Abemaciclib and Vacuolin-1 decrease aggregate-prone TDP-43 accumulation by accelerating autophagic flux

(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry and biophysics reports Vol. 38; p. 101705
Main Authors Tanaka, Yoshinori, Kozuma, Lina, Hino, Hirotsugu, Takeya, Kosuke, Eto, Masumi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. •Abe and Vac accelerate autophagic flux.•Abe and Vac do not increase release of extracellular vesicles.•Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation.•Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation.
AbstractList (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. •Abe and Vac accelerate autophagic flux.•Abe and Vac do not increase release of extracellular vesicles.•Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation.•Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation.
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P. • Abe and Vac accelerate autophagic flux. • Abe and Vac do not increase release of extracellular vesicles. • Abe and Vac autophagy-dependently suppress aggregate-prone TDP-43 accumulation. • Acceleration of autophagic flux by Abe and Vac is mediated by PI(3)P formation.
ArticleNumber 101705
Author Takeya, Kosuke
Hino, Hirotsugu
Eto, Masumi
Kozuma, Lina
Tanaka, Yoshinori
Author_xml – sequence: 1
  givenname: Yoshinori
  orcidid: 0000-0003-1428-0683
  surname: Tanaka
  fullname: Tanaka, Yoshinori
  email: y-tanaka@ous.ac.jp
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
– sequence: 2
  givenname: Lina
  orcidid: 0009-0007-3978-565X
  surname: Kozuma
  fullname: Kozuma, Lina
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
– sequence: 3
  givenname: Hirotsugu
  orcidid: 0000-0001-7560-2442
  surname: Hino
  fullname: Hino, Hirotsugu
  organization: Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
– sequence: 4
  givenname: Kosuke
  orcidid: 0000-0003-4270-5829
  surname: Takeya
  fullname: Takeya, Kosuke
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
– sequence: 5
  givenname: Masumi
  orcidid: 0000-0002-0651-5836
  surname: Eto
  fullname: Eto, Masumi
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38596406$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFAR_aC_AAnlyCUP24nt-IBQVaBUqgSHwtVabzapn5L44SRV--_xa0rVXjjZu56d3R3PcXYwhpGy7B1nG864-rjdOBdptxFMVPuMZvJVdiQqJgtZs_rg2f0wO52mLWOMS1FLod5kh2UtjaqYOsq6M0cDoMfeuxzGJv8NuITejwXPG8JIMFEOXRepg5mKXUxj5NdffhZVmQPiMiw9zD6Mubvfx9RTTPHY5bDMYXcDnce87Ze7t9nrFvqJTh_Pk-zXt6_X59-Lqx8Xl-dnVwXKSswFtlq3nLAVWhKh06iQ1QKxTYNzMEJUJRBrnFHcKK1LLLmCSjaMi5pDU55klytvE2Brd9EPEO9tAG8fEiF2FuKc1iWrqOJtC04KUpU2wuiam9ooQwiOjEpcn1eu3eIGapDGOUL_gvTly-hvbBduLedJbK3rxPDhkSGGPwtNsx38lETqYaSwTLZkpZQV00Yn6PvnzZ66_PuqBChXAMYwTZHaJwhndu8Ju7UPnrB7T9jVE6nq01pFSfRbT9FO6GlEanwknJMq_r_1fwEVsMAC
Cites_doi 10.1016/j.celrep.2013.06.007
10.1007/s12031-022-02029-3
10.1242/jcs.213587
10.1016/j.molcel.2019.10.016
10.1016/j.neuron.2013.07.033
10.1073/pnas.1411117111
10.1111/febs.13987
10.1016/j.jmb.2016.10.029
10.1083/jcb.201911036
10.1016/j.celrep.2020.03.068
10.1016/j.bbrc.2022.05.027
10.1073/pnas.1112848109
10.1093/hmg/ddw024
10.1038/s41392-020-0118-x
