hal_02360096v1 proquest_miscellaneous_1541381407 proquest_journals_1539736494 pubmed_primary_24964404 crossref_primary_10_1038_ncomms5228 crossref_citationtrail_10_1038_ncomms5228 springer_journals_10_1038_ncomms5228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140625 |
PublicationDateYYYYMMDD | 2014-06-25 |
PublicationDate_xml | – month: 6 year: 2014 text: 20140625 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Pub. Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Pub. Group |
References | Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm (2006). NikulshinaVGebaldCSteinfeldACO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactorChem. Eng. J.20091462442481:CAS:528:DC%2BD1cXhsVChurzE10.1016/j.cej.2008.06.005 NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D2013Natur.495...80N10.1038/nature11893 SumidaKCarbon dioxide capture in metal-organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272 Haring, H. W. Industrial Gases Processing Wiley-VCH Verlag GmbH & Co (2008). SantosJCMagalhaesFDMendesAContamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxideInd. Eng. Chem. Res.200847619762031:CAS:528:DC%2BD1cXns1Clt78%3D10.1021/ie800024c Le BailAMonte Carlo indexing with McMaillePowder Diffr.2004192492541:CAS:528:DC%2BD2cXntVCqsL0%3D2004PDiff..19..249L10.1154/1.1763152 Lackner, K. S. & Wright, A. B. Removal of carbon dioxide from air. WO 2010022399 A1 (2010). XiangSMicroporous metal-organic framework with potential for carbon dioxide capture at ambient conditionsNat. Commun.2012395696510.1038/ncomms1934 KordeschKAlkaline fuel cells applicationsJ. Power Sources2000861621651:CAS:528:DC%2BD3cXitFyqs74%3D2000JPS....86..162K10.1016/S0378-7753(99)00429-2 CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096 MajorCJSollamiBJKammermeKCarbon dioxide removal from air by adsorbents.Ind. Eng. Chem. Process Des. Dev.196543273331:CAS:528:DyaF2MXkt1Ois7s%3D10.1021/i260015a019 SayariABelmabkhoutYStabilization of amine-containing CO2 adsorbents: dramatic effect of water vaporJ. Am. Chem. Soc.2010132631263131:CAS:528:DC%2BC3cXltVylsr4%3D10.1021/ja1013773 ChoiSWatanabeTBaeT-HShollDSJonesCWModification of the Mg-DOBDC MOF with amines to enhance CO2 adsorption from ultradilute GasesJ. Phys. Chem. Lett.20123113611411:CAS:528:DC%2BC38XlsVaru7w%3D10.1021/jz300328j RegeSUYangRTQianK YBuzanowskiM AAir-prepurification by pressure swing adsorption using single/layered bedsChem. Eng. Sci.200156274527591:CAS:528:DC%2BD3MXksFCksLg%3D10.1016/S0009-2509(00)00531-5 WilmerCEFarhaOKBaeY-SHuppJTSnurrRQStructure-property relationships of porous materials for carbon dioxide separation and captureEnerg. Environ. Sci.20125984998561:CAS:528:DC%2BC38XhvVams7rN10.1039/c2ee23201d GoeppertACzaunMPrakashGK SOlahGAAir as the renewable carbon source of the future: An overview of CO2 capture from the atmosphereEnerg. Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a ConleyBDYearwoodBCParkinSAtwoodDAAmmonium hexafluorosilicate saltsJ. Fluorine Chem.20021151551601:CAS:528:DC%2BD38Xktlyhs7s%3D10.1016/S0022-1139(02)00046-5 Uemura, K., Maeda, A., Maji, T. K., Kanoo, P. & Kita, H. Crystal structures and adsorption properties of ultramicroporous coordination polymers constructed ions from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2329–2337 (2009). SayariABelmabkhoutYSerna-GuerreroRFlue gas treatment via CO2 adsorptionChem. Eng. J.20111717607741:CAS:528:DC%2BC3MXos1Krtb0%3D10.1016/j.cej.2011.02.007 BelmabkhoutYSerna-GuerreroRSayariAAmine-bearing mesoporous silica for CO2 removal from dry and humid airChem. Eng. Sci.201065369536981:CAS:528:DC%2BC3cXlt1aitbc%3D10.1016/j.ces.2010.02.044 SatyapalSFilburnTTrelaJStrangeJPerformance and properties of a solid amine sorbent for carbon dioxide removal in space life support applicationsEnerg. Fuel2001152502551:CAS:528:DC%2BD3MXht1alsrw%3D10.1021/ef0002391 GuillermVPorous organic polymers with anchored aldehydes: A new platform forpost-synthetic amine functionalization en route for enhanced CO2 adsorption propertiesChem. Commun.2013501937194010.1039/c3cc48228f GoeppertACzaunMSurya PrakashG KOlahGAAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a McDonaldTMCapture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)J. Am. Chem. Soc.2012134705670651:CAS:528:DC%2BC38XltVWksbk%3D10.1021/ja300034j RegeSUYangRTBuzanowskiM ASorbents for air prepurification in air separationChem. Eng. Sci.200055482748381:CAS:528:DC%2BD3cXmvFynt7s%3D10.1016/S0009-2509(00)00122-6 MoorePMiner protectionMin. Mag.20071963541 Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm/07.htm (2012). XueDXTunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptakeJ. Am. Chem. Soc.2013135766076671:CAS:528:DC%2BC3sXmt1ymt7k%3D10.1021/ja401429x Ernsting, J. Breathing systems in aerospace. IEE Seminar. Low Flow Anaesthesia Breathing Systems-Technology, Safety and Economics (Ref. No.1999/060), 7/1-4 (1999). MattoxEMKnoxJCBardotD MCarbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test resultsActa Astronaut.201386394610.1016/j.actaastro.2012.09.019 StolaroffJKKeithDWLowryGVCarbon dioxide capture from atmospheric air using sodium hydroxide sprayEnviron. Sci. Technol.200842272827351:CAS:528:DC%2BD1cXivV2gurc%3D2008EnST...42.2728S10.1021/es702607w Le BailADuroyHFourquetJ LAb-initio structure determination of LiSbWO6 by X-ray powder diffractionMater. Res. Bull.1988234474521:CAS:528:DyaL1cXitFCgtbo%3D10.1016/0025-5408(88)90019-0 Rodriguez-Carvajal, J. Abstracts of the Satellite. Meeting on Powder Diffraction of the XV Congress of the IUCr,127, (1990). ChoiSDreseJHEisenbergerP MJonesC WApplication of amine-tethered solid sorbents for direct CO2 capture from the ambient airEnviron. Sci. Technol.201145242024271:CAS:528:DC%2BC3MXitVSgsL8%3D2011EnST...45.2420C10.1021/es102797w