Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?
Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4–16% of recently photosynthetically-fixed carbon to maintain their growth, activity and reserves. Rhizobia and AM fungi improve plant photosynthesis through N and P acquisition, but increased nutrient uptake by these symbionts doe...
Saved in:
Published in | Soil biology & biochemistry Vol. 41; no. 6; pp. 1233 - 1244 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.06.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4–16% of recently photosynthetically-fixed carbon to maintain their growth, activity and reserves. Rhizobia and AM fungi improve plant photosynthesis through N and P acquisition, but increased nutrient uptake by these symbionts does not fully explain observed increases in the rate of photosynthesis of symbiotic plants. In this paper, we test the hypothesis that carbon sink strength of rhizobial and AM symbioses stimulates the rates of photosynthesis. Nutrient-independent effects of rhizobial and AM symbioses result in direct compensation of C costs at the source. We calculated the response ratios of photosynthesis and nutrient mass fraction in the leaves of legumes inoculated with rhizobial and/or AM fungi relative to non-inoculated plants in a number of published studies. On average, photosynthetic rates were significantly increased by 28 and 14% due to rhizobial and AM symbioses, respectively, and 51% due to dual symbiosis. The leaf P mass fraction was increased significantly by 13% due to rhizobial symbioses. Although the increases were not significant, AM symbioses increased leaf P mass fraction by 6% and dual symbioses by 41%. The leaf N mass fraction was not significantly affected by any of the rhizobial, AM and dual symbioses. The rate of photosynthesis increased substantially more than the C costs of the rhizobial and AM symbioses. The inoculation of legumes with rhizobia and/or AM fungi, which resulted in sink stimulation of photosynthesis, improved the photosynthetic nutrient use efficiency and the proportion of seed yield in relation to the total plant biomass (harvest index). Sink stimulation represent an adaptation mechanism that allows legumes to take advantage of nutrient supply from their microsymbionts without compromising the total amount of photosynthates available for plant growth. |
---|---|
AbstractList | Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4–16% of recently photosynthetically-fixed carbon to maintain their growth, activity and reserves. Rhizobia and AM fungi improve plant photosynthesis through N and P acquisition, but increased nutrient uptake by these symbionts does not fully explain observed increases in the rate of photosynthesis of symbiotic plants. In this paper, we test the hypothesis that carbon sink strength of rhizobial and AM symbioses stimulates the rates of photosynthesis. Nutrient-independent effects of rhizobial and AM symbioses result in direct compensation of C costs at the source. We calculated the response ratios of photosynthesis and nutrient mass fraction in the leaves of legumes inoculated with rhizobial and/or AM fungi relative to non-inoculated plants in a number of published studies. On average, photosynthetic rates were significantly increased by 28 and 14% due to rhizobial and AM symbioses, respectively, and 51% due to dual symbiosis. The leaf P mass fraction was increased significantly by 13% due to rhizobial symbioses. Although the increases were not significant, AM symbioses increased leaf P mass fraction by 6% and dual symbioses by 41%. The leaf N mass fraction was not significantly affected by any of the rhizobial, AM and dual symbioses. The rate of photosynthesis increased substantially more than the C costs of the rhizobial and AM symbioses. The inoculation of legumes with rhizobia and/or AM fungi, which resulted in sink stimulation of photosynthesis, improved the photosynthetic nutrient use efficiency and the proportion of seed yield in relation to the total plant biomass (harvest index). Sink stimulation represent an adaptation mechanism that allows legumes to take advantage of nutrient supply from their microsymbionts without compromising the total amount of photosynthates available for plant growth. Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4-16% of recently photosynthetically-fixed carbon to maintain their growth, activity and reserves. Rhizobia and AM fungi improve plant photosynthesis through N and P acquisition, but increased nutrient uptake by these symbionts does not fully explain observed increases in the rate of photosynthesis of symbiotic plants. In this paper, we test the hypothesis that carbon sink strength of rhizobial and AM symbioses stimulates the rates of photosynthesis. Nutrient-independent effects of rhizobial and AM symbioses result in direct compensation of C costs at the source. We calculated the response ratios of photosynthesis and nutrient mass fraction in the leaves of legumes inoculated with rhizobial and/or AM fungi relative to non-inoculated plants in a number of published studies. On average, photosynthetic rates were significantly increased by 28 and 14% due to rhizobial and AM symbioses, respectively, and 51% due to dual symbiosis. The leaf P mass fraction was increased significantly by 13% due to rhizobial symbioses. Although the increases were not significant, AM symbioses increased leaf P mass fraction by 6% and dual symbioses by 41%. The leaf N mass fraction was not significantly affected by any of the rhizobial, AM and dual symbioses. The rate of photosynthesis increased substantially more than the C costs of the rhizobial and AM symbioses. The inoculation of legumes with rhizobia and/or AM fungi, which resulted in sink stimulation of photosynthesis, improved the photosynthetic nutrient use efficiency and the proportion of seed yield in relation to the total plant biomass (harvest index). Sink stimulation represent an adaptation mechanism that allows legumes to take advantage of nutrient supply from their microsymbionts without compromising the total amount of photosynthates available for plant growth. Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4¿16% of recently photosynthetically-fixed carbon to maintain their growth, activity and reserves. Rhizobia and AM fungi improve plant photosynthesis through N and P acquisition, but increased nutrient uptake by these symbionts does not fully explain observed increases in the rate of photosynthesis of symbiotic plants. In this paper, we test the hypothesis that carbon sink strength of rhizobial and AM symbioses stimulates the rates of photosynthesis. Nutrient-independent effects of rhizobial and AM symbioses result in direct compensation of C costs at the source. We calculated the response ratios of photosynthesis and nutrient mass fraction in the leaves of legumes inoculated with rhizobial and/or AM fungi relative to non-inoculated plants in a number of published studies. On average, photosynthetic rates were significantly increased by 28 and 14% due to rhizobial and AM symbioses, respectively, and 51% due to dual symbiosis. The leaf P mass fraction was increased significantly by 13% due to rhizobial symbioses. Although the increases were not significant, AM symbioses increased leaf P mass fraction by 6% and dual symbioses by 41%. The leaf N mass fraction was not significantly affected by any of the rhizobial, AM and dual symbioses. The rate of photosynthesis increased substantially more than the C costs of the rhizobial and AM symbioses. The inoculation of legumes with rhizobia and/or AM fungi, which resulted in sink stimulation of photosynthesis, improved the photosynthetic nutrient use efficiency and the proportion of seed yield in relation to the total plant biomass (harvest index). Sink stimulation represent an adaptation mechanism that allows legumes to take advantage of nutrient supply from their microsymbionts without compromising the total amount of photosynthates available for plant growth |
Author | Kaschuk, Glaciela Giller, Ken E. Leffelaar, Peter A. Kuyper, Thomas W. Hungria, Mariangela |
Author_xml | – sequence: 1 givenname: Glaciela surname: Kaschuk fullname: Kaschuk, Glaciela email: glaciela.kaschuk@gmail.com organization: Plant Production Systems Group, Wageningen University, Haarweg 333, PO Box 430, 6700 AK Wageningen, The Netherlands – sequence: 2 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. organization: Department of Soil Quality, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands – sequence: 3 givenname: Peter A. surname: Leffelaar fullname: Leffelaar, Peter A. organization: Plant Production Systems Group, Wageningen University, Haarweg 333, PO Box 430, 6700 AK Wageningen, The Netherlands – sequence: 4 givenname: Mariangela surname: Hungria fullname: Hungria, Mariangela organization: Embrapa-Soja, Caixa Postal 231, 86001-970 Londrina, PR Brazil – sequence: 5 givenname: Ken E. surname: Giller fullname: Giller, Ken E. organization: Plant Production Systems Group, Wageningen University, Haarweg 333, PO Box 430, 6700 AK Wageningen, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21614845$$DView record in Pascal Francis |
BookMark | eNqFkc1u1DAUhSNUJKaFR0BkA7sZru04P7Coqoo_qRILytqynZsZDxl78HWowtPjMGXDZja25Pt99pHPZXHhg8eieMlgw4DVb_cbCm40Lmw4QLcBsQGQT4oVa5tuLSreXhQrANGuoWHNs-KSaA8AXDKxKuabiGXaYRl1QirDUB53IQWafT4kRyUld5jGPOxLM_8lrY4m-JKc_5GnEf027RYx7tzvYJweS-37MkMT2WzG8jDbEJdpHtF8yEEJ6fp58XTQI-GLx_2quP_44f728_ru66cvtzd3aysrntbIddXVnEmtDRtkPSADw63EjrdQg6y07WXdN_XQWCGEgQaltKaRvW07g-KqeHe69kFv0TufF-V1tI5U0E6NzkQdZ_UwReXHZTtOhpRoGeM8y29O8jGGnxNSUgdHFsdRewwTqaoW-V95dxbkS1RoRAZfP4KarB6HqP0S5RjdYYnBWc2qtpKZe3_ibAxEEQdlXdLJBZ-idqNioJbu1V49dq-W7hUIlbvPtvzP_vfAOe_VyRt0UHobc7Lv3zgwkRXBO84ycX0iMFf2y2FUZB16i72LaJPqgzvzxh8C4tvG |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_3390_agronomy13082003 crossref_primary_10_1371_journal_pone_0115314 crossref_primary_10_1007_s11104_024_07106_7 crossref_primary_10_1016_j_apsoil_2019_02_028 crossref_primary_10_1007_s40333_014_0046_0 crossref_primary_10_1093_femsec_fiaa222 crossref_primary_10_1038_s41564_024_01762_2 crossref_primary_10_1007_s00572_013_0479_x crossref_primary_10_1146_annurev_arplant_102820_124504 crossref_primary_10_1007_s11104_009_0239_z crossref_primary_10_3389_fpls_2022_1047270 crossref_primary_10_1016_j_indcrop_2015_10_041 crossref_primary_10_3389_fpls_2023_1150900 crossref_primary_10_1007_s10705_012_9542_9 crossref_primary_10_1007_s00374_013_0804_8 crossref_primary_10_3389_fpls_2016_01084 crossref_primary_10_3390_jof8111224 crossref_primary_10_1007_s10905_023_09833_8 crossref_primary_10_1007_s00572_014_0595_2 crossref_primary_10_1038_s41598_025_92024_6 crossref_primary_10_1371_journal_pone_0154116 crossref_primary_10_3390_plants13030370 crossref_primary_10_1016_j_plantsci_2014_01_009 crossref_primary_10_1086_696686 crossref_primary_10_3389_fpls_2016_01520 crossref_primary_10_1371_journal_pone_0057593 crossref_primary_10_1016_j_ecolmodel_2012_10_012 crossref_primary_10_5424_sjar_2021194_17120 