10.1016/j.jbc.2023.105272
10.1111/cas.14419
10.7554/eLife.69709
10.1002/ana.21425
10.1080/15548627.2019.1586257
10.1093/emboj/19.17.4577
10.1038/s41416-023-02210-4
10.1038/nchembio.1563
10.1158/2159-8290.CD-16-0095
10.1084/jem.20160999
10.1056/NEJMra2022774
10.1002/1878-0261.12072
10.1038/nmeth.2019
10.1126/science.aaf6136
10.1038/ncomms11803
10.1016/j.molcel.2016.09.037
10.1038/bmt.2012.244
10.1038/s41467-018-06548-9
10.1016/j.cell.2023.01.005
10.3324/haematol.2019.222729
10.1186/1750-1326-5-33
10.1016/j.bbrc.2022.04.064
10.1016/j.jbc.2022.102187
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bbrep.2024.101705
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2405-5808
ExternalDocumentID oai_doaj_org_article_6e41ffab52e64792978198969ecabe96
PMC11001778
38596406
10_1016_j_bbrep_2024_101705
S2405580824000694
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c542t-cf77f1ecf275eecb7c6c082ccf5261a92243ae0db96196773c316a45d01281ad3
IEDL.DBID DOA
ISSN 2405-5808
IngestDate Wed Aug 27 01:24:45 EDT 2025
Thu Aug 21 18:34:05 EDT 2025
Fri Jul 11 00:06:16 EDT 2025
Mon Jul 21 05:55:25 EDT 2025
Tue Jul 01 03:08:25 EDT 2025
Wed Jun 26 17:52:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Abemaciclib
TDP-43
PIP
Vacuolin-1
Autophagic flux
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-cf77f1ecf275eecb7c6c082ccf5261a92243ae0db96196773c316a45d01281ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4270-5829
0000-0003-1428-0683
0000-0001-7560-2442
0000-0002-0651-5836
0009-0007-3978-565X
OpenAccessLink https://doaj.org/article/6e41ffab52e64792978198969ecabe96
PMID 38596406
PQID 3035540797
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6e41ffab52e64792978198969ecabe96
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11001778
proquest_miscellaneous_3035540797
pubmed_primary_38596406
crossref_primary_10_1016_j_bbrep_2024_101705
elsevier_sciencedirect_doi_10_1016_j_bbrep_2024_101705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochemistry and biophysics reports
PublicationTitleAlternate Biochem Biophys Rep
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hasegawa, Arai, Nonaka, Kametani, Yoshida, Hashizume, Beach, Buratti, Baralle, Morita, Nakano, Oda, Tsuchiya, Akiyama (bib21) 2008; 64
Tanaka, Nonaka, Suzuki, Kametani, Hasegawa (bib10) 2016; 25
Hino, Iriyama, Kokuba, Kazama, Moriya, Takano, Hiramoto, Aizawa, Miyazawa (bib9) 2020; 111
Kaizuka, Morishita, Hama, Tsukamoto, Matsui, Toyota, Kodama, Ishihara, Mizushima, Mizushima (bib8) 2016; 64
Tsuboyama, Koyama-Honda, Sakamaki, Koike, Morishita, Mizushima (bib29) 2016; 354
Tanaka, Ito, Honma, Hasegawa, Kametani, Suzuki, Kozuma, Takeya, Eto (bib13) 2023; 299
Saffi, Wang, Mangialardi, Vacher, Botelho, Salmena (bib22) 2022; 298
Cozzi, Ferrari (bib26) 2022; 72
Zhang, Li, Ou, Yang, Deng, Wang, Wang, Wang, Zhang, Wang, Sun, Sun, Yang (bib30) 2020; 5
Tanaka, Kusumoto, Honma, Takeya, Eto (bib6) 2022; 611
Choy, Saffi, Gray, Wallace, Dayam, Ou, Lenk, Puertollano, Watkins, Botelho (bib37) 2018; 131
Ling, Polymenidou, Cleveland (bib2) 2013; 79
Zhang, Gendron, Xu, Ko, Yen, Petrucelli (bib31) 2010; 5