BFncomms5228_CR16 P Nugent (BFncomms5228_CR23) 2013; 495 BFncomms5228_CR35 SU Rege (BFncomms5228_CR6) 2000; 55 S Xiang (BFncomms5228_CR34) 2012; 3 BFncomms5228_CR17 S Satyapal (BFncomms5228_CR13) 2001; 15 BD Conley (BFncomms5228_CR33) 2002; 115 SU Rege (BFncomms5228_CR7) 2001; 56 A Sayari (BFncomms5228_CR19) 2010; 132 S Choi (BFncomms5228_CR28) 2012; 3 A Le Bail (BFncomms5228_CR30) 2004; 19 V Guillerm (BFncomms5228_CR29) 2013; 50 A Le Bail (BFncomms5228_CR31) 1988; 23 JC Santos (BFncomms5228_CR8) 2008; 47 SR Caskey (BFncomms5228_CR20) 2008; 130 TM McDonald (BFncomms5228_CR27) 2012; 134 BFncomms5228_CR12 BFncomms5228_CR32 V Nikulshina (BFncomms5228_CR4) 2009; 146 JK Stolaroff (BFncomms5228_CR3) 2008; 42 BFncomms5228_CR1 Y Belmabkhout (BFncomms5228_CR10) 2010; 65 K Sumida (BFncomms5228_CR21) 2012; 112 CE Wilmer (BFncomms5228_CR18) 2012; 5 BFncomms5228_CR9 A Goeppert (BFncomms5228_CR26) 2012; 5 A Goeppert (BFncomms5228_CR5) 2012; 5 A Sayari (BFncomms5228_CR22) 2011; 171 S Choi (BFncomms5228_CR25) 2011; 45 CJ Major (BFncomms5228_CR2) 1965; 4 EM Mattox (BFncomms5228_CR14) 2013; 86 K Kordesch (BFncomms5228_CR11) 2000; 86 P Moore (BFncomms5228_CR15) 2007; 196 DX Xue (BFncomms5228_CR24) 2013; 135 22805561 - Nat Commun. 2012 Jul 17;3:954 18497115 - Environ Sci Technol. 2008 Apr 15;42(8):2728-35 23446349 - Nature. 2013 Mar 7;495(7439):80-4 23607903 - J Am Chem Soc. 2013 May 22;135(20):7660-7 18661979 - J Am Chem Soc. 2008 Aug 20;130(33):10870-1 22204561 - Chem Rev. 2012 Feb 8;112(2):724-81 20405941 - J Am Chem Soc. 2010 May 12;132(18):6312-4 22475173 - J Am Chem Soc. 2012 Apr 25;134(16):7056-65 24445684 - Chem Commun (Camb). 2014 Feb 25;50(16):1937-40 26288048 - J Phys Chem Lett. 2012 May 3;3(9):1136-41 21323309 - Environ Sci Technol. 2011 Mar 15;45(6):2420-7 |
References_xml | – reference: Uemura, K., Maeda, A., Maji, T. K., Kanoo, P. & Kita, H. Crystal structures and adsorption properties of ultramicroporous coordination polymers constructed ions from hexafluorosilicate ions and pyrazine. Eur. J. Inorg. Chem. 2329–2337 (2009). – reference: BelmabkhoutYSerna-GuerreroRSayariAAmine-bearing mesoporous silica for CO2 removal from dry and humid airChem. Eng. Sci.201065369536981:CAS:528:DC%2BC3cXlt1aitbc%3D10.1016/j.ces.2010.02.044 – reference: SayariABelmabkhoutYSerna-GuerreroRFlue gas treatment via CO2 adsorptionChem. Eng. J.20111717607741:CAS:528:DC%2BC3MXos1Krtb0%3D10.1016/j.cej.2011.02.007 – reference: Rodriguez-Carvajal, J. Abstracts of the Satellite. Meeting on Powder Diffraction of the XV Congress of the IUCr,127, (1990). – reference: StolaroffJKKeithDWLowryGVCarbon dioxide capture from atmospheric air using sodium hydroxide sprayEnviron. Sci. Technol.200842272827351:CAS:528:DC%2BD1cXivV2gurc%3D2008EnST...42.2728S10.1021/es702607w – reference: GoeppertACzaunMSurya PrakashG