Abemaciclib and Vacuolin-1 decrease aggregate-prone TDP-43 accumulation by accelerating autophagic flux
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to...
Saved in:
Published in | Biochemistry and biophysics reports Vol. 38; p. 101705 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.
•Abe and Vac accelerate autophagic flux.•Abe and Vac do not increase release of extracellular vesicles.•Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation.•Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation. |
---|---|
AbstractList | (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. •Abe and Vac accelerate autophagic flux.•Abe and Vac do not increase release of extracellular vesicles.•Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation.•Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation. (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. • Abe and Vac accelerate autophagic flux. • Abe and Vac do not increase release of extracellular vesicles. • Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation. • Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation. |
ArticleNumber | 101705 |
Author | Takeya, Kosuke Hino, Hirotsugu Eto, Masumi Kozuma, Lina Tanaka, Yoshinori |
Author_xml | – sequence: 1 givenname: Yoshinori orcidid: 0000-0003-1428-0683 surname: Tanaka fullname: Tanaka, Yoshinori email: y-tanaka@ous.ac.jp organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan – sequence: 2 givenname: Lina orcidid: 0009-0007-3978-565X surname: Kozuma fullname: Kozuma, Lina organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan – sequence: 3 givenname: Hirotsugu orcidid: 0000-0001-7560-2442 surname: Hino fullname: Hino, Hirotsugu organization: Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan – sequence: 4 givenname: Kosuke orcidid: 0000-0003-4270-5829 surname: Takeya fullname: Takeya, Kosuke organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan – sequence: 5 givenname: Masumi orcidid: 0000-0002-0651-5836 surname: Eto fullname: Eto, Masumi organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38596406$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQjFAR_aC_AAnlyCUP24nt-IBQVaBUqgSHwtVabzapn5L44SRV--_xa0rVXjjZu56d3R3PcXYwhpGy7B1nG864-rjdOBdptxFMVPuMZvJVdiQqJgtZs_rg2f0wO52mLWOMS1FLod5kh2UtjaqYOsq6M0cDoMfeuxzGJv8NuITejwXPG8JIMFEOXRepg5mKXUxj5NdffhZVmQPiMiw9zD6Mubvfx9RTTPHY5bDMYXcDnce87Ze7t9nrFvqJTh_Pk-zXt6_X59-Lqx8Xl-dnVwXKSswFtlq3nLAVWhKh06iQ1QKxTYNzMEJUJRBrnFHcKK1LLLmCSjaMi5pDU55klytvE2Brd9EPEO9tAG8fEiF2FuKc1iWrqOJtC04KUpU2wuiam9ooQwiOjEpcn1eu3eIGapDGOUL_gvTly-hvbBduLedJbK3rxPDhkSGGPwtNsx38lETqYaSwTLZkpZQV00Yn6PvnzZ66_PuqBChXAMYwTZHaJwhndu8Ju7UPnrB7T9jVE6nq01pFSfRbT9FO6GlEanwknJMq_r_1fwEVsMAC |
Cites_doi | 10.1016/j.celrep.2013.06.007 10.1007/s12031-022-02029-3 10.1242/jcs.213587 10.1016/j.molcel.2019.10.016 10.1016/j.neuron.2013.07.033 10.1073/pnas.1411117111 10.1111/febs.13987 10.1016/j.jmb.2016.10.029 10.1083/jcb.201911036 10.1016/j.celrep.2020.03.068 10.1016/j.bbrc.2022.05.027 10.1073/pnas.1112848109 10.1093/hmg/ddw024 10.1038/s41392-020-0118-x 10.1016/j.jbc.2023.105272 10.1111/cas.14419 10.7554/eLife.69709 10.1002/ana.21425 10.1080/15548627.2019.1586257 10.1093/emboj/19.17.4577 10.1038/s41416-023-02210-4 10.1038/nchembio.1563 10.1158/2159-8290.CD-16-0095 10.1084/jem.20160999 10.1056/NEJMra2022774 10.1002/1878-0261.12072 10.1038/nmeth.2019 10.1126/science.aaf6136 10.1038/ncomms11803 10.1016/j.molcel.2016.09.037 10.1038/bmt.2012.244 10.1038/s41467-018-06548-9 10.1016/j.cell.2023.01.005 10.3324/haematol.2019.222729 10.1186/1750-1326-5-33 10.1016/j.bbrc.2022.04.064 10.1016/j.jbc.2022.102187 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bbrep.2024.101705 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2405-5808 |