Barmada, Serio, Arjun, Bilican, Daub, Ando, Tsvetkov, Pleiss, Li, Peisach, Shaw, Chandran, Finkbeiner (bib5) 2014; 10
Hung, Linares, Chang, Eoh, Krishnan, Mendonca, Hong, Shi, Santana, Kueth, Macklin-Isquierdo, Perry, Duhaime, Maios, Chang, Perez, Couto, Lai, Li, Alworth, Hendricks, Wang, Zlokovic, Dickman, Parker, Zarnescu, Gao, Ichida (bib19) 2023; 186
Odle, Walker, Oxley, Kidger, Balmanno, Gilley, Okkenhaug, Florey, Ktistakis, Cook (bib18) 2020; 77
Tanaka, Suzuki, Matsuwaki, Hosokawa, Serrano, Beach, Yamanouchi, Hasegawa, Nishihara (bib28) 2017; 26
Romero-Pozuelo, Figlia, Kaya, Martin-Villalba, Teleman (bib34) 2020; 31
Patnaik, Rosen, Tolaney, Tolcher, Goldman, Gandhi, Papadopoulos, Beeram, Rasco, Hilton, Nasir, Beckmann, Schade, Fulford, Nguyen, Martinez, Kulanthaivel, Li, Frenzel, Cronier, Chan, Flaherty, Wen, Shapiro (bib38) 2016; 6
Nascimbeni, Codogno, Morel (bib16) 2017; 284
Nonaka, Masuda-Suzukake, Arai, Hasegawa, Akatsu, Obi, Yoshida, Murayama, Mann, Akiyama, Hasegawa (bib3) 2013; 4
Sharma, Guardia, Roy, Vassilev, Saric, Griner, Marugan, Ferrer, Bonifacino, DePamphilis (bib36) 2019; 15
McCartney, Zolov, Kauffman, Zhang, Strunk, Weisman, Sutton (bib17) 2014; 111
Hsieh, Chen, Hung, Chu, Tsai, Chen, Hsiao, Shih, Chang, Chao, Shiau, Chen (bib33) 2017; 11
Bento, Ashkenazi, Jimenez-Sanchez, Rubinsztein (bib12) 2016; 7
Gillooly, Morrow, Lindsay, Gould, Bryant, Gaullier, Parton, Stenmark (bib23) 2000; 19
Chang, Srinivasan, Friedman, Suto, Modrusan, Lee, Kaminker, Hansen, Sheng (bib27) 2017; 214
Takano, Hiramoto, Yamada, Kokuba, Tokuhisa, Hino, Miyazawa (bib11) 2023; 128
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bib14) 2012; 9
Porta, Xu, Restrepo, Kwong, Zhang, Brown, Lee, Trojanowski, Lee (bib4) 2018; 9
de Campos, Zhu, Sepetov, Romanov, Bruins, Shi, Stein, Petit, Polito, Sharik, Meermeier, Ahmann, Armenta, Kruse, Bergsagel, Chesi, Meurice, Braggio, Stewart (bib35) 2020; 105
Giridharan, Luo, Rivero-Rios, Steinfeld, Tronchere, Singla, Burstein, Billadeau, Sutton, Weisman (bib20) 2022; 11
Tanaka, Hino, Takeya, Eto (bib7) 2022; 614
Mizushima, Levine (bib1) 2020; 383
Jaber, Dou, Chen, Catanzaro, Jiang, Ballou, Selinger, Ouyang, Lin, Zhang, Zong (bib25) 2012; 109
Martens, Nakamura, Yoshimori (bib24) 2016; 428
Kanda (bib15) 2013; 48
Yin, Jian, Xu, Huang, Wang, Liu, Li, Li, Zhou, Xu, Wang, Yang (bib32) 2020; 219
Nonaka (10.1016/j.bbrep.2024.101705_bib3) 2013; 4
Hino (10.1016/j.bbrep.2024.101705_bib9) 2020; 111
Cozzi (10.1016/j.bbrep.2024.101705_bib26) 2022; 72
Tanaka (10.1016/j.bbrep.2024.101705_bib6) 2022; 611
Romero-Pozuelo (10.1016/j.bbrep.2024.101705_bib34) 2020; 31
Nascimbeni (10.1016/j.bbrep.2024.101705_bib16) 2017; 284
Schindelin (10.1016/j.bbrep.2024.101705_bib14) 2012; 9
Hsieh (10.1016/j.bbrep.2024.101705_bib33) 2017; 11
Mizushima (10.1016/j.bbrep.2024.101705_bib1) 2020; 383
Patnaik (10.1016/j.bbrep.2024.101705_bib38) 2016; 6
Bento (10.1016/j.bbrep.2024.101705_bib12) 2016; 7
Hasegawa (10.1016/j.bbrep.2024.101705_bib21) 2008; 64
Jaber (10.1016/j.bbrep.2024.101705_bib25) 2012; 109
Hung (10.1016/j.bbrep.2024.101705_bib19) 2023; 186
Giridharan (10.1016/j.bbrep.2024.101705_bib20) 2022; 11
Tanaka (10.1016/j.bbrep.2024.101705_bib7) 2022; 614