KOlahGAAir as the renewable carbon source of the future: an overview of CO2 capture from the atmosphereEnergy Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a – reference: Lackner, K. S. & Wright, A. B. Removal of carbon dioxide from air. WO 2010022399 A1 (2010). – reference: CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096 – reference: MattoxEMKnoxJCBardotD MCarbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test resultsActa Astronaut.201386394610.1016/j.actaastro.2012.09.019 – reference: ChoiSDreseJHEisenbergerP MJonesC WApplication of amine-tethered solid sorbents for direct CO2 capture from the ambient airEnviron. Sci. Technol.201145242024271:CAS:528:DC%2BC3MXitVSgsL8%3D2011EnST...45.2420C10.1021/es102797w – reference: NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D2013Natur.495...80N10.1038/nature11893 – reference: Ernsting, J. Breathing systems in aerospace. IEE Seminar. Low Flow Anaesthesia Breathing Systems-Technology, Safety and Economics (Ref. No.1999/060), 7/1-4 (1999). – reference: GuillermVPorous organic polymers with anchored aldehydes: A new platform forpost-synthetic amine functionalization en route for enhanced CO2 adsorption propertiesChem. Commun.2013501937194010.1039/c3cc48228f – reference: KordeschKAlkaline fuel cells applicationsJ. Power Sources2000861621651:CAS:528:DC%2BD3cXitFyqs74%3D2000JPS....86..162K10.1016/S0378-7753(99)00429-2 – reference: SantosJCMagalhaesFDMendesAContamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxideInd. Eng. Chem. Res.200847619762031:CAS:528:DC%2BD1cXns1Clt78%3D10.1021/ie800024c – reference: NikulshinaVGebaldCSteinfeldACO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactorChem. Eng. J.20091462442481:CAS:528:DC%2BD1cXhsVChurzE10.1016/j.cej.2008.06.005 – reference: WilmerCEFarhaOKBaeY-SHuppJTSnurrRQStructure-property relationships of porous materials for carbon dioxide separation and captureEnerg. Environ. Sci.20125984998561:CAS:528:DC%2BC38XhvVams7rN10.1039/c2ee23201d – reference: GoeppertACzaunMPrakashGK SOlahGAAir as the renewable carbon source of the future: An overview of CO2 capture from the atmosphereEnerg. Environ. Sci.20125783378531:CAS:528:DC%2BC38XptVWrsrc%3D10.1039/c2ee21586a – reference: Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm/07.htm (2012). – reference: RegeSUYangRTQianK YBuzanowskiM AAir-prepurification by pressure swing adsorption using single/layered bedsChem. Eng. Sci.200156274527591:CAS:528:DC%2BD3MXksFCksLg%3D10.1016/S0009-2509(00)00531-5 – reference: McDonaldTMCapture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)J. Am. Chem. Soc.2012134705670651:CAS:528:DC%2BC38XltVWksbk%3D10.1021/ja300034j – reference: XueDXTunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptakeJ. Am. Chem. Soc.2013135766076671:CAS:528:DC%2BC3sXmt1ymt7k%3D10.1021/ja401429x – reference: RegeSUYangRTBuzanowskiM