crossref_primary_10_1007_s00572_022_01077_2 crossref_primary_10_1007_s11099_017_0662_y crossref_primary_10_1016_j_apsoil_2019_05_009 crossref_primary_10_1086_675859 crossref_primary_10_1111_plb_13123 crossref_primary_10_1002_jsfa_5618 crossref_primary_10_1016_j_jplph_2014_01_003 crossref_primary_10_1007_s11356_016_8287_4 crossref_primary_10_1007_s11104_019_04399_x crossref_primary_10_1093_jpe_rtae014 crossref_primary_10_3389_ffgc_2020_501757 crossref_primary_10_3389_fpls_2016_00782 crossref_primary_10_1002_agj2_20090 crossref_primary_10_1007_s00572_011_0396_9 crossref_primary_10_1016_j_foodchem_2011_01_135 crossref_primary_10_3390_agronomy12051095 crossref_primary_10_1093_jxb_erz318 crossref_primary_10_3390_microorganisms13030581 crossref_primary_10_1007_s13199_017_0520_5 crossref_primary_10_3390_ijms21207542 crossref_primary_10_1016_j_scitotenv_2017_03_066 crossref_primary_10_1080_11263504_2020_1810802 crossref_primary_10_1111_nph_19501 crossref_primary_10_1002_ece3_4892 crossref_primary_10_1038_srep34336 crossref_primary_10_1007_s13199_011_0145_z crossref_primary_10_1016_j_actao_2015_12_011 crossref_primary_10_1111_pce_12902 crossref_primary_10_1111_plb_12285 crossref_primary_10_1111_ppl_13729 crossref_primary_10_1007_s10457_019_00473_6 crossref_primary_10_1016_j_jplph_2014_04_005 crossref_primary_10_3732_ajb_1500007 crossref_primary_10_1016_j_jplph_2015_06_015 crossref_primary_10_1016_j_foodchem_2013_06_045 crossref_primary_10_1016_j_funeco_2019_100877 crossref_primary_10_1111_oik_08827 crossref_primary_10_3389_fpls_2021_636709 crossref_primary_10_1007_s00468_014_1046_6 crossref_primary_10_1007_s00572_018_00878_8 crossref_primary_10_1111_ppl_13857 crossref_primary_10_1007_s11829_021_09868_8 crossref_primary_10_17660_ActaHortic_2020_1271_50 crossref_primary_10_1186_1471_2164_15_221 crossref_primary_10_1111_1365_2435_14648 crossref_primary_10_5194_gmd_15_815_2022 crossref_primary_10_3390_plants10112242 crossref_primary_10_1080_10412905_2016_1216469 crossref_primary_10_1007_s11099_016_0243_5 crossref_primary_10_3389_fpls_2023_1218594 crossref_primary_10_1007_s11104_018_3627_4 crossref_primary_10_14720_aas_2018_111_2_06 crossref_primary_10_1016_j_rhisph_2021_100394 crossref_primary_10_1016_j_stress_2022_100104 crossref_primary_10_1111_jvs_12651 crossref_primary_10_1007_s10725_013_9798_3 crossref_primary_10_1016_j_cj_2014_08_002 crossref_primary_10_1007_s11104_018_3638_1 crossref_primary_10_1111_j_1438_8677_2009_00211_x crossref_primary_10_1016_j_plaphy_2014_06_002 crossref_primary_10_1007_s00425_012_1645_7 crossref_primary_10_1080_02571862_2017_1331382 crossref_primary_10_1016_j_fcr_2011_07_014 crossref_primary_10_54167_tch_v11i2_157 crossref_primary_10_1007_s11104_016_2942_x crossref_primary_10_1590_S0103_90162014000300002 crossref_primary_10_1016_j_chemosphere_2015_04_023 crossref_primary_10_1094_MPMI_05_14_0126_R crossref_primary_10_3390_plants11223105 crossref_primary_10_1007_s00344_020_10116_1 crossref_primary_10_3390_microorganisms9091843 crossref_primary_10_1007_s11368_012_0492_2 crossref_primary_10_1007_s00442_012_2258_3 crossref_primary_10_1007_s10725_023_01092_z crossref_primary_10_3389_fpls_2014_00680 crossref_primary_10_1007_s10886_012_0134_6 crossref_primary_10_1071_FP21238 crossref_primary_10_1094_PBIOMES_11_22_0077_R crossref_primary_10_1111_pce_12577 crossref_primary_10_3390_plants10112506 crossref_primary_10_1007_s42452_022_05138_1 crossref_primary_10_1071_BT13264 crossref_primary_10_1111_nph_12138 crossref_primary_10_1007_s11738_021_03321_2 crossref_primary_10_15407_ukrbotj75_05_480 crossref_primary_10_1016_j_plaphy_2023_108039 crossref_primary_10_1016_j_envexpbot_2023_105486 crossref_primary_10_1080_17550874_2011_644343 crossref_primary_10_1890_12_0782_1 crossref_primary_10_1007_s00572_015_0653_4 crossref_primary_10_1029_2022EF003142 crossref_primary_10_1111_j_1744_7429_2011_00781_x crossref_primary_10_1186_s13213_022_01668_6 crossref_primary_10_1007_s00572_020_00937_z crossref_primary_10_3390_agronomy12102332 crossref_primary_10_3390_ijms21124201 crossref_primary_10_1111_1755_0998_13695 crossref_primary_10_2134_age2019_03_0016 crossref_primary_10_1071_CP20030 crossref_primary_10_1111_nph_70087 crossref_primary_10_1007_s00572_016_0731_2 crossref_primary_10_1016_j_envexpbot_2024_106041 crossref_primary_10_1016_j_soilbio_2024_109414 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_3389_fpls_2021_780454 crossref_primary_10_1111_pce_14643 crossref_primary_10_1111_ppl_14336 crossref_primary_10_2139_ssrn_4116014 crossref_primary_10_1016_j_scitotenv_2016_10_091 crossref_primary_10_1007_s10705_015_9743_0 crossref_primary_10_1038_s41396_020_0648_9 crossref_primary_10_1590_01047760201521031335 crossref_primary_10_1093_jpe_rtaa098 crossref_primary_10_3390_su16208986 crossref_primary_10_1094_PBIOMES_01_20_0009_FI crossref_primary_10_1111_eva_13333 crossref_primary_10_1093_treephys_tps007 crossref_primary_10_1007_s00572_018_0872_6 crossref_primary_10_3389_fpls_2021_656961 crossref_primary_10_3390_plants13162266 crossref_primary_10_1016_j_soilbio_2009_10_017 crossref_primary_10_3389_fpls_2018_01631 crossref_primary_10_1111_1365_2745_13044 crossref_primary_10_1111_ppl_12847 crossref_primary_10_3389_fsufs_2020_534187 crossref_primary_10_1007_s42729_024_01823_9 crossref_primary_10_14720_aas_2017_109_1_02 crossref_primary_10_1016_j_jplph_2015_07_006 crossref_primary_10_3390_microorganisms9061203 crossref_primary_10_1093_treephys_tpaa129 crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1016_j_rhisph_2022_100537 crossref_primary_10_1016_j_apsoil_2012_05_006 crossref_primary_10_1016_j_scitotenv_2024_174860 crossref_primary_10_1007_s11104_022_05390_9 crossref_primary_10_1016_j_ecochg_2021_100013 crossref_primary_10_1007_s00572_019_00914_1 crossref_primary_10_1016_j_fcr_2018_04_001 crossref_primary_10_1016_j_fcr_2022_108586 crossref_primary_10_3390_jof7060458 crossref_primary_10_1007_s00572_020_00953_z crossref_primary_10_1016_j_indcrop_2020_113163 crossref_primary_10_1111_j_1469_8137_2009_03110_x crossref_primary_10_21931_RB_CSS_2023_08_04_69 crossref_primary_10_1007_s42729_022_00805_z crossref_primary_10_3390_plants12193421 crossref_primary_10_1007_s00572_014_0585_4 crossref_primary_10_1038_srep13345 crossref_primary_10_17660_ActaHortic_2018_1208_42 crossref_primary_10_3389_fpls_2022_875958 crossref_primary_10_1155_2014_956141 crossref_primary_10_1007_s11738_015_1781_3 crossref_primary_10_1139_cjb_2013_0182 crossref_primary_10_1371_journal_pone_0241057 crossref_primary_10_4236_as_2017_811094 crossref_primary_10_1111_jac_70024 crossref_primary_10_1093_jxb_erab489 crossref_primary_10_1007_s00299_023_03138_y crossref_primary_10_3390_plants12091828 crossref_primary_10_1080_03650340_2017_1287353 crossref_primary_10_1038_s41598_018_35672_1 crossref_primary_10_1007_s00572_020_01003_4 crossref_primary_10_1080_17550874_2014_992488 crossref_primary_10_1016_j_jplph_2018_11_027 crossref_primary_10_1016_j_soilbio_2010_11_002 crossref_primary_10_1016_j_plaphy_2024_108999 crossref_primary_10_1080_01904167_2020_1738463 crossref_primary_10_3389_fpls_2015_00065 crossref_primary_10_1007_s13199_024_01009_y crossref_primary_10_1177_00307270221076530 crossref_primary_10_3389_fmicb_2017_02516 crossref_primary_10_1016_j_envexpbot_2019_01_013 crossref_primary_10_32615_ps_2020_039 crossref_primary_10_1007_s11258_020_01010_7 crossref_primary_10_3389_fpls_2021_661842 crossref_primary_10_1007_s11104_012_1406_1 crossref_primary_10_1007_s00374_010_0477_5 crossref_primary_10_1080_17429145_2020_1802524 crossref_primary_10_1111_1365_2435_13499 crossref_primary_10_1016_j_plaphy_2019_09_022 crossref_primary_10_3389_fpls_2016_01901 crossref_primary_10_1016_j_jplph_2010_11_026 crossref_primary_10_5194_gmd_17_7889_2024 crossref_primary_10_1080_00103624_2021_1879117 crossref_primary_10_3390_ijms222313086 crossref_primary_10_7717_peerj_7495 crossref_primary_10_1016_j_jplph_2011_01_026 crossref_primary_10_1007_s40626_020_00185_8 crossref_primary_10_1016_j_jplph_2014_07_017 crossref_primary_10_1016_j_jarmap_2023_100515 crossref_primary_10_1093_jpe_rtw015 crossref_primary_10_3390_horticulturae6030045 crossref_primary_10_1007_s42770_022_00800_7 crossref_primary_10_18699_VJ20_625 crossref_primary_10_1007_s00203_020_01915_x crossref_primary_10_1007_s00572_015_0627_6 crossref_primary_10_1016_j_jplph_2009_11_010 crossref_primary_10_1186_s13568_018_0587_2 crossref_primary_10_7732_kjpr_2016_29_6_704 crossref_primary_10_1007_s00572_017_0765_0 crossref_primary_10_1016_j_plaphy_2020_09_011 crossref_primary_10_1111_pce_15341 crossref_primary_10_1038_s41598_018_36324_0 crossref_primary_10_1093_treephys_tpx105 crossref_primary_10_1186_s40538_019_0150_7 crossref_primary_10_1007_s11104_012_1421_2 crossref_primary_10_1007_s00442_017_3888_2 crossref_primary_10_1007_s13199_016_0408_9 crossref_primary_10_1007_s42729_022_00802_2 crossref_primary_10_1007_s11104_016_3004_0 crossref_primary_10_1007_s00425_016_2491_9 crossref_primary_10_29133_yyutbd_1409442 crossref_primary_10_3389_fsufs_2020_604396 crossref_primary_10_1007_s13593_011_0056_7 crossref_primary_10_1007_s12011_024_04410_2 crossref_primary_10_1007_s00572_020_00955_x crossref_primary_10_1007_s40789_021_00408_6 crossref_primary_10_1016_j_jplph_2013_09_001 crossref_primary_10_3390_plants5020020 crossref_primary_10_1111_maec_12618 crossref_primary_10_1016_j_fcr_2022_108541 crossref_primary_10_1007_s00572_019_00883_5 crossref_primary_10_1093_jxb_eraa198 crossref_primary_10_5194_bg_21_381_2024 crossref_primary_10_3389_fpls_2016_00623 crossref_primary_10_3390_plants11141847 crossref_primary_10_1080_01904167_2019_1655048 crossref_primary_10_1002_ajb2_1038 crossref_primary_10_1071_CP23252 crossref_primary_10_1007_s11099_015_0144_z crossref_primary_10_1111_nph_15806 crossref_primary_10_1002_ecy_3489 crossref_primary_10_1016_j_indcrop_2022_115557 crossref_primary_10_1080_03650340_2019_1600674 crossref_primary_10_1111_pce_14478 crossref_primary_10_15446_agron_colomb_v34n2_55569 crossref_primary_10_1007_s10343_018_0420_5 crossref_primary_10_1080_00103624_2024_2323082 crossref_primary_10_1016_j_jprot_2016_01_006 crossref_primary_10_1016_j_envexpbot_2013_10_010 crossref_primary_10_1007_s42770_019_00148_5 crossref_primary_10_1111_nph_13172 crossref_primary_10_1007_s11099_014_0031_z crossref_primary_10_1111_1365_2435_14549 crossref_primary_10_1016_j_envexpbot_2022_104810 crossref_primary_10_15407_frg2022_06_498 crossref_primary_10_1007_s10725_021_00764_y crossref_primary_10_1111_nph_20145 crossref_primary_10_1007_s11104_017_3350_6 crossref_primary_10_1016_j_apsoil_2017_12_003 crossref_primary_10_3390_microorganisms10010075 crossref_primary_10_1016_j_plantsci_2016_12_010 crossref_primary_10_1016_j_pbi_2015_06_009 crossref_primary_10_1007_s00284_022_02852_2 crossref_primary_10_1007_s00572_011_0371_5 crossref_primary_10_1111_plb_12599 crossref_primary_10_1016_j_scitotenv_2016_05_178 crossref_primary_10_3390_plants8090333 crossref_primary_10_1016_j_apsoil_2021_104352 crossref_primary_10_17660_ActaHortic_2018_1207_10 crossref_primary_10_3389_fpls_2019_01316 