Yin (10.1016/j.bbrep.2024.101705_bib32) 2020; 219
Zhang (10.1016/j.bbrep.2024.101705_bib31) 2010; 5
Tsuboyama (10.1016/j.bbrep.2024.101705_bib29) 2016; 354
Gillooly (10.1016/j.bbrep.2024.101705_bib23) 2000; 19
Zhang (10.1016/j.bbrep.2024.101705_bib30) 2020; 5
Porta (10.1016/j.bbrep.2024.101705_bib4) 2018; 9
Kaizuka (10.1016/j.bbrep.2024.101705_bib8) 2016; 64
McCartney (10.1016/j.bbrep.2024.101705_bib17) 2014; 111
Takano (10.1016/j.bbrep.2024.101705_bib11) 2023; 128
de Campos (10.1016/j.bbrep.2024.101705_bib35) 2020; 105
Saffi (10.1016/j.bbrep.2024.101705_bib22) 2022; 298
Tanaka (10.1016/j.bbrep.2024.101705_bib13) 2023; 299
Sharma (10.1016/j.bbrep.2024.101705_bib36) 2019; 15
Odle (10.1016/j.bbrep.2024.101705_bib18) 2020; 77
Chang (10.1016/j.bbrep.2024.101705_bib27) 2017; 214
Tanaka (10.1016/j.bbrep.2024.101705_bib10) 2016; 25
Martens (10.1016/j.bbrep.2024.101705_bib24) 2016; 428
Tanaka (10.1016/j.bbrep.2024.101705_bib28) 2017; 26
Ling (10.1016/j.bbrep.2024.101705_bib2) 2013; 79
Kanda (10.1016/j.bbrep.2024.101705_bib15) 2013; 48
Choy (10.1016/j.bbrep.2024.101705_bib37) 2018; 131
Barmada (10.1016/j.bbrep.2024.101705_bib5) 2014; 10
References_xml – volume: 48
  start-page: 452
  year: 2013
  end-page: 458
  ident: bib15
  article-title: Investigation of the freely available easy-to-use software 'EZR' for medical statistics
  publication-title: Bone Marrow Transplant.
– volume: 284
  start-page: 1267
  year: 2017
  end-page: 1278
  ident: bib16
  article-title: Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics
  publication-title: FEBS J.
– volume: 111
  start-page: 2132
  year: 2020
  end-page: 2145
  ident: bib9
  article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes
  publication-title: Cancer Sci.
– volume: 19
  start-page: 4577
  year: 2000
  end-page: 4588
  ident: bib23
  article-title: Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells
  publication-title: EMBO J.
– volume: 72
  start-page: 1456
  year: 2022
  end-page: 1481
  ident: bib26
  article-title: Autophagy dysfunction in ALS: from transport to protein degradation
  publication-title: J. Mol. Neurosci.
– volume: 5
  start-page: 25
  year: 2020
  ident: bib30
  article-title: CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism
  publication-title: Signal Transduct. Targeted Ther.
– volume: 109
  start-page: 2003
  year: 2012
  end-page: 2008
  ident: bib25
  article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 124
  year: 2013
  end-page: 134
  ident: bib3
  article-title: Prion-like properties of pathological TDP-43 aggregates from diseased brains
  publication-title: Cell Rep.
– volume: 10
  start-page: 677
  year: 2014
  end-page: 685
  ident: bib5
  article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models
  publication-title: Nat. Chem. Biol.
– volume: 105
  start-page: 1641
  year: 2020
  end-page: 1649
  ident: bib35
  article-title: Identification of PIKfyve kinase as a target in multiple myeloma
  publication-title: Haematologica
– volume: 219
  year: 2020
  ident: bib32
  article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3
  publication-title: J. Cell Biol.
– volume: 64
  start-page: 835
  year: 2016
  end-page: 849
  ident: bib8
  article-title: An autophagic flux probe that releases an internal control
  publication-title: Mol. Cell
– volume: 186
  start-page: 786
  year: 2023
  end-page: 802 e728
  ident: bib19
  article-title: PIKFYVE inhibition mitigates disease in models of diverse forms of ALS
  publication-title: Cell
– volume: 64
  start-page: 60
  year: 2008
  end-page: 70
  ident: bib21
  article-title: Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
– volume: 5
  start-page: 33
  year: 2010
  ident: bib31
  article-title: Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments
  publication-title: Mol. Neurodegener.
– volume: 128
  start-page: 1838
  year: 2023
  end-page: 1849
  ident: bib11
  article-title: Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics
  publication-title: Br. J. Cancer
– volume: 77
  start-page: 228
  year: 2020
  end-page: 240 e227
  ident: bib18
  article-title: An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis
  publication-title: Mol. Cell
– volume: 214
  start-page: 2611
  year: 2017
  end-page: 2628
  ident: bib27
  article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation
  publication-title: J. Exp. Med.
– volume: 31
  year: 2020
  ident: bib34
  article-title: Cdk4 and Cdk 6 couple the cell-cycle machinery to cell growth via mTORC1
  publication-title: Cell Rep.
– volume: 9
  start-page: 4220
  year: 2018
  ident: bib4
  article-title: Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo
  publication-title: Nat. Commun.
– volume: 354
  start-page: 1036
  year: 2016
  end-page: 1041
  ident: bib29
  article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
  publication-title: Science
– volume: 614
  start-page: 191
  year: 2022
  end-page: 197
  ident: bib7
  article-title: Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation - a new tool to study autophagosome-lysosome fusion
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 1035
  year: 2017
  end-page: 1049
  ident: bib33
  article-title: Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner
  publication-title: Mol. Oncol.
– volume: 25
  start-page: 1420
  year: 2016
  end-page: 1433
  ident: bib10
  article-title: Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation
  publication-title: Hum. Mol. Genet.
– volume: 26
  start-page: 969
  year: 2017
  end-page: 988
  ident: bib28
  article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes
  publication-title: Hum. Mol. Genet.
– volume: 6
  start-page: 740
  year: 2016
  end-page: 753
  ident: bib38
  article-title: Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors
  publication-title: Cancer Discov.
– volume: 15
  start-page: 1694
  year: 2019
  end-page: 1718
  ident: bib36
  article-title: A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis
  publication-title: Autophagy
– volume: 299
  year: 2023
  ident: bib13
  article-title: Dysregulation of the progranulin-driven autophagy-lysosomal pathway mediates secretion of the nuclear protein TDP-43
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: E4896
  year: 2014
  end-page: E4905
  ident: bib17
  article-title: Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 611
  start-page: 78
  year: 2022
  end-page: 84
  ident: bib6
  article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  year: 2022
  ident: bib20
  article-title: Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes
  publication-title: Elife
– volume: 79
  start-page: 416
  year: 2013
  end-page: 438
  ident: bib2
  article-title: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis
  publication-title: Neuron
– volume: 428
  start-page: 4819
  year: 2016
  end-page: 4827
  ident: bib24
  article-title: Phospholipids in autophagosome formation and fusion
  publication-title: J. Mol. Biol.
– volume: 131
  year: 2018
  ident: bib37
  article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence
  publication-title: J. Cell Sci.
– volume: 383
  start-page: 1564
  year: 2020
  end-page: 1576
  ident: bib1
  article-title: Autophagy in human diseases
  publication-title: N. Engl. J. Med.
– volume: 298
  year: 2022
  ident: bib22
  article-title: Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib14
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 7
  year: 2016
  ident: bib12
  article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway
  publication-title: Nat. Commun.
– volume: 4
  start-page: 124
  year: 2013
  ident: 10.1016/j.bbrep.2024.101705_bib3
  article-title: Prion-like properties of pathological TDP-43 aggregates from diseased brains
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.007
– volume: 72
  start-page: 1456
  year: 2022
  ident: 10.1016/j.bbrep.2024.101705_bib26
  article-title: Autophagy dysfunction in ALS: from transport to protein degradation
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-022-02029-3
– volume: 131
  year: 2018
  ident: 10.1016/j.bbrep.2024.101705_bib37
  article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.213587
– volume: 77
  start-page: 228
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib18
  article-title: An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.10.016
– volume: 79
  start-page: 416
  year: 2013
  ident: 10.1016/j.bbrep.2024.101705_bib2
  article-title: Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.033
– volume: 111
  start-page: E4896
  year: 2014
  ident: 10.1016/j.bbrep.2024.101705_bib17
  article-title: Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1411117111
– volume: 284
  start-page: 1267
  year: 2017
  ident: 10.1016/j.bbrep.2024.101705_bib16
  article-title: Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics
  publication-title: FEBS J.
  doi: 10.1111/febs.13987
– volume: 428
  start-page: 4819
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib24
  article-title: Phospholipids in autophagosome formation and fusion
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.10.029
– volume: 219
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib32
  article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201911036
– volume: 31
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib34
  article-title: Cdk4 and Cdk 6 couple the cell-cycle machinery to cell growth via mTORC1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.03.068
– volume: 614
  start-page: 191
  year: 2022
  ident: 10.1016/j.bbrep.2024.101705_bib7
  article-title: Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation - a new tool to study autophagosome-lysosome fusion
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2022.05.027
– volume: 109
  start-page: 2003
  year: 2012
  ident: 10.1016/j.bbrep.2024.101705_bib25
  article-title: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1112848109
– volume: 25
  start-page: 1420
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib10
  article-title: Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw024
– volume: 5
  start-page: 25
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib30
  article-title: CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism
  publication-title: Signal Transduct. Targeted Ther.
  doi: 10.1038/s41392-020-0118-x
– volume: 299
  year: 2023
  ident: 10.1016/j.bbrep.2024.101705_bib13
  article-title: Dysregulation of the progranulin-driven autophagy-lysosomal pathway mediates secretion of the nuclear protein TDP-43
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.105272
– volume: 111
  start-page: 2132
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib9
  article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14419
– volume: 11
  year: 2022
  ident: 10.1016/j.bbrep.2024.101705_bib20
  article-title: Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes
  publication-title: Elife
  doi: 10.7554/eLife.69709
– volume: 64
  start-page: 60
  year: 2008
  ident: 10.1016/j.bbrep.2024.101705_bib21
  article-title: Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21425
– volume: 26
  start-page: 969
  year: 2017
  ident: 10.1016/j.bbrep.2024.101705_bib28
  article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes
  publication-title: Hum. Mol. Genet.
– volume: 15
  start-page: 1694
  year: 2019
  ident: 10.1016/j.bbrep.2024.101705_bib36
  article-title: A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1586257
– volume: 19
  start-page: 4577
  year: 2000
  ident: 10.1016/j.bbrep.2024.101705_bib23
  article-title: Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.17.4577
– volume: 128
  start-page: 1838
  year: 2023
  ident: 10.1016/j.bbrep.2024.101705_bib11
  article-title: Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-023-02210-4
– volume: 10
  start-page: 677
  year: 2014
  ident: 10.1016/j.bbrep.2024.101705_bib5
  article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1563
– volume: 6
  start-page: 740
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib38
  article-title: Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-16-0095