ASorbents for air prepurification in air separationChem. Eng. Sci.200055482748381:CAS:528:DC%2BD3cXmvFynt7s%3D10.1016/S0009-2509(00)00122-6 – reference: Le BailADuroyHFourquetJ LAb-initio structure determination of LiSbWO6 by X-ray powder diffractionMater. Res. Bull.1988234474521:CAS:528:DyaL1cXitFCgtbo%3D10.1016/0025-5408(88)90019-0 – reference: ChoiSWatanabeTBaeT-HShollDSJonesCWModification of the Mg-DOBDC MOF with amines to enhance CO2 adsorption from ultradilute GasesJ. Phys. Chem. Lett.20123113611411:CAS:528:DC%2BC38XlsVaru7w%3D10.1021/jz300328j – reference: SumidaKCarbon dioxide capture in metal-organic frameworksChem. Rev.20121127247811:CAS:528:DC%2BC3MXhs12hsLzE10.1021/cr2003272 – reference: MoorePMiner protectionMin. Mag.20071963541 – reference: SayariABelmabkhoutYStabilization of amine-containing CO2 adsorbents: dramatic effect of water vaporJ. Am. Chem. Soc.2010132631263131:CAS:528:DC%2BC3cXltVylsr4%3D10.1021/ja1013773 – reference: Le BailAMonte Carlo indexing with McMaillePowder Diffr.2004192492541:CAS:528:DC%2BD2cXntVCqsL0%3D2004PDiff..19..249L10.1154/1.1763152 – reference: ConleyBDYearwoodBCParkinSAtwoodDAAmmonium hexafluorosilicate saltsJ. Fluorine Chem.20021151551601:CAS:528:DC%2BD38Xktlyhs7s%3D10.1016/S0022-1139(02)00046-5 – reference: Haring, H. W. Industrial Gases Processing Wiley-VCH Verlag GmbH & Co (2008). – reference: SatyapalSFilburnTTrelaJStrangeJPerformance and properties of a solid amine sorbent for carbon dioxide removal in space life support applicationsEnerg. Fuel2001152502551:CAS:528:DC%2BD3MXht1alsrw%3D10.1021/ef0002391 – reference: XiangSMicroporous metal-organic framework with potential for carbon dioxide capture at ambient conditionsNat. Commun.2012395696510.1038/ncomms1934 – reference: Dosch, M. P. The anesthesia gas machine http://www.udmercy.edu/crna/agm (2006). – reference: MajorCJSollamiBJKammermeKCarbon dioxide removal from air by adsorbents.Ind. Eng. Chem. Process Des. Dev.196543273331:CAS:528:DyaF2MXkt1Ois7s%3D10.1021/i260015a019 – ident: BFncomms5228_CR12 doi: 10.1049/ic:19990341 – volume: 65 start-page: 3695 year: 2010 ident: BFncomms5228_CR10 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.02.044 – ident: BFncomms5228_CR35 doi: 10.1002/ejic.200900144 – volume: 3 start-page: 1136 year: 2012 ident: BFncomms5228_CR28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300328j – ident: BFncomms5228_CR32 – volume: 42 start-page: 2728 year: 2008 ident: BFncomms5228_CR3 publication-title: Environ. Sci. Technol. doi: 10.1021/es702607w – volume: 86 start-page: 3946 year: 2013 ident: BFncomms5228_CR14 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2012.09.019 – volume: 56 start-page: 2745 year: 2001 ident: BFncomms5228_CR7 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(00)00531-5 – volume: 132 start-page: 6312 year: 2010 ident: BFncomms5228_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1013773 – volume: 55 start-page: 4827 year: 2000 ident: BFncomms5228_CR6 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(00)00122-6 – volume: 45 start-page: 2420 year: 2011 ident: BFncomms5228_CR25 publication-title: Environ. Sci. Technol. doi: 10.1021/es102797w – ident: BFncomms5228_CR17 – volume: 47 start-page: 6197 year: 2008 ident: BFncomms5228_CR8 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800024c – ident: BFncomms5228_CR9 – volume: 5 start-page: 7833 year: 2012 ident: BFncomms5228_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21586a – volume: 5 start-page: 7833 year: 2012 ident: BFncomms5228_CR5 publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee21586a – ident: BFncomms5228_CR1 – volume: 4 start-page: 327 year: 1965 ident: BFncomms5228_CR2 publication-title: Ind. Eng. Chem. Process Des. Dev. doi: 10.1021/i260015a019 – volume: 3 start-page: 956 year: 2012 ident: BFncomms5228_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms1934 – volume: 115 start-page: 155 year: 2002 ident: BFncomms5228_CR33 publication-title: J. Fluorine Chem. doi: 10.1016/S0022-1139(02)00046-5 – volume: 112 start-page: 724 year: 2012 ident: BFncomms5228_CR21 publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 134 start-page: 7056 year: 2012 ident: BFncomms5228_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300034j – volume: 50 start-page: 1937 year: 2013 ident: BFncomms5228_CR29 publication-title: Chem. Commun. doi: 10.1039/c3cc48228f – volume: 19 start-page: 249 year: 2004 ident: BFncomms5228_CR30 publication-title: Powder Diffr. doi: 10.1154/1.1763152 – volume: 135 start-page: 7660 year: 2013 ident: BFncomms5228_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401429x – volume: 86 start-page: 162 year: 2000 ident: BFncomms5228_CR11 publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00429-2 – volume: 171 start-page: 760 year: 2011 ident: BFncomms5228_CR22 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.007 – volume: 5 start-page: 9849 year: 2012 ident: BFncomms5228_CR18 publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee23201d – volume: 130 start-page: 10870 year: 2008 ident: BFncomms5228_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036096 – volume: 146 start-page: 244 year: 2009 ident: BFncomms5228_CR4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.005 – volume: 196 start-page: 35 year: 2007 ident: BFncomms5228_CR15 publication-title: Min. Mag. – ident: BFncomms5228_CR16 – volume: 15 start-page: 250 year: 2001 ident: BFncomms5228_CR13 publication-title: Energ. Fuel doi: 10.1021/ef0002391 – volume: 495 start-page: 80 year: 2013 ident: BFncomms5228_CR23 publication-title: Nature doi: 10.1038/nature11893 – volume: 23 start-page: 447 year: 1988 ident: BFncomms5228_CR31 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(88)90019-0 – reference: 18661979 - J Am Chem Soc. 2008 Aug 20;130(33):10870-1 – reference: 26288048 - J Phys Chem Lett. 2012 May 3;3(9):1136-41 – reference: 22204561 - Chem Rev. 2012 Feb 8;112(2):724-81 – reference: 20405941 - J Am Chem Soc. 2010 May 12;132(18):6312-4 – reference: 21323309 - Environ Sci Technol. 