ExternalDocumentID | oai_doaj_org_article_6e41ffab52e64792978198969ecabe96 PMC11001778 38596406 10_1016_j_bbrep_2024_101705 S2405580824000694 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDW AAFTH AAFWJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFPKN AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c542t-cf77f1ecf275eecb7c6c082ccf5261a92243ae0db96196773c316a45d01281ad3 |
IEDL.DBID | DOA |
ISSN | 2405-5808 |
IngestDate | Wed Aug 27 01:24:45 EDT 2025 Thu Aug 21 18:34:05 EDT 2025 Fri Jul 11 00:06:16 EDT 2025 Mon Jul 21 05:55:25 EDT 2025 Tue Jul 01 03:08:25 EDT 2025 Wed Jun 26 17:52:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Abemaciclib TDP-43 PIP Vacuolin-1 Autophagic flux |
Language | English |
License | This is an open access article under the CC BY license. 2024 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-cf77f1ecf275eecb7c6c082ccf5261a92243ae0db96196773c316a45d01281ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4270-5829 0000-0003-1428-0683 0000-0001-7560-2442 0000-0002-0651-5836 0009-0007-3978-565X |
OpenAccessLink | https://doaj.org/article/6e41ffab52e64792978198969ecabe96 |
PMID | 38596406 |
PQID | 3035540797 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e41ffab52e64792978198969ecabe96 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11001778 proquest_miscellaneous_3035540797 pubmed_primary_38596406 crossref_primary_10_1016_j_bbrep_2024_101705 elsevier_sciencedirect_doi_10_1016_j_bbrep_2024_101705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochemistry and biophysics reports |
PublicationTitleAlternate | Biochem Biophys Rep |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hasegawa, Arai, Nonaka, Kametani, Yoshida, Hashizume, Beach, Buratti, Baralle, Morita, Nakano, Oda, Tsuchiya, Akiyama (bib21) 2008; 64 Tanaka, Nonaka, Suzuki, Kametani, Hasegawa (bib10) 2016; 25 Hino, Iriyama, Kokuba, Kazama, Moriya, Takano, Hiramoto, Aizawa, Miyazawa (bib9) 2020; 111 Kaizuka, Morishita, Hama, Tsukamoto, Matsui, Toyota, Kodama, Ishihara, Mizushima, Mizushima (bib8) 2016; 64 Tsuboyama, Koyama-Honda, Sakamaki, Koike, Morishita, Mizushima (bib29) 2016; 354 Tanaka, Ito, Honma, Hasegawa, Kametani, Suzuki, Kozuma, Takeya, Eto (bib13) 2023; 299 Saffi, Wang, Mangialardi, Vacher, Botelho, Salmena (bib22) 2022; 298 Cozzi, Ferrari (bib26) 2022; 72 Zhang, Li, Ou, Yang, Deng, Wang, Wang, Wang, Zhang, Wang, Sun, Sun, Yang (bib30) 2020; 5 Tanaka, Kusumoto, Honma, Takeya, Eto (bib6) 2022; 611 Choy, Saffi, Gray, Wallace, Dayam, Ou, Lenk, Puertollano, Watkins, Botelho (bib37) 2018; 131 Ling, Polymenidou, Cleveland (bib2) 2013; 79 Zhang, Gendron, Xu, Ko, Yen, Petrucelli (bib31) 2010; 5 Barmada, Serio, Arjun, Bilican, Daub, Ando, Tsvetkov, Pleiss, Li, Peisach, Shaw, Chandran, Finkbeiner (bib5) 2014; 10 Hung, Linares, Chang, Eoh, Krishnan, Mendonca, Hong, Shi, Santana, Kueth, Macklin-Isquierdo, Perry, Duhaime, Maios, Chang, Perez, Couto, Lai, Li, Alworth, Hendricks, Wang, Zlokovic, Dickman, Parker, Zarnescu, Gao, Ichida (bib19) 2023; 186 Odle, Walker, Oxley, Kidger, Balmanno, Gilley, Okkenhaug, Florey, Ktistakis, Cook (bib18) 2020; 77 Tanaka, Suzuki, Matsuwaki, Hosokawa, Serrano, Beach, Yamanouchi, Hasegawa, Nishihara (bib28) 2017; 26 Romero-Pozuelo, Figlia, Kaya, Martin-Villalba, Teleman (bib34) 2020; 31 Patnaik, Rosen, Tolaney, Tolcher, Goldman, Gandhi, Papadopoulos, Beeram, Rasco, Hilton, Nasir, Beckmann, Schade, Fulford, Nguyen, Martinez, Kulanthaivel, Li, Frenzel, Cronier, Chan, Flaherty, Wen, Shapiro (bib38) 2016; 6 Nascimbeni, Codogno, Morel (bib16) 2017; 284 Nonaka, Masuda-Suzukake, Arai, Hasegawa, Akatsu, Obi, Yoshida, Murayama, Mann, Akiyama, Hasegawa (bib3) 2013; 4 Sharma, Guardia, Roy, Vassilev, Saric, Griner, Marugan, Ferrer, Bonifacino, DePamphilis (bib36) 2019; 15 McCartney, Zolov, Kauffman, Zhang, Strunk, Weisman, Sutton (bib17) 2014; 111 Hsieh, Chen, Hung, Chu, Tsai, Chen, Hsiao, Shih, Chang, Chao, Shiau, Chen (bib33) 2017; 11 Bento, Ashkenazi, Jimenez-Sanchez, Rubinsztein (bib12) 2016; 7 Gillooly, Morrow, Lindsay, Gould, Bryant, Gaullier, Parton, Stenmark (bib23) 2000; 19 Chang, Srinivasan, Friedman, Suto, Modrusan, Lee, Kaminker, Hansen, Sheng (bib27) 2017; 214 Takano, Hiramoto, Yamada, Kokuba, Tokuhisa, Hino, Miyazawa (bib11) 2023; 128 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bib14) 2012; 9 Porta, Xu, Restrepo, Kwong, Zhang, Brown, Lee, Trojanowski, Lee (bib4) 2018; 9 de Campos, Zhu, Sepetov, Romanov, Bruins, Shi, Stein, Petit, Polito, Sharik, Meermeier, Ahmann, Armenta, Kruse, Bergsagel, Chesi, Meurice, Braggio, Stewart (bib35) 2020; 105 Giridharan, Luo, Rivero-Rios, Steinfeld, Tronchere, Singla, Burstein, Billadeau, Sutton, Weisman (bib20) 2022; 11 Tanaka, Hino, Takeya, Eto (bib7) 2022; 614 Mizushima, Levine (bib1) 2020; 383 Jaber, Dou, Chen, Catanzaro, Jiang, Ballou, Selinger, Ouyang, Lin, Zhang, Zong (bib25) 2012; 109 Martens, Nakamura, Yoshimori (bib24) 2016; 428 Kanda (bib15) 2013; 48 Yin, Jian, Xu, Huang, Wang, Liu, Li, Li, Zhou, Xu, Wang, Yang (bib32) 2020; 219 Nonaka (10.1016/j.bbrep.2024.101705_bib3) 2013; 4 Hino (10.1016/j.bbrep.2024.101705_bib9) 2020; 111 Cozzi (10.1016/j.bbrep.2024.101705_bib26) 2022; 72 Tanaka (10.1016/j.bbrep.2024.101705_bib6) 2022; 611 Romero-Pozuelo (10.1016/j.bbrep.2024.101705_bib34) 2020; 31 Nascimbeni (10.1016/j.bbrep.2024.101705_bib16) 2017; 284 Schindelin (10.1016/j.bbrep.2024.101705_bib14) 2012; 9 Hsieh (10.1016/j.bbrep.2024.101705_bib33) 2017; 11 Mizushima (10.1016/j.bbrep.2024.101705_bib1) 2020; 383 Patnaik (10.1016/j.bbrep.2024.101705_bib38) 2016; 6 Bento (10.1016/j.bbrep.2024.101705_bib12) 2016; 7 Hasegawa (10.1016/j.bbrep.2024.101705_bib21) 2008; 64 Jaber (10.1016/j.bbrep.2024.101705_bib25) 2012; 109 Hung (10.1016/j.bbrep.2024.101705_bib19) 2023; 186 Giridharan (10.1016/j.bbrep.2024.101705_bib20) 2022; 11 Tanaka (10.1016/j.bbrep.2024.101705_bib7) 2022; 614 Yin (10.1016/j.bbrep.2024.101705_bib32) 2020; 219 Zhang (10.1016/j.bbrep.2024.101705_bib31) 2010; 5 Tsuboyama (10.1016/j.bbrep.2024.101705_bib29) 2016; 354 Gillooly (10.1016/j.bbrep.2024.101705_bib23) 2000; 19 Zhang (10.1016/j.bbrep.2024.101705_bib30) 2020; 5 Porta (10.1016/j.bbrep.2024.101705_bib4) 2018; 9 Kaizuka (10.1016/j.bbrep.2024.101705_bib8) 2016; 64 McCartney (10.1016/j.bbrep.2024.101705_bib17) 2014; 111 Takano (10.1016/j.bbrep.2024.101705_bib11) 2023; 128 de Campos (10.1016/j.bbrep.2024.101705_bib35) 2020; 105 Saffi (10.1016/j.bbrep.2024.101705_bib22) 2022; 298 Tanaka (10.1016/j.bbrep.2024.101705_bib13) 2023; 299 Sharma (10.1016/j.bbrep.2024.101705_bib36) 2019; 15 Odle (10.1016/j.bbrep.2024.101705_bib18) 2020; 77 Chang (10.1016/j.bbrep.2024.101705_bib27) 2017; 214 Tanaka (10.1016/j.bbrep.2024.101705_bib10) 2016; 25 Martens (10.1016/j.bbrep.2024.101705_bib24) 2016; 428 Tanaka (10.1016/j.bbrep.2024.101705_bib28) 2017; 26 Ling (10.1016/j.bbrep.2024.101705_bib2) 2013; 79 Kanda (10.1016/j.bbrep.2024.101705_bib15) 2013; 48 Choy (10.1016/j.bbrep.2024.101705_bib37) 2018; 131 Barmada (10.1016/j.bbrep.2024.101705_bib5) 2014; 10 |