– volume: 214
  start-page: 2611
  year: 2017
  ident: 10.1016/j.bbrep.2024.101705_bib27
  article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160999
– volume: 383
  start-page: 1564
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib1
  article-title: Autophagy in human diseases
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra2022774
– volume: 11
  start-page: 1035
  year: 2017
  ident: 10.1016/j.bbrep.2024.101705_bib33
  article-title: Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12072
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.bbrep.2024.101705_bib14
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 354
  start-page: 1036
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib29
  article-title: The ATG conjugation systems are important for degradation of the inner autophagosomal membrane
  publication-title: Science
  doi: 10.1126/science.aaf6136
– volume: 7
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib12
  article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11803
– volume: 64
  start-page: 835
  year: 2016
  ident: 10.1016/j.bbrep.2024.101705_bib8
  article-title: An autophagic flux probe that releases an internal control
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.09.037
– volume: 48
  start-page: 452
  year: 2013
  ident: 10.1016/j.bbrep.2024.101705_bib15
  article-title: Investigation of the freely available easy-to-use software 'EZR' for medical statistics
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2012.244
– volume: 9
  start-page: 4220
  year: 2018
  ident: 10.1016/j.bbrep.2024.101705_bib4
  article-title: Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06548-9
– volume: 186
  start-page: 786
  year: 2023
  ident: 10.1016/j.bbrep.2024.101705_bib19
  article-title: PIKFYVE inhibition mitigates disease in models of diverse forms of ALS
  publication-title: Cell
  doi: 10.1016/j.cell.2023.01.005
– volume: 105
  start-page: 1641
  year: 2020
  ident: 10.1016/j.bbrep.2024.101705_bib35
  article-title: Identification of PIKfyve kinase as a target in multiple myeloma
  publication-title: Haematologica
  doi: 10.3324/haematol.2019.222729
– volume: 5
  start-page: 33
  year: 2010
  ident: 10.1016/j.bbrep.2024.101705_bib31
  article-title: Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-5-33
– volume: 611
  start-page: 78
  year: 2022
  ident: 10.1016/j.bbrep.2024.101705_bib6
  article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2022.04.064
– volume: 298
  year: 2022
  ident: 10.1016/j.bbrep.2024.101705_bib22
  article-title: Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.102187
SSID ssj0001528526
Score 2.2865458
Snippet (Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101705
SubjectTerms Abemaciclib
Autophagic flux
PIP
TDP-43
Vacuolin-1
Title Abemaciclib and Vacuolin-1 decrease aggregate-prone TDP-43 accumulation by accelerating autophagic flux
URI https://dx.doi.org/10.1016/j.bbrep.2024.101705
https://www.ncbi.nlm.nih.gov/pubmed/38596406
https://www.proquest.com/docview/3035540797
https://pubmed.ncbi.nlm.nih.gov/PMC11001778
https://doaj.org/article/6e41ffab52e64792978198969ecabe96
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOcAFlXcKVEbiiEUSx3Z8XApVRQVCqIXeLD_G20U0ILqR4N8ztpNqFyS4cExiJeOZSeabePwNIc8aCKHmHHMTFy3rtAPWA4_Mqlr0vXeNy5vC3r6TR6fdmzNxttHqK9WEFXrgorgXEromRutEC7JTGMxVn8p8pAZvHehMto0xbyOZKvuD2160cqYZygVdDnPMxFDZdplcKDWs2whFmbF_KyL9iTh_L5zciESHu-TWBCHpooh-m1yD4Q65cTB3brtLlgsHF9bj1ZWjdgj0o_Vjas7DGhoyTLwEapeYaad_aAwFGICevHrPOk6t9-PF1NKLup_pGANTcpNhSe2YaAgsfixp_DL-uEdOD1-fHByxqaEC86Jr18xHpWIDPrZKAHinvPQIAbyPqKvGagzn3EIdnMa0SirFPW-k7UTI62028PtkZ0CRHhLKg9Ui1kHUTuMA7Ry6glCJPUuB5K4iz2fdmm-FN8PMBWWfTTaFSaYwxRQVeZn0fzU0kV7nE-gKZnIF8y9XqIicrWcm_FBwAd5q9fenP51tbdBUacnEDvB1vDQY4EWiKNSqIg-K7a9k5L3QEvFQRfotr9iaxPaVYXWeGbwTT1-jVL_3P6b9iNxMcyk1xI_Jzvr7CE8QKa3dPrm-OP7w6Xg_vxy_ANBRFFA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abemaciclib+and+Vacuolin-1+decrease+aggregate-prone+TDP-43+accumulation+by+accelerating+autophagic+flux&rft.jtitle=Biochemistry+and+biophysics+reports&rft.au=Tanaka%2C+Yoshinori&rft.au=Kozuma%2C+Lina&rft.au=Hino%2C+Hirotsugu&rft.au=Takeya%2C+Kosuke&rft.date=2024-07-01&rft.eissn=2405-5808&rft.volume=38&rft.spage=101705&rft_id=info:doi/10.1016%2Fj.bbrep.2024.101705&rft_id=info%3Apmid%2F38596406&rft.externalDocID=38596406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-5808&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-5808&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-5808&client=summon