crossref_primary_10_2134_agronj14_0234 crossref_primary_10_1016_j_jenvman_2019_109330 crossref_primary_10_1007_s00572_011_0369_z crossref_primary_10_3390_agronomy9030127 crossref_primary_10_32615_ps_2019_001 crossref_primary_10_1111_pce_13359 crossref_primary_10_1016_j_tree_2020_01_006 crossref_primary_10_1016_j_envexpbot_2017_05_015 crossref_primary_10_1111_pce_13485 crossref_primary_10_3390_microorganisms12071281 crossref_primary_10_2139_ssrn_4869493 crossref_primary_10_1016_j_plaphy_2020_12_021 crossref_primary_10_2134_agronj2017_11_0670 crossref_primary_10_1111_grs_12057 crossref_primary_10_1080_17429145_2013_779035 crossref_primary_10_3390_agronomy13082058 crossref_primary_10_1007_s00248_022_02160_z crossref_primary_10_48130_CAS_2021_0009 crossref_primary_10_1111_ele_12335 crossref_primary_10_1111_j_1365_2745_2010_01755_x crossref_primary_10_1002_ecs2_1929 crossref_primary_10_1038_s41598_021_94092_w crossref_primary_10_1093_jas_skx060 crossref_primary_10_3390_agronomy13092416 crossref_primary_10_1038_s41598_021_84284_9 crossref_primary_10_1111_nph_18281 crossref_primary_10_3390_agronomy13051332 crossref_primary_10_3390_agronomy10010071 crossref_primary_10_1007_s11104_018_3606_9 crossref_primary_10_1017_S0021859618000023 crossref_primary_10_1016_j_envpol_2011_07_008 crossref_primary_10_1038_s41598_018_35972_6 crossref_primary_10_1111_j_1600_0706_2011_19406_x crossref_primary_10_1002_ece3_2207 crossref_primary_10_1093_aob_mcae060 crossref_primary_10_1002_ajb2_1294 crossref_primary_10_1016_j_fcr_2024_109638 crossref_primary_10_1007_s11104_016_2792_6 crossref_primary_10_3389_fpls_2017_00390 crossref_primary_10_1111_nph_17519 crossref_primary_10_1007_s10265_019_01117_7 crossref_primary_10_1016_j_envexpbot_2011_10_002 crossref_primary_10_3390_ijms22010318 crossref_primary_10_1002_ldr_4274 crossref_primary_10_3390_agronomy5030291 |
Cites_doi | 10.1007/BF02374726 10.1016/0022-5193(74)90119-2 10.1007/BF00257827 10.1093/jxb/34.8.951 10.1017/S0953756298007175 10.1111/j.1399-3054.1988.tb06373.x 10.1007/BF00369413 10.1093/aob/mch135 10.1128/AEM.65.12.5604-5606.1999 10.1111/j.1469-8137.2005.01532.x 10.1111/j.1365-3040.2004.01224.x 10.1016/S0038-0717(00)00086-9 10.1093/jxb/erg290 10.2135/cropsci1974.0011183X001400010004x 10.1055/s-2001-15201 10.1093/jexbot/52.358.1083 10.1017/S0953756299001410 10.1007/BF00386231 10.1093/jxb/erg052 10.1007/BF01972076 10.1007/BF02372515 10.1078/1433-8319-00054 10.1038/nature01527 10.1023/B:RUPP.0000047822.66925.bf 10.1046/j.0016-8025.2001.00788.x 10.1104/pp.70.4.1178 10.1111/j.1365-3040.1995.tb00562.x 10.4141/cjss80-027 10.1007/BF00012053 10.1093/jxb/31.5.1327 10.1104/pp.72.3.701 10.1111/j.1469-8137.1978.tb02272.x 10.1046/j.1439-037X.2003.00046.x 10.1104/pp.61.3.394 10.1007/BF02861058 10.1111/j.1469-8137.1991.tb00994.x 10.1104/pp.99.4.1443 10.1104/pp.87.1.46 10.4141/P03-182 10.1126/science.199.4332.973 10.1111/j.1469-8137.1982.tb04486.x 10.1007/BF02184267 10.1046/j.1365-3040.1998.00280.x 10.1093/jxb/46.special_issue.1317 10.1016/S0038-0717(01)00165-1 10.1016/0038-0717(82)90013-X 10.1104/pp.85.1.120 10.1007/BF00035838 10.1104/pp.101.3.1063 10.1007/BF00377192 10.1016/0038-0717(84)90043-9 10.1007/s00572-006-0093-2 10.1046/j.1365-3040.2000.00598.x 10.1111/j.1469-8137.1978.tb01589.x 10.1080/11263500701626069 10.2134/agronj1987.00021962007900010035x 10.1093/jexbot/52.360.1383 10.1046/j.0028-646X.2001.00316.x 10.1104/pp.86.4.1292 10.2134/agronj2005.0093 10.1016/j.soilbio.2007.11.014 10.1139/m83-149 10.1093/jxb/erg193 10.1104/pp.104.056317 10.1007/s00374-003-0605-6 10.1046/j.1365-3040.1998.00351.x 10.1080/00275514.1984.12023946 10.1093/jxb/35.6.774 10.1034/j.1399-3054.2002.1160416.x 10.1111/j.1399-3054.1985.tb02396.x 10.1111/j.1365-3040.1981.tb00831.x 10.1126/science.213.4506.473 10.1104/pp.64.6.1083 10.1016/0038-0717(82)90014-1 10.1007/S11099-005-0010-5 10.1104/pp.103.024380 10.1111/j.1469-8137.1980.tb03184.x 10.1111/j.1469-8137.2005.01500.x 10.1016/0038-0717(94)90263-1 10.1093/jxb/30.1.135 10.1094/Phyto-61-1400 10.1002/jpln.200320358 10.1093/jxb/35.8.1156 10.1016/j.agee.2006.03.011 10.1104/pp.009639 10.1111/j.1365-3040.1992.tb00974.x 10.1111/j.1469-8137.1996.tb01862.x 10.1093/jxb/30.1.145 10.1104/pp.60.3.419 10.1111/j.1469-8137.1985.tb02849.x 10.1093/jxb/24.2.259 10.1111/j.1365-3040.1993.tb00854.x 10.1104/pp.73.3.681 10.1111/j.1469-8137.2006.01785.x 10.1016/0038-0717(77)90055-4 10.1104/pp.102.007765 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2009 INIST-CNRS Wageningen University & Research |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2009 INIST-CNRS – notice: Wageningen University & Research |
DBID | FBQ AAYXX CITATION IQODW 7QL 7SN C1K M7N 7S9 L.6 QVL |
DOI | 10.1016/j.soilbio.2009.03.005 |
DatabaseName | AGRIS CrossRef Pascal-Francis Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environmental Sciences and Pollution Management Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Ecology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 1244 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_381122 21614845 10_1016_j_soilbio_2009_03_005 US201301632921 S0038071709000935 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QL 7SN C1K M7N 7S9 L.6 02 08R 0R 1 8P AAPBV ADALY AFRUD G- HZ K KM M QVL UNR X |
ID | FETCH-LOGICAL-c542t-e2a496215aab1f56fe10b2c5e92806054acd56d76f7c333b07e55cb75dc89be3 |
IEDL.DBID | AIKHN |
ISSN | 0038-0717 |
IngestDate | Tue Jan 05 18:03:07 EST 2021 Fri Jul 11 01:23:53 EDT 2025 Thu Jul 10 23:31:06 EDT 2025 Mon Jul 21 09:17:49 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 03:19:40 EDT 2025 Wed Dec 27 19:21:40 EST 2023 Fri Feb 23 02:27:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Harvest index Photosynthetic nutrient use efficiency P i recycling Sucrose Starch Source-sink regulation Sink stimulation of photosynthesis Legume Symbiosis Legumes Nutrient recovery Stimulation Source sink relationship Symbiont Carbon sequestration Carbon cycle P Endomycorrhiza Mycorrhiza Bacteria Soil science Recycling Rhizobiaceae Photosynthesis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-e2a496215aab1f56fe10b2c5e92806054acd56d76f7c333b07e55cb75dc89be3 |
Notes | http://dx.doi.org/10.1016/j.soilbio.2009.03.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 20605073 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_381122 proquest_miscellaneous_46303829 proquest_miscellaneous_20605073 pascalfrancis_primary_21614845 crossref_citationtrail_10_1016_j_soilbio_2009_03_005 crossref_primary_10_1016_j_soilbio_2009_03_005 fao_agris_US201301632921 elsevier_sciencedirect_doi_10_1016_j_soilbio_2009_03_005 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Azcón-Bieto (bib3) 1983; 73 Solaiman, Ezawa, Kojima, Saito (bib99) 1999; 65 Kuo, Huang (bib56) 1982; 64 Minchin, Pate (bib63) 1973; 24 Pang, Paul (bib76) 1980; 60 Witty, Minchin, Sheehy (bib105) 1983; 34 Bethlenfalvay, Brown, Pacovsky (bib6) 1982; 90 Abu-Shakra, Phillips, Huffaker (bib1) 1978; 199 Pacovsky, Fuller (bib75) 1988; 72 Khaliq, Sanders (bib51) 2000; 32 Ross (bib87) 1971; 61 Dingkuhn, Luquet, Clément-Vidal, Tambour, Kim, Song (bib22) 2007 Senaratne, Ratnasinghe (bib94) 1993; 16 Paul, Peliny (bib82) 2003; 54 Callow, Capaccio, Parish, Tinker (bib18) 1978; 80 Olsson, van Aarle, Allaway, Ashford, Rouhier (bib72) 2002; 130 von Caemmerer (bib102) 2000 Brown, Bethlenfalvay (bib13) 1988; 86 Xavier, Germida (bib109) 2002; 34 Fitter (bib27) 1991; 47 Bittman, Kowalenko, Hunt, Forge, Wu (bib9) 2006; 98 Lodwig, Hosie, Bourdès, Findlay, Allaway, Karunakaran, Downie, Poole (bib59) 2003; 422 Sivaprasad, Rai (bib96) 1985; 54 Bolan, Robson, Barrow (bib11) 1984; 16 Grant, Bittman, Montreal, Plenchette, Morel (bib32) 2005; 85 Yin, van Oijen, Schapendonk (bib111) 2004; 27 Olsson, Burleigh, van Aarle (bib70) 2005; 168 Parsons, Stanforth, Raven, Sprent (bib77) 1993; 16 Wright, Franke-Snyder, Morton, Upadhyaya (bib108) 1996; 181 Hepper (bib39) 1977; 9 Sharkey (bib95) 1985; 51 King, Purcell (bib52) 2005; 137 Frey, Vilariño, Schüepp, Arines (bib30) 1994; 26 Smith, Smith, Jakobsen (bib98) 2003; 133 Kucey, Paul (bib54) 1982; 14 Menge, Steirle, Bagyaraj, Johnson, Leonard (bib62) 1978; 80 Ryle, Powell, Gordon (bib91) 1979; 114 Grimoldi, Kavanova, Lattanzi, Schnyder (bib33) 2005; 168 Rao, Luthra, Sheoran, Singh (bib86) 1984; 35 Hikosaka, Terashima (bib41) 1995; 18 Iglesias, Lliso, Tadeo, Talon (bib45) 2002; 116 Goldschmidt, Huber (bib31) 1992; 99 Atkins (bib2) 1984; 82 de Groot, Marcelis, van der Boogaard, Lambers (bib20) 2001; 24 Minchin, Summerfield, Neves (bib65) 1980; 31 Ostonen, Püttsepp, Biel, Alberton, Bakker, Lõhmus, Majdi, Metcalfe, Olsthoorn, Pronk, Vanguelova, Weih, Brunner (bib74) 2007; 141 Mortimer, Pérez-Fernández, Valentine (bib68) 2008; 40 Forrester (bib29) 1961 Warembourg (bib103) 1983; 29 Mondal, Brun, Brenner (bib67) 1978; 61 Bécard, Doner, Rolin, Douds, Pfeffer (bib5) 1991; 118 Bukhov (bib15) 2004; 51 de Groot, van den Boogaard, Marcelis, Harbinson, Lambers (bib21) 2003; 54 Jia, Gray (bib47) 2004; 42 Smith, Read (bib97) 2008 Voisin, Salon, Jeudy, Warembourg (bib101) 2003; 54 Valentine, Kleinert (bib100) 2007; 17 Pieters, Paul, Lawlor (bib85) 2001; 52 Lambers, Chapin, Pons (bib57) 1998 Ono, Nishi, Watanabe, Terashima (bib73) 2001; 3 Cakmak, Engels (bib17) 1999 Bethlenfalvay, Pacovsky, Brown, Fuller (bib7) 1982; 68 Cardoso, Kuyper (bib19) 2006; 116 Bryla, Eissenstat (bib14) 2005 Jia, Gray, Straker (bib48) 2004; 94 Penning de Vries, Brunsting, van Laar (bib84) 1974; 45 Rychter, Rao (bib88) 2005 Yin, van Laar (bib112) 2005 Flügge (bib28) 1995; 46 Sawada, Usuda, Tsukui (bib92) 1992; 33 Farquhar, von Caemmerer, Berry (bib24) 1980; 149 Olsson, Johansen (bib71) 2000; 104 Black, Mitchell, Osborne (bib10) 2000; 23 Xavier, Germida (bib110) 2003; 37 Minchin, Summerfield, Hadley, Roberts, Rawsthorne (bib64) 1981; 4 Pate, Layzell, Atkins (bib78) 1979; 64 Hungria, Neves (bib43) 1986; 21 Jabaji-Hare, Deschene, Kendrick (bib46) 1984; 76 Herold (bib40) 1980; 86 Nelson, Cox (bib69) 2004 Minchin, Witty (bib66) 2005 Kantar, Elkoca, Öğütcü, Algur (bib50) 2003; 189 Ryle, Arnott, Powell, Gordon (bib89) 1984; 35 Kucey, Paul (bib55) 1982; 14 Peng, Eissenstat, Graham, Williams, Hodge (bib83) 1993; 101 Ryle, Powell, Gordon (bib90) 1979; 30 Schulze (bib93) 2004; 167 Harris, Pacovsky, Paul (bib37) 1985; 101 Fay, Mitchell, Osborne (bib25) 1996; 132 Evans (bib23) 1989; 78 Harley, Thomas, Reynolds, Strain (bib36) 1992; 15 Warembourg, Fernandez (bib104) 1985; 65 Johnson, Leake, Ostle, Ineson, Read (bib49) 2002; 153 Bütehorn, Gianinazzi-Pearson, Franken (bib16) 1999; 3 Koide, Elliot (bib53) 1989; 3 Zapata, Danso, Hardarson, Fried (bib113) 1987; 79 Lawn, Brun (bib58) 1974; 14 Patterson, LaRue (bib79) 1983; 72 Wright, Read, Scholes (bib106) 1998; 21 Hartwig (bib38) 1998; 1 Hungria, Neves, Doberëiner (bib44) 1989; 7 McCormick, Cramer, Watt (bib61) 2006; 171 Wright, Scholes, Read (bib107) 1998; 21 Bethlenfalvay, Phillips (bib8) 1977; 60 Mächler, Oberson, Grub, Nösberger (bib60) 1988; 87 Bago, Pfeffer, Abubaker, Jun, Allen, Brouillette, Douds, Lammers, Shachar-Hill (bib4) 2003; 131 Finke, Harper, Hageman (bib26) 1982; 70 Harley, Sharkey (bib35) 1991; 27 Paul, Kucey (bib80) 1981; 213 Paul, Foyer (bib81) 2001; 52 Gurevitch, Hedges (bib34) 2001 Hungria, Franchini, Campo, Graham (bib42) 2005 Brown, Bethlenfalvay (bib12) 1987; 85 Goldschmidt (10.1016/j.soilbio.2009.03.005_bib31) 1992; 99 Hikosaka (10.1016/j.soilbio.2009.03.005_bib41) 1995; 18 Wright (10.1016/j.soilbio.2009.03.005_bib106) 1998; 21 Iglesias (10.1016/j.soilbio.2009.03.005_bib45) 2002; 116 Parsons (10.1016/j.soilbio.2009.03.005_bib77) 1993; 16 Smith (10.1016/j.soilbio.2009.03.005_bib97) 2008 Olsson (10.1016/j.soilbio.2009.03.005_bib72) 2002; 130 Bittman (10.1016/j.soilbio.2009.03.005_bib9) 2006; 98 Brown (10.1016/j.soilbio.2009.03.005_bib12) 1987; 85 Ono (10.1016/j.soilbio.2009.03.005_bib73) 2001; 3 Paul (10.1016/j.soilbio.2009.03.005_bib81) 2001; 52 Fitter (10.1016/j.soilbio.2009.03.005_bib27) 1991; 47 Bethlenfalvay (10.1016/j.soilbio.2009.03.005_bib6) 1982; 90 Hartwig (10.1016/j.soilbio.2009.03.005_bib38) 1998; 1 Penning de Vries (10.1016/j.soilbio.2009.03.005_bib84) 1974; 45 Farquhar (10.1016/j.soilbio.2009.03.005_bib24) 1980; 149 Sharkey (10.1016/j.soilbio.2009.03.005_bib95) 1985; 51 Wright (10.1016/j.soilbio.2009.03.005_bib108) 1996; 181 Rychter (10.1016/j.soilbio.2009.03.005_bib88) 2005 Hungria (10.1016/j.soilbio.2009.03.005_bib42) 2005 Minchin (10.1016/j.soilbio.2009.03.005_bib66) 2005 Pang (10.1016/j.soilbio.2009.03.005_bib76) 1980; 60 Dingkuhn (10.1016/j.soilbio.2009.03.005_bib22) 2007 Mortimer (10.1016/j.soilbio.2009.03.005_bib68) 2008; 40 Johnson (10.1016/j.soilbio.2009.03.005_bib49) 2002; 153 King (10.1016/j.soilbio.2009.03.005_bib52) 2005; 137 Jia (10.1016/j.soilbio.2009.03.005_bib48) 2004; 94 Voisin (10.1016/j.soilbio.2009.03.005_bib101) 2003; 54 Valentine (10.1016/j.soilbio.2009.03.005_bib100) 2007; 17 Jia (10.1016/j.soilbio.2009.03.005_bib47) 2004; 42 Bago (10.1016/j.soilbio.2009.03.005_bib4) 2003; 131 Minchin (10.1016/j.soilbio.2009.03.005_bib64) 1981; 4 Minchin (10.1016/j.soilbio.2009.03.005_bib65) 1980; 31 Atkins (10.1016/j.soilbio.2009.03.005_bib2) 1984; 82 Abu-Shakra (10.1016/j.soilbio.2009.03.005_bib1) 1978; 199 Paul (10.1016/j.soilbio.2009.03.005_bib80) 1981; 213 Paul (10.1016/j.soilbio.2009.03.005_bib82) 2003; 54 Ryle (10.1016/j.soilbio.2009.03.005_bib89) 1984; 35 Hungria (10.1016/j.soilbio.2009.03.005_bib44) 1989; 7 Wright (10.1016/j.soilbio.2009.03.005_bib107) 1998; 21 Yin (10.1016/j.soilbio.2009.03.005_bib111) 2004; 27 Bütehorn (10.1016/j.soilbio.2009.03.005_bib16) 1999; 3 de Groot (10.1016/j.soilbio.2009.03.005_bib21) 2003; 54 Finke (10.1016/j.soilbio.2009.03.005_bib26) 1982; 70 Bolan (10.1016/j.soilbio.2009.03.005_bib11) 1984; 16 Mondal (10.1016/j.soilbio.2009.03.005_bib67) 1978; 61 Senaratne (10.1016/j.soilbio.2009.03.005_bib94) 1993; 16 Peng (10.1016/j.soilbio.2009.03.005_bib83) 1993; 101 Harris (10.1016/j.soilbio.2009.03.005_bib37) 1985; 101 Rao (10.1016/j.soilbio.2009.03.005_bib86) 1984; 35 Lawn (10.1016/j.soilbio.2009.03.005_bib58) 1974; 14 Olsson (10.1016/j.soilbio.2009.03.005_bib71) 2000; 104 Mächler (10.1016/j.soilbio.2009.03.005_bib60) 1988; 87 Warembourg (10.1016/j.soilbio.2009.03.005_bib104) 1985; 65 Menge (10.1016/j.soilbio.2009.03.005_bib62) 1978; 80 Pieters (10.1016/j.soilbio.2009.03.005_bib85) 2001; 52 Ostonen (10.1016/j.soilbio.2009.03.005_bib74) 2007; 141 Sawada (10.1016/j.soilbio.2009.03.005_bib92) 1992; 33 Evans (10.1016/j.soilbio.2009.03.005_bib23) 1989; 78 Pacovsky (10.1016/j.soilbio.2009.03.005_bib75) 1988; 72 de Groot (10.1016/j.soilbio.2009.03.005_bib20) 2001; 24 Kucey (10.1016/j.soilbio.2009.03.005_bib55) 1982; 14 Bukhov (10.1016/j.soilbio.2009.03.005_bib15) 2004; 51 Bethlenfalvay (10.1016/j.soilbio.2009.03.005_bib8) 1977; 60 Harley (10.1016/j.soilbio.2009.03.005_bib35) 1991; 27 Yin (10.1016/j.soilbio.2009.03.005_bib112) 2005 Frey (10.1016/j.soilbio.2009.03.005_bib30) 1994; 26 Witty (10.1016/j.soilbio.2009.03.005_bib105) 1983; 34 Nelson (10.1016/j.soilbio.2009.03.005_bib69) 2004 Patterson (10.1016/j.soilbio.2009.03.005_bib79) 1983; 72 Xavier (10.1016/j.soilbio.2009.03.005_bib109) 2002; 34 Forrester (10.1016/j.soilbio.2009.03.005_bib29) 1961 Minchin (10.1016/j.soilbio.2009.03.005_bib63) 1973; 24 Herold (10.1016/j.soilbio.2009.03.005_bib40) 1980; 86 Ryle (10.1016/j.soilbio.2009.03.005_bib90) 1979; 30 Solaiman (10.1016/j.soilbio.2009.03.005_bib99) 1999; 65 Grant (10.1016/j.soilbio.2009.03.005_bib32) 2005; 85 Pate (10.1016/j.soilbio.2009.03.005_bib78) 1979; 64 Kuo (10.1016/j.soilbio.2009.03.005_bib56) 1982; 64 Callow (10.1016/j.soilbio.2009.03.005_bib18) 1978; 80 von Caemmerer (10.1016/j.soilbio.2009.03.005_bib102) 2000 Azcón-Bieto (10.1016/j.soilbio.2009.03.005_bib3) 1983; 73 Kucey (10.1016/j.soilbio.2009.03.005_bib54) 1982; 14 Warembourg (10.1016/j.soilbio.2009.03.005_bib103) 1983; 29 Harley (10.1016/j.soilbio.2009.03.005_bib36) 1992; 15 Schulze (10.1016/j.soilbio.2009.03.005_bib93) 2004; 167 Gurevitch (10.1016/j.soilbio.2009.03.005_bib34) 2001 Brown (10.1016/j.soilbio.2009.03.005_bib13) 1988; 86 Lambers (10.1016/j.soilbio.2009.03.005_bib57) 1998 Grimoldi (10.1016/j.soilbio.2009.03.005_bib33) 2005; 168 Zapata (10.1016/j.soilbio.2009.03.005_bib113) 1987; 79 Fay (10.1016/j.soilbio.2009.03.005_bib25) 1996; 132 Xavier (10.1016/j.soilbio.2009.03.005_bib110) 2003; 37 Olsson (10.1016/j.soilbio.2009.03.005_bib70) 2005; 168 Smith (10.1016/j.soilbio.2009.03.005_bib98) 2003; 133 Cardoso (10.1016/j.soilbio.2009.03.005_bib19) 2006; 116 Kantar (10.1016/j.soilbio.2009.03.005_bib50) 2003; 189 Ross (10.1016/j.soilbio.2009.03.005_bib87) 1971; 61 Sivaprasad (10.1016/j.soilbio.2009.03.005_bib96) 1985; 54 Bryla (10.1016/j.soilbio.2009.03.005_bib14) 2005 Flügge (10.1016/j.soilbio.2009.03.005_bib28) 1995; 46 Ryle (10.1016/j.soilbio.2009.03.005_bib91) 1979; 114 Hungria (10.1016/j.soilbio.2009.03.005_bib43) 1986; 21 Black (10.1016/j.soilbio.2009.03.005_bib10) 2000; 23 McCormick (10.1016/j.soilbio.2009.03.005_bib61) 2006; 171 Jabaji-Hare (10.1016/j.soilbio.2009.03.005_bib46) 1984; 76 Khaliq (10.1016/j.soilbio.2009.03.005_bib51) 2000; 32 Lodwig (10.1016/j.soilbio.2009.03.005_bib59) 2003; 422 Hepper (10.1016/j.soilbio.2009.03.005_bib39) 1977; 9 Koide (10.1016/j.soilbio.2009.03.005_bib53) 1989; 3 Bécard (10.1016/j.soilbio.2009.03.005_bib5) 1991; 118 Bethlenfalvay (10.1016/j.soilbio.2009.03.005_bib7) 1982; 68 Cakmak (10.1016/j.soilbio.2009.03.005_bib17) 1999 |
References_xml | – volume: 51 start-page: 742 year: 2004 end-page: 753 ident: bib15 article-title: Dynamic light regulation of photosynthesis publication-title: Russian Journal of Plant Physiology – volume: 116 start-page: 563 year: 2002 end-page: 572 ident: bib45 article-title: Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves publication-title: Physiologia Plantarum – volume: 168 start-page: 677 year: 2005 end-page: 686 ident: bib70 article-title: The influence of external nitrogen on carbon allocation to publication-title: New Phytologist – start-page: 25 year: 2005 end-page: 42 ident: bib42 article-title: The importance of nitrogen fixation to soybean cropping in South America publication-title: Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment – volume: 149 start-page: 78 year: 1980 end-page: 90 ident: bib24 article-title: A biochemical-model of photosynthetic CO publication-title: Planta – volume: 85 start-page: 3 year: 2005 end-page: 14 ident: bib32 article-title: Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development publication-title: Canadian Journal of Plant Sciences – volume: 94 start-page: 251 year: 2004 end-page: 258 ident: bib48 article-title: The influence of publication-title: Annals of Botany – volume: 32 start-page: 1691 year: 2000 end-page: 1696 ident: bib51 article-title: Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley publication-title: Soil Biology & Biochemistry – volume: 3 start-page: 252 year: 1989 end-page: 255 ident: bib53 article-title: Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis publication-title: Functional Ecology – volume: 213 start-page: 473 year: 1981 end-page: 474 ident: bib80 article-title: Carbon flow in plant microbial associations publication-title: Science – volume: 199 start-page: 973 year: 1978 end-page: 975 ident: bib1 article-title: Nitrogen fixation and delayed leaf senescence in soybeans publication-title: Science – volume: 104 start-page: 429 year: 2000 end-page: 434 ident: bib71 article-title: Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages publication-title: Mycological Research – year: 2008 ident: bib97 article-title: Mycorrhizal Symbiosis – volume: 99 start-page: 1443 year: 1992 end-page: 1448 ident: bib31 article-title: Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars publication-title: Plant Physiology – volume: 101 start-page: 1063 year: 1993 end-page: 1071 ident: bib83 article-title: Growth depression in mycorrhizal citrus at high-phosphorus supply publication-title: Plant Physiology – volume: 61 start-page: 394 year: 1978 end-page: 397 ident: bib67 article-title: Effects of sink removal on photosynthesis and senescence in leaves of soybean ( publication-title: Plant Physiology – volume: 17 start-page: 137 year: 2007 end-page: 143 ident: bib100 article-title: Respiratory responses of arbuscular mycorrhizal roots to short-term alleviation of P deficiency publication-title: Mycorrhiza – volume: 65 start-page: 281 year: 1985 end-page: 286 ident: bib104 article-title: Distribution and remobilization of symbiotically fixed nitrogen in soybean ( publication-title: Physiologia Plantarum – volume: 46 start-page: 1317 year: 1995 end-page: 1323 ident: bib28 article-title: Phosphate translocation in the regulation of photosynthesis publication-title: Journal of Experimental Botany – start-page: 195 year: 2005 end-page: 205 ident: bib66 article-title: Respiratory/carbon costs of symbiotic nitrogen fixation in legumes publication-title: Plant Respiration – volume: 14 start-page: 413 year: 1982 end-page: 414 ident: bib54 article-title: Biomass of mycorrhizal fungi associated with bean roots publication-title: Soil Biology & Biochemistry – volume: 16 start-page: 125 year: 1993 end-page: 136 ident: bib77 article-title: Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen publication-title: Plant Cell & Environment – volume: 27 start-page: 1211 year: 2004 end-page: 1222 ident: bib111 article-title: Extension of a biochemical model for the generalized stoichiometry of electron transport limited C publication-title: Plant Cell & Environment – volume: 24 start-page: 1309 year: 2001 end-page: 1317 ident: bib20 article-title: Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light publication-title: Plant Cell & Environment – volume: 16 start-page: 419 year: 1984 end-page: 420 ident: bib11 article-title: Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi publication-title: Soil Biology & Biochemistry – volume: 80 start-page: 125 year: 1978 end-page: 134 ident: bib18 article-title: Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas publication-title: New Phytologist – volume: 34 start-page: 951 year: 1983 end-page: 963 ident: bib105 article-title: Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen publication-title: Journal of Experimental Botany – year: 1961 ident: bib29 article-title: Industrial Dynamics – volume: 80 start-page: 575 year: 1978 end-page: 578 ident: bib62 article-title: Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection publication-title: New Phytologist – volume: 90 start-page: 537 year: 1982 end-page: 543 ident: bib6 article-title: Relationships between host and endophyte development in mycorrhizal soybeans publication-title: New Phytologist – volume: 422 start-page: 722 year: 2003 end-page: 726 ident: bib59 article-title: Amino-acid cycling drives nitrogen fixation in the legume– publication-title: Nature – volume: 51 start-page: 53 year: 1985 end-page: 105 ident: bib95 article-title: Photosynthesis in intact leaves of C publication-title: Botanical Review – volume: 29 start-page: 930 year: 1983 end-page: 937 ident: bib103 article-title: Estimating the true cost of dinitrogen fixation by nodulated plants in undisturbed conditions publication-title: Canadian Journal of Microbiology – volume: 98 start-page: 394 year: 2006 end-page: 401 ident: bib9 article-title: Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae publication-title: Agronomy Journal – volume: 73 start-page: 681 year: 1983 end-page: 686 ident: bib3 article-title: Inhibition of photosynthesis by carbohydrates in wheat leaves publication-title: Plant Physiology – volume: 1 start-page: 92 year: 1998 end-page: 120 ident: bib38 article-title: The regulation of symbiotic N publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 167 start-page: 125 year: 2004 end-page: 137 ident: bib93 article-title: How are nitrogen fixation rates regulated in legumes? publication-title: Journal of Plant Nutrition and Soil Science – volume: 31 start-page: 1327 year: 1980 end-page: 1345 ident: bib65 article-title: Carbon metabolism, nitrogen assimilation, and seed yield of cowpea ( publication-title: Journal of Experimental Botany – start-page: 207 year: 2005 end-page: 224 ident: bib14 article-title: Respiratory costs of mycorrhizal associations publication-title: Plant Respiration – volume: 168 start-page: 435 year: 2005 end-page: 444 ident: bib33 article-title: Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass publication-title: New Phytologist – volume: 3 start-page: 234 year: 2001 end-page: 243 ident: bib73 article-title: Possible mechanisms of adaptative leaf senescence publication-title: Plant Biology – volume: 54 start-page: 2733 year: 2003 end-page: 2744 ident: bib101 article-title: Symbiotic N publication-title: Journal of Experimental Botany – volume: 64 start-page: 325 year: 1982 end-page: 330 ident: bib56 article-title: Effect of vesicular-arbuscular mycorrhizae on the growth and yield of rice-stubble cultured soybeans publication-title: Plant and Soil – volume: 40 start-page: 1019 year: 2008 end-page: 1027 ident: bib68 article-title: The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated publication-title: Soil Biology & Biochemistry – volume: 52 start-page: 1383 year: 2001 end-page: 1400 ident: bib81 article-title: Sink regulation of photosynthesis publication-title: Journal of Experimental Botany – volume: 76 start-page: 1024 year: 1984 end-page: 1030 ident: bib46 article-title: Lipid content and composition of vesicles of a vesicular-arbuscular mycorrhizal fungus publication-title: Mycologia – volume: 137 start-page: 1389 year: 2005 end-page: 1396 ident: bib52 article-title: Inhibition of N publication-title: Plant Physiology – volume: 82 start-page: 273 year: 1984 end-page: 284 ident: bib2 article-title: Efficiencies and inefficiencies in the legume/ publication-title: Plant and Soil – volume: 30 start-page: 145 year: 1979 end-page: 153 ident: bib90 article-title: The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen publication-title: Journal of Experimental Botany – volume: 131 start-page: 1496 year: 2003 end-page: 1507 ident: bib4 article-title: Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid publication-title: Plant Physiology – volume: 85 start-page: 120 year: 1987 end-page: 123 ident: bib12 article-title: The publication-title: Plant Physiology – volume: 21 start-page: 209 year: 1998 end-page: 216 ident: bib107 article-title: Effects of VA mycorrhizal colonization on photosynthesis and biomass production of publication-title: Plant Cell & Environment – volume: 132 start-page: 425 year: 1996 end-page: 433 ident: bib25 article-title: Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus publication-title: New Phytologist – volume: 116 start-page: 72 year: 2006 end-page: 84 ident: bib19 article-title: Mycorrhizas and tropical soil fertility publication-title: Agriculture, Ecosystems and Environment – volume: 26 start-page: 711 year: 1994 end-page: 717 ident: bib30 article-title: Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus publication-title: Soil Biology & Biochemistry – volume: 9 start-page: 15 year: 1977 end-page: 18 ident: bib39 article-title: A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots publication-title: Soil Biology & Biochemistry – volume: 21 start-page: 715 year: 1986 end-page: 730 ident: bib43 article-title: Ontogenia da fixação biológica do nitrogênio em publication-title: Pesquisa Agropecuária Brasileira – volume: 60 start-page: 419 year: 1977 end-page: 421 ident: bib8 article-title: Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes publication-title: Plant Physiology – volume: 87 start-page: 46 year: 1988 end-page: 49 ident: bib60 article-title: Regulation of photosynthesis in nitrogen deficient wheat seedlings publication-title: Plant Physiology – volume: 70 start-page: 1178 year: 1982 end-page: 1184 ident: bib26 article-title: Efficiency of nitrogen assimilation by N publication-title: Plant Physiology – volume: 24 start-page: 259 year: 1973 end-page: 271 ident: bib63 article-title: The carbon balance of a legume and the functional economy of its root nodules publication-title: Journal of Experimental Botany – volume: 60 start-page: 241 year: 1980 end-page: 250 ident: bib76 article-title: Effects of vesicular-arbuscular mycorrhiza on publication-title: Canadian Journal of Soil Science – volume: 18 start-page: 605 year: 1995 end-page: 618 ident: bib41 article-title: A model of the acclimation of photosynthesis in the leaves of C publication-title: Plant Cell & Environment – volume: 21 start-page: 881 year: 1998 end-page: 891 ident: bib106 article-title: Mycorrhizal sink strength influences whole plant carbon balance of publication-title: Plant Cell & Environment – volume: 7 start-page: 325 year: 1989 end-page: 329 ident: bib44 article-title: Relative efficiency, ureide transport and harvest index in soybean inoculated with isogenic Hup mutants of publication-title: Biology and Fertility of Soils – volume: 61 start-page: 1400 year: 1971 end-page: 1403 ident: bib87 article-title: Effect of phosphate fertilization on yield of mycorrhizal and nonmycorrhizal soybeans publication-title: Phytopathology – volume: 68 start-page: 43 year: 1982 end-page: 54 ident: bib7 article-title: Mycotrophic growth and mutualistic development of host plant and fungal endophyte in an endomycorrhizal symbiosis publication-title: Plant and Soil – volume: 45 start-page: 339 year: 1974 end-page: 377 ident: bib84 article-title: Products, requirements and efficiency of biosynthesis: a quantitative approach publication-title: Journal of Theoretical Biology – volume: 130 start-page: 1162 year: 2002 end-page: 1171 ident: bib72 article-title: Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures publication-title: Plant Physiology – volume: 27 start-page: 169 year: 1991 end-page: 178 ident: bib35 article-title: An improved model of C publication-title: Photosynthesis Research – volume: 86 start-page: 131 year: 1980 end-page: 144 ident: bib40 article-title: Regulation of photosynthesis by sink activity – the missing link publication-title: New Phytologist – volume: 101 start-page: 427 year: 1985 end-page: 440 ident: bib37 article-title: Carbon economy of soybean– publication-title: New Phytologist – volume: 141 start-page: 426 year: 2007 end-page: 442 ident: bib74 article-title: Specific root length as an indicator of environmental change publication-title: Plant Biosystems – volume: 171 start-page: 759 year: 2006 end-page: 770 ident: bib61 article-title: Sink strength regulates photosynthesis in sugarcane publication-title: New Phytologist – volume: 14 start-page: 407 year: 1982 end-page: 412 ident: bib55 article-title: Carbon flow, photosynthesis, and N publication-title: Soil Biology & Biochemistry – volume: 54 start-page: 539 year: 2003 end-page: 547 ident: bib82 article-title: Carbon metabolite feedback regulation of leaf photosynthesis and development publication-title: Journal of Experimental Botany – volume: 78 start-page: 9 year: 1989 end-page: 19 ident: bib23 article-title: Photosynthesis and nitrogen relationships in leaves of C publication-title: Oecologia – volume: 54 start-page: 1957 year: 2003 end-page: 1967 ident: bib21 article-title: Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation publication-title: Journal of Experimental Botany – year: 1998 ident: bib57 article-title: Plant Physiological Ecology – volume: 189 start-page: 291 year: 2003 end-page: 297 ident: bib50 article-title: Chickpea yields in relation to publication-title: Journal of Agronomy and Crop Science – volume: 4 start-page: 5 year: 1981 end-page: 26 ident: bib64 article-title: Carbon and nitrogen nutrition of nodulated roots of grain legumes publication-title: Plant Cell & Environment – volume: 54 start-page: 468 year: 1985 end-page: 469 ident: bib96 article-title: Photosynthesis and competition for photosynthate in VA mycorrhiza, publication-title: Current Science – volume: 65 start-page: 5604 year: 1999 end-page: 5606 ident: bib99 article-title: Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, publication-title: Applied and Environmental Microbiology – volume: 79 start-page: 172 year: 1987 end-page: 176 ident: bib113 article-title: Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology publication-title: Agronomy Journal – volume: 72 start-page: 701 year: 1983 end-page: 705 ident: bib79 article-title: Root respiration associated with nitrogenase activity (C publication-title: Plant Physiology – start-page: 157 year: 2007 end-page: 170 ident: bib22 article-title: Is plant growth driven by sink regulation? publication-title: Scale and Complexity in Plant Systems Research- Gene-Plant-Crop Relations – year: 2000 ident: bib102 article-title: Biochemical Models of Leaf Photosynthesis – volume: 86 start-page: 1292 year: 1988 end-page: 1297 ident: bib13 article-title: The publication-title: Plant Physiology – volume: 14 start-page: 11 year: 1974 end-page: 16 ident: bib58 article-title: Symbiotic nitrogen-fixation in soybeans. 1. Effect of photosynthetic source-sink manipulations publication-title: Crop Science – volume: 16 start-page: 125 year: 1993 end-page: 130 ident: bib94 article-title: Ontogenic variation in nitrogen-fixation and accumulation of nitrogen in mungbean, blackgram, cowpea, and groundnut publication-title: Biology and Fertility of Soils – volume: 37 start-page: 161 year: 2003 end-page: 167 ident: bib110 article-title: Selective interactions between arbuscular mycorrhizal fungi and publication-title: Biology and Fertility of Soils – volume: 33 start-page: 943 year: 1992 end-page: 949 ident: bib92 article-title: Participation of inorganic orthophosphate in regulation of ribulose-1,5-biphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance publication-title: Plant and Cell Physiology – volume: 35 start-page: 774 year: 1984 end-page: 784 ident: bib86 article-title: Partioning of carbon and nitrogen during growth and development of pigeonpea ( publication-title: Journal of Experimental Botany – volume: 47 start-page: 350 year: 1991 end-page: 355 ident: bib27 article-title: Costs and benefits of mycorrhizas: implications for functioning under natural conditions publication-title: Experientia – volume: 118 start-page: 547 year: 1991 end-page: 552 ident: bib5 article-title: Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo publication-title: New Phytologist – volume: 52 start-page: 1083 year: 2001 end-page: 1091 ident: bib85 article-title: Low sink demand limits photosynthesis under P publication-title: Journal of Experimental Botany – start-page: 123 year: 2005 end-page: 148 ident: bib88 article-title: Role of phosphorus in photosynthetic carbon metabolism publication-title: Handbook of Photosynthesis – volume: 35 start-page: 1156 year: 1984 end-page: 1165 ident: bib89 article-title: N publication-title: Journal of Experimental Botany – volume: 3 start-page: 360 year: 1999 end-page: 364 ident: bib16 article-title: Quantification of β-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus publication-title: Mycological Research – volume: 64 start-page: 1083 year: 1979 end-page: 1088 ident: bib78 article-title: Economy of carbon and nitrogen in a nodulated and nonnodulated (NO publication-title: Plant Physiology – volume: 42 start-page: 535 year: 2004 end-page: 542 ident: bib47 article-title: Influence of phosphorus and nitrogen on photosynthetic parameters and growth in publication-title: Photosynthetica – volume: 72 start-page: 733 year: 1988 end-page: 746 ident: bib75 article-title: Mineral and lipid composition of publication-title: Physiologia Plantarum – volume: 34 start-page: 181 year: 2002 end-page: 188 ident: bib109 article-title: Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy publication-title: Soil Biology & Biochemistry – volume: 23 start-page: 797 year: 2000 end-page: 809 ident: bib10 article-title: Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber publication-title: Plant Cell & Environment – start-page: 141 year: 1999 end-page: 168 ident: bib17 article-title: Role of mineral nutrients in photosynthesis and yield formation publication-title: Mineral Nutrition of Crops. Fundamental Mechanisms and Implications – start-page: 347 year: 2001 end-page: 369 ident: bib34 article-title: Meta-analysis: combining the results of independent experiments publication-title: Designs and Analysis of Ecological Experiments – year: 2005 ident: bib112 article-title: Crop Systems Dynamics – an Ecophysiological Simulation Model for Genotype-by-environment Interaction – volume: 153 start-page: 327 year: 2002 end-page: 334 ident: bib49 publication-title: New Phytologist – volume: 133 start-page: 16 year: 2003 end-page: 20 ident: bib98 article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses publication-title: Plant Physiology – volume: 181 start-page: 193 year: 1996 end-page: 203 ident: bib108 article-title: Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots publication-title: Plant and Soil – volume: 114 start-page: 135 year: 1979 end-page: 144 ident: bib91 article-title: The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. I. Nitrogen fixation and the respiration of the nodulated root publication-title: Journal of Experimental Botany – year: 2004 ident: bib69 article-title: Lehninger: Principles of Biochemistry – volume: 15 start-page: 271 year: 1992 end-page: 282 ident: bib36 article-title: Modelling photosynthesis of cotton grown in elevated CO publication-title: Plant Cell & Environment – volume: 3 start-page: 252 year: 1989 ident: 10.1016/j.soilbio.2009.03.005_bib53 article-title: Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis publication-title: Functional Ecology – volume: 68 start-page: 43 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib7 article-title: Mycotrophic growth and mutualistic development of host plant and fungal endophyte in an endomycorrhizal symbiosis publication-title: Plant and Soil doi: 10.1007/BF02374726 – volume: 45 start-page: 339 year: 1974 ident: 10.1016/j.soilbio.2009.03.005_bib84 article-title: Products, requirements and efficiency of biosynthesis: a quantitative approach publication-title: Journal of Theoretical Biology doi: 10.1016/0022-5193(74)90119-2 – volume: 7 start-page: 325 year: 1989 ident: 10.1016/j.soilbio.2009.03.005_bib44 article-title: Relative efficiency, ureide transport and harvest index in soybean inoculated with isogenic Hup mutants of Bradyrhizobium japonicum publication-title: Biology and Fertility of Soils doi: 10.1007/BF00257827 – volume: 34 start-page: 951 year: 1983 ident: 10.1016/j.soilbio.2009.03.005_bib105 article-title: Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen publication-title: Journal of Experimental Botany doi: 10.1093/jxb/34.8.951 – start-page: 123 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib88 article-title: Role of phosphorus in photosynthetic carbon metabolism – volume: 3 start-page: 360 year: 1999 ident: 10.1016/j.soilbio.2009.03.005_bib16 article-title: Quantification of β-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae publication-title: Mycological Research doi: 10.1017/S0953756298007175 – volume: 72 start-page: 733 year: 1988 ident: 10.1016/j.soilbio.2009.03.005_bib75 article-title: Mineral and lipid composition of Glycine–Glomus–Bradyrhizobium symbioses publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1988.tb06373.x – volume: 16 start-page: 125 year: 1993 ident: 10.1016/j.soilbio.2009.03.005_bib94 article-title: Ontogenic variation in nitrogen-fixation and accumulation of nitrogen in mungbean, blackgram, cowpea, and groundnut publication-title: Biology and Fertility of Soils doi: 10.1007/BF00369413 – volume: 94 start-page: 251 year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib48 article-title: The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba publication-title: Annals of Botany doi: 10.1093/aob/mch135 – year: 2000 ident: 10.1016/j.soilbio.2009.03.005_bib102 – volume: 65 start-page: 5604 year: 1999 ident: 10.1016/j.soilbio.2009.03.005_bib99 article-title: Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.65.12.5604-5606.1999 – volume: 168 start-page: 677 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib70 article-title: The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza publication-title: New Phytologist doi: 10.1111/j.1469-8137.2005.01532.x – volume: 27 start-page: 1211 year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib111 article-title: Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis publication-title: Plant Cell & Environment doi: 10.1111/j.1365-3040.2004.01224.x – volume: 32 start-page: 1691 year: 2000 ident: 10.1016/j.soilbio.2009.03.005_bib51 article-title: Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(00)00086-9 – volume: 54 start-page: 2733 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib101 article-title: Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erg290 – volume: 14 start-page: 11 year: 1974 ident: 10.1016/j.soilbio.2009.03.005_bib58 article-title: Symbiotic nitrogen-fixation in soybeans. 1. Effect of photosynthetic source-sink manipulations publication-title: Crop Science doi: 10.2135/cropsci1974.0011183X001400010004x – volume: 3 start-page: 234 year: 2001 ident: 10.1016/j.soilbio.2009.03.005_bib73 article-title: Possible mechanisms of adaptative leaf senescence publication-title: Plant Biology doi: 10.1055/s-2001-15201 – volume: 52 start-page: 1083 year: 2001 ident: 10.1016/j.soilbio.2009.03.005_bib85 article-title: Low sink demand limits photosynthesis under Pi deficiency publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/52.358.1083 – volume: 104 start-page: 429 year: 2000 ident: 10.1016/j.soilbio.2009.03.005_bib71 article-title: Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages publication-title: Mycological Research doi: 10.1017/S0953756299001410 – volume: 149 start-page: 78 year: 1980 ident: 10.1016/j.soilbio.2009.03.005_bib24 article-title: A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species publication-title: Planta doi: 10.1007/BF00386231 – volume: 54 start-page: 539 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib82 article-title: Carbon metabolite feedback regulation of leaf photosynthesis and development publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erg052 – volume: 47 start-page: 350 year: 1991 ident: 10.1016/j.soilbio.2009.03.005_bib27 article-title: Costs and benefits of mycorrhizas: implications for functioning under natural conditions publication-title: Experientia doi: 10.1007/BF01972076 – volume: 64 start-page: 325 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib56 article-title: Effect of vesicular-arbuscular mycorrhizae on the growth and yield of rice-stubble cultured soybeans publication-title: Plant and Soil doi: 10.1007/BF02372515 – year: 1998 ident: 10.1016/j.soilbio.2009.03.005_bib57 – volume: 1 start-page: 92 year: 1998 ident: 10.1016/j.soilbio.2009.03.005_bib38 article-title: The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level publication-title: Perspectives in Plant Ecology, Evolution and Systematics doi: 10.1078/1433-8319-00054 – volume: 422 start-page: 722 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib59 article-title: Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis publication-title: Nature doi: 10.1038/nature01527 – volume: 51 start-page: 742 year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib15 article-title: Dynamic light regulation of photosynthesis publication-title: Russian Journal of Plant Physiology doi: 10.1023/B:RUPP.0000047822.66925.bf – volume: 24 start-page: 1309 year: 2001 ident: 10.1016/j.soilbio.2009.03.005_bib20 article-title: Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light publication-title: Plant Cell & Environment doi: 10.1046/j.0016-8025.2001.00788.x – year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib112 – volume: 33 start-page: 943 year: 1992 ident: 10.1016/j.soilbio.2009.03.005_bib92 article-title: Participation of inorganic orthophosphate in regulation of ribulose-1,5-biphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance publication-title: Plant and Cell Physiology – volume: 70 start-page: 1178 