References_xml | – volume: 48 start-page: 452 year: 2013 end-page: 458 ident: bib15 article-title: Investigation of the freely available easy-to-use software 'EZR' for medical statistics publication-title: Bone Marrow Transplant. – volume: 284 start-page: 1267 year: 2017 end-page: 1278 ident: bib16 article-title: Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics publication-title: FEBS J. – volume: 111 start-page: 2132 year: 2020 end-page: 2145 ident: bib9 article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes publication-title: Cancer Sci. – volume: 19 start-page: 4577 year: 2000 end-page: 4588 ident: bib23 article-title: Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells publication-title: EMBO J. – volume: 72 start-page: 1456 year: 2022 end-page: 1481 ident: bib26 article-title: Autophagy dysfunction in ALS: from transport to protein degradation publication-title: J. Mol. Neurosci. – volume: 5 start-page: 25 year: 2020 ident: bib30 article-title: CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism publication-title: Signal Transduct. Targeted Ther. – volume: 109 start-page: 2003 year: 2012 end-page: 2008 ident: bib25 article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 124 year: 2013 end-page: 134 ident: bib3 article-title: Prion-like properties of pathological TDP-43 aggregates from diseased brains publication-title: Cell Rep. – volume: 10 start-page: 677 year: 2014 end-page: 685 ident: bib5 article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models publication-title: Nat. Chem. Biol. – volume: 105 start-page: 1641 year: 2020 end-page: 1649 ident: bib35 article-title: Identification of PIKfyve kinase as a target in multiple myeloma publication-title: Haematologica – volume: 219 year: 2020 ident: bib32 article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 publication-title: J. Cell Biol. – volume: 64 start-page: 835 year: 2016 end-page: 849 ident: bib8 article-title: An autophagic flux probe that releases an internal control publication-title: Mol. Cell – volume: 186 start-page: 786 year: 2023 end-page: 802 e728 ident: bib19 article-title: PIKFYVE inhibition mitigates disease in models of diverse forms of ALS publication-title: Cell – volume: 64 start-page: 60 year: 2008 end-page: 70 ident: bib21 article-title: Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Ann. Neurol. – volume: 5 start-page: 33 year: 2010 ident: bib31 article-title: Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments publication-title: Mol. Neurodegener. – volume: 128 start-page: 1838 year: 2023 end-page: 1849 ident: bib11 article-title: Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics publication-title: Br. J. Cancer – volume: 77 start-page: 228 year: 2020 end-page: 240 e227 ident: bib18 article-title: An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis publication-title: Mol. Cell – volume: 214 start-page: 2611 year: 2017 end-page: 2628 ident: bib27 article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation publication-title: J. Exp. Med. – volume: 31 year: 2020 ident: bib34 article-title: Cdk4 and Cdk 6 couple the cell-cycle machinery to cell growth via mTORC1 publication-title: Cell Rep. – volume: 9 start-page: 4220 year: 2018 ident: bib4 article-title: Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo publication-title: Nat. Commun. – volume: 354 start-page: 1036 year: 2016 end-page: 1041 ident: bib29 article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane publication-title: Science – volume: 614 start-page: 191 year: 2022 end-page: 197 ident: bib7 article-title: Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation - a new tool to study autophagosome-lysosome fusion publication-title: Biochem. Biophys. Res. Commun. – volume: 11 start-page: 1035 year: 2017 end-page: 1049 ident: bib33 article-title: Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner publication-title: Mol. Oncol. – volume: 25 start-page: 1420 year: 2016 end-page: 1433 ident: bib10 article-title: Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation publication-title: Hum. Mol. Genet. – volume: 26 start-page: 969 year: 2017 end-page: 988 ident: bib28 article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes publication-title: Hum. Mol. Genet. – volume: 6 start-page: 740 year: 2016 end-page: 753 ident: bib38 article-title: Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors publication-title: Cancer Discov. – volume: 15 start-page: 1694 year: 2019 end-page: 1718 ident: bib36 article-title: A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis publication-title: Autophagy – volume: 299 year: 2023 ident: bib13 article-title: Dysregulation of the progranulin-driven autophagy-lysosomal pathway mediates secretion of the nuclear protein TDP-43 publication-title: J. Biol. Chem. – volume: 111 start-page: E4896 year: 2014 end-page: E4905 ident: bib17 article-title: Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 611 start-page: 78 year: 2022 end-page: 84 ident: bib6 article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux publication-title: Biochem. Biophys. Res. Commun. – volume: 11 year: 2022 ident: bib20 article-title: Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes publication-title: Elife – volume: 79 start-page: 416 year: 2013 end-page: 438 ident: bib2 article-title: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis publication-title: Neuron – volume: 428 start-page: 4819 year: 2016 end-page: 4827 ident: bib24 article-title: Phospholipids in autophagosome formation and fusion publication-title: J. Mol. Biol. – volume: 131 year: 2018 ident: bib37 article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence publication-title: J. Cell Sci. – volume: 383 start-page: 1564 year: 2020 end-page: 1576 ident: bib1 article-title: Autophagy in human diseases publication-title: N. Engl. J. Med. – volume: 298 year: 2022 ident: bib22 article-title: Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity publication-title: J. Biol. Chem. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib14 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 7 year: 2016 ident: bib12 article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway publication-title: Nat. Commun. – volume: 4 start-page: 124 year: 2013 ident: 10.1016/j.bbrep.2024.101705_bib3 article-title: Prion-like properties of pathological TDP-43 aggregates from diseased brains publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.007 – volume: 72 start-page: 1456 year: 2022 ident: 10.1016/j.bbrep.2024.101705_bib26 article-title: Autophagy dysfunction in ALS: from transport to protein degradation publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-022-02029-3 – volume: 131 year: 2018 ident: 10.1016/j.bbrep.2024.101705_bib37 article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence publication-title: J. Cell Sci. doi: 10.1242/jcs.213587 – volume: 77 start-page: 228 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib18 article-title: An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.016 – volume: 79 start-page: 416 year: 2013 ident: 10.1016/j.bbrep.2024.101705_bib2 article-title: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis publication-title: Neuron doi: 10.1016/j.neuron.2013.07.033 – volume: 111 start-page: E4896 year: 2014 ident: 10.1016/j.bbrep.2024.101705_bib17 article-title: Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1411117111 – volume: 284 start-page: 1267 year: 2017 ident: 10.1016/j.bbrep.2024.101705_bib16 article-title: Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics publication-title: FEBS J. doi: 10.1111/febs.13987 – volume: 428 start-page: 4819 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib24 article-title: Phospholipids in autophagosome formation and fusion publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.10.029 – volume: 219 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib32 article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 publication-title: J. Cell Biol. doi: 10.1083/jcb.201911036 – volume: 31 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib34 article-title: Cdk4 and Cdk 6 couple the cell-cycle machinery to cell growth via mTORC1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.03.068 – volume: 614 start-page: 191 year: 2022 ident: 10.1016/j.bbrep.2024.101705_bib7 article-title: Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation - a new tool to study autophagosome-lysosome fusion publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2022.05.027 – volume: 109 start-page: 2003 year: 2012 ident: 10.1016/j.bbrep.2024.101705_bib25 article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1112848109 – volume: 25 start-page: 1420 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib10 article-title: Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw024 – volume: 5 start-page: 25 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib30 article-title: CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-020-0118-x – volume: 299 year: 2023 ident: 10.1016/j.bbrep.2024.101705_bib13 article-title: Dysregulation of the progranulin-driven autophagy-lysosomal pathway mediates secretion of the nuclear protein TDP-43 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2023.105272 – volume: 111 start-page: 2132 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib9 article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes publication-title: Cancer Sci. doi: 10.1111/cas.14419 – volume: 11 year: 2022 ident: 10.1016/j.bbrep.2024.101705_bib20 article-title: Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes publication-title: Elife doi: 10.7554/eLife.69709 – volume: 64 start-page: 60 year: 2008 ident: 10.1016/j.bbrep.2024.101705_bib21 article-title: Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.21425 – volume: 26 start-page: 969 year: 2017 ident: 10.1016/j.bbrep.2024.101705_bib28 article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes publication-title: Hum. Mol. Genet. – volume: 15 start-page: 1694 year: 2019 ident: 10.1016/j.bbrep.2024.101705_bib36 article-title: A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis publication-title: Autophagy doi: 10.1080/15548627.2019.1586257 – volume: 19 start-page: 4577 year: 2000 ident: 10.1016/j.bbrep.2024.101705_bib23 article-title: Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells publication-title: EMBO J. doi: 10.1093/emboj/19.17.4577 – volume: 128 start-page: 1838 year: 2023 ident: 10.1016/j.bbrep.2024.101705_bib11 article-title: Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics publication-title: Br. J. Cancer doi: 10.1038/s41416-023-02210-4 – volume: 10 start-page: 677 year: 2014 ident: 10.1016/j.bbrep.2024.101705_bib5 article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1563 – volume: 6 start-page: 740 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib38 article-title: Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0095 – volume: 214 start-page: 2611 year: 2017 ident: 10.1016/j.bbrep.2024.101705_bib27 article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation publication-title: J. Exp. Med. doi: 10.1084/jem.20160999 – volume: 383 start-page: 1564 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib1 article-title: Autophagy in human diseases publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra2022774 – volume: 11 start-page: 1035 year: 2017 ident: 10.1016/j.bbrep.2024.101705_bib33 article-title: Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12072 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.bbrep.2024.101705_bib14 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 354 start-page: 1036 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib29 