2011 Mar 15;45(6):2420-7 – reference: 24445684 - Chem Commun (Camb). 2014 Feb 25;50(16):1937-40 – reference: 23607903 - J Am Chem Soc. 2013 May 22;135(20):7660-7 – reference: 22805561 - Nat Commun. 2012 Jul 17;3:954 – reference: 22475173 - J Am Chem Soc. 2012 Apr 25;134(16):7056-65 – reference: 23446349 - Nature. 2013 Mar 7;495(7439):80-4 – reference: 18497115 - Environ Sci Technol. 2008 Apr 15;42(8):2728-35 |
SSID | ssj0000391844 |
Score | 2.6121986 |
Snippet | Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions... Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4228 |
SubjectTerms | 140/133 639/301/299/921 639/638/263 Adsorption Anions Carbon dioxide emissions Carbon dioxide removal Chemical Sciences Coordination chemistry Copper Cristallography Humanities and Social Sciences Inorganic chemistry Material chemistry multidisciplinary Power plants Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB7RIiQuCMproa0M9MLBarL2vk6oqqiiquVERW4rP8ZqJLIbkrQq_56ZfZUQVO1ltbZsr2dsf-MZfQNwlCeYu9xrGWxAqdXIS2N8Kn1I0cVjp-mFoy2-pZMrfT5Npt2F26oLq-z3xGaj9rXjO_JjWplFplJd6C-LX5KzRrF3tUuhsQOPmbqMtTqbZsMdC7Of51r3rKQqP66oyfmKMEe-cQ7tXHMU5DbE3I6U_Mdd2pxCZ8_hWQcfxUkr7xfwCKs9eNImlPz9En5cGo9yXcuGUVPMkaC1bBM3ORH6OKyVIKQqqCeHwpmlrSvhZ_XdzKNY4rwm3ROm8sLMllS8YBfDK7g6-_r9dCK71AnSJTpeS3Q2uCTQ49HQIjaKgJkLhFFtiiNMnE38yNnM0LfCpbYorKXD3mrDJguieg27VV3hWxBxwRfHYeyQsBNtCTYEpWI7ysn2odZUBJ_7iSxdxyvO6S1-lo1_W-Xl_aRH8Gmou2jZNP5b6yPJY6jABNiTk4uSvzHfPVtdt-MI9ntxld2yW5X3ShLBh6GYFgx7QUyF9Q3XoXObeb6yCN600h26Ils0ZcLECLINuW-MZbOkml03pNyasKxWaQRHvYb8NaytX3z38Ojfw1MCZppD0uJkH3bXyxs8IPCztoeNhv8BEz8Jfg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUKVeEKWvAK3clksPVndjJ5scVwi0WhUuLSq3yI-xWKmboN0Fwb9nJq-y3R6qXBJ7EjueseezPfoMcJIlmLnMaxlsQKnVwEtjfCp9SNHFQ6fphqMtLtPJlZ5eJ9ctTc6yDatsKC3rYbqLDvtW0tN8SWAh24Zdpmgnm94dj6c_pv2KCnOdZ1p3HKQqe_bSmtfZvuGYx01AuRkX-dfmaO1zzvdhrwWLYtxU7xVsYXkAL5rjIx9fw68L41GuKlnzZ4o5EpCWzTFNToQu6mopCJcKKsmhcGZhq1L4WfUw8ygWOK_I0oQpvTCzBWXfcpu8gavzs5-nE9kelCBdouOVRGeDSwJdHg11WaMIhrlAiNSmOMDE2cQPnB0ZSstdavPcWnLtVhueoCCqt7BTViW-BxHnvEwchg4JKdEAYENQKraDjGY69DUVwdeuIQvXsojzYRa_i3o3W2XFn0aP4Esve9twZ_xT6jPpoxdguuvJ-HvBacxuz3Os-2EEx526iraTLQsarPORSnWuI_jUZ1P34D0PU2J1xzLkpZnVaxTBu0a7fVE080yZHjGC0Zre1-qynlPObmoKbk3IVas0gpPOQp5Va-MXD_9P7AheEhzTHIgWJ8ews1rc4QeCPCv7sbX1J9f2Bwk priority: 102 providerName: Springer Nature |
Title | Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture |
URI | https://link.springer.com/article/10.1038/ncomms5228 https://www.ncbi.nlm.nih.gov/pubmed/24964404 https://www.proquest.com/docview/1539736494 https://www.proquest.com/docview/1541381407 https://hal.science/hal-02360096 https://pubmed.ncbi.nlm.nih.gov/PMC4083436 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tm5B4QXwvMCoDe-HB0MaOkzwgVKqVqmITAir6FvlTq7QmI-3Q9t9zzkchdA8oUhLZ1ybx2b7fxZffARwnkU10Yjh1ylnK2cBQKY2gxgmrw6HmeOKjLc7EdM5ni2ixB23-zqYB17e6dj6f1Ly8eHv98-YDDvj39SfjybscdbNaI5BIenCAFin2mQxOG5hfzcgsRUeGt-yknZ907FHv3EdD7kLN3YjJf5ZNK2s0uQ_3GhhJRrXeH8CezR_CnTqx5M0j-HEqjaWbglbMmmRl8eloncBJE9fGY60JIlaCV9KWaFmqIidmWVwvjSWlXRXYB4nMDZHLEqsv_VLDY5hPTr6Pp7RJoUB1xMMNtVo5HTncjJU4mCVDgKYdYlUl7MBGWkVmoFUssSzVQqWpUmj0FZfedbGWPYH9vMjtIZAw9S-Q3VBbxFA4NSjnGAvVIEEfCP-NBfCmbchMN_ziPs3FRVatc7Mk-9PoAbzeyl7WrBq3Sr1CfWwFPBH2dPQ582We9957X7-GARy16sra3pPhNJ7GTPCUB_ByW40Dx6-GyNwWV14G7bfn-4oDeFprd3sp9EmFJ04MIO7ovXMv3Zp8eV6Rc3PEtJyJAI7bHvLXbe084rP_E3sOdxGocR-iFkZHsL8pr-wLBEMb1YdevIhxn0w-9eFgNJp9m-Hx48nZl69YOhbjfjUWfgN5aBUc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQwheEN9kDDAwHniw1sZOmjwgNAGlY92eNrG3zB8XrRJNurYD9k_xN3KXNBmliLcpL1FsObbvbP_sO_8OYDuJMHGJ1zK3OUqtOl4a42Pp8xhd2HWaXtjb4jAeHOsvJ9HJGvxq7sKwW2UzJ1YTtS8dn5Hv0MhMeyrWqX4_OZccNYqtq00IjVot9vHyB23ZZu_2PpJ834Rh_9PRh4FcRBWQLtLhXKKzuYtyejwa0m-jCLO4nOCbjbGDkbOR7zjbM_QtdbFNU2tpHbTaMJpHVFTuOtzQiurDN9P7n9szHWZbT7RuWFBVslNQE8YzwjjJ0rq3fsZel6uQdtUz8y_zbLXq9e_CnQVcFbu1ft2DNSzuw806gOXlA_h6YDzKeSkrBk8xRoLysg4U5UTe-H3NBCFjQX9yKJyZ2rIQflT-HHkUUxyXpOvCFF6Y0ZSSJ2zSeAjH19Kpj2CjKAt8AiJM-aA67zokrEZTkM1zpULbSWivRaWpAN42HZm5BY85h9P4llX2dJVkV50ewOs276Rm7_hnrlckjzYDE24PdocZf2N-fd7lfe8GsNWIK1sM81l2pZQBvGyTaYCy1cUUWF5wHsIJzCvWC-BxLd32V7T3jZmgMYDektyX6rKcUozOKhJwTdhZqziA7UZD_qjWShM3_1_7F3BrcHQwzIZ7h_tP4TaBQs3ucGG0BRvz6QU-I-A1t88rbRdwet3D6zeRsElo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qUBcEG8MBRYoBw6rJPb6dUBVoY1SWqIKUdGbu081ErFDkgL9a_y6zvhVQhC3KpfIu7LXOzO73-yMvwHYSkKb6MQI7pSzXAQ9w6U0ETcustrva4F_KNtiFA2PxceT8GQNfjffwlBaZbMmlgu1KTSdkXfRMtM4iEQquq5OizjaHWxPv3OqIEWR1qacRqUiB_biJ7pv83f7uyjrN74_2PvyYcjrCgNch8JfcKuV06HDn7ESdV0GiF-0QyinItuzoVah6WkVS7yW6kilqVK4JyohCdlbG-B912EjJq-oAxvv90ZHn9sTHuJeT4RoOFGDpJvjC03miHiSpV1w_YxyMFcB7mqe5l_B2nIPHNyB2zV4ZTuVtt2FNZvfgxtVOcuL-_D1kzSWLwpe8nmyiUVgz6uyUZq5JgtszhAnM3yStkzLmSpyZsbFr7GxbGYnBWo-k7lhcjzD5ikFOB7A8bVM60Po5EVuHwPzUzq2dn1tEbnhgqScCwJf9RL0vPBugQdvm4nMdM1qTsU1vmVldD1IsqtJ9-B123dacXn8s9crlEfbgei3hzuHGV0jtn3y-X70PdhsxJXVRj_PrlTUg5dtM5orxWBkbotz6oOogVjGYg8eVdJtH4WecER0jR7ES3JfGstySz4-KynBBSJpEUQebDUa8sewVl7xyf9H_wJuomllh_ujg6dwCxGioNw4P9yEzmJ2bp8hCluo57W6Mzi9bgu7BOHtTvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Made-to-order+metal-organic+frameworks+for+trace+carbon+dioxide+removal+and+air+capture&rft.jtitle=Nature+communications&rft.au=Shekhah%2C+Osama&rft.au=Belmabkhout%2C+Youssef&rft.au=Chen%2C+Zhijie&rft.au=Guillerm%2C+Vincent&rft.date=2014-06-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms5228&rft.externalDocID=10_1038_ncomms5228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |