Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids

New wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment are needed. This is due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production. In this s...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 42; no. 14; pp. 3729 - 3738
Main Authors Ucisik, Ahmed Suheyl, Henze, Mogens
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment are needed. This is due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production. In this study, the feasibility of implementing biological hydrolysis and acidification process on different types of municipal sludge was investigated by batch and semi-continuous experiments. The municipal sludge originated from six major treatment plants located in Denmark were used. The results showed that fermentation of primary sludge produced the highest amount of volatile fatty acids (VFAs) and generated significantly higher COD- and VFA-yields compared to the other sludge types regardless of which WWTP the sludge originated from. Fermentation of activated and primary sludge resulted in 1.9–5.6% and 8.1–12.6% COD-yields, soluble COD (SCOD)/total COD (TCOD), in batch experiments, respectively. The COD-yields for primary, activated and mixed sludge were 19.1%, 6.5% and 21.37%, respectively, in semi-continuous experiments operated at solids retention time (SRT) of 5 d and temperature of 37 °C. The benefit of fermentation for full-scale application was roughly estimated based on the experiments performed in semi-continuous reactors. The results revealed that even though the VFA production of primary sludge was higher compared to activated sludge, substantial amounts of VFA could be produced by fermentation of activated sludge due to the substantially higher production of activated sludge in WWTPs.
Bibliography:http://dx.doi.org/10.1016/j.watres.2008.06.010
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2008.06.010