article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane publication-title: Science doi: 10.1126/science.aaf6136 – volume: 7 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib12 article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway publication-title: Nat. Commun. doi: 10.1038/ncomms11803 – volume: 64 start-page: 835 year: 2016 ident: 10.1016/j.bbrep.2024.101705_bib8 article-title: An autophagic flux probe that releases an internal control publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.09.037 – volume: 48 start-page: 452 year: 2013 ident: 10.1016/j.bbrep.2024.101705_bib15 article-title: Investigation of the freely available easy-to-use software 'EZR' for medical statistics publication-title: Bone Marrow Transplant. doi: 10.1038/bmt.2012.244 – volume: 9 start-page: 4220 year: 2018 ident: 10.1016/j.bbrep.2024.101705_bib4 article-title: Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-018-06548-9 – volume: 186 start-page: 786 year: 2023 ident: 10.1016/j.bbrep.2024.101705_bib19 article-title: PIKFYVE inhibition mitigates disease in models of diverse forms of ALS publication-title: Cell doi: 10.1016/j.cell.2023.01.005 – volume: 105 start-page: 1641 year: 2020 ident: 10.1016/j.bbrep.2024.101705_bib35 article-title: Identification of PIKfyve kinase as a target in multiple myeloma publication-title: Haematologica doi: 10.3324/haematol.2019.222729 – volume: 5 start-page: 33 year: 2010 ident: 10.1016/j.bbrep.2024.101705_bib31 article-title: Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-5-33 – volume: 611 start-page: 78 year: 2022 ident: 10.1016/j.bbrep.2024.101705_bib6 article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2022.04.064 – volume: 298 year: 2022 ident: 10.1016/j.bbrep.2024.101705_bib22 article-title: Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102187 |
SSID | ssj0001528526 |
Score | 2.2865458 |
Snippet | (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 101705 |
SubjectTerms | Abemaciclib Autophagic flux PIP TDP-43 Vacuolin-1 |
Title | Abemaciclib and Vacuolin-1 decrease aggregate-prone TDP-43 accumulation by accelerating autophagic flux |
URI | https://dx.doi.org/10.1016/j.bbrep.2024.101705 https://www.ncbi.nlm.nih.gov/pubmed/38596406 https://www.proquest.com/docview/3035540797 https://pubmed.ncbi.nlm.nih.gov/PMC11001778 https://doaj.org/article/6e41ffab52e64792978198969ecabe96 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOcAFlXcKVEbiiEUSx3Z8XApVRQVCqIXeLD_G20U0ILqR4N8ztpNqFyS4cExiJeOZSeabePwNIc8aCKHmHHMTFy3rtAPWA4_Mqlr0vXeNy5vC3r6TR6fdmzNxttHqK9WEFXrgorgXEromRutEC7JTGMxVn8p8pAZvHehMto0xbyOZKvuD2160cqYZygVdDnPMxFDZdplcKDWs2whFmbF_KyL9iTh_L5zciESHu-TWBCHpooh-m1yD4Q65cTB3brtLlgsHF9bj1ZWjdgj0o_Vjas7DGhoyTLwEapeYaad_aAwFGICevHrPOk6t9-PF1NKLup_pGANTcpNhSe2YaAgsfixp_DL-uEdOD1-fHByxqaEC86Jr18xHpWIDPrZKAHinvPQIAbyPqKvGagzn3EIdnMa0SirFPW-k7UTI62028PtkZ0CRHhLKg9Ui1kHUTuMA7Ry6glCJPUuB5K4iz2fdmm-FN8PMBWWfTTaFSaYwxRQVeZn0fzU0kV7nE-gKZnIF8y9XqIicrWcm_FBwAd5q9fenP51tbdBUacnEDvB1vDQY4EWiKNSqIg-K7a9k5L3QEvFQRfotr9iaxPaVYXWeGbwTT1-jVL_3P6b9iNxMcyk1xI_Jzvr7CE8QKa3dPrm-OP7w6Xg_vxy_ANBRFFA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abemaciclib+and+Vacuolin-1+decrease+aggregate-prone+TDP-43+accumulation+by+accelerating+autophagic+flux&rft.jtitle=Biochemistry+and+biophysics+reports&rft.au=Tanaka%2C+Yoshinori&rft.au=Kozuma%2C+Lina&rft.au=Hino%2C+Hirotsugu&rft.au=Takeya%2C+Kosuke&rft.date=2024-07-01&rft.eissn=2405-5808&rft.volume=38&rft.spage=101705&rft_id=info:doi/10.1016%2Fj.bbrep.2024.101705&rft_id=info%3Apmid%2F38596406&rft.externalDocID=38596406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-5808&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-5808&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-5808&client=summon |