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib26 article-title: Efficiency of nitrogen assimilation by N2-fixing and nitrate-grown soybean plants (Glycine max [L.] Merr.) publication-title: Plant Physiology doi: 10.1104/pp.70.4.1178 – volume: 18 start-page: 605 year: 1995 ident: 10.1016/j.soilbio.2009.03.005_bib41 article-title: A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use publication-title: Plant Cell & Environment doi: 10.1111/j.1365-3040.1995.tb00562.x – volume: 60 start-page: 241 year: 1980 ident: 10.1016/j.soilbio.2009.03.005_bib76 article-title: Effects of vesicular-arbuscular mycorrhiza on 14C and 15N distribution in nodulated faba beans publication-title: Canadian Journal of Soil Science doi: 10.4141/cjss80-027 – volume: 181 start-page: 193 year: 1996 ident: 10.1016/j.soilbio.2009.03.005_bib108 article-title: Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots publication-title: Plant and Soil doi: 10.1007/BF00012053 – volume: 31 start-page: 1327 year: 1980 ident: 10.1016/j.soilbio.2009.03.005_bib65 article-title: Carbon metabolism, nitrogen assimilation, and seed yield of cowpea (Vigna unquiculata L. Walp) grown in an adverse temperature regime publication-title: Journal of Experimental Botany doi: 10.1093/jxb/31.5.1327 – volume: 72 start-page: 701 year: 1983 ident: 10.1016/j.soilbio.2009.03.005_bib79 article-title: Root respiration associated with nitrogenase activity (C2H2) of soybean, and a comparison of estimates publication-title: Plant Physiology doi: 10.1104/pp.72.3.701 – volume: 80 start-page: 125 year: 1978 ident: 10.1016/j.soilbio.2009.03.005_bib18 article-title: Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas publication-title: New Phytologist doi: 10.1111/j.1469-8137.1978.tb02272.x – year: 2008 ident: 10.1016/j.soilbio.2009.03.005_bib97 – volume: 189 start-page: 291 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib50 article-title: Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes publication-title: Journal of Agronomy and Crop Science doi: 10.1046/j.1439-037X.2003.00046.x – volume: 61 start-page: 394 year: 1978 ident: 10.1016/j.soilbio.2009.03.005_bib67 article-title: Effects of sink removal on photosynthesis and senescence in leaves of soybean (Glycine max L.) plants publication-title: Plant Physiology doi: 10.1104/pp.61.3.394 – volume: 51 start-page: 53 year: 1985 ident: 10.1016/j.soilbio.2009.03.005_bib95 article-title: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations publication-title: Botanical Review doi: 10.1007/BF02861058 – volume: 118 start-page: 547 year: 1991 ident: 10.1016/j.soilbio.2009.03.005_bib5 article-title: Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo 13C NMR and HPLC analyses publication-title: New Phytologist doi: 10.1111/j.1469-8137.1991.tb00994.x – volume: 99 start-page: 1443 year: 1992 ident: 10.1016/j.soilbio.2009.03.005_bib31 article-title: Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars publication-title: Plant Physiology doi: 10.1104/pp.99.4.1443 – volume: 87 start-page: 46 year: 1988 ident: 10.1016/j.soilbio.2009.03.005_bib60 article-title: Regulation of photosynthesis in nitrogen deficient wheat seedlings publication-title: Plant Physiology doi: 10.1104/pp.87.1.46 – volume: 85 start-page: 3 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib32 article-title: Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development publication-title: Canadian Journal of Plant Sciences doi: 10.4141/P03-182 – volume: 199 start-page: 973 year: 1978 ident: 10.1016/j.soilbio.2009.03.005_bib1 article-title: Nitrogen fixation and delayed leaf senescence in soybeans publication-title: Science doi: 10.1126/science.199.4332.973 – volume: 90 start-page: 537 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib6 article-title: Relationships between host and endophyte development in mycorrhizal soybeans publication-title: New Phytologist doi: 10.1111/j.1469-8137.1982.tb04486.x – volume: 82 start-page: 273 year: 1984 ident: 10.1016/j.soilbio.2009.03.005_bib2 article-title: Efficiencies and inefficiencies in the legume/Rhizobium symbiosis – a review publication-title: Plant and Soil doi: 10.1007/BF02184267 – volume: 21 start-page: 209 year: 1998 ident: 10.1016/j.soilbio.2009.03.005_bib107 article-title: Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. publication-title: Plant Cell & Environment doi: 10.1046/j.1365-3040.1998.00280.x – start-page: 25 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib42 article-title: The importance of nitrogen fixation to soybean cropping in South America – volume: 46 start-page: 1317 year: 1995 ident: 10.1016/j.soilbio.2009.03.005_bib28 article-title: Phosphate translocation in the regulation of photosynthesis publication-title: Journal of Experimental Botany doi: 10.1093/jxb/46.special_issue.1317 – volume: 34 start-page: 181 year: 2002 ident: 10.1016/j.soilbio.2009.03.005_bib109 article-title: Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy publication-title: Soil Biology & Biochemistry doi: 10.1016/S0038-0717(01)00165-1 – volume: 14 start-page: 407 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib55 article-title: Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.) publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(82)90013-X – volume: 85 start-page: 120 year: 1987 ident: 10.1016/j.soilbio.2009.03.005_bib12 article-title: The Glycine–Glomus–Rhizobium symbiosis. IV. Photosynthesis in nodulated, mycorrhizal, or N- and P-fertilized soybean plants publication-title: Plant Physiology doi: 10.1104/pp.85.1.120 – volume: 27 start-page: 169 year: 1991 ident: 10.1016/j.soilbio.2009.03.005_bib35 article-title: An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast publication-title: Photosynthesis Research doi: 10.1007/BF00035838 – volume: 101 start-page: 1063 year: 1993 ident: 10.1016/j.soilbio.2009.03.005_bib83 article-title: Growth depression in mycorrhizal citrus at high-phosphorus supply publication-title: Plant Physiology doi: 10.1104/pp.101.3.1063 – volume: 78 start-page: 9 year: 1989 ident: 10.1016/j.soilbio.2009.03.005_bib23 article-title: Photosynthesis and nitrogen relationships in leaves of C3 plants publication-title: Oecologia doi: 10.1007/BF00377192 – volume: 16 start-page: 419 year: 1984 ident: 10.1016/j.soilbio.2009.03.005_bib11 article-title: Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(84)90043-9 – volume: 17 start-page: 137 year: 2007 ident: 10.1016/j.soilbio.2009.03.005_bib100 article-title: Respiratory responses of arbuscular mycorrhizal roots to short-term alleviation of P deficiency publication-title: Mycorrhiza doi: 10.1007/s00572-006-0093-2 – volume: 23 start-page: 797 year: 2000 ident: 10.1016/j.soilbio.2009.03.005_bib10 article-title: Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber publication-title: Plant Cell & Environment doi: 10.1046/j.1365-3040.2000.00598.x – volume: 80 start-page: 575 year: 1978 ident: 10.1016/j.soilbio.2009.03.005_bib62 article-title: Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection publication-title: New Phytologist doi: 10.1111/j.1469-8137.1978.tb01589.x – volume: 141 start-page: 426 year: 2007 ident: 10.1016/j.soilbio.2009.03.005_bib74 article-title: Specific root length as an indicator of environmental change publication-title: Plant Biosystems doi: 10.1080/11263500701626069 – volume: 79 start-page: 172 year: 1987 ident: 10.1016/j.soilbio.2009.03.005_bib113 article-title: Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology publication-title: Agronomy Journal doi: 10.2134/agronj1987.00021962007900010035x – volume: 52 start-page: 1383 year: 2001 ident: 10.1016/j.soilbio.2009.03.005_bib81 article-title: Sink regulation of photosynthesis publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/52.360.1383 – volume: 153 start-page: 327 year: 2002 ident: 10.1016/j.soilbio.2009.03.005_bib49 article-title: In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil publication-title: New Phytologist doi: 10.1046/j.0028-646X.2001.00316.x – volume: 86 start-page: 1292 year: 1988 ident: 10.1016/j.soilbio.2009.03.005_bib13 article-title: The Glycine–Glomus–Rhizobium symbiosis. 7. Photosynthetic nutrient-use efficiency in nodulated, mycorrhizal soybeans publication-title: Plant Physiology doi: 10.1104/pp.86.4.1292 – volume: 98 start-page: 394 year: 2006 ident: 10.1016/j.soilbio.2009.03.005_bib9 article-title: Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae publication-title: Agronomy Journal doi: 10.2134/agronj2005.0093 – volume: 40 start-page: 1019 year: 2008 ident: 10.1016/j.soilbio.2009.03.005_bib68 article-title: The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2007.11.014 – volume: 29 start-page: 930 year: 1983 ident: 10.1016/j.soilbio.2009.03.005_bib103 article-title: Estimating the true cost of dinitrogen fixation by nodulated plants in undisturbed conditions publication-title: Canadian Journal of Microbiology doi: 10.1139/m83-149 – volume: 54 start-page: 1957 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib21 article-title: Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erg193 – volume: 137 start-page: 1389 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib52 article-title: Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids publication-title: Plant Physiology doi: 10.1104/pp.104.056317 – volume: 37 start-page: 161 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib110 article-title: Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-003-0605-6 – volume: 21 start-page: 715 year: 1986 ident: 10.1016/j.soilbio.2009.03.005_bib43 article-title: Ontogenia da fixação biológica do nitrogênio em Phaseolus vulgaris publication-title: Pesquisa Agropecuária Brasileira – volume: 21 start-page: 881 year: 1998 ident: 10.1016/j.soilbio.2009.03.005_bib106 article-title: Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. publication-title: Plant Cell & Environment doi: 10.1046/j.1365-3040.1998.00351.x – volume: 76 start-page: 1024 year: 1984 ident: 10.1016/j.soilbio.2009.03.005_bib46 article-title: Lipid content and composition of vesicles of a vesicular-arbuscular mycorrhizal fungus publication-title: Mycologia doi: 10.1080/00275514.1984.12023946 – start-page: 207 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib14 article-title: Respiratory costs of mycorrhizal associations – year: 1961 ident: 10.1016/j.soilbio.2009.03.005_bib29 – volume: 35 start-page: 774 year: 1984 ident: 10.1016/j.soilbio.2009.03.005_bib86 article-title: Partioning of carbon and nitrogen during growth and development of pigeonpea (Cajanus cajan L.) publication-title: Journal of Experimental Botany doi: 10.1093/jxb/35.6.774 – volume: 116 start-page: 563 year: 2002 ident: 10.1016/j.soilbio.2009.03.005_bib45 article-title: Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.2002.1160416.x – volume: 65 start-page: 281 year: 1985 ident: 10.1016/j.soilbio.2009.03.005_bib104 article-title: Distribution and remobilization of symbiotically fixed nitrogen in soybean (Glycine max) publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1985.tb02396.x – volume: 4 start-page: 5 year: 1981 ident: 10.1016/j.soilbio.2009.03.005_bib64 article-title: Carbon and nitrogen nutrition of nodulated roots of grain legumes publication-title: Plant Cell & Environment doi: 10.1111/j.1365-3040.1981.tb00831.x – volume: 213 start-page: 473 year: 1981 ident: 10.1016/j.soilbio.2009.03.005_bib80 article-title: Carbon flow in plant microbial associations publication-title: Science doi: 10.1126/science.213.4506.473 – volume: 64 start-page: 1083 year: 1979 ident: 10.1016/j.soilbio.2009.03.005_bib78 article-title: Economy of carbon and nitrogen in a nodulated and nonnodulated (NO3-grown) legume publication-title: Plant Physiology doi: 10.1104/pp.64.6.1083 – volume: 14 start-page: 413 year: 1982 ident: 10.1016/j.soilbio.2009.03.005_bib54 article-title: Biomass of mycorrhizal fungi associated with bean roots publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(82)90014-1 – volume: 42 start-page: 535 year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib47 article-title: Influence of phosphorus and nitrogen on photosynthetic parameters and growth in Vicia faba L. publication-title: Photosynthetica doi: 10.1007/S11099-005-0010-5 – volume: 54 start-page: 468 year: 1985 ident: 10.1016/j.soilbio.2009.03.005_bib96 article-title: Photosynthesis and competition for photosynthate in VA mycorrhiza, Rhizobium and Cajanus cajan symbiosis publication-title: Current Science – start-page: 157 year: 2007 ident: 10.1016/j.soilbio.2009.03.005_bib22 article-title: Is plant growth driven by sink regulation? – volume: 133 start-page: 16 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib98 article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses publication-title: Plant Physiology doi: 10.1104/pp.103.024380 – volume: 86 start-page: 131 year: 1980 ident: 10.1016/j.soilbio.2009.03.005_bib40 article-title: Regulation of photosynthesis by sink activity – the missing link publication-title: New Phytologist doi: 10.1111/j.1469-8137.1980.tb03184.x – start-page: 141 year: 1999 ident: 10.1016/j.soilbio.2009.03.005_bib17 article-title: Role of mineral nutrients in photosynthesis and yield formation – volume: 168 start-page: 435 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib33 article-title: Phosphorus nutrition-mediated effects of arbuscular mycorrhiza on leaf morphology and carbon allocation in perennial ryegrass publication-title: New Phytologist doi: 10.1111/j.1469-8137.2005.01500.x – volume: 26 start-page: 711 year: 1994 ident: 10.1016/j.soilbio.2009.03.005_bib30 article-title: Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(94)90263-1 – volume: 114 start-page: 135 year: 1979 ident: 10.1016/j.soilbio.2009.03.005_bib91 article-title: The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. I. Nitrogen fixation and the respiration of the nodulated root publication-title: Journal of Experimental Botany doi: 10.1093/jxb/30.1.135 – volume: 61 start-page: 1400 year: 1971 ident: 10.1016/j.soilbio.2009.03.005_bib87 article-title: Effect of phosphate fertilization on yield of mycorrhizal and nonmycorrhizal soybeans publication-title: Phytopathology doi: 10.1094/Phyto-61-1400 – volume: 167 start-page: 125 year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib93 article-title: How are nitrogen fixation rates regulated in legumes? publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/jpln.200320358 – volume: 35 start-page: 1156 year: 1984 ident: 10.1016/j.soilbio.2009.03.005_bib89 article-title: N2 fixation and the respiratory costs of nodules, nitrogenase activity, and nodule growth and maintenance in Fiskeby soyabean publication-title: Journal of Experimental Botany doi: 10.1093/jxb/35.8.1156 – volume: 116 start-page: 72 year: 2006 ident: 10.1016/j.soilbio.2009.03.005_bib19 article-title: Mycorrhizas and tropical soil fertility publication-title: Agriculture, Ecosystems and Environment doi: 10.1016/j.agee.2006.03.011 – volume: 130 start-page: 1162 year: 2002 ident: 10.1016/j.soilbio.2009.03.005_bib72 article-title: Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures publication-title: Plant Physiology doi: 10.1104/pp.009639 – start-page: 347 year: 2001 ident: 10.1016/j.soilbio.2009.03.005_bib34 article-title: Meta-analysis: combining the results of independent experiments – volume: 15 start-page: 271 year: 1992 ident: 10.1016/j.soilbio.2009.03.005_bib36 article-title: Modelling photosynthesis of cotton grown in elevated CO2 publication-title: Plant Cell & Environment doi: 10.1111/j.1365-3040.1992.tb00974.x – volume: 132 start-page: 425 year: 1996 ident: 10.1016/j.soilbio.2009.03.005_bib25 article-title: Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus publication-title: New Phytologist doi: 10.1111/j.1469-8137.1996.tb01862.x – start-page: 195 year: 2005 ident: 10.1016/j.soilbio.2009.03.005_bib66 article-title: Respiratory/carbon costs of symbiotic nitrogen fixation in legumes – volume: 30 start-page: 145 year: 1979 ident: 10.1016/j.soilbio.2009.03.005_bib90 article-title: The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen publication-title: Journal of Experimental Botany doi: 10.1093/jxb/30.1.145 – volume: 60 start-page: 419 year: 1977 ident: 10.1016/j.soilbio.2009.03.005_bib8 article-title: Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes publication-title: Plant Physiology doi: 10.1104/pp.60.3.419 – volume: 101 start-page: 427 year: 1985 ident: 10.1016/j.soilbio.2009.03.005_bib37 article-title: Carbon economy of soybean–Rhizobium–Glomus associations publication-title: New Phytologist doi: 10.1111/j.1469-8137.1985.tb02849.x – year: 2004 ident: 10.1016/j.soilbio.2009.03.005_bib69 – volume: 24 start-page: 259 year: 1973 ident: 10.1016/j.soilbio.2009.03.005_bib63 article-title: The carbon balance of a legume and the functional economy of its root nodules publication-title: Journal of Experimental Botany doi: 10.1093/jxb/24.2.259 – volume: 16 start-page: 125 year: 1993 ident: 10.1016/j.soilbio.2009.03.005_bib77 article-title: Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen publication-title: Plant Cell & Environment doi: 10.1111/j.1365-3040.1993.tb00854.x – volume: 73 start-page: 681 year: 1983 ident: 10.1016/j.soilbio.2009.03.005_bib3 article-title: Inhibition of photosynthesis by carbohydrates in wheat leaves publication-title: Plant Physiology doi: 10.1104/pp.73.3.681 – volume: 171 start-page: 759 year: 2006 ident: 10.1016/j.soilbio.2009.03.005_bib61 article-title: Sink strength regulates photosynthesis in sugarcane publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01785.x – volume: 9 start-page: 15 year: 1977 ident: 10.1016/j.soilbio.2009.03.005_bib39 article-title: A colorimetric method for estimating vesicular-arbuscular mycorrhizal infection in roots publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(77)90055-4 – volume: 131 start-page: 1496 year: 2003 ident: 10.1016/j.soilbio.2009.03.005_bib4 article-title: Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid publication-title: Plant Physiology doi: 10.1104/pp.102.007765 |
SSID | ssj0002513 |
Score | 2.4765093 |
Snippet | Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4–16% of recently photosynthetically-fixed carbon to maintain their growth, activity and... Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4-16% of recently photosynthetically-fixed carbon to maintain their growth, activity and... Rhizobial and arbuscular mycorrhizal (AM) symbioses each may consume 4¿16% of recently photosynthetically-fixed carbon to maintain their growth, activity and... |
SourceID | wageningen proquest pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1233 |
SubjectTerms | Agronomy. Soil science and plant productions Bacteria Biochemistry and biology Biological and medical sciences biomass c-3 plants carbon sequestration Chemical, physicochemical, biochemical and biological properties Economic plant physiology Fundamental and applied biological sciences. Psychology glomus-intraradices Harvest index inoculum leaves Legume legumes literature reviews n-2 fixation nitrogen-fixation nutrient-use efficiency nutrients P i recycling phosphorus-nutrition photosynthesis Photosynthetic nutrient use efficiency Physics, chemistry, biochemistry and biology of agricultural and forest soils plant growth respiratory costs Rhizobium seeds Sink stimulation of photosynthesis soil ecology Soil science Source-sink regulation soybean glycine-max Starch Sucrose symbionts symbiosis Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...) trifolium-repens l vesicular arbuscular mycorrhizae vicia-faba-l |
Title | Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? |
URI | https://dx.doi.org/10.1016/j.soilbio.2009.03.005 https://www.proquest.com/docview/20605073 https://www.proquest.com/docview/46303829 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F381122 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaa9rD2MGzdhmaPTIdd3dh62PFpCIIV2Yb1shboTZBkuU2R2IGVoMhlv31kLKfLoSiwkwFZhC2SoiiJ_EjIl3SkheVlFpnSskiknEemEGkEmwlp49jpbAv2_OsynV6LHzfy5oBMulwYDKsMtr-16VtrHVqGgZvD5WyGOb4Ilp5kcb7dl8seOWI8T0G1j8bff04vdwYZlvCAvTvCfJ3sMZFneI-QuXMzqwNyJcKdyqeWqF6pa4yd1B7YV7Z1L_Yc0-MHsAHVNinqn0Xq4hV5GbxLOm4H8JocuOqUnIxvm4Cw4U7Ji0lX4u0N2YwbR8EDpIgX4Wld0uVdvar9poJGP_MU5v8C63u5gprNtqfVjakr6mELSzHPpLpd3SFhg7F7mH1CdVVQ6LRuI1zpYgP7W3wLr_xmAUzwzn99S64uvl1NplGoxRBZKdgqckyLPAX_QGuTlDItXRIbZqXL8WoW_D5tC5kWWVpmlnNu4sxJaU0mCzvKjePvyGFVV-6MUGMzLpgRJRdcpIgwJk2JMHXa5FaM0j4RHfeVDTjlWC5jrrqAtHsVhIY1NHMVcwVC65PzHdmyBep4jmDUiVbtaZyCxeQ50jNQBaVBel5d_2Z4-wt-LctZ0ieDPf3Y_QtLEHJVAO3nTmEUSBuvZ3Tl6rWHDwAfweI-3QOmEugwy_uEP2qaqrDolFeIEx5O_tTDulHVHB8wqb0CHieMvf__AX8gx-0tGp4-fSSHq2btPoEztjID0jv_kwzClPsLCNA2_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4BPQCHqqWtSB-wh15N7H3Y8QlFUVHaApcGidtqd72GoMSOvIlQLv3tzPhBmgNC6smSvSPb89rZ3ZlvCPkeD7SwPE8Ck1sWiJjzwGQiDmAxIW0YOp3UYM9X1_H4Rvy6lbc7ZNTVwmBaZev7G59ee-v2Tr_lZn8xnWKNL4KlR0mY1utyuUveCDBftM6zv5s8D5jAW-TdAVbrJJsynv4DAubOzLRscSsR7FS-NEHt5rrEzEntgXl50_ViKyw9eAQPUNQlUf9MURfvyNs2tqTD5vPfkx1XHJHD4V3V4mu4I7I_6hq8fSDrYeUoxH8U0SI8LXO6uC-XpV8XcNNPPQXrn2N3L5dRs65HWl2ZsqAeFrAUq0yKu-U9ElaYuYe1J1QXGYVBqya_lc7XsLrFp_DIr-fABO_8-UcyufgxGY2DthNDYKVgy8AxLdIYogOtTZTLOHdRaJiVLsWDWYj6tM1knCVxnljOuQkTJ6U1iczsIDWOfyJ7RVm4Y0KNTbhgRuRccBEjvpg0OYLUaZNaMYh7RHTcV7ZFKcdmGTPVpaM9qFZo2EEzVSFXILQeOXsmWzQwHa8RDDrRqi19UzCVvEZ6DKqgNEjPq5s_DM9-IaplKYt65GRLP56_hUUIuCqA9rRTGAXSxsMZXbhy5eEFwEfwty-PAEMCHWZpj_CNpqkCW055hSjh7b6felxVqpjhBUzaK-BxxNjn___hU7I_nlxdqsuf17-_kIPmPA33ob6SvWW1ct8gLFuak9rsngCgdzfB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+the+rates+of+photosynthesis+stimulated+by+the+carbon+sink+strength+of+rhizobial+and+arbuscular+mycorrhizal+symbioses%3F&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=KASCHUK%2C+Glaciela&rft.au=KUYPER%2C+Thomas+W&rft.au=LEFFELAAR%2C+Peter+A&rft.au=HUNGRIA%2C+Mariangela&rft.date=2009-06-01&rft.pub=Elsevier&rft.issn=0038-0717&rft.volume=41&rft.issue=6&rft.spage=1233&rft.epage=1244&rft_id=info:doi/10.1016%2Fj.soilbio.2009.03.005&rft.externalDBID=n%2Fa&rft.externalDocID=21614845 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |